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Abstract

This study presents a new method to segment thin
tree structures, such as extensions of microglia and car-
diac or cerebral blood vessels. The Fast Marching
method allows the segmentation of tree structures from
a single point chosen by the user when a priori infor-
mation is available about the length of the tree [4]. In
our case, no a priori information about the length of the
tree structure to extract is available. We propose here
to compute geodesics from a set of points dispersed in
the image. The targeted structure corresponds to im-
age points with a high geodesic density. To compute
the geodesic density we propose two methods. The first
method defines the geodesic density of pixels in the im-
age as the number of geodesics that cross this pixel. The
second method consists in solving the transport equa-
tion with a velocity computed from the gradient of the
distance map. In this method, the geodesic density is
computed by integrating in short time the solution of
the transport equation. To our knowledge this is the
first time that geodesic voting is introduced. Numerical
results from confocal microscope images are presented
and show the interest of our approach.

1 Introduction

We are interested in the analysis of biological im-
ages acquired with a confocal microscope. The data
are composed of a set of 3D+T image sequences. For
each time point, a series of 23 images perpendicular
to the z axis was acquired, thereby covering the three
dimension of the cell. The aim is firstly, to segment
the microglia extensions in 3D and secondly, to track it
in time. The main difficulties with this data are: large
deformations of the microglia extensions, which corre-
spond to the tree structure, in time; presence of small
features belonging to other cells and noise; the data is
anisotropic: high resolution in the plane of the slice and

lower resolution in the perpendicular direction. Hence,
a simple use of the image intensities is not sufficient
to extract directly the tree structure. Malladi et al. [8]
used the Level Set methods to extract information from
MRI data (which present approximately the same dif-
ficulties as the confocal microscope images). The Fast
Marching method, introduced by Sethian in [12], and
adapted by Cohen et al. [4] to extract tree structures, de-
mands less computation time than the Level Set method
and works with only one point chosen by the user on
the tree. However, this method depends on a priori in-
formation about the target. In our case no a priori in-
formation about the tree structure is available. Here,
we present an original method to extract tree structures
without using any a priori information. The method
is generic, it can be used to extract any type of tree
structure in 2D as well as 3D. The method consists of
extracting geodesics from several points in the image,
from these points a geodesic density can be defined on
the image with a high value of the density for the tree
structure and a lower value outside of this. The seg-
mentation result coresponds to pixels with a high den-
sity value. Figure 1 shows the principle of segmentation
by geodesic voting on a simple synthetic image repre-
senting a segment. Right panel of (figure 1) shows the
geodesic paths (black lines) which are superposed on
the distance map associated to the synthetic image, the
method to compute a distance map will be presented
in the next section, left panel (figure1) represents the
geodesic density, methods to compute this will be pre-
sented in the section 3.

2 Background

2.1 Minimal paths

The minimal path theory for the extraction of con-
tours from the image was inspired by the principle of
Fermat: the light trajectory minimizes the optical dis-



Figure 1. Geodesic voting method.

tance between x0 = y(0) and x = y(t), e.g. it gives the
curve y that minimizes the distance

τ(x0, x) =
∫ t

0

ds

c
(
y(s)

) (1)

where propagation speed c is a function depending on
the medium of the propagation. In homogenous media
the function c is a constant, the trajectories correspond
to lines. In a medium with two regions, the function
c takes two values: c1 in the first region and c2 in the
second region . The trajectory, in this case, corresponds
usually to two joint segments, each segment belonging
to one region. We are interested here in the case of a
medium with a continuous velocity c. In the context of
image segmentation Cohen and Kimmel proposed, in
[5], a deformable model based on the optical distance
(1). The model is formulated as a calculus of variation
problem :

Min
∫ t

0

(
w + P (y(s))

)
ds, (2)

the minimum is considered in
{
y : [0, t] −→ R

2 :
y(0) = x0, y(t) = x

}
. The constant w imposes reg-

ularity on the curve. P > 0 is a potential computed
from the image, it takes lower values near the edges or
the features. For instance P = I, P = g(||∇I||),
where I is the image and g is a decreasing function. To
compute the solution associated to the source x0 of this
problem, we consider a Hamiltonian approach: Find the
travel time U that solves the eikonal equation

||∇U(x)|| = w + P (x) x ∈ Ω (3)

The ray y is subsequently computed by back-
propagation from x by solving the ODE

y′(s) = −∇U(y). (4)

The only stable schemes that solve the eikonal equa-
tion compute a viscosity solution [6]. The first work that

uses the viscosity solution is from Vidale [14]. Based on
this work Fatemi et al. [7] proposed the first numerical
scheme to solve the eikonal equation. To solve eikonal
equation through iterations [11], at least O(mn2) are
needed, where n is the total number of grid points and
m is the number of iterations that permit an estimation
of the solution. In the next section, an algorithm with
the complexity O

(
n log(n)

)
introduced in [12] is pre-

sented to solve this problem.

2.2 Fast Marching method

The idea behind the Fast Marching algorithm is to
propagate the wave in only one direction, starting with
the smaller values of the action map U and progressing
to the larger values using the upwind property of the
scheme. Therefore, the Fast Marching method permits
only one pass on the image starting from the sources in
the downwind direction. Here, the principle of the Fast
Marching method is given, for details see [12, 13]. The
grid points are partitioned into three dynamic sets: trial
points, alive points and far points. The trial points cor-
respond to a dynamic boundary that separates far points
and alive points. At each step, the trial point with the
minimum value of the action map U is moved to the set
of alive points, which are the grid points for which a
value U has been computed. The values of alive points
do not change. To reduce the computing time, the trial
points are stocked in a data structure referred to as min-
heap (the construction of this data structure is described
in [12, 13, 3]). The complexity to change the value of
one element of the min-heap is O

(
n
)
. Hence, the to-

tal work for Fast Marching is O
(
n log(n)

)
. The Di-

jkstra algorithm, which is also used to find a minimal
path, has the same complexity as the Fast Marching al-
gorithm. However, the Dijkstra algorithm gives a linear
approximation and there is no convergence result con-
trary to the Fast Marching algorithm, which converges
toward the unique viscosity solution.

3 Segmentation by geodesic voting of tree
structures

With the Fast Marching method we can extract the
minimal path between two points. Here, the aim is to
extract a tree with just one point chosen by the user.
When a priori information is available about the length
of the contour that one wants to extract, Cohen and al.
proposed in [4] a method to extract a tree structure from
one point selected by the user. In the following sections,
a method is proposed for the segmentation of tree struc-
tures from only one given point without having any a
priori information about the tree to extract. The method



Figure 2. Density of geodesic paths. Yel-
low lines represent geodesic paths cross-
ing four pixels, the pixels are represented
by the blue and brown blocks. The
geodesic density of the pixels in the im-
age correspond to the number of trajecto-
ries crossing the given pixel.

uses a new concept for the image segmentation. This
method consists in computing the geodesic density from
several geodesics extracted from the image.

3.1 Voting by characteristics

The method consists in computing a characteristics
curve from image points. The tree structure corre-
sponds to the points with high geodesic density. First
we choose the root of the tree structure and we propa-
gate a front in the whole image with the Fast Marching
method. Then, the geodesic paths from the border of the
image and from points dispersed in the image, denoted
by {xk}N

k=1, is extracted by solving the ODEs:

∂yk

∂s
= −∇U

(
y(s)

)
, yk(0) = xk, k = 1, ·, N (5)

We define the voting score or the geodesic density at
each point p of the image by

μ(p) =
N∑

k=1

δp(yk) (6)

the function δp(y) returns 1 if the path y crosses the
pixel p, else 0, see figure 2.

3.2 Voting with a transport equation

The trajectories yk computed from (5) are called
characteristics for the conservation equation

ut + div(vu) = 0, (t, x) ∈]0, T [×Ω, (7)

where v = −∇U denotes the velocity field computed
from the distance map U. Due to the conservation of

the information transported by the equation (7) toward
the source point, we can define a geodesic density as the
integral of the solution of the transport equation (7) in
the short time T

μ(x) =
∫ T

0

u(t, x)dt. (8)

By integration of the transport equation (7) with re-
spect to the time t, we get

div(vμ) = u(0, x) − u(T, x), x ∈ Ω (9)

The partial differential equation (9) is not elliptic, so it
is more convenient to compute the geodesic density by
the relation (8) after solving the transport equation (7).

3.3 Schemes for the transport equation

Medical images contain noise due to the imperfec-
tion of the acquisition system and the motion of the tar-
get. Furthermore the velocity field computed from the
image is irregular. We propose therefore a method to
solve the transport equation (7) based on the space-time
integrated least square (STILS) method introduced in
[9]. Recently, existence and unicity results for the min-
imizer of this method have been proved in [2] for an ir-
regular velocity field. Numerical discretization is given
for example in [1] when the divergence of the vector
field v is null. Here, we extend this method to the case
that divergence of the velocity is non null and irregular.

Let the application S defined by

S : u −→ S(u) = ut + div(vu). (10)

Instead of solving the transport equation (7), STILS
method consists in minimizing the functional

J(u) =
1
2

∫
Ω×[0, T ]

S(u)2 dxdt (11)

In the following, some definitions to construct a
scheme to approximate the minimizer of the functional
J are given. We define a bilinear form B by

B(
u,w

)
=

∫
Ω×[0, T ]

S(u)S(w) dxdt. (12)

Let M be a positif number, {ψ1(x), · · · , ψM (x)}
a basis for the approximation of u for a fixed t. Let
[0, T ] =

⋃
k

[tk, tk+1], τ = tk+1 − tk and

ak(t) =
tk+1 − t

τ
ak+1(t) =

t− tk
τ

. (13)

The approximation of the minimizer of (11) is given by



uh(t, x) =
M∑

j=1

ψj(x)
(
ak(t)uk

j + ak+1(t)uk+1
j

)

for (t, x) ∈]tk, tk+1[×Ω.

Theorem 1 There exists a sequence uk+1
j satisfying

M∑
j=1

B(
ψjak+1, ψiak+1

) · uk+1
j =

−
M∑

j=1

B(
ψjak, ψiak+1

) · uk
j

(14)

and converging toward the minimum of the function J .

The mathematical framework and a proof of this the-
orem is given in [10]. After integration of the relation
(14) in time we obtain the least squares scheme with the
finite element method approximating the minimizer of
the functional J defined by the relation (11):

M∑
j=1

uk+1
j

∫
Ω

[τ
3
(∇ψi|v

)(∇ψj |v
)
+

(
1
2 + τ

3 div(v)
)((∇ψi|v

)
ψj +

(∇ψj |v
)
ψi

)
+(

1
τ + div(v) + τ

3

(
div(v)

)2
)
ψiψj

]
dx =

−
M∑

j=1

uk
j

∫
Ω

[τ
6
(∇ψi|v

)(∇ψj |v
)
+

( − 1
2 + τ

6 div(v)
)(∇ψi|v

)
ψj+(

1
2 + τ

6 div(v)
)(∇ψj |v

)
ψi+(

− 1
τ + τ

6

(
div(v)

)2
)
ψiψj

]
dx,

(15)

for all i ∈ {1, · · · ,M}. Note that for a velocity field
with the null divergence ( div(v) = 0) the relation (15)
corresponds to the STILS-time-marching scheme given
in [1].
Figure 3 shows the segmentation result obtained with
this scheme. We have considered a simple synthetic im-
age representing a segment (see figure 3a). The pixels
with high density correspond to the structure extracted
from the image (see figure 3e).

4 Results

We have tested the proposed method on confocal mi-
croscope images, described in section 1. In this study,
segmentation was restricted to 2D. Figure 4 shows the
segmentation results obtained with voting characteris-
tics method proposed in the section 3.1. The center of

(a) (b)

(d) (e)

Figure 3. Voting by transport equation. (a)
Synthetic image representing a segment;
(b) velocity field computed from the im-
age with the Fast Marching algorithm; (c)
zoom on the velocity field shown in (b);
(d) geodesic density computed by the re-
lation (9) with the scheme (15).

the cell, which corresponds to the root of the propaga-
tion was chosen manually. The segmentation results are
very satisfying. However, some parts of the tree were
not present in the studied image, but could be found in
the other 22 images of the image series. Hence, some
segments of the tree extracted in the 2D segmentation
do not correspond to a real contour. An extension of the
proposed method to 3D segmentation should solve this
problem.

5 Discussion and conclusion

In this work a method for the segmentation of tree
structures was proposed that demanded the selection of
just one point by the user. No a priori information about
the tree structure was used, contrary to [4], where the
length of the tree structure was given as a priori. The
main contribution of this work is the introduction of
geodesic density and its for tree stucture segmentation.
To our knowledge this is the first time that geodesic vot-
ing is introduced. The numerical results obtained with
geodesic voting are satisfying and encourage the exten-
sion to 3D segmentation.



Figure 4. Results of the segmentation of
microglia from confocal microscope im-
ages. Upper panel: microglia, middle
panel: the geodesic paths (blue lines) are
superposed on the image, lower panel:
the extracted tree structure. The root cor-
responds to the cell center.
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G. Carlier, G. Peyré, J. Pousin and F. Santambrogio for
stimulating and useful discussions.

References

[1] O. Besson and G. de Montmollin. Space-time integrated
least squares: a time-marching approach. Internat. J.
Numer. Methods Fluids, 44(5):525–543, 2004.

[2] O. Besson and J. Pousin. Solutions for linear conser-
vation laws with velocity fields in L∞. Arch. Ration.
Mech. Anal., 186(1):159–175, 2007.

[3] L. Cohen. Minimal paths and fast marching methods for
image analysis. In Handbook of mathematical models
in computer vision, pages 97–111. Springer, New York,
2006.

[4] L. D. Cohen and T. Deschamps. Segmentation of 3D
tubular objects with adaptive front propagation and min-
imal tree extraction for 3D medical imaging. Computer
Methods in Biomechanics and Biomedical Engineering,
10(4):289–305, 2007.

[5] L. D. Cohen and R. Kimmel. Global minimum for ac-
tive contour models: A minimal path approach. Interna-
tional Journal of Computer Vision, 24(1):57–78, 1997.

[6] M. G. Crandall and P.-L. Lions. Viscosity solutions of
Hamilton-Jacobi equations. Trans. Amer. Math. Soc.,
277(1):1–42, 1983.

[7] E. Fatemi, B. Engquist, and S. Osher. Numerical solu-
tion of the high frequency asymptotic expansion for the
scalar wave equation. J. Comput. Phys., 120(1):145–
155, 1995.

[8] R. Malladi and J. Sethian. Level set methods for curva-
ture flow, image enchancement, and shape recovery in
medical images, 1997.

[9] H. Nguyen and J. Reynen. A space-time least-square fi-
nite element scheme for advection-diffusion equations.
Comput. Methods Appl. Mech. Eng., 42:331–342, 1984.

[10] Y. Rouchdy and L. Cohen. Image segmentation by
geodesic voting. To be submitted, 2008.

[11] E. Rouy. Numerical approximation of viscosity so-
lutions of first-order Hamilton-Jacobi equations with
Neumann type boundary conditions. Math. Models
Methods Appl. Sci., 2(3):357–374, 1992.

[12] J. Sethian. A fast marching level set method for mono-
tonically advancing fronts. In Proc. Nat. Acad. Sci., vol-
ume 93, pages 1591–1595, 1996.

[13] J. A. Sethian. Level set methods and fast marching
methods, volume 3 of Cambridge Monographs on Ap-
plied and Computational Mathematics. Cambridge Uni-
versity Press, Cambridge, second edition, 1999.

[14] J. Vidale. Finite-difference calculation of traveltime. B.
Seismol. Soc. Am., 78:2062–2076, 1988.


