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Abstract. This paper proposes a new methodology for image segmen-
tation based on the integration of deformable and Markov Random Field
models. Our method makes use of Markov Random Field theory to build
a Gibbs Prior model of medical images with arbitrary initial parameters
to estimate the boundary of organs with low signal to noise ratio (SNR).
Then we use a deformable model to fit the estimated boundary. The re-
sult of the deformable model fit is used to update the Gibbs prior model
parameters, such as the gradient threshold of a boundary. Based on the
updated parameters we restart the Gibbs prior models. By iteratively in-
tegrating these processes we achieve an automated segmentation of the
initial images. By careful choice of the method used for the Gibbs prior
models, and based on the above method of integration with deformable
model our segmentation solution runs in close to real time. Results of the
method are presented for several examples, including some MRI images
with significant amount of noise.

1 Introduction

Segmentation is the process of assigning pixels in an image to distinct objects
or the background. It is one of the fundamental processes for higher-level image
analysis. However, it still remains an open research problem. Region-based and
boundary-based methods are the two major classes of segmentation algorithms.

In region-based methods, e.g., region growing [1], image pixels are assigned
to objects based on homogeneity statistics. If a pixel value is similar to that of its
neighbors, then the two pixels will be assigned to the same object. The advantage
of this method is that the image information inside the object is considered. The
disadvantage is that it may lead to noisy boundaries and holes inside the object
because the method does not consider the boundary information explicitly.

In the boundary-based method, e.g., snakes [2], Fourier-Parameterized mod-
els [3], a shape model is initialized close to the object boundary and fits to the
boundary based on image features. To avoid local minima, most boundary-based
methods require that the model be initialized near the solution and it is con-
trolled via an interactive interface. A disadvantage of these methods is that they
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do not consider pixel information inside the object. For images with low SNR,
the boundary-based method may lead to incorrect assignment of pixels unless
significant manual intervention is used.

To improve the segmentation results of either of the above two classes of
methods a hybrid segmentation framework was proposed in [4] and [5] that
combines region-based and boundary-based methods. The algorithm works as
follows. In the first step the user selects a single initial pixel inside the object to
be segmented and then an affinity operator is applied to the image to estimate
the pixels that most likely lie on the boundary of the object. Since the data
are usually sparse and/or noisy, in the second step a deformable model is fit to
improve the segmentation from the first step that is then used to re-compute
the parameters of the affinity operator. The above two steps are then applied
recursively to further refine the segmentation results.

A limitation of the affinity operator is that it only considers the local char-
acteristics in the direct neighborhood of every new pixel in order to make a
decision as to whether the pixel should be included to the already segmented
cluster of pixels or not. The affinity operator does not use any boundary shape
or boundary continuity information.

Chan et al. apply the Gibbs prior model in [6] and [7] for image processing
based on the work of Besag [8] and Geman and Geman[9]. Compared to the
affinity operator, the Gibbs prior models can incorporate much more informa-
tion. By using specific neighborhood information, the Gibbs prior model can
incorporate both boundary and region information during segmentation.

In this paper we develop a new segmentation approach that integrates Gibbs
prior models and deformable models for segmenting the boundaries of organs in
medical images. The advantages of the method is that:

1. The user only selects a single pixel inside the object,
2. The method can deal with images with significant amount of noise and poorly
defined boundaries, and

3. it is computationally efficient and runs in real time (5Hz on SGI R10000
workstation).

1.1 Related Work

As opposed to most previous work on segmentation that falls under either the
boundary [14,22] or the region growing methods [1], our method follows a hy-
brid approach. Recently, there have been several hybrid methods such as the
ones developed in [5, 6, 15, 16, 17]. In [18], Zhu et al. develop a unifying frame-
work that generalizes the deformable models, region growing, and prior match-
ing approaches. They define a new energy function that represents them all. By
combining the region-based method and the boundary-based method, all these
approaches achieve good results. However, they still need good initialization to
avoid local minima and they use fixed prior models that may be difficult to
compute accurately in advance.
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Various successful approaches for object segmentation have been proposed
that use the Markov Random Fields property of images in the past few years. [8,
9, 19] used MRF or Gibbsian models that include nearest neighbor correlation
information, but do not use object boundary information. [6] and [7] defined
higher order neighborhoods in MRF image models that model both region and
boundary object information based on theoretical results from [20,21].

Y. Boykov et al. [24], Vittorio Murino and Andrea Trucco [25] use MRF
models in their segmentation applications. But neither of them provides a self-
adaptive algorithm to refine the prior models. So their methods need an exact
prior model to begin with.

J. Dehmeshki et al. developed an automatic adaptive algorithm for MRF
image segmentation [26]. In their recursive algorithm, they first segment the
image with Gibbs prior models. Then they update the Gibbs prior model based
on the segmentation result, and then they segment the image again. They do this
repeatedly until a satisfactory result is achieved. However, when they updated
the Gibbs prior model, they recalculate parameters by doing statistics on every
pixel in the image, which makes the adaptive process computationally expensive.
Our method combines the deformable model and the Markov random field model.
The deformable model gives a better estimation for the prior used in the MRF
since it gives an explicit object boundary estimation. The iteration step between
the MRF and deformable model allow us to perform only a few steps for the MRF
segmentation, which in turn results in a very efficient segmentation algorithm.

2 Method

2.1 Markov Random Fields and Gibbs Prior for Segmentation

Most medical images are Markov Random Field images, that is, the statistics of
a pixel are related to the statistics of pixels in its neighborhood. According to
the Equivalent Theorem proved by Hammersley and Clifford in [11], a Markov
random field is equivalent to a Gibbs field. Thus for medical images which are
MRF images, their joint distribution can be written in the Gibbsian form as
follows.

Π(X) = Z−1 exp (−H(X)) Z =
∑
z∈X̄

(−H(z)) (1)

where H(X) models the energy function of image X , X̄ is the set of all possible
configurations of the image X , Z is a normalizing factor or partition function in
statistics terminology, and z is image. The local and global properties of images
will be incorporated into the model by designing an appropriate energy function
H(X). The lower the value of the energy function, the higher the value of the
image joint distribution, the better the image fits to the prior distribution.

We began the establishment of the Gibbs model by designing the energy
function as

H(X) = H1(X) +H2(X) +H3(X) (2)
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where H1(X) models the piecewise pixel homogeneity statistics, H2(X) models
the continuity of the boundary and H3(X) is the noise model.

To model the piecewise homogeneity, we model H1(X) as:

H1(X) = ϑ1

∑
s∈X

∑
t∈∂s

(Φ(∆s,t)(1 − Ψst) + αΨst) with Ψst =
{
0 ∆s,t < 0
1 ∆s,t ≥ 0 (3)

s and t are pixels, pixel t is in the neighborhood of pixel s, ϑ1 is the weight
for H1(X), α is the threshold for the object boundary, ∆s,t is the variance
between pixels s and t . Φ is a function based on the variance. For simplicity, let
Φ(∆s,t) = ∆2

s,t. When we minimize H1(X), pixels that have similar gray values
with their neighbors are considered to be in the same object (∆s,t assigned to
0) and will be further smoothed. But for pixels that have different gray values
(the variance between two pixels beyond the threshold α) than their neighbors,
will be assigned to 1. Thus the variance between these two pixels will remain.
Therefore the term will smooth the pixels inside the object and will keep the
boundary untouched.

The boundary continuity is modeled as follows:

H2(X) = ϑ2

∑
s∈X

N∑
i=1

Wi(x) (4)

where x is a pixel, ϑ2 is the weight term, N is the number of local configura-
tions that may lie on the boundaries. Wi(x) is the weight function (also called
the potential function) for the local configuration of the boundary. For our pur-
pose we consider the potential function on 9 pixels. In our model, the potential
functions are defined on a neighborhood system in which the 3 by 3 cliques are
used to model the boundary continuity. We depict the clique potential definition
in Figure 1. All these local configurations can have different orientations. The
vertical and horizontal configurations share the same potential function.

Fig. 1. Figure 1. Pixels labeled ”I” are inside the object; pixels labeled ”O”are
outside the object; pixels labeled ”X” all have gray values similar to either ”I”
or ”O”. The shading area is the boundary shape when assuming ”X” is similar
to ”I”
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Different values are assigned to different local configurations. All three local
configurations depicted in Figure 1 most likely exist in an image with smooth
and continuous boundary. In H2(X) we give weight to these local configura-
tions. When we minimize H2(X), the pixels in the image (especially those near
the boundary) will alter their gray values to achieve a smooth and continuous
boundary.

To cope with noise in the data, we use as mentioned previously the term
H3(X) in the energy function H(X). For Gaussian Noise, it has the form:

H3(X) = (2σ2)−1
∑

s

(ys − xs)2 (5)

where ys is the observed value of pixel s, xs is the estimated value and σ is the
standard deviation.

To minimize H(x) we use a Bayesian framework. According to Bayes’s the-
orem, the posterior distribution of an image is given by

P (X |Y ) = Π(X)L(Y |X)
P (Y )

(6)

where Π(X) is the prior distribution (see (1)) and L(Y |X) is the probability of
obtaining an image Y while the actual image is X . Under a Bayesian framework,
the segmentation problem can be formulated as the maximization of

Π(X)L(Y |X) (7)

The method requires choosing suitable ϑ1 and ϑ2 to achieve a balance between
the piecewise homogeneity and boundary continuity. We also need to input the
threshold of boundary α and the weight Wi(x) for local characteristics to enable
the Gibbs prior model:

We use the ICM method to minimize the energy function H(X), as described
in [11].

It is important to note that the result of the Gibbs prior model depends
on the proper selection of the respective parameters. In addition, the solution
based on the Gibbs prior model can be trapped in a local minimum. Based on
our method, the use of the deformable model to fit the estimated boundary
at every iteration serves as a way to push the Gibbs prior model solution to
the global minimum. This is due to the fact that we re-compute at the end of
every iteration the Gibbs prior model parameters based on the deformable model
segmentation.

2.2 Deformable Model Framework

We summarize the physics-based deformable model framework developed in [10]
that we use and its integration with the estimated boundary data produced by
the Gibbs prior model we described above.

Our model is a superellipsoid with local deformations. Given the reference
shape s (the superellipsoid) and the displacement d (the local deformations), the
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position of points p on the model are defined by p = s+d. To keep the continuity
of the model surface, we impose a continuous loaded membrane deformation
strain energy.

εm(d) =
∫

ω10(
∂d

∂u
)2 + ω01(

∂d

∂v
)2 + ω00d

2du (8)

Where d is a node’s local deformation, ω00 controls the local magnitude and ω10,
ω01 control the local variation of the deformation. We can calculate the stiffness
matrix K of model based on the strain energy [10].

The model nodes move under the influence of external forces. The model
dynamics can be described by the first order Lagrangian method:

ḋ+Kd = f (9)

where f are external generalized forces.
The external forces we apply in our method are the balloon forces proposed

by Cohen[23], based on which the model nodes move outward in the direction
of their normal vector. The deformable model is initialized at a pixel inside the
object and expands under the influence of the balloon forces. Once the model
reaches the estimated boundary based on the MRF segmentation, boundary
forces are applied in the opposite direction of the balloon force and the associated
nodes stop deforming. Thus the model is aligned with the boundary. The nodal
deformations are computed based on the use of finite elements. When most model
nodes stop moving, the model stops deforming.

2.3 Integration

Our method is based on the integration of Gibbs Prior models and deformable
models that results in efficient and reliable segmentations.

The quality of the Gibbs Prior model segmentation depends on parameters,
such as α (the threshold of boundary), the mean value of pixels in the object,
etc. In our approach we integrate the deformable and the Gibbs prior models
by using the deformable models to compute the parameter values for the Gibbs
prior model.

First we have an initial prior model to begin with. This Gibbs prior model
will be applied on the image and give the MAP boundary estimation (M step).
Then a deformable model is fit to the estimated boundaries (Fit step). Then we
recalculate the parameters (such as the mean value of pixels within the object
and the boundary threshold) of the Gibbs prior models based on the statistics
of pixels inside the boundary of the object that was segmented based on the
deformable model. We term this the prior estimation step or E step. The updated
prior model parameters based on the deformable model will be more accurate for
the object in the given image, since we include both the information inside and
on the surface of the object. This way we compute suitable parameters regardless
of the chosen initial values.
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The recursive approach can be summarized as follows.

1. First use the Gibbs prior model to get an initial segmentation of the object
(M step).

2. Once the estimated boundary has been computed, a deformable model is
fitted to it (F step).

3. Update the Gibbs parameters based on the property of pixels within and
on the object boundary. Use the updated parameters to create a new Gibbs
prior model (E step). Then go to step 1.

We apply this three-step procedure recursively until the segmentation results do
not change from iteration to iteration.

The advantage of the method is that it is very fast (5Hz on an SGI worksta-
tion) and can be used to segment medical images even when there is not enough
prior information and the boundaries are not well defined.

3 Experiments

We present several experiments to demonstrate the power of our algorithm. All
the experiments run in close to real time (5Hz on an SGI R10000 workstation).

The first experiment shown in Figure 2 shows the various steps of integrat-
ing the Gibbs prior model and the deformable model to achieve correct object
boundary segmentation. The boundary threshold α = 6 , the weights for the
local configuration Wi(x) = 5, there are 100 nodes on the deformable model. A
successful segmentation is achieved after one iteration between the deformable
and the MRF models.

Fig. 2. a) is the MRI image of right ventricular; b) is the result of applying the
Gibbs Prior models, the estimated boundary is assigned with white color; c) is
the result of fitting a deformable model, the shading area is inside the object; d)
shows the deformable model nodes; e) shows the final result after one iteration
between the deformable model and the MRF model.

The second experiment shown in Figure 3 shows the effect of the recursive
method between deformable model and the MRF model. The initial boundary
threshold α = 6 , the weights for the local configuration Wi(x) = 5, there are
100 nodes on the deformable model. A successful segmentation is achieved after
four iteration between the deformable and the MRF models.
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Fig. 3. shows how the recursive method works. a) is the original MRI image of
lung; b) is the initial estimation of the boundary using Gibbs filter; c) shows the
result of deformable model fitting; d) and f) show the Gibbs estimation after one
iteration and two iterations; e) and g) show the reult of deformable model fitting
after one iteration and two iterations; h) shows the final Gibbs estimation and
i) shows the final deformable model fitting; j) is the final segmentation result in
the original image

Experiment three (Figure 4) and four (Figure 5) show the application of our
method on visible human image data. In these two experiments, we apply the
method to segment the eyeball and a muscle in human head respectively. The
boundary threshold α = 6. There are 100 model nodes. All the local configu-
ration weights Wi(x) = 5. The program stops after one iterations between the
deformable and the MRF models.

These two experiment show the effectness of our method on segmenting subtle
humen body structures.

4 Conclusion

In this paper, we described a new approach to the segmentation problem by
integrating a probabilistic model and a deformable model. By using the Gibbs
prior models, we have a better estimation of the boundary to be used as an
initialization for the deformable model. A recursive method was then developed
to refine the segmentation results. The algorithm is very fast and is not sensitive
to the selection of the initial parameters. The approach is robust to noise and
can cope with low SNR. Methods have been developed to make the deformable
models work well even in the presence of boundaries with sharp edges. Results
of the method have been presented for several examples involving MRI images.
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Fig. 4. a) is the original MRI image of human head, and we are going segment
the muscle at the center of image; b) is the Gibbs estimation; c) is the final
segment result.

Fig. 5. a) is the original MRI image of human head, and we are going segment
the eyeball at the center of image; b) is the Gibbs estimation; c) is the final
segment result.
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