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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this paper, we present an approach to color im- 

age understanding that can be used to segment and 
analyze surfaces with color variations due to high- 
lights and shading. We begin with a theory that re- 
lates the reflected light from dielectric materials, such 
as plastic, to fundamental physical reflection 
processes, and describes the color of the reflected 
light as a linear Combination of the color of the light 
due to surface reflection (highlights) and body reflec- 
tion (object color). This theory is used in an algorithm 
that separates a color image into two parts: an image 
of just the highlights, and the original image with the 
highlights removed. In the past, we have applied this 
method to hand-segmented images. The current 
paper shows how to perform automatic segmentation 
method by applying this theory in stages to identify 
the object and highlight colors. The result is a com- 
bination of segmentation and reflection analysis that is 
better than traditional heuristic segmentation methods 
(such as histogram thresholding), and provides impor- 
tant physical information about the surface geometry 
and material properties at the same time. We also 
show the importance of modeling the camera 
properties for this kind of quantitative analysis of 
color. This line of research can lead to physics-based 
image Segmentation methods that are both more reli- 
able and more useful than traditional segmentation 
methods.’ 

1. Introduction 
One of the key goals of computer vision is to inter- 

pret the scene as a collection of shiny and matte sur- 
faces, smooth and rough, interacting with light, shape, 
and shadow. However, computer vision has not yet 
been successful at deriving such a description of sur- 
face and illumination properties from an image. The 
key reason for this failure has been a lack of models 
or descriptions rich enough to relate pixels and pixel- 
aggregates to scene characteristics. In the past, most 
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work with color images has considered object color to 
be a constant property of an object, and color varia- 
tion on an object was attributed to noise’m2s3. 
However, color variation in real scenes depends to a 
much larger degree on the optical reflection properties 
of the scene. This variation causes the perception of 
object color, highlights, shadows and shading4* 5, 
scene properties that can be determined and used by 
color vision algorithms. 

This paper presents an approach to color image 
understanding that accounts for color variations due 
to highlights and shading. We use a reflection model 
which describes pixel colors as a linear combination 
of an object color and a highlight color6. All color 
pixels from one object form a planar cluster in the 
color space. The cluster shape is determined by the 
object and highlight colors and by the object shape 
and illumination geometry. We extend our reflection 
model with a sensor model which accounts for 
camera properties, such as a limited dynamic range, 
blooming, gamma-correction, and chromatic aber- 
ration. This allows us to apply our algorithms to real 
images, instead of only to synthesized images. 

We have previously reported how this theory can be 
used to separate color images into two intrinsic 
images, one showing the scene without highlights, 
and the other showing only the highlights7. In the 
past, we have applied this method to hand-segmented 
images. The current paper describes an automatic 
segmentation method that is based on the extended 
dichromatic reflection model. Our approach alter- 
nates between generating hypotheses about the 
scene from the image data and verifying whether the 
hypotheses fit the image. The hypotheses relate ob- 
ject color, shading, highlights and camera limitations 
to the shapes of color clusters in local image areas. 
By using this control structure, driven by a physical 
model of light reflection, we are able to incrementally 
identify local and global properties of the scene, such 
as object and illumination colors, and to use them in 
interpreting pixels in the images. This allows us to 
adapt the image interpretation process to local scene 
characteristics and to react differently to color and in- 
tensity changes at different places in the image. This 
method stands in contrast to Gershon’s approach’, in 
which he begins with a traditional segmentation and 
follows it with a physics-based post-processing step. 
His approach suffers from erroneous region boun- 
daries created by the initial segmentation, while our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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method uses the physical model from the beginning 
and therefore does not make such unrecoverable mis- 
takes. 

The result is a combination of segmentation and 
reflection analysis that is better than traditional heuris- 
tic segmentation methods that base their analysis on 
intensity or color differences or on a fixed set of user- 
defined features, such as intensity, hue and satura- 
tion. Traditional algorithms also cannot distinguish 
reliably between different edge types, such as high- 
light edges, material edges and shading or shadow 
edges, and they cannot account for camera limita- 
tions. Moreover, our method generates important 
physical information about the scene. This infor- 
mation significantly simplifies our subsequent step to 
separate color images into two intrinsic reflection 
images7, since the segmentation already provides all 
necessary information about color variation on an ob- 
ject. When combined with methods to interpret the 
intrinsic imagesgi4, this line of research can lead to 
physics-based image segmentation methods that are 
both more reliable and more useful than traditional 
segmentation methods. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. The Dichromatic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReflection Model 

On its path from a light source to the camera, a light 
ray is altered in many characteristic ways by the ob- 
jects in the scene. The camera then encodes the 
measured light in a (color) pixel. It is the goal of 
image understanding methods to use properties and 
relationships between pixels to recover a description 
of the scene. It is essential to the success of such 
methods that they understand and model the reflec- 
tion processes in the scene, as well as the sensing 
characteristics of the camera. How light is reflected 
from an object depends on the material of the object. 
It is common to distinguish between conducting 
materials, such as metals, and dielectric (non- 
conducting) materials, such as plastics, paints, papers 
and ceramics. In the following, we will present a 
model that describes the reflection processes of 
dielectric materials. 

Most dielectric materials are inhomogeneous. They 
consist of a medium and some embedded pigments, 
as shown in Figure 2-1. The pigments selectively 
absorb light and scatter it by reflection and refraction. 
When we look at objects that are made out of 
dielectric material, we usually see the reflected light 
as composed of two distinct colors that typify the high- 
light areas and the matte object parts. This is a 
characteristic property of many dielectrics, and our 
reflection model capitalizes on this characteristic color 
change between matte and highlight areas. 

When light hits the surface of a dielectric material, 
the change in refraction indices causes the light to 
partially reflect back into the air and to partially refract, 
penetrating into the material body. We refer to the 

reflection process at the material surface as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurface 
reflection. It generally appears as a highlight or as 
gloss on an object. Fresnel's law describes how the 
reflected light depends on the refraction indices of the 
material and the surrounding medium, on the in- 
cidence angle and on the polarization of the light". 
When modelling surface reflection, however, it is com- 
mon to make some simplifying assumptions. Assum- 
ing that little or no light absorption occurs at the 
material surface, we may conclude that the light 
reflected from the surface has the same color as the 
illumination. This is a characteristic feature of high- 
lights on most dielectric materials. Depending on the 
smoothness of the surface, the light may be reflected 
in a preferred direction (mirror reflection) or it may be 
scattered into many directions. Several models have 
been developed in the physics and computer graphics 
communities to describe the geometric properties of 
light reflection from rough surfaces", 1 3 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2-1 : Reflection from a dielectric material 

For dielectric materials, not all incident light is 
reflected at the material surface. Some percentage of 
the light penetrates into the material body. The 
refracted light beam travels through the medium, hit- 
ting pigments from time to time. The pigments scatter 
the light and partially or entirely absorb it at some 
wavelengths14* 15. Some of the light finally exits from 
the material body back into the air. We refer to this 
reflection process as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbody reflection. Its geometric 
and photometric properties depend on many factors: 
the transmitting properties of the medium, the scat- 
tering and absorption properties of the pigments, and 
the shape and distribution (including density and 
orientation) of the pigments. If we assume a random 
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distribution of the pigments, the light exits in random 
directions from the body. In the extreme, when the 
exiting light is uniformly distributed, the distribution 
can be described by Lambert's law. The distribution 
of the pigments also influences the amount and the 
color of the reflected light. If the pigments are dis- 
tributed randomly in the material body, we may expect 
that, on the average, the same amount and color will 
be absorbed everywhere in the material before the 
light exits. In such a case, the light that is reflected 
from the material body has the same color over the 
entire surface. 

According to the above discussion, our reflection 
model describes the light, L(h,i,e,g)', which is 
reflected from an object point as a mixture of the light 
L,(h,i,e,g) reflected at the material surface and the 
light L,(h,i,e,g) reflected from the material body. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L(h,i,e,g) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALs@,i,e,g) +Lb,(h,i,e,g) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) 

If we assume that there is only a single light source 
in the scene, with no inter-reflection between objects, 
and that highlights (surface reflection) have the same 
color as the illumination, we can then separate the 
spectral reflection properties of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, from its geometric 
reflection properties. We thus model it as a product of 
a spectral power distribution, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,(h), and a geometric 
scale factor, m,(i,e,g), which describes the intensity of 
the reflected light. Similarly, we separate the body 
reflection component L, into a spectral power distribu- 
tion, and a geometric scale factor, rnb(i,e,g). 
Substituting these terms into equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i) ,  we obtain 
the Dichromatic Reflection Model equation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(2) 

L(Li,e,g) = nls(i,e,g)cs(h) + mb(i,e,g)cb(h) 

We thus describe the light that is reflected from an 
object point as a mixture of two distinct spectral power 
distributions, e,@) and cb(h), each of which is scaled 
according to the geometric reflection properties of sur- 
face and body reflection. In the infinite-dimensional 
vector space of spectral power distributions (each 
wavelength defines an independent dimension in this 
vector spacel6v 17), the reflected light can thus be 
described as a linear combination of the two vectors 

Many reflection models, which have been 
developed in the hysics and computer graphics com- 
m u n i t i e ~ ' ~ ~  4 s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA''0 are special cases of the model 
described here6. They replace the geometric vari- 
ables, ms and mb3 by specific functions that ap- 
proximate the measured reflection data of a chosen 
set of typical materials. In our work, we concentrate 
on the spectral variables in equation 2, e,&) and 

',@) and '&). 

'I,e, and g describe the angles of the incident and emitted light and 

the phase angle; h IS the wavelength parameter. 

cb(A), exploiting the color difference between them. 
We leave the geometrical factors unspecified. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Object Shape and Color Variation 

We will now discuss the relationship between the 
light mixtures of all points on an object. We study the 
spectral variation over an entire object by analyzing 
the histogram of the light mixtures from all object 
points. 

ourface and body reflection 
from a cylindrical object 

spectral cluster on the 
dichromatic plans 
Spanned by Zhe 3pectral 
power dIsCributions 
Of reflection Surface and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq k ,  body and ,-+(*, 

Figure 3-1 : The shape of the spectral cluster for a 
cylindrical object 

An investigation of the geometrical properties of 
surface and body reflection reveals that the light mix- 
tures form a dense spectral cluster in the dichromatic 
plane. The shape of this cluster is closely related to 
the shape of the object, as we will now describe. For 
illustration purposes, we will assume in the following 
discussion of spectral histograms that body reflection 
is approximately Lambertian and that surface reflec- 
tion is describable by a function with a sharp peak 
around the angle of perfect mirror reflection. Note, 
however, that this analysis is not limited to a particular 
geometric reflection model. Figure 3-1 shows a 
sketch of a shiny cylinder. The left part of the figure 
displays the magnitudes of the body and surface 
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reflection components. The curves show the loci of 
constant body or surface reflection. The darker 
curves are the loci of constant surface reflection. 
Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm,(i,e,g) decreases sharply around the object 
point with maximal surface reflection, msmx, these 
curves are shown only in a small object area. We call 
the points in this area highlight points. The remaining 
object points are matte points. The right part of the 
figure shows the corresponding spectral histogram in 
the dichromatic plane. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs we will describe below, the 
object points form two linear clusters in the histogram. 

For matte points, the surface reflection component 
of the reflected light is negligible and all the reflected 
light comes from body reflection. The observed light 
at such points thus depends only on cb(h), scaled by 
m,(i,e,g) according to the geometrical relationship be- 
tween the local surface normal of the object and the 
viewing and illumination directions. Consequently, the 
matte points form a matte line in the dichromatic plane 
in the direction of the body reflection vector, cb(h), as 
shown in the right part of Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-1. 

Highlight points exhibit both body reflection and 
surface reflection. However, since m,(i,e,g) is much 
more sensitive to a small change in the photometric 
angles than mb(i,e,g), the body reflection component 
is generally approximately constant in a highlight 
area, as displayed by the curve with label zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmbH in 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-1. Accordingly, the second term of the 
Dichromatic Reflection Model equation (2) has a con- 
stant value, mbH cb(h), and all spectral variation within 
the highlight comes from varying amounts of ms(i,e,g). 
The highlight points thus form a highlight line in the 
dichromatic plane in the direction of the surface reflec- 
tion vector, cs(h). The line departs from the matte line 
at position mb,,cb(h), as shown in Figure 3-1. More 
precisely, the highlight cluster looks like a slim, 
skewed wedge because of the small variation of the 
body reflection component over the highlight. 

The combined spectral cluster of matte and high- 
light points thus looks like a skewed T. The skewing 
angle of the T depends on the spectral difference be- 
tween the body and surface reflection vectors while 
the position and width of the highlight line depend on 
the illumination geometry: If the phase angle g be- 
tween the illumination and viewing direction at a high- 
light is very small, the incidence direction of the light is 
close to the surface normal. The underlying amount 
of body reflection thus is very high. The highlight line 
then starts near the tip of the matte line, and the 
skewed T becomes a skewed L. The wider the phase 
angle g is, the smaller is the amount of underlying 
body reflection. We have investigated this relation- 
ship more precisely for the case of a spherical object 
which is illuminated by a point light source at some 
distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd and viewed by a camera from another 
point at the same distance from the object. If the 

angle between the illumination and the viewing direc- 
tion becomes too wide, the object point with (globally) 
maximal body reflection becomes invisible to the 
camera. For wider phase angles, the (local) max- 
imum in body reflection, mb,LocalMax, decreases as the 
phase angle increases. We have calculated the 
relationship between mb,LocalMax and the amount of 
body reflection under the highlight, mmH' for varying 
illumination geometries. Under reasonable imaging 
conditions, mbH has a value that is more than 48% of 
mb.LocalMax The highlight line thus generally starts in 
the upper 50% of the matte line. A more detailed 
analysis will be presented in'9. We exploit this 
property as the 50%-heuristic in our segmentation 
method. 

4. A Camera Model 
The previous sections have described light reflec- 

tion in a theoretical, physical model. However, the 
observed pixels values are also influenced by the 
characteristics of the recording camera. Since some 
of these influences disturb the light reflection 
properties stated in the Dichromatic Reflection Model, 
we need to provide methods that restore the physical 
properties of light reflection. Where this is impossible, 
our image analysis algorithms must be able to detect 
or tolerate the inaccuracies in the image data. This 
section briefly describes how some camera charac- 
teristics influence the pixel values in real images. A 
more detailed analysis, including color pictures with 
color clusters from real images, can be found in7. 

The Dichromatic Reflection Model describes light 
reflection using the continuous spectrum of light. 
When a sensing device such as a camera or the 
human eye records an image, the light is integrated 
over the spectrum using a small number of weighting 
functions such as color filters. This process of 
spectral integration sums the amount of incoming 
light, L(h,i,e,g), weighted by the spectral transmittance 
of the filter, T, &), and the spectral responsivity of the 
camera, sh), over all wavelengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh: 

c - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(h,i,c,g)z/(h).s(h)dA f - j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) 

We use a red, a green and a blue color filter 
(Wratten filters number 25, 58 and 47A), thus reduc- 
ing the infinite-dimensional vector space to a three- 
dimensional space. The spectrum of an incoming 
light beam at pixel position (x,y) is represented by a 
triple C(x,y) = [R,G,B], where i, e, and g are deter- 
mined by x and y and by the position of the object 
relative to the camera. 

1 7 .  
For this reason, the linear relationship between 
reflected light and the colors of surface and body 
reflection, as stated in equation (2), is maintained un- 
der spectral integration. We thus obtain the 
Dichromatic Reflection Model for the three- 
dimensional color space: 

Spectral integration is a linear 
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(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The color pixel value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(x,y) is thus a linear com- 

bination of the two color vectors, C, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[R,,G,,BJ and 
C, = [R,G,BJ, which describe the colors of surface 
and body reflection on an object in the scene. Within 
the three-dimensional color space, C, and C, span a 
dichromatic plane which contains a parallelogram in 
which the color pixel values lie. 

We will now briefly describe a few camera limita- 
tions that are important factors when images of 
scenes with highlights are taken. 

Real cameras have only a limited 
dynamic range to sense the brightness of 
the incoming light. This restricts our 
analysis of light reflection to a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcolor cube, 
as shown in Figure 4-1. If the incoming 
light is too bright at some pixel position, 
the camera cannot sense and represent it 
adequately and the light is clipped in one 
or more color bands. Color clipping can 
be a problem for measuring the color of 
highlights or bright objects. In the color 
histograms, it causes the clusters to bend 
along the walls and edges of the color 
cube (see Figure 4-1). Such clipped 
color pixels do not follow the characteris- 
tics of the dichromatic reflection model 
and must thus be distinguished from 
matte pixels and highlight pixels. 

If a CCD-camera is used to obtain the 
images, too much incident light at a pixel 
may completely saturate the sensor ele- 
ment at this position2’. This causes 
blooming in the camera22 as a result of 
which adjacent pixels increase their 
values proportional to the magnitude of 
the overload. We call such neighboring 
pixels bloomed color pixels. We suspect 
color values in the upper 10% of the in- 
tensity scale in our images to be poten- 
tially influenced by color clipping or 
blooming. 

Cameras are generally much less sen- 
sitive to blue light than to red light. In 
order to provide an equal scaling on the 
three color axes in the color space, we 
need to rescale the pixel data separately 
in the color bands. We refer to this pro- 
cedure as color balancing. We balance 
the color bands by controlling the camera 
aperture during the picture taking 
process, using apertures for green and 
blue exposures under tungsten light that 
are 1/2 and 1 1/2 f-stops higher than the 
aperture used for the red exposure. We 
also use a total IR suppressor (Corion 

FR-400) in front of our camera to 
eliminate the CCD-camera’s sensitivity to 
infrared light. 

The color pixels also depend on the 
camera response to incident light flux. 
Due to gamma-correction, the camera 
output is generally related by an inverse 
power law to the incident flux. It intro- 
duces curvature into the color space, dis- 
torting the linear properties of the 
Dichromatic Reflection Model. To 
linearize the color data, we fit interpolat- 
ing cubic splines to the measured 
responsivity data, separately in each 
color band, as suggested by L e C l e r ~ ~ ~ .  
To model very bright light reflection, as 
can occur in highlights, we rescale the 
linearization function and extrapolate it 
from the brightest measurement out- 
wards by a square root curve. We use 
these functions to generate a look-up 
table relating the measured intensities in 
every color band to the incident flux. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4-1 : Color cluster in the color cube, with 
color clipping 
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5. Color Image Segmentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We will now describe the automatic segmentation 

method that we have developed based on the 
Dichromatic Reflection Model and the camera model 
described above. The goal of segmentation is to 
identify objects in an image, as delimited by material 
boundaries. Because most current color segmen- 
tation methods are based on a very simple interpreta- 
tion of color changes in an image, they generally seg- 
ment images not only along material boundaries but 
also along other lines exhibiting color or intensity 
variations, such as highlight and shadow boundaries, 
or object edges with significant shading changes. The 
Dichromatic Reflection Model provides a more sophis- 
ticated interpretation scheme relating the physics of 
light reflection to color changes in the image and in 
the color space. Our segmentation algorithm uses the 
Dichromatic Reflection Model and is thus able to dis- 
tinguish significant color changes at material boun- 
daries from insignificant ones that are due to shading 
changes or highlights. The algorithm generates 
hypotheses about skewed T's in the color cube while 
it analyzes local color variations in the image. It then 
uses the hypothesized orientations of the color 
clusters to decide whether a color change is consis- 
tent with the local skewed-T model or whether it con- 
stitutes a material change. 

5.1. Generating Initial Hypotheses about 
Color Clusters 

We may use either a global (top-down) or a local 
(bottom-up) approach to determine skewed T's in the 
color histogram and the associated regions in the im- 
age. A global algorithm projects the entire image into 
the color space and then applies some analysis tech- 
nique to the color space to identify and distinguish 
between the various clusters. A local algorithm, on 
the other hand, starts out with small image areas and 
merges areas with consistent interpretations into 
larger areas, assuming that local color variation is re- 
lated to only a few scene properties. The global ap- 
proach has problems when several objects with very 
similar colors exist in the scene; a local approach, on 
the other hand, has the problem of distinguishing 
camera noise from systematic color variation. 

Figure 5-1 shows a scene with eight plastic objects 
under white light. The scene contains a cup and two 
donuts at various shades of red, a cup and a donut in 
different yellow colors, a green cup and a green 
donut, and a blue donut. The upper left quarter dis- 
plays the original image. The color histogram from 
the entire image is shown in the upper right quarter. 
Note that the various clusters overlap significantly. In 
such an image, we feel that it is harder to decide 
when to split a large region with overlapping color 
clusters than to accomodate for camera noise. There- 
fore, we chose to utilize a local (region growing) 
scheme. 

We start by dividing the image into small, non- 
overlapping windows of a given size (typically 10x1 0 
pixels). We project the color pixels from one window 
at a time into the color space and find the principal 
components of the color distributions, as indicated by 
the eigenvectors and eigenvalues of the covariance 
matrix of the cluster24. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25. We sort the eigenvalues by 
decreasing size. The eigenvalues and eigenvectors 
determine the orientation and extent of the ellipsoid 
that optimally fits the data. 

Figure 5-1 : Initial analysis of color variations for a 

The shape of the ellipsoids provides information 
that we can use to relate the local color variation to 
physical interpretations. The classification is based 
on the number of eigenvalues that are approximately 
zero, within the limit of pixel value noise in the image. 
In order to classify the ellipsoids, we compare their 
eigenvalues with the estimated amount of noise, oo. 
For our camera, we use an experimentally determined 
estimate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, = 2.5. We base our decision for each 
eigenvalue on a $-test with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9-1) parameters, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n is the window size, and we use a confidence level of 
a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0.005. We then classify each cluster according to 
how many eigenvalues are determined to be sig- 
nificantly greater than zero. 

scene with eight plastic objects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

rn In zero-dimensional (pointlike) clusters, 
all three eigenvalues of the window are 
very small and the window probably lies 
on a single object which is either very flat 
or very dark. 
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One-dimensional (linear) clusters are 
clusters for which only the first eigen- 
value is significantly larger than the es- 
timated camera noise. Pixels in such a 
window may stem from a matte object 
area or from the interior of a highlight 
area such that they form part of a matte 
or highlight cluster. The pixels may also 
come from two point clusters if a window 
overlays parts of two neighboring objects. 

Two-dimensional (planar) clusters have 
large first and second eigenvalues, and 
the local color data thus fits a plane in the 
color cube. Such clusters occur at win- 
dows that either cover some matte and 
some highlight pixels of one object or that 
overlay matte pixels from two neighboring 
regions. 

In three-dimensional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(volumetric) 
clusters, all three eigenvalues are large. 
Such color clusters may arise in the mid- 
dle of highlights where color clipping and 
blooming significantly increase the noise 
in the pixel measurements. Volumetric 
color clusters also occur along material 
boundaries when three or more objects in 
different colors share a window or when a 
window overlays matte pixels of one ob- 
ject and matte and highlight pixels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
another object. 

The lower left quarter in Figure 5-1 shows the clas- 
sification of the color clusters from the initial 10x10 
windows. Pointlike clusters are displayed in black, 
linear clusters in dark grey, planar clusters in light 
grey, and volumetric clusters in white. The image 
shows that the classifications relate in the expected 
way to scene properties. Most matte object areas are 
covered by linear windows, while windows at material 
boundaries and at highlights are planar or volumetric. 

Next, we merge neighboring windows that have 
similar color characteristics. The algorithm proceeds 
in row-major order. For every area, it tests for every 
neighbor whether the two can be merged. In order 
not to merge windows across material boundaries, we 
only merge neighboring windows, if both of them and 
the resulting larger window all have the same clas- 
sification. We use the X2-test presented above to 
classify the larger window. Accordingly, we combine 
windows with pointlike clusters into larger pointlike 
windows; we merge windows with linear characteris- 
tics into larger linear windows; and we merge planar 
windows into larger planar windows. We do not 
merge neighboring volumetric color clusters since 
there is no constraint on the resulting cluster. We 
continue this process until no more areas can be 
merged. The results are initial hypotheses about the 
positions and orientations of pointlike, linear, and 

planar clusters in color space and their respective ap- 
proximate extents in the image. The lower right 
quarter in Figure 5-1 presents the results of merging 
neighboring windows of the same class in the image 
of the eight plastic objects. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2. Exploiting Linear Hypotheses 

So far, the algorithm has used a bottom-up ap- 
proach to extract information about the scene from the 
image. In a top-down step, the algorithm now uses 
the generated hypotheses to segment the image. We 
start by using the hypothesis with the largest linear 
cluster. The chosen linear hypothesis provides us 
with a model of what color variation to expect in the 
associated image area. The mean value and the first 
eigenvector describe the position and orientation of a 
linear color cluster, while the second and third eigen- 
values determine the extent of the color cluster per- 
pendicular to the major direction of variation. Accord- 
ing to the Dichromatic Reflection Model, we attribute 
color variation along the major axis to a physical 
property of the scene, such as a changing amount of 
body or surface reflection or a material boundary. 

T' 

Figure 5-2: Resolving a color conflict between two 
matte color clusters 

Our model assumes that color variation perpen- 
dicular to the first eigenvector is caused by random 
noise. We thus approximate a linear color cluster by 
a cylinder. The radius depends on the estimated 
camera noise; we generally choose a constant mul- 
tiple of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, (typically 40,). We exclude dark color 
pixels from our color analysis because the matte 
clusters merge near the dark corner of the color cube. 
The cylinder is thus delimited at its dark end by a 
sphere which is centered at the black corner. We 
typically use a radius for the sphere of 23, which is 
approximately 10% of the maximum pixel value. 

We then use the linear hypothesis to locally reseg- 
ment the image. We select a start pixel from the area 
associated with the color cluster: this pixel must have 
a color that is contained within the color cylinder of the 
current hypothesis. We then examine its four neigh- 
bors, testing whether their colors lie on the cylinder. If 
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so, we recursely examine the next fringe of neighbors 
and so on. We thus grow a region of four-connected 
image pixels that are consistent with the current 
hypothesis. 

Since the matte clusters converge towards the dark 
corner of the color cube, there exists a potential con- 
flict between neighboring matte areas. Our heuristic 
of excluding very dark pixels from the analysis 
eliminates the most difficult cases; still, the cylinders 
of neighboring clusters may intersect beyond the 
selected dark threshold. This depends on the cylinder 
radius and on the angle between the two cylinders. 
Thus, neighboring objects with similar colors will have 
conflicts even at fairly bright colors. We assign pixels 
with a color conflict to the cluster with the closest axis, 
as shown in Figure 5-2. 

Since there is generally more than one object in the 
scene, our algorithm iterates the above steps for each 
image area with a large linear cluster, selecting the 
areas by decreasing size. It stops when the next 
selected area is too small (typically less than 500 
pixels). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5-3: Segmentation steps of the scene with 

In principle, the resulting "linear" regions may be 
related in any of several different ways to the physical 
processes in the scene. As discussed in section 5.1 ., 
a linear color cluster may be a matte cluster or a 
highlight cluster or even a combination of two clusters 
across a material boundary. However, we expect that 

eight plastic objects 

linear color clusters from highlights and across 
material boundaries are generally much smaller than 
matte clusters. Since we use only hypotheses con- 
nected with large linear clusters, we assume in the 
following that all of the linear regions correspond to 
matte linear clusters. 

The upper right quarter of Figure 5-3 shows the 
results of selecting and applying linear hypotheses to 
the image with the eight plastic objects. The region 
boundaries outline the matte object parts in the scene, 
with the material boundaries being well observed. 
The highlight areas on the objects have not yet been 
analyzed. This sometimes divides the matte pixels on 
an object into several matte areas, as shown on the 
middle cup and on the lower right donut. 

5.3. Generating Planar Hypotheses 
We will now extend the above generated linear 

hypotheses into planar hypotheses that describe 
dichromatic planes and skewed T's. For every linear 
region, we examine all its neighbors to determine a 
prospective highlight candidate. In order to decide 
whether a neighboring region comes from another ob- 
ject (across a material boundary) or whether it is a 
highlight on the same object, we test whether both 
linear clusters point in positive directions and whether 
the two clusters form a skewed T and meet in the 
upper 50% of the matte cluster. A similar idea was 
used by Gershon8 to identify highlight segments in a 
postprocessing step after an initial, traditional seg- 
mentation was performed. He tested whether the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo 
clusters are nearly parallel or whether they intersect, 
suspecting that parallel clusters are neighboring matte 
clusters. In our method, the physical model is used 
during the segmentation process rather than as a 
post-processing step. 

Each candidate cluster that we test is a group of 
pixels on the border of a linear region. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI f  the cluster is 
in fact a highlight, the first eigenvector of the cluster's 
color distribution will generally be in the direction of 
the highlight color. We start by testing whether the 
first eigenvector of a highlight candidate describes a 
positive color change, i.e: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0  and d G 2  0 and 
dB 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. If this is not the case, the window of the 
highlight candidate probably overlays a material 
boundary and thus partially covers pixels from the cur- 
rent matte region and partially covers pixels from a 
neighboring matte region. 

Next, we exploit the T-shape of the dichromatic 
cluster and the 5O0/'-heuristic. For this purpose, we 
determine the brightest matte point in the color 
cluster. In order not to select a highlight point that fell 
into the matte cylinder, as shown in Figure 5-4, we 
exploit the observation that highlight clusters always 
grow inwards into the color cube, due to the additive 
nature of body and surface reflection. We thus 
choose the brightest matte point only from pixels with 
color values that are closer to the walls of the cube 
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than the matte lhe is. Next, we determine the inter- 
section points of the two clusters. We use their color 
means and first eigenvectors to describe a matte and 
a prospective highlight line and determines the two 
points on the two lines that are closest to one another. 
I f  the distance between them is larger than a multiple 
of the estimated camera noise (typically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40,), we 
decide that the clusters do not meet in a skewed T 
and the neighboring area is discarded. Similarly, if 
the clusters intersect in the lower 50% of the matte 
cluster, we suspect that we are looking at two matte 
clusters from neighboring objects, and we discard this 
neighbor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5-4: Finding the brightest matte pixel 

There may be several highlight candidates because 
the highlight on the object may consist of a series of 
small windows that could not be merged, due to color 
clipping and blooming in the middle of the highlight. 
In order to select a good representative of the entire 
highlight, we average the intersection points of all 
highlight candidates, weighted by the number of pixels 
in the various regions. We then select the highlight 
region whose intersection point is closest to the 
average. 

Since we assume in the Dichromatic Reflection 
Model that highlights have the same color as the il- 
lumination, all highlight clusters are parallel to one 
another and to the illumination color vector. As a 
consequence, all dichromatic planes intersect along 
one line, which is the illumination vector. We use this 
constraint to further reduce the error estimating the 
orientations of the highlight clusters, combining all 
highlight hypotheses into a single hypothesis about 
the color of the illumination. Observing that any im- 
precision of the highlight vector orientation within the 
dichromatic plane is irrelevant we base our computa- 
tion on the normals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl of the dichromatic planes of all 
objects. We then determine the intersection vector i, , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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between each pair of planes: 

Each intersection vector i,,, provides us with a vector 
describing a hypothesized illumination color. The 
strength of the hypothesis depends on the angle be- 
tween the two dichromatic planes under considera- 
tion. If the planes intersect nearly perpendicularly, the 
intersection line will not vary much with small amounts 
of error in estimating the orientations of the planes. If, 
on the other hand, the planes are nearly parallel, 
small amounts of noise may arbitrarily influence 
whether and where the planes intersect. We use a 
weighted average of all intersection vectors to 
generate a hypothesis on the illumination color, in 
which every intersection vector contributes according 
to the dihedral angle enclosed by the respective 
dichromatic planes. 

5.4. Exploiting Planar Hypotheses 
The Dichromatic Reflection Model states that color 

variations on a single object lie in a plane in the color 
space. We therefore use the planar hypotheses to 
resegment the image, expecting that the resulting im- 
age areas cover entire objects and will not be inter- 
rupted by highlight boundaries. We select one 
hypothesis at a time and apply it to the image, 
proceeding iteratively until no more unprocessed 
hypotheses with sufficient support from the image ex- 
ist. 

The chosen matte cluster and the illumination 
hypothesis determine a planar hypothesis predicting 
all significant color variation on the associated object. 
We use the cross product of the illumination vector 
and the first eigenvector of the matte cluster to deter- 
mine the normal to this dichromatic plane. We use 
the color mean of the matte cluster to position the 
plane in the color cube, and we extend the plane into 
a slice of fixed thickness to account for camera noise. 
A typical choice for the width of the slice is 40, in the 
positive and negative direction of the normal. 

The algorithm uses the chosen planar hypotheses 
to locally resegment the image. In principle, we start 
from the selected matte region and expand it, recur- 
sively including pixels at the region boundaries which 
are consistent with the planar hypothesis. However, 
the algorithm must be augmented with special provi- 
sions to handle coplanar color clusters from neigh- 
boring objects. If the illumination vector lies in the 
plane spanned by the matte vectors of two neigh- 
boring objects, the color clusters of the objects lie in 
the same dichromatic plane and thus cannot be distin- 
guished by a mere planar region growing approach. 
The resulting segmentation would generally be quite 
counterintuitive since the matte object colors may be 
very different and even complementary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo avoid 
such segmentation errors, we exploit the previously 
gathered knowledge about existing matte color 
clusters. When the planar region process encounters 
pixels from a previously grown matte region other 
than the starting region, it only continues growing if 

( 5 )  
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the pixel lies within the matte color cylinder of the 
starting region. We thus apply the unrestricted planar 
growing criterion only to pixels that have not been 
previously recognized as matte pixels, while we fall 
back to the linear region growing method when matte 
pixels are concerned. This reflects the observation 
that if several matte areas exist in an object area, 
separated by highlight regions, all such matte areas 
form a single matte cluster. We also apply the 
proximity heuristic described in the previous section to 
resolve ambiguities for color pixels at the intersection 
of dichromatic planes. 

The lower left quarter of Figure 5-3 displays the 
results of segmenting the scene using the generated 
planar hypotheses. In comparison to the linear seg- 
mentation in the upper right quarter, the segmented 
image areas have grown into the highlight areas. As 
a result, the two matte image areas on the middle cup 
that were previously separated by a highlight are now 
united. The same occurred on the lower right donut. 
Due to cdmera limitations, not all pixels in the centers 
of the highlights are yet integrated into the object 
areas. This will be discussed and remedied in the 
next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.5. Accounting for Camera Limitations 

Unfortunately, real images generally do not comply 
with the Dichromatic Reflection Model. Color clipping 
and blooming may distort the color of pixels in and 
around highlights significantly. As a result, the color 
pixels in the centers of highlights will generally not fall 
into the planar slice defined for the dichromatic plane 
of an object area and the planar segmentation will 
exclude such pixels, as can be observed in the upper 
right quarter of Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-3. 

Since color information is so unreliable for these 
pixels, we do not use it. Instead, we use a geometric 
heuristic to include them into the region. As men-. 
tioned above, pixels with distorted colors generally oc- 
cur in the middle of the highlight areas. Thus, starting 
from highlight pixels we expand the planar regions 
into areas that are next to highlight pixels and contain 
very bright pixels (Le: brighter than the intersection 
point between the matte and highlight cluster). 

The lower right quarter of Figure 5-3 displays the 
results of segmenting the scene using the generated 
planar hypotheses. Nearly all pixels in the highlight 
centers have now been integrated into the segmented 
regions, and the image segments correspond very 
well to the objects in the scene. Very few pixels on 
the highlights have been excluded, due to our heuris- 
tic of only intregrating very bright pixels. Any image 
processing method for filling holes in image segments 
should be able to include these pixels. The lowest of 
the three donuts in the upper left exhibits two inter- 
esting properties. First, a small area at its upper left 
edge has wrongly been assigned to the donut above 
it. We can see in the original image that this area is 

covered by a shadow, resulting in very dark pixel 
values. Since the color clusters of, the two donuts 
(yellow and red) are already merged at these color 
values, the assignment was based on the distance 
from the two cylinder axes, which happened to be 
smaller for the upper donut. Second, there is a small 
area in the lower right part of the donut that was not 
included into the large image segment covering the 
donut. The color of these pixels has been significantly 
altered by inter-reflection from the middle cup which 
reflected a part of its body color (orange) onto the 
(yellow) donut, thus influencing the reflected colors of 
the donut. Inter-reflection may also be a factor in the 
shadowy part in the upper left of the donut. This 
demonstrates the sensitivity of our algorithm to the 
reflection processes in the scene. Since inter- 
reflection is not yet a part of our reflection model, our 
current algorithm cannot identify it in the image and 
process it correctly. 

6. Removing Highlights 
As one application of our above method to analyze 

and segment color images, we can now use the 
gathered information about the color clusters to split 
every color pixel into its two reflection components. 
We thus generate two intrinsic images of the scene, 
one showing the objects as i f  they were completely 
matte, and the other showing only the highlights. 

We have previously reported a method to detect 
and remove highlights from hand-segmented images 
'. That method projected the pixels from a selected 
image area into the color space and fitted a skewed T 
to the entire color cluster, thus determining the body 
and surface reflection vectors, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and C,, of the area. 
Since our new segmentation algorithm already 
provides this information as a result of its analysis of 
local color variations, we can now skip this step. 
However, due to possible estimation errors in the seg- 
mentation process and due to camera problems such 
as blooming and chromatic aberration, the vectors 
may not yet fit perfectly. In order to obtain a more 
precise fit to the data, we retest every pixel in the 
segmented area and label it as a matte or highlight 
pixel, depending on whether it is closer to the matte 
line or to the highlight line, which is the illumination 
vector starting from the intersection point of the 
skewed T. We then refit the matte and highlight line to 
the matte and highlight pixels by determining the first 
eigenvectors and the color means of the clusters. 

The algorithm uses the reflection vectors C, and C, 
that are defined for every segmented region to split 
every pixel in each region into its two reflection com- 
ponents. C,, C,, and their cross product, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, x C,, 
define a new (not necessarily orthogonal) coordinate 
system in the color cube. This coordinate system 
describes every color in the cube in terms of the 
amounts of body reflection, surface reflection and 
noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, as given by the color distance from the 
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dichromatic plane (see figure 6-1). There exists an 
affine transformation, and thus a linear transformation 
matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, which transforms any color vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = 
[R,G,BT] from the initial coordinate system into a vec- 
tor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd = [rn,,rn,,~~] in the new coordinate system. After 
computing Tfrom C, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,, we can thus transform 
every color pixel in the image area into its constituent 
body and surface reflection components, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmb and rn,. 
By selecting the m,,-component of every transformed 
pixel, we generate the body reflection image of the 
image area. By selecting the m,-component, we 
generate the corresponding surface reflection image. 

T G  

Figure 6-1 : Decomposing a color pixel into its 
constituent reflection components 

ponents of the various objects reasonably well. The 
orientations of the corresponding reflection vectors 
are shown in Table 9-1. When evaluated under 
eyeball inspection, the body reflection image seems to 
generally provide a smooth shading component 
across the highlight area. We expect that this image 
may therefore be a useful tool to determine object 
shapes from shading information. We will investigate 
this application in the future. There exist thin dark 
rings in the body reflection image around the highlight 
on the lower right donut. This error is due to 
chromatic aberration in the camera which currently 
limits the performance of our algorithm. 

The surface reflection image exhibits very well the 
highlight components on the objects. All highlights 
have been detected, and beyond that, the image 
provides precise quantitative information on the vary- 
ing amount of surface reflection. Notice the gradient 
in the surface reflection component on the rightmost 
cup and the small amount of gloss that was detected 
on the handle of the middle cup. A careful inspection 
of the surface reflection image reveals that the sur- 
face reflection component also increases at the 
material boundaries. This effect is related to aliasing 
occuring at pixels that integrate light from two neigh- 
boring objects. The colors of such pixels are a linear 
combination of two matte object colors. Depending 
on the orientations of the dichromatic planes, they 
may be included in either of the two object areas in 
the image, or they may be left unassigned, as at the 
edge between the middle and the rightmost cup. If 
they are assigned to one of the object areas, they 
generally do not lie close to the matte line, thus result- 
ing in a higher surface reflection component. 

other color bands. We assume that the smallest of 
the three values of a color pixel stems from a color 
band without clipping and blooming. We then replace 
the clipped or bloomed pixel by a pixel on the matte or 
highlight line that has the same value in the undis- 
torted band. 

The upper quarters in Figure 6-2 display the result- 
ing intrinsic images of the scene with the eight plastic 
objects. The images demonstrate that we are able to 
determine the body and surface reflection com- 

Figure 6-2: Intrinsic reflection images of the scene 
with eight plastic objects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7. Results and Discussion 
Figure 7-1 shows the results of applying our seg- 

mentation algorithm and the reflection analysis to a 
scene of an orange, a green and a yellow cup under 
white light. These same images were analyzed in our 
earlier work, using hand-segmentation'. The seg- 
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mented image in the upper right quarter demonstrates 
that our method is capable of correctly identifying the 
object areas. Due to its modeling of matte and high- 
light color variations, our program ignores color 
changes along the highlight boundaries. The lower 
quarters in the figure display the intrinsic body and 
surface reflection images. The orientations of the 
matte and highlight vectors are given in Table 9-2. 
Table 9-3 shows the vector orientations of the cups 
under yellow light. The intrinsic images and the 
reflection vectors are comparable or better than the 
ones that we obtained earlier by fitting skewed Ts to 
the entire histogram of hand-segmented image areas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7-1 : Analysis results for three plastic cups 
under white light 

Our examples show that our algorithm analyzes 
and segments the given images quite well. We will 
now discuss the conceptual and implementational 
limitations of our approach. First, our current im- 
plementation depends on the window size used for 
determining the initial local color variation in the im- 
age. If the windows are too large, many of them 
overlap several objects, and the clusters are 
volumetric. If the windows are too small, color varia- 
tion on a relatively flat or dark object may be over- 
looked, as the result of pointlike clusters. Second, our 
cylindrical model for 'the linear hypotheses does not 
account for secondary effects on pixel values, such as 
color clipping, blooming, chromatic aberration, alias- 
ing and inter-reflection between objects. Because 
such effects influence the shape of the color cluster, a 

non-circular model of the cross-section of linear 
clusters may be needed. We deal with this problem 
by choosing a fairly large cylinder radius. It may be 
desirable to adaptively fit a tighter model to the linear 
cluster. Along the same lines, the hypothesized orien- 
tation of the linear cluster may be inexact and could 
be improved by an adaptive method that refits the 
cylinder until it optimally fits a given cluster. We are 
currently investigating these issues. 

The conceptional limitations of our approach are re- 
lated to the basic principles of our model. Since we 
attribute any linear color variation to the changing il- 
lumination geometry of a single material, we are un- 
able to find material boundaries between objects with 
collinear matte clusters. We will need a geometrical 
analysis, linking intensity gradients to object shape, to 
distinguish between such objects. The same will be 
needed to analyze dark image areas which are cur- 
rently exluded because their color information is too 
unreliable. 

The model also makes simplifying assumptions 
about the illumination conditions and the materials in 
the scene. A color cluster from a single object in an 
unconstrained scene will generally not be a skewed T 
composed of linear subclusters because the illumina- 
tion color may vary on different parts on the object 
surface, and the reflection properties of the object 
may also change, due to pigment variations in the 
material body. The necessary extensions to the 
model will be the subject of future work. 

Furthermore, our method to split color pixels into 
their reflection components (but not the segmentation) 
relies on a characteristic color change between the 
matte object color and the highlight color. There 
needs to be a certain angle between the orientations 
of the body and surface reflection vectors of an object. 
How big the angle needs to be depends on the es- 
timated camera noise (as related to the width of the 
matte cylinder). If the matte and highlight clusters are 
approximately collinear, we cannot separate the 
reflection components. Similarly, we have problems 
when one of the two linear clusters does not exist or is 
very small for an object. The matte cluster is missing, 
if the viewed object is very dark, or if the scene is 
illuminated with a narrow-band illuminant that does 
not overlap with the wavelengths at which the material 
reflects light. Matte clusters also do not exist for 
metallic objects. On the other hand, the highlight 
cluster may be missing, if an object does not reflect a 
highlight into the camera, due to its position in the 
scene and the illumination geometry. As a third case, 
we need to consider objects with very rough surfaces 
such that every pixel in the image area has both a 
significant body and surface reflection component. 
The color cluster may then fill out the entire 
dichromatic plane. A common special case of this are 
so-called "matte" or "lambertian" materials - as op- 
posed to glossy materials - which reflect a constant 

, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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amount of surface reflection in every direction and 
thus never exhibit a highlight in the common sense of 
the word. The corresponding color clusters are linear 
clusters, translated from the origin of the color space 
according to the constant surface reflection com- 
ponent. Our current method is not capable of distin- 
guishing between all these cases that result in a 
single, linear cluster. In combination with exploiting 
previously determined scene properties, such as the 
illumination color, we will need to analyze the intensity 
gradients along the linear axes and relate them zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the 
properties of m, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmb, as described in a geometri- 
cal model of light reflection. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. Conclusions 

In this paper, we have demonstrated that it is pos- 
sible to analyze and segment real color images by 
using a physics-based color reflection model. Our 
model accounts for highlight reflection and matte 
shading, as well as for some characteristics of 
cameras. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEy developing a physical description of 
color variation in color images, we have developed a 
method to automatically segment an image while 
generating hypotheses about the scene. We then use 
the knowledge we have gained to separate highlight 
reflection from matte object reflection. The resulting 
intrinsic reflection images have a simpler relationship 
to the illumination geometry than the original image 
and may thus improve the results of many other com- 
puter vision algorithms, such as motion analysis, 
stereo vision, and shape from shading or highlights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9, 4, 27. Since the surface reflection component of 
dielectric materials generally has the same color as 
the illumination, we can also determine the illumina- 
tion color from the intrinsic surface reflection image, 
information which is needed by color constancy al- 

The key points leading to the success of this work 
are our modeling of highlights as a linear combination 
of both body and surface reflection and our modeling 
of the camera properties. With few exceptions 
28, 30, ’, previous work on image segmentation and 
highlight detection has assumed that the color of high- 
light pixels is completely unrelated to the object color. 
This assumption would result in two unconnected 
clusters in the color space: one line or ellipsoid 
representing the object color and one point or sphere 
representing the highlight color. Our model and our 
color histograms demonstrate that, in real scenes, a 
transition area exists on the objects from purely matte 
areas to the spot that is generally considered to be 
the highlight. This transition area determines the 
characteristic shapes of the color clusters which is the 
information that we use to distinguish highlight boun- 
daries from material boundaries and to detect and 
remove highlights. This view of highlights should 
open the way for quantitative shape-from-gloss 
analysis, as opposed to binary methods based on 
thresholding intensity. 

gorithms28,29,30,31 

By modeling the camera properties, we are able to 
obtain high quality color images (through color balanc- 
ing and spectral linearization) in which most pixels 
maintain the linear properties of light reflection, as 
described in the Dichromatic Reflection Model. We 
can also detect most distorted color pixels in an image 
and thus generate an intrinsic error image which then 
guides our algorithm to separate only undistorted 
color pixels into their reflection components. We ex- 
pect that the intrinsic error image will be similarly use- 
ful in guiding other computer vision algorithms, such 
as shape from shading. It may also enable us to 
automatically control the camera aperture so that we 
can obtain color images with minimal clipping and 
blooming. 

Our hypothesis-based approach towards image 
segmentation may provide a new paradigm for low- 
level image understanding. Our method gains its 
strength from using an intrinsic model of physical 
processes that occur in the scene. The result are 
intrinsic images and hypotheses which are closely re- 
lated in their interpretation to the intrinsic model, being 
instantiations of concepts formulated in the model. 
Our system alternates between a bottom-up step 
which generates hypotheses and a top-down step 
which applies the hypotheses to the images. Our 
analysis thus consists of many small, complete inter- 
pretation cycles that combine bottom-up processing 
with feed-back in top-down processing. This ap- 
proach stands in contrast to traditional image seg- 
mentation methods which do not relate their analysis 
to intrinsic models and that also generally have a 
strictly bottom-up control structure. We feel that many 
low-level image understanding methods such as 
shape-from-x methods, stereo and motion analysis 
may be viewed and approached under this paradigm. 
We hope to extend our approach into a more com- 
plete low-level image analysis system which com- 
bines color analysis with a geometrical analysis of the 
scene, exploiting the body and surface reflection 
images. Along these lines, we may generate 
hypotheses about object shapes and about the object 
materialsz9. The highlight image may also provide 
strong evidence for the position of the light source. 

Although the current method has only been applied 
in a laboratory setting, its success shows the value of 
modeling the physical nature of the visual environ- 
ment. Our work and the work of others in this area 
may lead to methods that will free computer vision 
from its current dependence on statistical signal- 
based methods for image segmentation. 
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30. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
31. 

dark red donut 
yellow cup 
green cup (right half) 
red cup 
yellow donut 
bright red donut 
green donut 
green cup (left half) 
blue donut 

illumination vector: 
- computed by alg. 
- independent meas. 
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body reflection vector 

(0.84,0.52,0.14) 
(0.27,0.89,0.37) 
(0.95,0.26,0.14) 
(0.77,0.61,0.19) 
(0.98,0.18,0.12) 
(0.21,0.78,0.59) 
(0.27,0.86,0.42) 
(0.00,O .2 5,O. 97) 

(0.99,0.11,0.12) 

Reflection Vectors: Eight Plastic Objects under White Light 

green cup 
yellow cup 
orange cup 

illumination vector: 
- computed by alg. 
- independent meas. 

body reflection vector surface reflection vector 

(0.22,0.91,0.37) (0.46,0.51,0.72) 
(0.81,0.57,0.15) (0.56,0.56,0.61) 
(0.95,0.26,0.15) (0.47,0.58,0.66) 

(0.69,0.62,0.38) 
(0.58,0.57,0.58) 

~~ 

surface reflection vector 

(0.62,0.52,0.59) 
(0.48,0.62,0.62) 
(0.54 ,O. 58,O .6 1 ) 
(0.68,0.48,0.56) 
(0.69,0.51,0.51) 
(0.77,0.61,0.18) 
(0.47,0.63,0.31) 
(0.61,0.52,0.59) 
(0.49,0.63,0.60) 

(0.57,0.58,0.57) 
(0.58,0.57,0.58) 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9-1 : Body and surface reflection vectors of the 
eight plastic objects under white light 

Table 9-2: Body and surface reflection vectors of the 
three plastic cups under white light 



Reflection Vectors: Plastic Cups under Yellow Light 

green cup 
yellow cup 
orange cup 

illumination vector: 
- computed by alg. 
- independent meas. 

body reflection vector 
~ ~~ 

(0.49,0.86,0.16) 
(0.85,0.52,0.08) 
(0.97,0.24,0.08) 

surface reflection vector 

(0.76,0.62,0.20) 
(0.74,0.65,0.14) 
(0.73,0.66,0.18) 

(0.81,0.56,0.19) 
(0.73,0.66,0.19) 

Table 9-3: Body and surface reflection vectors of the 
three plastic cups under yellow light zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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