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Abstract 

Image Segmentation for Biometric Identification 

Systems 

 Eyad Haj Said 

Automating the identification process of individuals is receiving increased attention. Fully 

automated image segmentation from different types of biometric images is an essential step 

for designing automated identification systems. In this work, we address the problem of fully 

automated image segmentation in the context of dental and ear biometrics. We also address 

the problem of evaluating the quality of segmented image by designing an automated 

segmentation evaluator.   

For image segmentation, we first apply a mathematical morphology operator to highlight the 

desired objects and suppress the others, and then threshold the resulting image to separate the 

desired objects from the background. We next analyze the connected components obtained 

from the thresholded image based on their geometric properties in order to isolate the desired 

objects. Results on dental radiograph images show that our approach performs very well 

compared to the other automated approaches. In addition, it has the lowest failure rate and 

highest optimality, and can deal not only with the bitewing views but also with the periapical 

views. 

In ear images, our segmentation approach achieves more than 90% accuracy based on three 

different sets of 3750 facial images for 376 persons  

We also present an approach for the automated evaluation of the quality of segmented 

images. Our approach is based on low computational-cost appearance-based features, and 

consists of two stages: off-line and on-line. In the off-line stage, we generate training sets by 

manually classifying the segmentation outcomes of proposed approach into several sub-

classes. Next, we create the Eigen-spaces corresponding to the different training sets. In the 

on-line stage, we project the outcome of segmentation onto the Eigen-spaces after view 

normalization, and use a Bayesian Classifier in order to determine whether the segmentation 

outcome is proper or improper segment. Experimental results for evaluating the segmentation 

outcomes of dental images and ear images indicate the benefits of the scheme.  
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Chapter 1: Introduction 

1.1 Forensic identification 

Biometric systems play an important role in identifying individuals based on some physical 

or behavioral characteristics  [1], like fingerprints,  retina, iris, face, hand geometry, voice, 

and signature.  

Forensic identification is typically defined as the use of science or technology in identifying 

human beings in a court of law. It has broad applications in criminal investigations, court 

evidences and security applications. With the evolution of information technology and the 

large volume of cases that need to be investigated by forensic specialists, automation of 

forensic identification has become inevitable. 

Forensic identification may take place prior to death and this is referred to as Antemortem 

(AM) identification. Identification may also be carried out after death and this is called 

Postmortem (PM) identification. While most physical and behavioral characteristics such as 

fingerprints, iris, face, etc…, are not suitable for Postmortem (PM) identification, especially 

under the severe circumstances typically encountered in natural and artificial disasters (e.g. 

Tsunami, aviation disasters), dental features are one of the few biometric identifiers that can 

be used for PM identification. Dental features are manifested in the root and crown 

morphology, dimensions of the teeth, spacing between teeth and sinus patterns, as well as 

characteristics of dental work and restorations [2]  [3]. 

1.2 Forensic Odontology 

Forensic odontology (also called Forensic Dentistry) is a branch of forensics concerned with 

performing variety of tasks including identifying human individuals based on their dental 

features and bite mark analysis associated with human abuse. Traditionally, forensic 

odontologists have relied on the morphology of dental restorations (fillings, crowns, etc.) to 

identify victims. However, the present generation undergoes less dental decay than their 

predecessors. Consequently, it is becoming important to establish identification based on 

other dental features like root and crown morphology, rotations, spacing between teeth and 

sinus patterns, etc  [2] [3]. 

There are several forms of dental records that are being used by forensic odontologists, the 

most common of which are dental radiographs (x-rays), oral photographs, dental models, and 
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CAT scans. In most postmortem identification cases, dental radiographic records (two-

dimensional x-ray images) are the prime tools that a forensic odontologist would employ. 

Dental x-ray images are classified according to the view they are taken from and their 

coverage. The most commonly used dental x-ray image types are: bite-wing x-ray, periapical 

x-rays, and panoramic x-rays  [5] as shown in Figure 1: 

1. Bite-wing x-rays are acquired to view the back teeth, and they are the typical x-rays a 

dentist will take because of their effectiveness in discovering tooth decay. In a bite-

wing x-ray, only the crowns and part of the roots are seen for 2 or 3 adjacent teeth in 

both the upper and lower jaws. 

2. Periapical x-rays are taken to facilitate the most effective examination of the entire 

tooth area including the tip of the root and the surrounding tissues. They are 

appropriate to confirm a tooth is impacted or if there are problems at the end of the 

root, such as root fracture and deep decay. This type of x-rays provides a complete 

side view and typically a complete set consists of 14-24 films with each tooth 

appearing in two different films from two different angles. 

3. Panoramic x-rays are taken to view both upper and lower jaws. They are usually 

taken on an initial visit to a dentist, as they are effective in capturing the overall 

dental status of a patient, showing for example, impacted teeth, eruption of permanent 

teeth, jaw fractures, tumors, and cysts. However, they do not exhibit the fine details 

as found in bite-wings and periapical x-rays. Often, bite-wing and periapical films are 

combined to form the so called “Full series”, in which all teeth and surrounding 

tissues are shown, with very high definition details of the individual teeth. A forensic 

odontologist might have to compare two different types of dental radiographs to find 

similar dental features.  

Figure 1  shows a single dental x-rays record that contains the three main types of  dental 

images: bitewing, periapical and panoramic. 
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Figure 1: Different types of dental x-rays views. 

1.3  Automated Dental identification System (ADIS) 

Based on the information provided by experts from the Criminal Justice Information Services 

Division (CJIS) of the FBI, there are over 100,000 unsolved Missing Persons cases in the National 

Crime Information Center at any given point in time, 60 percent of which have remained in the 

computer system for 90 days or longer. In 1997, The Criminal Justice Information Services Division 

(CJIS) of the FBI created a dental task force (DTF) whose goal is to improve the utilization and 

effectiveness of the National Crime Information Center’s (NCIC) Missing and Unidentified Persons 
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(MUP) files. The DTF recommended the creation of a Digital Image Repository (DIR) and an 

Automated Dental Identification System (ADIS)  [6] with goals and objectives similar to the 

Automated Fingerprint Identification System (AFIS)  [7] but using dental characteristics instead of 

fingerprints. PM dental identification is mainly achieved by comparing a subject dental record to a 

database of dental records. Dental radiographs are the most common forms of dental records used in 

PM identification. 

At a high level of abstraction, we view ADIS as a collection of the following mega-

components (as depicted in Figure 2): 

1. The Record Preprocessing component handles cropping or segmentation of dental 

records (which contain different views) into dental films;  enhancement of films; 

classification of films into bitewing, periapical, or panoramic views; segmentation of 

teeth from films; and annotating teeth with labels corresponding to their location in a 

dental atlas. 

2.  The Potential Match Search component manages the archiving and retrieval of 

dental records based on high-level dental features (e.g. number of teeth and their 

shape properties) and produces a candidate list. 

3.  The Image Comparison component performs low-level tooth-to-tooth comparison 

between the subject teeth -after alignment- and the corresponding teeth of each 

candidate, thus producing a short match list.  

This framework broadly defines the collaborative research tasks between research teams 

from West Virginia University, Michigan State University, and University of Miami  that are  

jointly developing a research prototype of ADIS  [6]. However, ADIS is the first fully 

automated system presented for identification purposes using dental X-rays images.  
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Figure 2: A block diagram illustrating the architecture of ADIS. 
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1.4  Automated Ears Identification System (AEIS) 

Several studies have explored the possibility of comparing ears based on their features and 

structures  [4]. The studies show that the ear structure is not only unique but also stable and 

permanent  [4]. Figure 3 shows the external anatomy of the ear and its nine components Helix 

Rim (1), Lobule (2), Antihelix (3),  Concho (4), Tragus (5), Antitragus (6), Crus of helix (7), 

Triangular fossa (8), and Incisure intertragcia (9). 

 

Figure 3: External anatomy of the ear. 

Our goal is to design and develop an Automated Ear Identification System (AEIS) based on 

the 3-D and 2-D features of the ears. The input for AEIS is a video camera sequence or 

multiple images containing the subject face. Samples of video frames and images are shown 

in Figure 4 with different views. At a high level of abstraction, we view AEIS as a collection 

of the following components (as depicted in Figure 5): 

1. The Preprocessing stage handles extracting image frames from the video sequence, 

enhancement of images to reduce the blurring effect thereby increasing the efficiency 

of the later steps, segmentation of ears, generating a high resolution image of ear 

with more details obtained from sequential frames, and extracting 3-D and 2-D 

features of the ear from different ear views. 

2.  Archiving and retrieval of the video frames and the corresponding ear, and 

producing a candidate list to facilitate the identification process.  
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3.  The Comparison stage where a ear-to-ear comparison is performed between the 

subject’s ear and the corresponding ear of each candidate, thus producing a short 

match list and match score for each candidate. 

 

Figure 4: An example of face profiles  [112]. 
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Figure 5: Block diagram illustrating the architecture of AEIS. 
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Chapter 2: Problem Statement and Research Objective 

Image segmentation is essential in the biometric and forensic identification process, and it 

plays a critical role in the most subsequent identification process.  The segmentation process 

depends on modeling the similarity characteristic and common features of the desired object 

while dealing with variation in intensity, scale, pose, and shape.  

However, no single image segmentation technique performs well for all kinds of images; in 

addition, the performance of various segmentation techniques is not the same and may vary 

from image to image. Therefore, evaluating the quality of segmentation is critical to measure 

the efficiency of segmentation algorithms. The evaluation of the segmentation outcomes is 

typically based on the visual inspection of the images and/or comparison of the segmentation 

outcome with the ground truth. While the main goal of our research is to develop fully 

automated system, it is difficult to evaluate the outcome of the segmentation algorithms 

without human interaction. As a result, the improper segments may affect the accuracy of the 

identification process and increase the time of the process. 

We define the following problems for image segmentation: 

1. Develop fully automated segmentation algorithm in order to extract the desired 

objects from the biometric images. 

2. Develop a fully Automated Segmentation Evaluator (ASE) of segmentation outcomes 

in order to utilize properly segmented images. 

2.1 Dental Image Segmentation 

2.1.1 Problem Statement 

In the context of ADIS, segmentation is an essential step in the Record Preprocessing 

component required to identify the extent of teeth comprised in a digital image of a dental 

radiographic film. At a finer level of detail, segmentation also serves in decomposing a tooth 

into the crown and root regions. Each segmented tooth represents a Region of Interest (ROI) 

that contains distinctive features used in the subsequent steps of identification.  

Definition 1: 

We define a proper ROI as a rectangular area in the dental film that contains the main parts 

of the tooth including crown and root. We take into consideration the following: 
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1. The ROI includes most of the crown and root of the tooth if there are available in the 

film as shown in Figure 6. 

2. The ROI may contain only the crown when the root is unavailable as shown in Figure 

6 (d).  

3. The ROI may include parts of other neighboring teeth or bones as shown in Figure 6 

(a), Figure 6 (b). 

4. The ROI should not contain the shadow of tooth as shown in Figure 6 (f). 

 

Figure 6: The rectangular indicates the ROI. 

 

Dental image segmentation will encounter some difficulties that are related to intrinsic 

factors such as the condition of the human teeth and bone density, or to extrinsic factors such 

as age of the film and the quality of the scanning machine. Therefore,  we define the factors 

that introduce difficulties in dental image segmentation as follows (i) image blurring (Figure 

7 (a) and Figure 7(f)), (ii) fillings (Figure 7(a) and Figure 7(c)), (iii) teeth interfering (Figure 

7(a), Figure 7(b), Figure 7(d), Figure 7(f), Figure 7(i), and Figure 7(h)), (iv) image scan 

quality (Figure 7(e)), (v) the imperceptible difference in intensity between and the teeth 

(Figure 7(a), Figure 7(d), Figure 7(i), and Figure 7(h)), (vi) dental work (Figure 7(h)). 

 

Figure 7: Examples of difficulties that could face dental image segmentation.  
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However, there is hardly any single segmentation technique can perform well for all types of 

images. In addition, the performance of segmentation techniques is not the same and may 

vary from image to image. Therefore, segmentation evaluation is critical to measure the 

efficiency of the segmentation algorithms and to compare their performances. 

We define the following problems for dental image segmentation: 

• Develop fully automated segmentation algorithm in order to extract proper ROIs from 

dental radiograph films. 

2.1.2  Research Objectives 

We define the following objectives for dental image segmentation:  

1. To automatically extract as many proper ROIs as possible from each film.  

2. To operate on bitewing and periapical views. We skip the panoramic views 

because it does not show fine details unlike the bitewing and periapical views. In 

addition,  the high interference between teeth, or between the teeth and jaws, 

would lead to a negative effect in identification.  

3. Evaluate the performance of proposed segmentation algorithm using a metrics-

based object counting approach for empirical assessment of image segmentation, 

and to compare the performance of our approach with other approaches presented 

by Jain, Nomair, and Zhou in  [8] [9] [10], respectively. 

2.2 Dental Image Segmentation Automated Evaluation 

2.2.1 Problem Statement  

The evaluation of the segmentation algorithms will be based on counting the number of 

correctly detected teeth in a film. In fact, we will visually inspect the outcome of 

segmentation for each film using a simple rule of object containment within each segment of 

a given film. While the main goal of ADIS is to develop a fully automated system it is 

difficult to evaluate the outcomes of the segmentation algorithms without human interaction. 

The outcomes of the segmentation algorithms could be one of the following: 

1. Teeth that are considered as proper ROIs, and it is desirable to pass them through the 

system as shown in Figure 6. 
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2. More than one tooth because of teeth interference, fillings, or high intensity bone 

structures. These outcomes will lead to over segmented results as shown in Figure 8.  

3. Part of the tooth such as crown or root. These results will lead to under segmented 

results as shown in Figure 9. 

4.  Background or bones as shown in Figure 10. 

 

 

Figure 8: Examples of over segmentation results, (a) teeth interfering and filings, (b) fillings, (c) teeth 

interfering, (d) teeth interfering between the upper jaw and lower jaw. 

 

 

Figure 9: Examples of under segmentation results. 

 

 

Figure 10: Examples of segmentation results that related to bones or background. 

 

Passing the over segmented, under segmented, or background outcomes through the 

identification process may affect the accuracy of the potential matching and the comparison 

process, and waste computing resources on improper segments. Therefore, it is important to 
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automatically evaluate the segmentation outcomes regardless of the technique used for image 

segmentation.  

We define the following problem for the dental image segmentation evaluation: 

• Develop an ASE in order to pass only the proper ROIs through the ADIS. 

2.2.2 Research Objectives 

We define the following objectives for ASE of dental image:  

1. To automatically classify the outcome of the dental segmentation algorithm as a 

proper ROI or an improper ROI.  

2. ASE will not restrict us to use a specific image segmentation technique nor the 

best algorithm performance; rather , we will be able to use several segmentation 

techniques in parallel. 

3. Increase the performance of ADIS by reducing the time to process and increasing 

the segmentation efficiency.  

2.3 Ear Segmentation 

2.3.1 Problem Statement 

In the context of AEIS, ear segmentation is an essential step in the Preprocessing stage 

required to extract the ear from multiple views captured from video sequence. Each detected 

ear represents a Region of Interest (ROI) that contains important features used in the 

subsequent steps of identification. There are many factors that could affect the ear detection 

algorithm including variations in scale, dimension, shape and pose, in addition to the effect 

of hair that covers the ear, earrings, and the beard.  

While the main goal of AEIS is to develop a fully automated system, it is difficult to evaluate 

the outcomes of the segmentation algorithms without human interaction or measuring the 

difference between outcome image and reference image. Therefore, there is a need to 

implement an ASE for ear segmentation algorithm in order to recognize the outcome as 

proper or improper ROI and to avoid human interaction 

We define the following problems for ear segmentation: 

1. Develop fully automated ear segmentation algorithm in order to extract ear from the 

facial images. 

2. Compare the performance of our approach with the one presented in  [11]  [85]. 
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3. Develop fully ASE of ear segmentation outcomes from the facial images. 

2.3.2 Research Objectives 

We define the following objectives for teeth segmentation:  

1. Automatically extract the face from the background. 

2. Automatically extract the ear from detected face.  

3. To operate on multiple views of the subject from the profile view toward the frontal 

view. 

4. Evaluate the performance of our approach and compare it with the one presented in 

[11] [85]. 

5. To automatically evaluate the outcome of the ear detection algorithm as proper or 

improper ROI.  

6. ASE will not restrict us to use certain ear segmentation algorithm nor the best 

algorithm performance; rather we will be able to use several segmentation techniques 

in parallel. 

7. Increase the performance of AEIS by reducing the time process and increasing the ear 

segmentation efficiency.  
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Chapter 3: Literature Survey 

3.1 Dental Identification Systems 

3.1.1 Semi Automated Dental Identification Systems 

There are many trials to evolve computer- aided postmortem identification systems, but we 

can consider that CAPMI  [12] and WinID  [13] are the most popular among these systems. 

These systems are very developed but none of them can provide us with the desired level of 

automation, where they need an important role for human interference. As a result, in both 

CAPMI and WinID feature extraction, coding, and image comparison are passed by hand. 

3.1.1.1 Assisted Post Mortem Identification system CAPMI 

In 1983 the US Army Institute of Dental Research (USAIDR) developed the Computer 

Assisted Post Mortem Identification system (CAPMI) in order to enhance the effectiveness  

of forensic scientists by automatically comparing the reference files and subject files. 

CAPMI is considered as a sorting tool, not an identification system, and only works 

effectively when it deals with large numbers of cases  [14]. CAPMI generates ranked list 

which starts with the most likely matches. This list leads forensic odontologists to get the 

best possible matches of antemortem records to postmortem records. Data entry in CAPMI 

system can be done either by using a keyboard input or by using an optical mark reader, the 

dental information associated with each tooth includes: 

• Missing tooth                              

• Unerupted tooth            

• Cavity on tooth 

• Anomalous condition                  

• Mesial restoration          

• Occlusal restoration       

• Porcelain jacket crown                

• Facial restoration           

• Lingual restoration 

• Full coverage crown                    

• Amalgam restoration    

• Stainless steel crown         

• Non-metallic restoration ceramic 

or acrylic/metal              

• Distal restoration           

• Gold/cast metal restoration 

• Temporary restoration, ¾  crown          

• Pointic root canal          

• Treated tooth  

• Removable partial denture  

•  Deciduous tooth            

• Virgin tooth  
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For dental data representation, up to 16 bits of information are used per tooth, for example, if 

a tooth is present, bit ‘0’ is set, but if a tooth is absent, then it is reset. To show if a crown is 

present and the tooth is root filled, the other bits can be used to present the 5 surfaces of the 

tooth. The following notations are used to depict the features of each tooth:  

mesial cavity is entered as (m), a crown is entered as (jmodbp) to refer that all five surfaces 

are restored (modbp)   and a crown is present (j). (0) refers to the presence of a tooth while 

(x) to its absence. UL6.mod refers that the Upper Left first permanent molar is present and 

has restorations in the mesial, occlusal and distal surfaces; while LL3x refers the Lower Left 

canine is lost. (b: bucal, p: palatal).  

The dental information of a subject is compared to the dental information of the candidates 

by entering the postmortem data for all teeth. The result will be arranged from the most likely 

match to the least likely match. The comparison product is either: Match, Mismatch, or a 

possible match. A Match can be found when antemortem and postmortem dental are exactly 

the same. A Mismatch can be found when antemortem dental condition is different from the 

postmortem dental condition. A Possible match can be found when the antemortem dental 

condition is different from the postmortem dental condition but could have evolved into the 

postmortem condition. 

In order to achieve a positive identification, forensic scientists depend on many facts such as: 

teeth orientation, type of restorative materials, and radiographic appearance. While in 

CAPMI system these properties are not included because the experiment has proved that 

these additional data would only increase the processing time and decrease the power of the 

system and this due to mismatches induced by the subjectivity inherent in the recognition and 

identification of these entities.  

According to study made by the US Army on 7030 Army males, the average person has 

seven features. For persons with four or more features, 93% had no other person with the 

same features. For persons with 7 dental features, the correct match was the peak of the most 

likely identities list in 95% of the tests. A correct match was found within the first ten records 

100% of the time. CAPMI is able of comparing and sorting 1200_5000 records per second on 

most personal computers  [6].   
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3.1.1.2 WINID 

WinID is a dental computer system that matches missing individuals to unidentified 

individuals by using dental and anthropometric characteristics in order to class probable 

matches  [13]. There are another information can be inserted into the WinID database, like 

restored dental surfaces, physical descriptors, and pathological and anthropologic findings. 

The dental codes utilized in WinID are extensions of the CAPMI codes. In the WinID system 

we have two kinds of codes, a primary codes and secondary codes, where a dash (-) is placed 

between the primary and secondary codes. A primary codes and up to five secondary codes 

can be specified. We can notice that the most investigations in WinID employ only the 

primary codes because if we are uncertain of a secondary code we can leave the code out. 

The following tables are listing the primary and secondary codes: 

Primary Codes 

• M - mesial surface of tooth is restored. 

• O - occlusal surface of posterior tooth is restored.  

• D - distal surface of tooth is restored. 

• F - facial surface of tooth is restored. 

• L - lingual surface of tooth is restored. 

• I - incisal edge of anterior tooth is restored.  

• U - tooth is unerupted 

• V - non-restored tooth - virgin 

• X - tooth is missing- extracted 

• J - tooth is missing postmortem or the clinical crown of the tooth is not present for 

examination. Also used for avulsed tooth. The root or an open socket is present, but 

no other information is available. 

• / - no information about tooth is available 

Secondary Codes 

•  A - an anomaly is associated with this tooth. Specifics of the anomaly may be 

detailed in the comments section. 

•  B - tooth is deciduous 

•  C - crown   

•  E - resin filling material. 
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•  G - gold restoration. 

•  H - porcelain. 

•  N - non-precious filling or crown material. Includes stainless steel. 

•  P - pontic. Primary code must be X to indicate missing tooth. 

•  R - root canal filled. 

•  S - silver amalgam. 

•  T - denture tooth. Primary code must be X to indicate missing tooth. 

•  Z - temporary filling material. Also indicates gross caries (used sparingly). 

Examples 

• MODFL-S mesial occlusal distal facial lingual silver amalgam restoration 

• DL tooth has distal lingual restoration 

• MODFL-CG gold crown 

• MODFL-CHR endodontically treated tooth with porcelain crown 

• MI-E mesial incisal resin 

• X tooth missing 

• V-B virgin deciduous tooth 

• MO-SB mesial occlusal silver amalgam in deciduous tooth 

• X-PN missing tooth replaced with non-precious pontic 

• X-T missing tooth replaced with denture tooth 

• J missing postmortem 

• MO-AZ mesial occlusal temporary filling (or caries) on tooth with an anomaly 

3.1.1.3 CAPMI VS. WINID 

In  [15] McGivney emphasized the similarities and differences between CAPMI and WinID. 

The similarities of the both systems are 1) using the same comparison algorithm, and 2) 

having the same capability of ranking possible identifications by least number of dental 

mismatches or most dental hits. On the other hand, only WinID system is able of producing a 

ranked list of non-dental identifier matches in addition to a list of most restoration hits. The 

other important advantages of WinID system over CAPMI is its ability to generate the 

odontograms and to displaying images. 

In  [16], Lewis and Leventhal proposed a Locator System algorithm that differs from CAPMI 

and WinID because the Locator System depends on initial screening and classification of AM 
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and PM files into 6 categories based on dental work features, such as, the kinds of restored 

surfaces, attendance of crown and roots, missing teeth. They also stated that the three systems 

have poor performance with few or no restorations. 

In  [17], Bowers and cornwellIn  compared PM records of two cases to their candidate AM 

records using operator controlled digital image processing and analysis techniques. For the 

first AM/PM pair, they set up a common baseline between a tooth- pair by adjusting the 

orientation of films such that the cemento-enamel junction (CEJ) of the tooth-pair emerges 

horizontal. In the second AM/PM couple, they chart a smoothed restoration area from the 

AM tooth to the PM tooth employing an alignment change and conclude that the PM record 

matches the AM record based on their visual comparison of figures of aligned restorations. 

Bowers and cornwell refuse the hypothesis that the first PM state matches its candidate AM 

state by noticing major difference in these measures. They resize the PM tooth such that its 

(CEJ) measurement agrees with that of the AM tooth, so they measure two age-independent 

characteristics: the root furcation heights and the distal root divergence angle. 

3.1.2 Automated Dental Identification Systems 

The systems presented in the previous sections have low level of automation and need a lot 

of human interactions. Therefore; several attempts have been proposed to increase the 

automation level or to develop fully automated systems for dental identification. In  [8], Jain 

el at proposed a semi automated system for human identification. The system consists of 

three stages: 1) teeth segmentation, 2) contour extraction, and 3) contour shape matching. 

 This approach only deals with the bitewing and panoramic X-ray dental images and it needs 

user interaction to choose an initial valley gap point is required to detect the gap valley 

between the upper and lower jaw. 

In  [18], Nassar proposed an approach for tooth to tooth matching problem and consider the 

problem as binary classification problem. They proposed parametric models of class 

conditional densities, and adaptive strategic technique that used with back propagation to 

estimate the system parameters. 
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3.2 Ear Identification systems 

Ear structure is a unique characteristic that remains fairly stable over time. Human ear has 

many variations between individuals, including the various curves and dimensions of the ear 

 [19] [20]. 

It is impossible to prove that an individuals’ ear structure is unique, however; several studies 

have supported this hypothesis.  One such study done in California compared over 10,000 

ears drawn from a randomly selected sample [4]  [21]. This study has shown that in all cases 

there were no two ears were indistinguishable.  Another study examined the difference in ear 

structures between fraternal and identical twins, who share similarities in many physiological 

features  [22]. It was proven that even though their ear structures were similar, they were still 

clearly distinguishable.  In 1906 Imhofer studied a set of 500 ears and noted that he could 

clearly distinguish between each ear based on only four features  [23]. The results of these 

studies support the hypothesis that the ear has a unique physiological structure. There is also 

evidence available to show that ear structure is both stable and permanent. The medical 

literature reports that ear growth after the first four months of birth is highly linear. It turns 

out that even though ear growth is proportional, gravity can cause the ear to undergo 

stretching in the vertical direction. The effect of this stretching is most pronounced in the 

lobe of the ear and measurements show that the change is nonlinear only in that part. The rate 

of stretching is approximately five times greater than normal during the period from four 

months to the age of eight after which it is constant until around the age of seventy when it 

again increases  [22]. 

Currently, there exists no commercial biometric system to automatically verify the identity of 

individuals by way of their ear-biometric. However; we present some automated and manual 

systems that addressed the problem of ear-detection and recognition. 

In  [4] [21], Iannarelli presented personal identification system based on ear features. This 

system consider one of most popular ear identification system that been introduced in the 

literature and it has been in use for more than 40 years. The approach is based on extracting 

12 features to represent each ear. Each photograph is aligned during development so that the 

lower tip of a standardized vertical guide on the development easel touches the upper flesh 

line of the cocha area while the upper tip touches the outline of the antitragus. However; this 
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method has some limitations, as all measurements are relative to an origin point, which if not 

exactly localized, results in all subsequent measurements will be incorrect.  

In  [22], Chang et. al. presented an approach for biometric recognition based on principle 

component analysis applied on ear and face images. The results showed that recognition 

performance is not significantly different between the face and the ear, but the performance 

significantly improved after using the ear and face results together. 

In  [24] [25],  Burge and Burger had used grayscale images of the subject’s head in profile 

images using a CCD camera. They detected the ear by using deformable contours on a 

Gaussian pyramid representation of the image gradient. Then they made edge extraction, 

curve extraction, and finally they build a graph model. They have used a novel graph 

matching based algorithm for authentication, which takes into account the possible error 

curves. 

Chang et al. built multi-modal recognition using both the ear and face  [26]. Their research 

was based on the concept of Eigen faces and Eigen ears using a principal component analysis 

(PCA) protocol. 

Zhang et al. built a hybrid system for ear recognition purpose  [27]. This system combines 

Independent Component Analysis (ICA) and RBF network. The original ear image database 

is decomposed into linear combinations of several basic images. Then the corresponding 

coefficients of these combinations are fed up into RBF network instead of an original feature 

vector comprised of pixel values of grayscale images. The local features extraction of ICA 

and the adaptability of RBF neural network are then combined.  

In  [28], Hurley et. al.  presented an approach for ear recognition based on force field 

transformation. They consider the image as an array of Gaussian attractors that work as the 

source of force field. The extracted features from this technique can be used to create robust 

and reliable ear biometric system. 

In [11]  [85], Abdel-Mottaleb et. al. introduced a novel system for ear  identification based on 

the face profile images . The system consists of major steps: 1) ear detection from face 

profile, and  2) 2-D feature extraction based on force field transformation and recognition 

based on these features. Testing results applied on 58 query images for 29 subjects showed 

the efficiency of the system with low time complexity. 
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3.3 Image Segmentation 

Image segmentation is one of the important and challenging issues in image processing field 

over decades, and it plays critical role in most subsequent image analysis especially in 

pattern recognition and image matching [29]. The segmentation process is based on 

recognizing the homogeneity regions in the image as different objects but it is not responsible 

to define the identity of the object.  

There are several techniques proposed for image segmentation. These techniques are devoted 

to develop fully automated segmentation. However, there is no unified theory for image 

segmentation and there is hardly any image segmentation technique that performs well in all 

problems especially when the grey levels of different objects are quite similar. In addition, 

performance of segmentation technique is greatly affected by noise embedded in images, for 

example noise due to low resolution and due to poor lighting conditions. 

3.3.1 Medical Imaging Segmentation 

In the following subsections, we will introduce some of techniques that used in medical 

imaging segmentation. 

3.3.1.1 Thresholding 

The main goal of thresholding is to divide the image into two classes, the desired objects and 

undesired objects. A survey of thresholding techniques is available in  [30]. Thresholding is 

effective when the objects in the image have contrasting intensities. Thresholding can be 

classified into three main categories:  

Global thresholding: it utilizes the information of the histogram and may perform iterative 

thresholding in order to reach the suitable threshold value  [9] [31] .  

Adaptive thresholding: it deals with the spatial information of the pixel in addition to its 

intensity  [32].  

Local thresholding: it takes into consideration additional information obtained form edges, or 

from improving the histogram, or from other variables  [33]  

However; the performance of the thresholding techniques is highly affected by the initial 

selected threshold value, and it has limitations in the presence of noise and intensity 

inhomogeneities  [34], or when the objects in the image have very close intensity  [35] [36].  
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Thresholding may not be used as the only technique in medical image segmentation, but it is 

used as an essential part in many of the segmentation approaches.  

3.3.1.2 Region Growing: 

This technique extracts the regions in the images based on grouping the pixels into 

homogeneous regions by using certain criteria that based on the intensity properties such as 

edge detection, texture, or/and the type of the available image data. The region growing 

technique depends on determining a set of seed points from which the region grows based on 

the specified criteria. Choosing the seeding can be done by user interaction  [8]or 

automatically based on available information such as intensity information  [9] [10]or texture 

information [37].  

One of the major drawback of this technique is its sensitivity to choosing the initial seed 

points. Another problem of region growing is choosing the appropriate stopping criteria of 

growing  [37]. Missing some information that the stopping criteria depends on would lead to 

segmentation error. 

However; Region growing is very sensitive to noise  [36], and might lead to separate the 

region into more than one region or lead to merge more than one region. Region growing has 

large application in field of medical image segmentation. Segmentation examples of medical 

images are presented in  [38] [39] [40]. Region growing is also used as part of the 

segmentation process  [41] [41] [42].  

3.3.1.3 Clustering Algorithms 

Clustering is a supervised method used to partition the pixels in the image into regions that 

corresponding to different objects. Clustering algorithms do not require training data because 

they are based on analyzing the property of each object in the image. Clustering is classified 

into hard clustering where each pixel in the image must belong to one cluster, and soft 

clustering where pixel can partially belongs to multiple clusters  [43]. There are three main 

algorithms used in clustering [36] i) k-means algorithm that perform iterative computations to 

group the pixels  into clusters based on their distance from the mean of each cluster , ii) fuzzy 

c-mean algorithm that generalizes the hard c-mean algorithms to allow producing soft 

clustering , and iii) expectation-maximization. Many approaches based on clustering 

algorithms have been widely presented in field of medial image segmentation  [44] [45] [46] . 
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The major drawback of clustering algorithms is the influence of choosing the initial 

parameters to the performance of segmentation [36] [44] [47]. In addition, it doesn’t take into 

consideration the spatial information directly that leads to poor performance in the presence 

of high level of noise and intensity inhomogeneities  [36] [48]. To overcome this problem, 

clustering algorithms are integrated with other techniques such as Markov Random Field 

(MRF) to perform spatial modeling [48]. On the other hand, the computational cost of MRF is 

extremely high, and MRF can not keep the topological information  [49]. 

3.3.1.4 Neural Network 

Neural Network (NN) are parallel, distributed information structure of processing elements 

(nodes) that interconnected together in a way similar to neural systems in the human brain. 

Each node in the network performs an operation to compute its output from its input. The 

major features of the NN are 1) its learning capability by modify their behavior in response to 

their environment where each node adjust its parameters, 2) and generalizing that allows 

error tolerance and insensitivity to minor changes in the input  [50] [50]. 

There are two main types of NN learning algorithms  [43]:  

1. Supervised learning that used a set of training data. Back propagation is the best 

known supervised learning algorithms. The main drawback of this method is its bias 

to patterns similar to ones in the training data. This leads to segmentation error in case 

of large variety of input images  [43]. 

2. Unsupervised learning that is similar to clustering technique mentioned in the 

previous section. 

However, the main problems of the NN are determining the network architecture including 

the number of layers and nodes, lack of transparency, and the long training process in order 

to achieve acceptable performance  [50].  

NN has been widely used in different applications in the medical image segmentation. 

Examples of these applications are presented in  [51] [51] [52] [53]. 

3.3.1.5 Deformable Models 

Deformable model is a powerful technique that combines geometry, physics and 

approximation theory in order to extract the various shapes of curves, or the surfaces of the 

desired object. It is also very efficient to locate and track the moving objects. It includes 

snake, deformable templates, and dynamic contours. A survey in medical image 
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segmentation is available in  [54]. Deformable model in a static mode depends on setting the 

initial parameters of the template based on the priori knowledge of the expected shape, 

placing the template close to desired object, and then performing deformation to fit the curve 

or surface. The template changes its size and parameters by minimizing the internal force 

term until it converges to the boundary of the desired object. In a dynamic mode, additional 

parameter is needed to convey the motion information. 

Deformable models have numerous applications in field of medical image segmentation and 

they have the ability to extract the complex and broad shapes including  ultrasound images, X-rays 

images, CT images , and MR images  [54] [55] [56] [57] 

Many approaches allow user to initiate the template because deformable models are very 

sensitive to the initial placement of the templates, and the success of segmentation is highly 

depending on the good initial position of the template  [58]. However; many approaches are 

presented to decrease the effect of initial parameters.  

We summarize the main drawbacks of the deformable models in the following: 

1. Adjustment of the parameters in order to minimize the energy term is one of the main 

problems in the deformable models  [59]. 

2. The performance of the deformable templates is highly affected by occlusion  [60].  

3. Deformable models are inadequate to deal with variation of the scales, views, and 

shape  [61].  

3.3.1.6 Mathematical Morphology 

Mathematical morphology (MM) is a topological and geometrical based approach for image 

analysis, and it is a powerful tool for extracting different shapes and image structures  [29]. 

The shape and the size of the structuring element play an important role in extracting features 

or objects from the image. Morphological filtering that depends on two major operations 

 [90] [62] [63] , dilation and erosion, has served in a wide range of applications in image 

segmentation including feature extraction, edge detection, shape representation and 

description, shape recognition, enhancement, and noise suppression  [63].  MM performs 

enhancement of the image locally rather than globally. It is an excellent tool to extract the 

dark pixels in the surrounding bright areas and vice versa [64]. MM can work well for 

segmenting the images that are heavily corrupted with noise. It has the capability to separate 
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and eliminate the foreground noise, and the noisy background by applying several MM 

operators [65]. 

MM is powerful technique for edge and corner detection even in the presence of noise or in 

the dark areas  [62] [66] [67]. Many approaches developed for colored images that not only 

based on RGB component but also on other color component such as HSV  [68]. The variety 

of structuring element shapes and morphological operators make MM robust and powerful 

technique in field of medical image segmentation including ultrasound images, X-rays 

images, CT images , and MR images. We will introduce some of mathematical morphology 

applications in the later sections. 

However, MM has some drawbacks when the noise is highly corrupting the images and may 

lead to oversegmentation  [36].  

3.3.2 Radiograph and MR Image Segmentation  

Several radiograph and Magnetic Resonance (MR) image segmentation approaches have 

been presented in the last decade. In  [69] a fully automated technique using Markov random 

fields was proposed for (MR) images. Noise, inhomogeneity, and structure thickness have 

bad impact on the performance of the algorithm, and they tend to increase the segmentation 

error. In  [70], Hopfield neural network based on pattern classification using the fuzzy c-

means algorithm was proposed. The computation time and finding the global minimum of the 

objective function affect the performance. In  [71], the segmentation approach is based on 

analyzing isolable-contour maps to identify coherent regions corresponded to main objects. 

In  [72], the segmentation is based on an improved watershed transform that uses the prior 

information instead of usual gradient calculations. Although high accuracy was reported in 

the approaches presented in  [71] [71] [72], user interaction is needed to select interesting 

regions.  

3.3.3 Dental Image Segmentation  

Although a wide variety of X-ray image segmentation approaches have been presented, there 

are few researches dedicated to the problem of dental radiograph image segmentation. In  [8], 

Jain and Chen separate the upper jaw and the lower jaw in the bitewing and panoramic dental 

images by detecting the gap valley between them using the Y-axis projection histogram. 

Afterwards, the technique isolates each tooth from its neighbors in each jaw by detecting the 
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gaps between them using intensity integral projection. Figure 11 shows the steps of 

segmentation approach proposed by Jain.                     

             

 

Figure 11:  (a) Integral projection on Y axis, (b) Integral projection of pixels of the upper jaw along 

the lines perpendicular to the curve of the valley, (c) the segmentation result. 

This approach is semi-automated since an initial valley gap point is required to detect the gap 

valley between the upper and lower jaw. We found from our experiments that the 

segmentation outcome may vary if we change the position of the selected initial valley gap 

point. Figure 12 shows two different segmentation results produced by choosing two different 

initialization points both of which on the valley gap; the choice in Figure 12 (a) leads to 

perfect segmentation while the choice in Figure 12(b) leads to total segmentation failure. 

Figure 12:  Two different results for same image. (a) Completely segmented image.(b) Failed 

segmented image. 

In  [9], Nomir and Abdel-Mottaleb introduce a fully automated approach for dental x-ray 

images. The technique depends on applying the following stages (i) iterative threshold to 

divide the image into two parts, teeth and background, (ii) adaptive threshold in order to 

increase the accuracy and remove teeth interfering, (iii) horizontal integral projection in order 
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to separate the upper jaw from lower jaw, (iv) and finally vertical integral projection in order 

to separate each individual tooth. 

Another fully automated approach for dental x-ray images is introduced by Zhou and Abdel-

Mottaleb  [10]. The technique depends on improving the image contrast by applying 

morphological transformation, and then using window-based adaptive threshold and integral 

projection to segment the teeth and separate the upper and lower jaw. Figure [13] illustrates 

some steps of segmentation approach proposed by Mottaleb. 

                                                            

Figure 13: (a) Original Image, (b) the result of MM filtering, (c) the segmentation result. 

 

Table shows a brief comparison between the three algorithms based on underlying principles, 

type of dental film views they are reported to operate on, and the level of automation they 

achieve. 

Table 1: Summary of comparison between three teeth segmentation algorithms  [8] [9] [10]. 

Algorithm Principles Types of views Is it automated? 

Jain and Hong  Integral projection 
Bitewing and  

Panoramic 

No, semi-

automated 

Nomair and 

Abdel-Mottaleb  

Iterative and adaptive 

thresholding, integral 

projection 

Bitewing only Yes 

Zhou and Abdel-

Mottaleb 

 

Morphology, adaptive 

threshold, integral 

projection 

Bitewing only Yes 
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3.3.4 Ear Image Segmentation  

In  [24] [25], Burge et. al. used 300 by 500 profile grayscale images of the subject using CCD 

camera.  They shortly introduced an approach for ear localization based on deformable 

contour models that presented by affine transformation. 

In [11]  [85], Abdel-Mottaleb et. al.  introduced an approach for ear detection from the profile 

image that contains the subject’s face. The approach consists of three steps: 1) Skin-tone 

region detection using color and texture thresholding. 2) Edge detection within the region of 

the skin-tone using canny edge detection and then removing the short edges. 3) Ear detection 

using ear template that consists of ear’s Helix edge. 

Chen and Bhanu also used model-based (template matching) based technique for Ear-

detection  [86] [86]. The model template is represented by an averaged histogram of shape 

index. The detection is a four-step process: step edge detection and thresholding, image 

dilation, connect component labeling and template matching.  

Chen and Bhanu then developed another shape model-based technique for locating human 

ears in side face range images  [87] Where the ear shape model is represented by a set of 

discrete 3D vertices corresponding to ear helix and anti-helix parts. They started by locating 

the edge segments and grouped them into different clusters which are potential regions 

containing ears. For each cluster, they register the ear shape model with the edges. The 

region with the minimum mean registration error is declared as the detected ear region. 

All approaches presented in  [24] [25], [11]  [85]and,  [86] [87] used a template matching, where 

the ear shape is manually predefined. Given an input image, the edges are extracted and then 

the correlation values with the standard patterns are computed for the different parts/ regions 

independently. The detection of ear is determined based on the correlation values. This 

approach has the advantage of being simple to implement. 

However, it has proven to be inadequate in the area face detection since it cannot effectively 

deal with variation in scale, pose, and shape. Multiresolution, multiscale, subtemplates, and 

deformable templates have subsequently been proposed to achieve scale and shape 

invariance  [88]. 
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3.3.5 Image Segmentation Evaluation  

In  [73] , Zhang classified the segmentation evaluation methods into two main groups: 

analytical, and empirical groups. The analytical methods analyze the segmentation algorithm 

on basis of its principles, requirements, utilities, complexity, etc. This method is not always 

able to obtain all of the segmentation algorithm properties because of the limitation of theory 

for image segmentation  [74]. Some of analytical methods are presented in  [75] [76] [77]. The 

empirical methods evaluate the segmentation algorithms by applying it on test images and 

then measuring the quality of the segmentation output. Zhang classified the empirical method 

into two types: goodness method that based on some measurements defined according to 

human intuition, and discrepancy method that based on comparing the segmentation output 

with some reference images and computing the difference between them. Some of goodness 

and discrepancy methods are presented in  [78] [79] [80] [81] [82] [83] respectively. However; 

goodness method is closer to subjective evaluation rather than objective evaluation of 

segmentation algorithm, while the discrepancy method depends on the reference images that 

are not unique in some applications.  

In  [84],  Nassar et. al. present a metrics-based object counting approach for empirical 

assessment of image segmentation. To evaluate the performance of segmentation algorithm, 

reference images are used to record the outcome of the experiment in a tabular form as 

shown in Figure 14. 

Figure 14: Tabular presentation of segmentation results (adopted from  [84]). 
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Each cell jiP  of the result’s table  contains the number of instances where the segmentation 

algorithm correctly detects j objects out of i objects that are present in reference image, with 

∑
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 where iF  is the number of reference images that contain exactly i objects. The 

results table is used in determining metrics of optimality, sub-optimality and failure based on 

the relative weights of the main diagonal, the sub-diagonals and the base row respectively, 

the performance metrics are defined as follows: 
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3.4 Mathematical morphology 

Mathematical morphology is a topological and geometrical based approach for image 

analysis, and it is a powerful tool for extracting different shapes and image structures  [89]. 

Morphological filtering  [90] has served in a wide range of applications in image processing 

and analysis. Some of them are in feature extraction, edge detection, shape representation and 

description, shape recognition, shape smoothing, enhancement, and noise suppression  [90].  

In this section, I will present the essential morphological operators definitions in the 

Euclidian setting for gray-scale images. The operators include dilation, erosion, closing, 

opening, and some morphological filters. 

3.4.1 Gray-Scale Morphology 

3.4.1.1 Gray-Scale Dilation 
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The dilation of the gray-scale image f and structuring element g, with respective Domains Df 

and Dg is defined by: 

gf ⊕  = D (f, g) = EXTSUP(x, y)∈  Df [gx, y + f (x, y)] 

Where gx, y represents the translation of an image g by the point (x, y): 

gx, y ( s, t) = f ( s-t, t-y) 

and EXTSUP is defined by: 

                                        sup[ fk (t)]          if there exists at least one k such that fk is    

                                                                 defined  at t, and where the supremum is over  

                                                                 all suck k 

[EXTSUP( fk  )](t) =                                                                                            

                                       undefined          if  fk (t) is undefined for all k  

The gray-scale dilation will generate brighter image than the original image, but it will 

reduce or eliminate the small dark details  

3.4.1.2 Gray-Scale Erosion 

The erosion of the gray-scale image f and structuring element g is defined by: 

gf Θ  = E (f, g) = INF(x, y)∈  Dg [fx, y + g (x, y)] 

Where INF is defined by: 

 

                                        inf[ fk (t)]          if fk (t) is  defined for all k                                                     

[INF( fk  )](t) =                                                                                                            

                                       undefined          otherwise  

The gray-scale erosion will generate darker image than the original image, but it will reduce 

or eliminate the small bright details. 

3.4.1.3 Gray-Scale Opening and Closing 

We respectively define the dual operations of closing and opening as: 

gf •  = ( gf ⊕ ) gΘ  

gf o = ( gf Θ ) g⊕  

The gray-scale closing will eliminate the peaks in the image and generate an image that has 

decreased sizes of the small dark details with no appreciable effect on the bright areas, while 
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the gray-scale opening will eliminate the holes in the image and generate an image that has 

decreased sizes of the small bright details with no appreciable effect on the dark areas. 

3.4.1.4 Closing top-hat transformation 

Closing top-hat transformation is defined by subtracting the image from its morphological 

closing: 

H = ( gf • ) - f 

3.4.1.5 Opening top-hat transformation 

Opening top-hat transformation is defined by subtracting the morphological opening of 

image from itself: 

H=  f - ( gf o ) 

3.4.1.5 Morphological gradient 

Morphological gradient is defined by: 

G= ( gf ⊕ ) – ( gf Θ ) 

3.4.2 Color Morphology 

There is no straightforward approaches for mathematical morphology for the color images, 

but we can consider two approaches presented in  [91] based on the component wise approach 

and vector approach. 

The component wise approach is based on applying the gray-scale morphology operator on 

each color of the RGB image: 

gf ⊕  = rr gf ⊕[ gg gf ⊕ , T

bb gf ]⊕  

The other morphology operators are defined in the same way as above after substituting the 

dilation denotation with the correspondence operator denotation. 

 The vector approach is based on considering the color value of each pixel as vector and 

using reduced ordering functions to define the new vector morphological filtering operations. 

The vector dilation v⊕  is defined as: 

Hf v⊕ = a 

Where:  

a }{ Hsrsrf ∈∈ ),(:),(  

d(a)  Hsrsrfd ∈∀≥ ),()),((  
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H is the structuring element, d is the scalar valued function used for reduced ordering. 

Similarly, the vector erosion is defined as 

Hf vΘ = b 

Where:  

b }{ Hsrsrf ∈∈ ),(:),(  

d(b)  Hsrsrfd ∈∀≤ ),()),((  

 

3.4.3 Medical Applications of Mathematical Morphology in Image 

segmentation 

In  [92] [93], Leandro et. al. and Zana et.al presented an automated  segmentation process for 

the vessels extraction in the retinal angiographic images. Leandro et. al demonstrate  that the 

mathematical morphology was able to detect very fine structure of the vessels in spite of 

noise presence. Zana et.al also showed that mathematical morphology is a robust technique 

for vessel segmentation even for noisy angiographic images. 

In  [94], Matsopoulos et. al. presented the major medical application using mathematical morphology. 

They show that morphological filters are robust and powerful tools for medical image processing 

specially in morphological fusion scheme from different modalities, ultrasound images segmentation 

scheme, and 3-d reconstruction scheme using morphological edge detection techniques. 

In  [95], Samarabandu et. al. introduced morphological based methods for fractal analysis of bones X-

rays  radiographs. These methods present a texture measure of trabecular bones structure that is useful 

to predict the diseases such as osteoporosis and to classify the textured areas regardless of exposure 

and magnification. 

In  [96], Souza et. al. presented an accurate and fast  automated approach for extraocular muscles  

borders detection in orbital CT images using mathematical morphology. This approach is very useful 

for extraocular muscles  segmentation that allow comparisons of graves diseases effect on the eye.  

In  [97], Dogdas et. al. presented new technique of skull segmentation in the MR images using 

sequence of mathematical morphology filters. They first segment the scalp and the brain from the MR 

image, and then detect the inner and outer boundaries of the skull using series of thresholding, 

opening and closing operations.  

In  [98],Siddiqui et. al. proposed an accurate spot segmentation of  DNA microrrary images using 

mathematical morphology that is used for  identification of sequence (gene/gene mutation) and 
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determination of gene expression. The results showed that the algorithm is powerful, robust to noise, 

and it has low time complexity.   

 

3.5 Principle Component Analysis (PCA) 

Principle component analysis PCA is a statistical method that reduces the number of 

variables or the dimensionality of the dataset with retaining the maximum amount of 

variation in it  [99]. Because of its ease implementation and reasonable performance  [100], 

PCA has been applied on different application in image processing such as gender 

classification  [101], face recognition  [102] [103] , face detection  [104], and teeth 

classification  [110] . 

Let the vector ox represents a dataset of n d dimensional samples 1x , …,  nx  where the sum of 

the squared distances between ox and the vectors in the dataset is the minimum. The 

squared-error criterion can be defined )( oo xJ in the following equation: 
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The second term is equal to zero because: 
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Jo is minimized when ( ox = m ),  and the second term is independent of ox . 

The sample mean is a zero-dimensional representation of the data because it will project the 

data into single point in R
d
, and it does not give us any of the variability in the data. 
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If we derive Jo with respect to the mean vector we will get 

∑
=

n

k 1

-2 kx  + ∑
=

n

k 1

2 m = -2n m +2n m = 0 

Therefore, if we project the data onto a line running through the sample mean vector, we will 

get one dimensional representation of the data. The equation of the line is written as: 

x  = eam +  

Where e  is a unit vector in the direction of the line, and a is a scalar that represents the 

distance between the mean vector and any point x  in the data.  By representing kx  by 

eam k+ , we find the optimal coefficient ka  by minimizing the squared error criterion 

function  
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We minimize the squared error criterion function by partially differentiating it with respect 

to ka , and setting the derivative to zero.  
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Another important point is to find the best direction e for the line and that can be resolved 

through scatter matrix S defined in the following equation: 
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The scatter matrix S is n-1 times the sample covariance matrix.  
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         =  eSe
T−  +       ∑

=

n

k 1

║( kx   -  m )║ 2  

Vector e  maximizes eSe
T

 and at the same time minimizes J1 

To maximize the eSe
T

, we use the method Lagrange multipliers. Using λ  as the 

undetermined multiplier.  

eSeu
T= - λ ee

T
( -1) 

By differentiating the equation with respect to e and set to zero we get: 

=
ed

du
2 eS - 2λ e  = 0 ⇒  =eS λ e  

More specifically, and since eSe
T

= λ ee
T

= λ we can conclude the following: 

To maximize eSe
T

, we select the eigenvector corresponding to the largest eigenvalue of the 

scatter matrix. As a result, to find the best one dimensional project of the data, we project the 

data onto a line through a sample mean in the direction of the eigenvector of the scatter 

matrix having the largest eigenvalue.  

3.4.1 Principle Component Analysis Applications  

In  [105], Moon et. al. introduced a generic modular PCA algorithm for face recognition that 

allows us to systematically change the components and determine the effect of these changes 

in the performance of algorithm. It consists of three step, normalization, PCA projection, and 

recognition. The experiment results show that 1) the studies should be applied on large range 

of image qualities and for more than type of facial images  2) implementation details of the 

algorithm could have highly effect on the performance and the results of the algorithm. 

In  [106] [107], Turk et. al. presented an Eigen face approach for human face recognition that 

tracks the head in the image, and then recognize the person according to its characteristic. 
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They took the fact that faces have upright views and can be described by a small set of 2-D 

characteristic views.  

The idea behind the approach is to project the face images onto a feature space that spans the 

variations in the known face images. The variations of face features which extracted from a 

training set of faces are known as eigenfaces. After that, face recognition is achieved by 

comparing the weights obtained form projection with  those of the known faces. The 

experimental results show that the eigenface approach is a robust and accurate technique for 

face recognition even with a substantial unknown rejection rate and its time complexity is 

reasonable. 

In  [108], Pentland et. al. proposed view-based multiple observer eigenspace technique for 

face recognition.  They demonstrated an accurate visual recognition using a database of 3000 

individuals. 

In  [109], Rajagopalan et.al. proposed an algorithm for face recognition in the presence of clutter 

based on PCA. They stated that the traditional eigenface recognition method has poor quality in the 

presence of background clutter. Therefore they created an eigenbackground space and derived a 

classifier to recognize the non-face patterns from the faces. The testing results showed that the 

algorithm has robust performance in the real situation where the cluttered background is presented. 

In  [110], Nassar presented an automated approach of teeth classification into incisors, 

canines, premolars, and molar based on PCA and string matching technique. The first step of 

the approach is capturing the most common features of each of the teeth classes using four 

image subspaces that defined as eigen teeth.  Nassar chose the crown area of the teeth 

samples to construct the image subspace and resized them into 32X32 pixels based on the 

bicubic interpolation scheme. He vertically flipped the maxillary plane exemplars to reduce 

the complexity of the problem. 

The next step is normalizing the view of the segmented teeth by: 1) detecting the edges 

(canny edge detection), groping them based on the connectivity, and eliminating the short 

edges, 2) estimating the orientation of the edge points, classifying tem as vertical and 

horizontal, and computing the histogram of the orientations of the vertical points, 3) rotating 
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the input image such that side surfaces of the segmented tooth becomes vertical, 4) confining 

the segmented tooth to square area, and resize it to 32X32. 

The next step is to project the normalization view into the four subspaces, Incisors, Canines, 

Premolars, and Molar subspaces, and to reconstruct the tooth in the four subspaces. After that 

Nassar initially classified the tooth which corresponds to the least energy discrepancy 

between the reconstructed tooth and its approximations. The last step of teeth classification is 

to validate the correct the initially classified tooth based on string matching. Testing results 

showed that 75% of teeth are initially classified correctly; 86% are classified correctly after 

validation step.  
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Chapter 4: Contribution 

Segmentation step is essential in the biometric identification process. Although the biometric 

systems depend on capturing the differences between individual characteristic, the 

segmentation depends on capturing the similarity characteristic and common features of the 

individuals. 

In our research, we develop segmentation algorithm based on mathematical morphology that 

could be used for different kind of biometric systems and apply it on the dental radiograph 

films and facial images to extract the teeth and ear respectively. The philosophy behind 

choosing mathematical morphology is its powerful in dealing not only with the structure and 

the shape of the desired object but also with intensity of that object.  

Mathematical morphology has variant of powerful filters that have the ability to 

automatically detect the dark pixels on surrounding brighter pixels and vice versa. In addition 

it locally performs filtering taking the shape, intensity, and the dimension of the desired 

object in its consideration. Mathematical morphology can be applied on the visible images 

such as facial images and fingerprints, and invisible image such as X-ray and MR images.  

We face many factors that introduced difficulties in teeth segmentation and ear detection. 

Mathematical morphology has the ability to overcome most of these difficulties. These 

factors are: 

1. The lack of a unified standard for scanning and digitization of dental radiographic 

films. 

2. Dental work on the dental radiograph films. 

3. High intensity of the bones 

4. Image blurring. 

5. Teeth interfering and interfering between the ear and other object such as hair, beard, 

and earrings. 

We conclude the new contributions of our work in the following: 

1- Develop fully automated segmentation algorithm based on mathematical 

morphology for biometric systems. 

2- Apply the approach on the dental radiograph films and facial images to extract 

teeth and ear respectively  
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3- The approach deals with periapical dental images, while all other approaches 

for teeth segmentation do not deal with the periapical images. 

4- Develop fully ASE of the segmentation outcomes without human interaction.  
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Chapter 5: Approach for Segmentation Algorithm 

Automated object segmentation in the biometric systems plays a critical role in leading the 

process of object to object matching. Segmentation output reflects the position of the object 

in the image that helps to match related objects in the image. 

In this Chapter, we present an approach for fully automated segmentation of some of the 

biometric systems that relies on Mathematical Morphology, Thresholding, and connectivity 

properties.  We apply this approach on segmenting the teeth from bitewing and periapical 

images in the dental radiograph films, and the ear from the facial images. After that we 

evaluate the performance of proposed segmentation algorithm using metrics-based object 

counting approach for empirical assessment of image segmentation, and compare the 

performance of our approaches with other approaches presented by Jain, Nomair, and Zhou 

in  [8] [9] [10] respectively. 

5.1 Overview 

We classify the main objects of the biometric images according to their intensity and 

shape, and then we use series of morphology filtering operations to ease the segmentation 

process. Choosing the morphology filters is based on the type of desired object, its intensity, 

and its shape. After that we apply thresholding on the filtered image in order to obtain binary 

image, and then we analyze the connected components obtained from thresholded image 

according to their geometric properties in order to obtain the proper ROIs. Figure 15 shows 

the main steps of the segmentation algorithm. 

 

 

Figure 15: Main stages of proposed segmentation algorithm. 
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5.1.1  Filtering Using Mathematical Morphology: 

Mathematical morphology has variant of powerful filters that have the ability to 

automatically detect the dark pixels surrounded by brighter pixels and vice versa. In addition, 

it locally performs filtering, taking the shape, intensity, and the dimension of the desired 

object in its consideration. The main goal of this step is to emphasize the desired object and 

to suppress the other objects. The morphological filter is chosen based on the intensity of the 

desired object with consideration of surrounding object intensity, while the structuring 

element is chosen based on the shape and dimension of the desired object. 

5.1.2 Thresholding 

In order simplify the image analysis; we produce the binary image from the filtered image 

produced in the previous stage by using the thresholding. Choosing the thresholding process 

depends on the features of the desired object. 

5.1.3 Connected components labeling 

We group pixels of the threshold image based on their connectivity and assign them labels 

that identify the different connected components. The connected component labeling is based 

on 8-connected neighborhood and 4-connected neighborhood algorithms to group the pixels 

and to label them. 

5.1.4    Refinement 

The purpose of refinement is to analyze the connected components based on geometric 

properties (area, position and dimension) and then to eliminate the improper ROIs. We define 

the position, area, and dimension of a region by: 

1- The position is defined by using the position of the centriod of the region.  

2- The area is defined by the number of pixels of the region. 

3- The dimensions are defined by the width and height of the region. 

The rules used for refinement differ according to desired object properties.  

We apply the previous stages on two different biometric systems; one of them is using dental 

x-ray images in order to segment the teeth, and the other one is using facial images with 

different views in order to segment the ear. 
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5.2  Teeth Segmentation from Dental x-rays Images 

We define three main classes of objects in the X-ray dental images, teeth that map the areas 

with “mostly bright” grayscale and semi rectangular shape, bones that map areas with “mid-

range” grayscale with no certain shape, and background that maps “dark” grayscale with no 

certain shape. In the following subsections, we will present in details the main stages of 

extracting teeth from dental radiograph. 

5.2.1 Filtering in the Dental Images: 

We start with detection of the gap valley between the upper jaw and the lower jaw, bones 

between the teeth, teeth interference, and the gaps between the teeth. We define intrinsic 

noise as the combination of these factors. Detection and suppression of the intrinsic noise 

help to emphasize the teeth with respect to the background. Figure 16 shows three samples of 

grayscale line profiles; the upper horizontal line profile illustrates the bones between the 

teeth, the lower horizontal line profile shows the gap between the teeth, while the vertical 

line profile illustrates the gap valley. Closing top hat transformation, which is defined by 

subtracting the image from its morphological closing, provides an excellent tool for detecting 

pixels that are dark on the surrounding bright areas, and it locally performs suppression of 

teeth and emphasizes intrinsic noise. 

The grayscale line profiles of the closing top hat transformed image represented in Figure 17 

show the emphasized intrinsic noise. Figure 18 shows an example of a dental film before and 

after removal (subtraction) of intrinsic noise. We use a rectangular structuring element with 

dimensions [w/4, h/2] for bitewing images, and with dimensions [w/3, 2*h /3] for periapical 

images, where w and h are the width and the height of the image respectively. Our choice of 

these structuring elements is based on an experimental study on a set of 20 bitewing views 

and 20 periapical views of different sizes and qualities. 
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Figure 16:  Grayscale line profiles of the input image, the upper horizontal line profile illustrates the 

bones between the teeth, the lower horizontal line profile shows the gap between the teeth, while the 

vertical line profile illustrates the gap valley. 
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Figure 17: Grayscale line profiles of the closing top hat transformed image that are corresponded to 

the same line profiles in Figure 16 
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Figure 18:  (a) Original image. (b) Filtered image. 

 

5.2.2 Thresholding in the Dental Images 

After reducing the noise effect, we use threshold operation to separate the desired teeth from 

the background and the remaining noise. In many of the dental radiographs, we notice 

presence of a shading effect that manifests as a gradient of image brightness from side to side 

as shown in the horizontal grayscale line profiles of the image in Figure 16. Therefore, 

choosing a single threshold value is not preferable because it may result in missing 

information pixels. The cumulative histogram of the filtered image, which contains the 

percentage of pixels below a certain grayscale level, gives the percentage of pixels that are 

set to zero after reducing the noise. In our example, around 50% of the image pixels are set to 

zero as shown in Figure 19. According to an experimental study applied on a set of 100 

dental images, we found that taking three threshold values would produce the most number 

of the proper ROIs in the following stages. The threshold values T 1 , T 2 , and T 3 fall between 

the mean value of the filtered image and zero, where: T 1 = mean (Filtered Image),   T 2 = 0.66  

T 1 , T 3 = 0.33 T 1 . 

Images in Figure 20 (a)-(c) show the three different results obtained from thresholding 
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Figure 19: Cumulative histogram of the filtered image. 

 

5.2.3 Connected Components Labeling in the Dental Images 

We group pixels of the threshold image based on their connectivity and assign them labels 

that identify the different connected components. Images in Figure 20 (d)-(f) show the results 

of the connected components labeling for each thresholded image shown in Figure 20 (a)-(c) 

respectively. The connected components in the dental images can be attributed to (i) teeth 

that are considered as ROIs, (ii) more than one tooth because of teeth interference, fillings, or 

high intensity bone structures, (iii) background or bones, (iv) part of the tooth such as crown 

or root.  

5.2.4 Refinement in the Dental images 

We analyze the connected components based on their geometric properties including area 

and dimension, and then we only pass the objects that satisfy the refinement rules.  Table 2 

shows the rules used for refinement based on an experimental study applied on 30 images.  
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Figure 20: (a)-(c) Thresholded Images. (e)-(g) Result of connected component labeling for (a)-(c). 

(g)-(i) Proper ROIs generated from (e)-(g). 

 

Images in Figure 20 (g)-(i) show the proper ROIs. If two or more proper ROIs are generated 

from the three different thresholds for the same tooth, we unify them to generate the single 

ROI. The union of proper ROIs represents the final results of segmentation as shown in 

Figure 21. 

Table 2: Rules used in refinement stage to determine the proper ROIs. 
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Figure 21: (a) Original image. (b)-(i) Results of segmentation. 

 

The previous example shows the segmentation stages that applied on bitewing dental images. 

Figure 22 shows the results of segmentation stages applied on periapical dental images. 

 

 

Figure 22: (a) Original image, (b) Filtered image, (c) Thresholded Images ,(d) Result of 

connected component labeling, (e)-(h) Proper ROIs. 

 

Figure 23, Figure 24, and Figure 25 show some samples of image segmentation results. The 

images in Figure 23 have fully succeeded; the images in Figure 24 have partially succeeded, 

while the images in Figure 25 have failed to give any ROI. In each of Figure 23 and Figure 

24, there are two rows of images, the upper row shows the original images, while the lower 

row shows teeth obtained from segmentation. It is obvious that the better quality of the dental 

image the more number of ROIs can be extracted from that image.  
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Figure 23: Examples of fully successful images and their segmentation outcomes 

 

 Figure 24: Examples of partially successful images and their segmentation outcomes 

 

Figure 25: Examples of completely failed images where no tooth can be detected. 

 

5.3  Performance Assessment in the Dental Image Segmentation 

In this section, we compare the performance of the segmentation algorithm presented in 

previous section (with and without the enhancement step proposed in  [111]). We also 

compare the performance with those presented in  [8] [9] [10]. We empirically compare 

between these algorithms on basis of teeth count and their time complexities. 

5.3.1  Teeth Count 

We follow the performance evaluation methodology proposed in  [84] in order to compare the 

performance of the algorithms. Our experiments use two test sets of 500 bitewing and 130 

periapical dental radiographic films selected from large dental radiographic databases 

 [115] [116]. All films in the bitewing radiographic set contain up to 10 teeth per film, and 

films in the periapical radiographic set contain up to 5 teeth per film. 
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In counting the number of correctly detected teeth in a film, we visually inspect the outcome 

of segmentation for each film using a simple rule of object containment within each segment 

of a given film. 

Testing results of the algorithm we propose in the previous section for bitewing radiographic 

set before and after enhancement are shown in Figure 26 and Figure 27 respectively, while 

testing results for periapical radiographic set before and after enhancement are shown in 

Figure 28 and Figure 29 respectively. 

 

 

Figure 26: Testing results for of our teeth segmentation algorithm with bitewing views. 

 

 

 
 

Figure 27: Testing results for of our teeth segmentation algorithm with contrast stretched bitewing 

views. 



 54

 

Figure 28: Testing results for of our teeth segmentation algorithm with periapical views. 

 

 

 Figure 29: Testing results for of our teeth segmentation algorithm with contrast stretched periapical 

views. 

 

Testing results of the algorithms proposed in  [8] [9], and  [10] are shown in Figure 30,   Figure 

31, and Figure 32 respectively. The bitewing set of dental images used for testing is the same 

as the one used for testing our segmentation approach. Figure 33 shows a graphical 

comparison using the metrics in  [84] between the proposed dental film segmentation 

algorithm, the proposed algorithm after enhancement presented  [111] , and the analogous 

algorithms proposed in  [8]  [9] [10]. 
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Figure 30: Testing results of Jain and Chen segmentation algorithm  [8]. 

 
 

 

Figure 31: Testing results of Nomair and Abdel-Mottaleb segmentation algorithm  [9]. 

 
 

 

 

Figure 32: Testing results of Zhou and Abdel-Mottaleb segmentation algorithm  [10]. 
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Figure 33: Performance comparison between bitewing segmentation algorithms.  

 

While optimality and failure percentages capture instances of extreme performance of a 

segmentation algorithm, sub-optimality measures capture the performance of algorithms in 

between the two extremes. For example, in teeth segmentation, a 1st. order sub-optimality is 

a measure of the tendency of the algorithm to miss detection of exactly one tooth and detect 

all the others, but with no failure. 

In practical cases, it is difficult to achieve optimal performance with 100% of images, and 

when comparing segmentation algorithms one should favor those whose failure rates are the 

lowest and their optimality and low-order measures of sub-optimality predominate the testing 

results  [84]. 

The failure rate is especially important, when assessing teeth segmentation algorithms, since 

those films where no teeth can be properly segmented cannot be used in the identification 

process. 

We conclude the following observations from Figure 33 and Table 3: 
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• The optimality of the algorithm proposed in  [8] is superior to other algorithms, but it 

is still a semi-automated algorithm. 

• The optimality of the algorithm proposed in  [10] is superior to other full-automated 

algorithms. 

• Failure rate of the proposed algorithm is the lowest (see Table 3). 

• Slight improvement has been made in the failure rate of the proposed algorithm after 

applying the image enhancement scheme. 

• Enhancement dropped the optimality of the proposed algorithm by approximately 3% 

for the cases lie between the axis of optimality and the second order sub optimality. 

• Enhancement increased the percentage of the cases lie between optimality and 4th 

order sub-optimality to 83%. 

Table 3: Comparison between the failure rates of the variant teeth segmentation algorithms. 

 

 
 

While the algorithms proposed in  [8],  [9] [10] do not work with the periapical dental 

radiographs, Figure 34 shows a graphical comparison using the metrics in  [84] between the 

proposed algorithm and the proposed algorithm with enhancement. It is clear that the 

enhancement decreases the failure rate from 9.4% to 6.7%, and it improves the optimality 

and 1st order sub optimality. 
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Figure 34: Performance comparison between proposed algorithm and proposed algorithm with 

enhancement for periapical views. 

 

5.3.2  Time Complexity 

To compare between the time complexities of the proposed algorithm and those proposed in 

 [8] [9], and  [10], we used 40 bitewing films with different dimensions. We invoked 

MATLAB® implementations of each of the algorithms on an Intel Pentium 4® 2.00 GHZ, 

512 MB DRAM platform. Table 4 summarizes the outcome of the time complexity 

comparison between the four teeth segmentation algorithms; h is the image height, w is the 

image width, and n is the size of window used in adaptive thresholding. 

Figure 35 records the execution times of the four teeth segmentation algorithms for each of 

the 40 bitewing films. Based on Figure 35 and Table 4, we observe that: (i) the proposed 

algorithm is the fastest among the other algorithms, (ii) the difference in the average time 

execution between the proposed algorithm, algorithm  [8], and algorithm  [10] is small, (iii) 

the time complexity of the algorithm  [9]  is significant comparing to the other algorithms. 
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Table 4: Comparison between the time complexities of the four teeth segmentation algorithms. 

 

 

 

5.4  Ear Segmentation from Facial Images 

In order to segment the ear in the facial images, we need first to extract the face from the 

background, and then segment the ear from the detected face. We define two main classes of 

objects in the facial images; face that map to areas with variant grayscale, and background 

that maps area with smooth grayscale.  

 

5.4.1 Face Detection 

While we are working with colored RGB facial images, we consider each of the color 

components of the image as a single grayscale image. We apply the morphology operations 

on each of color components of the RGB image. Figure 36 shows the main steps of face 

extraction from the background. We first subtract the subject image from its erosion, and 

then we threshold the resulted image using basic thresholding (255/10). We use a disk 

structuring element with dimension [w/40] for erosion operation, where w is the width of the 

image.  Finally we apply binary dilation and holes filling to ensure that the whole face is 

comprised.  

Figure 37 shows the face detection steps in details that corresponded to steps shown in Figure 

36.  Figure 38 shows the face boundary as a result of this stage. 
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Figure 35: Time complexity distribution of 40 images for variants algorithms 
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Figure 36: Main Stages of Face Detection 

 

 

 

 

Figure 37: An Example shows the stages of face detection 

 

 
 

Figure 38: Face Boundary 

5.4.2 Filtering Stage in the Facial images 
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The main goal of filtering is to emphasize the bright and variant grayscale areas and to 

suppress the dark and smooth grayscale areas.  We apply opening top hat transformation, 

which is defined by subtracting morphological opening of the image from itself. Opening top 

hat transformation provides an excellent tool for detecting pixels that are bright on the 

surrounding dark areas, and it locally performs suppression of dark and smooth areas. The 

idea of using top hat transformation in order to emphasize the ear is that i) the ear is 

surrounded by darker pixels such as hair and smooth areas such as cheek, ii) the ear object 

itself contains dark gaps which lead to emphasize the ear edges after applying the 

transformation .We use a disk structuring element with dimensions [w/30] for facial images 

and (255/20) for basic thresholding. Figure 39 shows the facial image before and after 

filtering. It is clear how the ear and some part of the face have been emphasized while the 

other objects that are dark and smooth have been suppressed. 

 

 

Figure 39: Original and filtered images. 

 

5.4.3 Thresholding in the Facial Images 

We use the K-mean Clustering algorithm in order to produce the binary image from the 

filtered imaged that produced from the previous stage. We first partition the image pixels into 

two sets based on their intensity; one belongs to low intensity set, and the other to the high 

intensity one. After convergence, we assign the highest intensity value in the low intensity set 

as the threshold value. Figure 40 shows thresholded image that produced from partitioning 

the filtered image into two clusters using K-mean clustering algorithm.     
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Figure 40: Thresholded image 

 

5.4.4 Connected component Labeling in Facial images 

Using the thresholded image obtained from the previous stage, we determine the number of 

potential regions in the facial image by running connected component labeling algorithm,. 

We used an 8-connected neighborhood to group the pixels and to label them. The idea behind 

choosing 8-connected neighborhood instead of 4-connected neighborhood is to produce less 

and larger regions. The connected components can be corresponded to an ear or any other 

part of the face as shown in Figure 41. 

 

 
 

Figure 41: Result of connected component labeling of the thresholded image 

 

5.4.5 Refinement in Facial Images 

The purpose of refinement stage is i) to remove the smaller connected components obtained 

from the previous stage whose areas are less or greater than threshold value, and  ii) to 

analyze the remaining connected components based on their geometric properties including 

position and dimensions. We used the following rules to determine the proper ROIs and to 

eliminate the improper ROIs: 
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1. The area of object should be less than 10% of the area of the detected face, and 

greater than 2.5% of the area of the detected face. 

2. The object’s centroid locates in the middle quarters of the detected face . 

1. The height of the object is less than 0.4 fh and greater than 0.15 fh , where fh is the 

height of detected face 

2. The width of the object is less than 0.4 fw and greater than 0.1 fw , where fw  is the 

width of the detected face 

3. The width of the object should not increase its height. 

4. The centriod of object should not belong to the brighter half of the detected face. 

Figure 42 shows the result of the refinement stage where the ear is bounded by red 

rectangular. 

 

 

Figure 42: Detected ear after refinement stage. 

 

Figure 43, Figure 44, Figure 45, and Figure 46 show some samples of ear segmentation 

results from facial images  [112] [113], and  [114]. All images have been chosen from different 

sets of facial images with different background color and different views. The images in 

Figure 43 and Figure 45 have fully succeeded; the images in Figure 44 and Figure 46 have 

partially succeeded or completely failed to give an object.  
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Figure 43: Examples of completely successful images and their segmentation outcomes chosen from 

 [112] [113]. 

 

The results show that the segmentation algorithm effectively works i) with different views 

and angles (-10 to 75 degree for each side), ii)with different genders, iii) with different races, 

iv) and with presence of objects interfering such as bears, hair, earrings, glasses and hats. In 

some cases, the effect of illumination variation, hair, or earrings will lead to partially 

succeeded or totally failed to detect the ear. However; there no subject failed to give any 

correct detected ear from his/her video frames. 

 

 

Figure 44: Examples of completely failed images and partially successful succeeded images and their 

segmentation outcomes chosen from  [112] [113]. 
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Figure 45: Examples of completely successful images and their segmentation outcomes. 

. 

 

Figure 46: Examples of completely failed and partially succeeded images and their segmentation 

outcomes. 

5.5 Performance Assessment of Ear Segmentation  
In order to evaluate the performance of the ear segmentation, we apply it on three different 

test sets of facial images taken under different conditions and different quality. The testing 

sets are: 
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1- The first set contains 150 images  [113] taken from 50 video frames for 50 subjects 

with different views and variant heights. 

2- The second set contains 100 profile images  [112] with different background and 

variant illumination conditions.  

3- The third set contain 3500 images taken from 226 video frames  [114] for 226 subjects 

with different views. 

After that, we compare the performance of the segmentation algorithm with the one 

presented in  [11] on basis of their output and their time complexities. All the images used for 

testing have size of 640x480. We visually inspect the outcome of segmentation for each 

image using a simple rule of object containment within each segment of a given image. We 

invoked MATLAB® implementations of each of the algorithms on an Intel Pentium M 1.70 

GHZ, 1024 MB SDRAM platform. 

Testing results of the proposed algorithm and the one proposed in [11] for the three test sets 

are shown in Table 5, Table 6, and Table 7. The tables show the percentage of fully 

succeeded images, partially succeeded images, and failed images. Tables also show the 

outcome of the time complexity comparison between the two algorithms for the three test 

sets. 

The results show that our algorithm is superior to the algorithm proposed in  [11] in terms of 

performance. In addition, our approach works with different views, angles, height, 

background, genders, races, and it worked properly with three different databases. The 

percentage of the success exceeds 90% of the images, and no subject has failed to give any 

successful segments. 

 

Table 5: Comparison results between our approach and the approach presented in  [11] for the first 

testing set  [113] 

 

Approach 
Percentage of fully 

succeeded images 

Percentage of 

partially succeeded 

images 

Percentage of fully 

failed images 

Time 

complexity 

Our 

 Approach 
92% 4.66% 3.3% 5.21 second 

Approach 

presented in  [11] 
29.3% 23.3% 47.3% 2.53 second 
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Table 6: Comparison results between our approach and the approach presented in  [11] for the second 

testing set  [112] 

 

Approach 
Percentage of fully 

succeeded images 

Percentage of 

partially 

succeeded images 

Percentage of fully 

failed images 
Time complexity 

Our  

Approach 
             89% 6% 5% 4.93 second 

Approach presented 

in  [11] 
26% 30% 44% 3.72 second 

 

Table 7: Comparison results between our approach and the approach presented in  [11] for the third 

testing set  [114]. 

Approach 
Percentage of fully 

succeeded images 

Percentage of 

partially 

succeeded images 

Percentage of fully 

failed images 
Time complexity 

Our 

 Approach 
92.51% 5.17% 2.32% 5.87 second 

Approach presented 

in  [11] 
23.14% 21.6% 55.26% 2.73 second 

 

5.6 Advanced Approach for Dental Image Segmentation 

In order to improve the segmentation performance, we develop different segmentation 

approach that is based on mathematical morphology and convolution. In this approach, we 

first blur the image by convolving it using 2D filter Point spread Function PSF that simulates 

a motion blur and specifies the length and angle of the blur. The blurring process can be 

defined by: 

                                       b(x, y) = f(x, y) *  h(x, y)  

Where: b(x,y) is the blurred image, f(x,y) is the original image, and h(x,y) is the PSF that is 

defined by: 

                                          h(x, y) = )(
1

L
L
δ  

Where L  is the line segment of length L oriented at an angle of θ degrees from the x-axis.  
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After blurring the image, we subtract it from its original image and then apply basic threshold 

to get thresholded image. Each pixel has an intensity zero is set to zero, and one otherwise. 

Figure 47 shows the blurred image and the image resulted from subtracting it from the 

original image. Figure 48 shows the thresholded image and its complement after filtering the 

small region of the thresholded image. It is clear that the effect of this process in reducing or 

eliminating the bones, background, and teeth interference.  

 

Figure 47: (a) Original image, (b) blurred image, (c) image resulted from subtracting the blurred 

image form its original 

 

Figure 48: (a) Thresholded image, (b) thresholded image after filtering the small regions, (c) 

complement of the thresholded image. 

Thinning process can be used to skeletonize the foreground in the binary image. It is defined 

by subtracting the hit-or miss transformation of the image from itself. In our case, the 

foreground of the complement of the thresholded image is corresponded to bones, teeth 

interfering and background in the threshold or original image. Therefore, the thinned image 

will divide the dental images into teeth regions or separate the neighbor teeth. Figure 49 

shows the thinned image of the complement of the thresholded image. It is obvious that the 
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thinned image separated the dental image into several regions; each one belongs to one tooth. 

The later stages of this approach including connected components labeling and refinement 

are the same as the first one. In this approach, we avoid choosing appropriate value for 

thresholding. We instead set the pixels that equal to zeros to zero and one to the other values. 

 

Figure 49: Thinned image 

Figure 50, Figure 51, and Figure 51 show some samples of images that fully segmented 

successfully, partially segmented successfully, and totally failed to give any proper ROI 

respectively.

 

Figure 50: Examples of completely succeeded images.  

 

 

Figure 51: Examples of partially succeeded images. 
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Figure 52: Examples of completely failed images. 

 

In order to compare the performance of this approach with other approaches, we apply it on 

the same test sets of bitewing and periapical images that used for testing in section  5.3. 

Testing results of the algorithm we propose in this section for bitewing and periapical 

radiographic are shown in Figure 53 and Figure 54 respectively. 

Figure 55 shows a graphical comparison for bitewing dental radiographs using the metrics in 

 [84] between the dental film segmentation algorithm we proposed in this section, the 

proposed algorithm before and after enhancement presented in section  5.2,  and the 

analogous algorithms proposed in  [8] [9], and  [10]. Figure 56 shows a graphical comparison 

for periapical dental radiographs between the dental film segmentation algorithm we 

proposed in this section, and the proposed algorithm before and after enhancement presented 

in section  5.2. 

 

Figure 53:  Testing results of our advanced teeth segmentation algorithm with bitewing views. 
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Figure 54: Testing results of our advanced teeth segmentation algorithm with periapical bitewing 

views. 

 

We can conclude the following from the performance comparison: 

• The optimality of the advanced approach is superior to other automated algorithms 

for both periapical and bitewing views.. 

• Failure rate of the advanced approach is the lowest for both periapical and bitewing 

views. 

• The optimality of the advanced approach is double the one proposed in section  5.2 for 

periapical and bitewing views. 

• In the advanced approach, more than 63% and 84% of the cases lie between the 

optimality and the second order optimality for bitewing and periapical views 

respectively. 

• In the advanced approach, more than 85.5% of the cases lie between the optimality 

and the forth order optimality in the bitewing views. 
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Figure 55: Performance comparison between bitewing segmentation algorithms. 

 

Figure 56: Performance comparison between segmentation algorithm proposed in section  5.2 and the 

one presented in section  5.6 for periapical views. 
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We expand the test sets that used for studying the performance of this approach. Therefore, 

we apply it on the three test sets of 800 bitewing images, 333 upper jaw periapical images, 

and 321 lower jaw periapical images. Testing results of the algorithm we propose in this 

section for bitewing and both views of periapical dental radiographic are shown Figure 57, 

Figure 58, and Figure 59 in respectively. 

 

 

 

 

Figure 57: Testing results of our advanced teeth segmentation algorithm with 800 bitewing images 

views. 

 

 

 

 

Figure 58: Testing results of our advanced teeth segmentation algorithm with 333 upper periapical 

images views 
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Figure 59: Testing results of our advanced teeth segmentation algorithm with 321 lower periapical 

images views. 

 

Table 8 shows the performance of this approach using the metrics in  [84] for larger database 

of bitewing , upper periapical, and lower periapical views. It is obvious that we increase the 

optimality of periapical views to more than 50%, and we decrease the failure rate. Overall, 

the performance of this approach is the superior among the other automated approaches. 

Table 8: Percentage of optimality, failure, and sub-optimality of our advanced teeth segmentation for 

various dental images views. 

 

 Bitewing Upper Periapical Lower Periapical 

Optimality% 31.14 57.38 49.49 

1
st
 order 

optimality% 
12.93 9.8 16.96 

2
nd

 order 

optimality% 
15.63 15.93 18.13 

3
rd

 order 

optimality% 
12.31 10.53 7.2 

4
th

 order 

optimality% 
12.6 0 1.89 

Failure% 1.29 6.3 4.3 

 

 

5.7 Summary  

Automated image segmentation in the biometric systems is essential for guiding the 
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identification process. In this chapter, we have presented an automated image segmentation 

algorithm that handles two different types of biometric images, the dental radiograph images 

and facial images to extract the teeth and ear respectively. Our approach is based on 

Mathematical Morphology. Although the two kinds of images - radiograph images and visual 

graphs- are different in their properties, but the approach works well for both kinds. 

The proposed algorithm includes: 

1- Enhancement to emphasize the desired objects and suppress the undesired ones. In 

dental images, we emphasize the teeth and suppress bones, background, and teeth 

interfering. In the facial images, we emphasize the ear and suppress the other objects in 

the face  

2- Thresholding to isolate the teeth/ear from the background. 

3- Analyzing connected components labeling to determine the proper ROIs based on 

geometrical properties. 

We also presented another automated approach for teeth segmentation to enhance the 

segmentation performance. The approach is based on performing convolution operations 

using point spread function and using different mathematical morphology operations to 

improve the isolation between the teeth. The later stages of this approach – connected 

components labeling and refinement- are the same as the first one. 

We presented performance comparison between variants of the dental image segmentation In 

dental image segmentation, the main advantages of our approaches over the work introduced 

in  [8] [9] [10] are that: 

1- They can deal not only with bitewing as other approaches but also with periapical 

images that represent more than 70% of the standard dental record. 

2- The two proposed algorithm have the lowest failure rate in term of the segmentation 

result. 

3-  The second approach has the highest optimality among the other automated 

approaches for the dental bitewing images. 

4- The second approach has higher optimality than the first approach before and after 

enhancement for the periapical views. 

However, the algorithm proposed in  [8] has the highest optimality, but it is still semi 

automated algorithm and its performance is sensitive to the manually selected initial valley 
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gap point.  

In ear segmentation, the main advantages of our approaches over is its ability to work with 

different views,  angles, height, background, genders, races, and it worked properly with 

three different databases. The percentage of the success exceeds 90% of the images, and no 

subject has failed to give any successful segments.  
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Chapter 6: Approach for Automated Segmentation 

Evaluator ASE 

There is hardly no single segmentation technique that performs well for all kind of images, in 

addition, the performance of segmentation techniques is not the same and may vary from 

image to image in the same application. The problem of evaluating the segmentation 

outcome as proper or improper segment without human interaction or without presence of 

manually segmented reference image for comparison task is a difficult one. 

In this chapter, we present an approach for fully ASE of the segmentation outcomes 

presented in the previous chapter.  As we mentioned that the outcome of segmentation may 

not contain the proper segment or the proper ROI. Passing improper segments through the 

biometric systems may affect the performance of the system and waste computing resources 

on images that will not produce trusted identification results. Therefore, we need to 

implement a real time ASE that recognizes the proper and improper segments in order to 

reduce the segmentation error. Figure 60 shows the main goal of ASE which is to only pass 

the proper segments and drop the improper ones. We apply this approach on evaluating the 

outcomes of teeth and ear segmentation. 

 

Figure 60: Automated Segmentation Evaluator ASE   

6.1  Overview: 
 

Our approach for implementing ASE depends on low computational-cost and appearance-

based features. As illustrated in Figure 61, two stages are involved in our approach, the off-

line and on-line. In the off-line stage, we first classify all possible segmented outcomes from 

our segmentation approach into many sub-classes based on their common features, similarity, 

and if the segmented outcomes is proper or improper segments. These sub-classes rely not 
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only on the type of biometric systems but also on the approach used for segmentation 

process. 

For each sub-class of the segmentation outcomes, we need to choose sufficient and 

representative training set to be used in the training process. The next step is to standardize 

the view of the segmentation outcome in terms of scale and rotation.  Finally, we create the 

Eigen-spaces corresponding to the chosen training sets. The process of the off-line stage of 

ASE is shown in Figure 61 (a). 

In the on-line stage, we automatically evaluate the outcome of segmentation outcome online. 

We first normalize the segmentation outcome in the same way in the off-line stage, and then 

we project the segmentation outcome onto the Eigen-spaces obtained from the off line stage. 

Finally we used the evaluation scheme in order to determine if the outcome is proper or 

improper segment. The process of the on-line stage of ASE is shown in Figure 61 (b). 

We apply the proposed approach on two different biometric systems; the first one is evaluate 

the outcome of dental x-ray image segmentation, and the other one is evaluate the outcome of 

ear segmentation. The segmentation approach that used as pre-stage of evolution is the one 

presented in the previous chapter. 

In section  6.2 we describe the manual classification of the segmentation outcomes into 

different sub-classes and the construction of the training sets. In section  6.3 we describe the 

view normalization process for dental and ear image segmentation outcome. In section  6.4 

we describe the construction process of Eigen-spaces for each sub-class of the training sets 

on basis of the principle components analysis PCA. In section  6.5, we present the evaluation 

scheme to decide whether the segmentation outcome is proper segment or improper segment. 

After that, in section  6.6 and section  6.7 we report our experiment results of ASE for teeth 

segmentation and ear segmentation. Finally we conclude this chapter and discuss the results 

of our approach in section  6.8.  

6.2 Manual Classification of the segmentation outcomes: 

In order to evaluate the segmentation outcomes, we need first to classify the segmentation 

outcomes into sub-classes based on their common features, similarity, and if they are proper 

or improper segments. After that we choose sufficient and representative samples of each of 

the subclasses in order to create training sets that used in the subsequence steps in the 
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evaluation process. However, the training sets are highly affecting the classification process 

because the results will be biased to the training sets. 

 

(a) 

 

(b) 

Figure 61: (a) off-line stage of ASE. (b)  on-line stage of ASE. 
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In the following subsections, we will show the main sub-classes used in evaluation process 

for the dental image segmentation and ear segmentation. 

6.2.1 Dental Image Segmentation Sub-classes 

We classify the segmentation outcome of dental images into seven sub-classes in the 

bitewing images, four subclasses in the upper periapical images, and four subclasses in the 

lower periapical images. In Table 9, we present the sub-classes of segmentation outcomes of 

bitewing, upper periapical, and lower periapical. The classification is based on i) location of 

the tooth in the upper or lower jaw, ii) if the segmentation outcome is tooth, 

undersegmentation, oversegmentation, or non tooth object, iii) the dental film type (bitewing, 

upper periapical, or lower periapical) . Figure 62- Figure 68 depict a sample of exemplars 

from each subclass from bitewing dental images segmentation. Figure 69-Figure 71 and 

Figure 72-Figure 75 depict a sample of exemplars in each subclass from upper and lower 

periapical dental images segmentation respectively. 

 

Table 9: Classification of teeth segmentation outcomes for various views of dental x-rays 

radiographs, bitewing, upper periapical, and lower periapical  

 

Subclass Bitewing 
Upper 

Periapical 

Lower 

Periapical 

Upper Jaw 

Tooth 
X X N/A 

Lower Jaw 

Tooth 
X N/A X 

Upper Jaw 

Oversegmentation 
X X N/A 

lower Jaw 

Oversegmentation 
X N/A X 

Upper Jaw 

Undersegmentation 
X X N/A 

lower Jaw 

Undersegmentation 
X N/A X 

Background X X X 
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Figure 62: Samples of upper jaw teeth in the Bitewing images 

 

Figure 63: Samples of lower jaw teeth in the Bitewing images 

 

 

Figure 64: Samples of upper jaw oversegmentation outcomes in the Bitewing images 

 

 

Figure 65: Samples of lower jaw oversegmentation outcomes in the Bitewing images 
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Figure 66: Samples of upper jaw undersegmentation outcomes in the Bitewing images 

 

 

Figure 67: Sample of lower jaw undersegmentation outcomes in the Bitewing images 

 

 

Figure 68: Samples of non-teeth/background outcomes in the Bitewing images 

 

 

Figure 69: Samples of teeth in the upper jaw periapical images 

 

 

 Figure 70: Samples of upper jaw oversegmentation outcomes in the upper jaw periapical dental 

images. 
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Figure 71: Samples of upper jaw undersegmentation outcomes in the upper jaw periapical dental 

images. 

 
 

Figure 72: Samples of teeth in the lower jaw periapical images 

 

 

Figure 73: Samples of upper jaw oversegmentation outcomes in the lower jaw periapical dental 

images. 

 

Figure 74: Samples of lower jaw undersegmentation outcomes in the lower jaw periapical dental 

images. 

 

 

Figure 75: Samples of background outcomes in the periapical dental images. 

 

6.2.2 Ear image segmentation subclasses 

We classify the ear segmentation outcome of facial images into five subclasses based on the 

facial angle view and ear/ non ear segments.  The five subclasses are: 

1- Segments contain ear in an angle view between [-10, 40]. 

2- Segments contain ear in an angle view between [41, 75]. 

3- Segments contain part of the ear in an angle view between [-10, 40]. 

4- Segments contain part of ear in an angle view between [41, 75]. 
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5- Non ear segments 

Figure 76-Figure 80 depict a sample of exemplars from each subclass from ear image 

segmentation outcomes with different views. 

 

Figure 76: Samples of proper ear segmentation outcomes in a angle view between [-10, 40].  

 

 

Figure 77: Samples of proper ear segmentation outcomes in a angle view between [40, 80]. 
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Figure 78: Samples of partially succeeded ear segmentation outcomes in a angle view between  

[-10, 40]. 

 

 

Figure 79: Samples of partially succeeded ear segmentation outcomes in a angle view between  

[40, 80]. 

 

 

Figure 80: Samples of improper ear segmentation outcomes. 
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6.3 View Normalization 

While the outcomes of the segmentation approach do not have standard view in terms of 

scale, rotation.  The view normalization is an essential step to improve the efficiency of ASE 

and to overcome variations in orientation and scale. It improves the training process and 

comply the segmentation outcomes with training sets. In other hand, in the view 

normalization step, we try to standardize the way we present the segmentation outcome in a 

standard view. 

6.3.1 Normalization of Dental Segmentation Outcomes  

One way to normalize the view of the dental segmentation outcome is to ensure that the 

surface of tooth crown appears horizontally as much as we can. This can be done by the 

finding the appropriate rotation angle that is corresponding to strongest horizontal edges in 

the segmentation outcome. The following steps show the view normalization task in the 

dental images: 

1- We rotate the segmentation outcome in an angle range ∈θ [-25, 25] with interval one 

degree. 

2- For each of the rotated images θI  that have the size θθ NM ×  , we apply canny edge 

detection on the rotated segmentation outcome in order to produce edge image θEI  as 

shown in Figure 81 (b) and Figure 81 (c). 

3- For each θEI , we group the edges based on their connectivity and then we remove the 

short edges. 

4- We compute the horizontal integral projection of each edge image θEI : 

 ),()(
1

jiEIiInt
N

j

∑
=

=
θ

θ
θ   

where i is the i th row,  

5- For each edge image θEI , we determine the maximal )(iInt
θ : 

{ }θ
θθ

MiforiIntInt ....1)(maxmax_ ==  

6- We rotate the segmentation outcome in an angle ω  that is corresponding to angle that 

satisfies forInt )max(max_ θ ∈θ [-25, 25]. 



 88

7- After detecting the rotation angle, we resize the segmentation outcome to 64x64 

pixels. 

Figure 81 shows the result of view normalization for various outcome of dental image 

segmentation.   

 

Figure 81: View normalization for different dental image segmentation sub-classes, Tooth, 

Oversegmentation, undersegmentation, and Background. (a) original segment, (b) edge image, (c) 

rotated edge image corresponding to strongest vertical edges, (d) normalized segment image.  

 

6.3.2 Normalization of Ear Segmentation Outcomes 

The ear orientation varies with different face view for the same subject and varies from 

subject to subject in the same view. Therefore; the view normalization of the ear 

segmentation outcomes is important to standardize the ear view.  We normalize the ear 

segmentation outcomes by: 



 89

1- Rotating the connected component cI  obtained in the third step of ear segmentation 

in an angle range ∈θ [-30, 30] with interval one degree. 

2- Computing the height of each rotated image θcI . 

3- Rotating the segmentation outcome in an angle ω  that corresponds to angle which 

leads to highest height of θcI . 

4- After detecting the rotation angle, we resize the segmentation outcome to 64x64 

pixels. 

 

Figure 82: View normalization of ear image segmentation outcome.  

6.4 Eigen Space 

In our case, we have 64x64 pixels normalized image obtained from segmented outcome 

image. This generates problems of high dimensional pattern classification, memory storage, 

and large computational complexity. In addition, we need to detect the correlated features to 

reduce the dimensionality. However, expanding the number of features or increasing the 

dimensionality does not guarantee that the performance of classification would be better. 

Since the objects in each subclass are similar and have large statistical regularities, we can 

use the Eigen Space based method to overcome the high dimension problem. The idea of 
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constructing the subclass-space of each subclass of the segmentation outcome is to capture 

the most common features that corresponding to the given training set of that subclass. We 

use the Principle Component Analysis PCA framework to construct these subclass- spaces.  

Let T is a training set of subclass containing KTTT ,,, 21 K exemplar where K is the total 

number of exemplars in the training set for that subclass. All exemplars have been 

normalized and resized to 64x64 pixels in the normalization step. To construct the subclass 

space we do the following: 

1. We compute the mean of exemplars in each of the subclass training sets:  

µ ∑
=

=
K

i

iT
K 1

1
  

             Where iT  is the vector representation of ith exemplar. 

2. Let −= ii TX µ . We Compute the covariance matrix MMC
T=  where 

][ 21 kXXXM L= . 

3. While C   is a symmetric positive semi-definite matrix and can be decomposed to 

T
VVC Λ= where V is the eigenvector matrix and Λ is a diagonal matrix of the 

ordered eigenvalues. 

4. We compute the principle components form a matrix MVY = . 

5. Of the K eigenvectors, we choose N eigenvector for classification. Choosing the 

eigenvectors is based on the value of eigenvalue that accounts for the variations in the 

training set. 

 

6.5 Evaluator 

After getting the Eigen space of each subclass of segmentation outcomes, we need to develop 

an evaluator in order to recognize whether the segmentation outcome is proper or improper. 

If we consider that we have m sub-classes from the segmentation outcomes, and let assume 

that the conditional density functions for all sub-classes have normal distribution, and then 

we can write that the conditional density function of sub-class iw  is: 
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Where iµ  and iΣ are the mean and covariance of sub-class iw  respectively. By substituting 

the Mahalanobis Distance )()()( 1

ii

t

ii xxxd µµ −Σ−= − in (1) 

2

1

2 ||)2(

)](
2

1
exp[

)|(

i

N

i

i

xd

wxp

Σ

−
=

π
    (2) 

Where ii

t

ii

T
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t
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11 )]([)()( −− Λ=−Λ−= µφφµ , iφ  is the matrix that contains the 

eigenvectors of iΣ , iΛ is the diagonal matrix that contains the eigenvalues of iΣ , and 

)( i

t

ii xy µφ −=  is the weight vector obtained by projecting x  onto sub-class iw . 

The Mahalanobis Distance can be written as  

∑
=

=
N

j ij

ij

i

y
xd

1

2

)(
λ

  (3) 

We use the K eigenvectors for projection process, and then we can write the expression of 

Mahalanobis Distance in (3) by the following: 
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The first term is corresponding to the projection x onto k-dimensional principle subspace of 

sub-class iw , while the second term is corresponding to the reconstruction error in x with 

respect to subspace of sub-class iw . let 
∧

x  the approximate of x  after reconstruction using k 

eigenvectors, then we can define the reconstruction error by: 
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from (2) and (4) we can compute the estimate density as the following:  
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The first term is the true marginal density in the subspace of sub-class iw , and the second 

term is the estimated marginal density in the subspace that is orthogonal to subspace of sub-

class iw . 

The Optimal value of iρ is determined by minimizing the cost function )(ρJ which defined 

by relative entropy between the true density )|( iwxp  and its estimate )|( iwxp
∧

 [118]: 
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By taking the derivative of J with respect to iρ and set it to zero,  
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The reconstruction error is corresponded to estimated marginal density in the subspace that is 

orthogonal to subspace of sub-class iw . As a result, we propose that the evaluator assigns the 

sub-class iw  to segment outcome x  based on estimated marginal densities of segmentation 

outcome sub-classes and their priori probabilities:  

)()(
∧∧

≥ xgxg
ejei  for all  ij ≠ , where )(

∧

xg
ei  is the discriminant function  [117] . 

In other words, we assign x  to sub-class iw  if  



 93

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
+

−
−=

><
)(ln(

2

)(
)2ln(

2
maxarg(

2

j

j

j

j
j

p
xKN

i ω
ρ
ε

πρ )     (8) 

Special Case 1: when we choose the same number of Eigen subspace of each sub-class iw , 

and ρρρ === L21
 we can write (8) as  
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Special case 2: as mentioned in  [109] when we choose the same number of Eigen subspace of 

each sub-class iw , ρρρ === L21
, and the prior probabilities are the same we can write (8) 

as: 
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=  

In other words, the discriminant function will be based only on the reconstruction error. 

  

6.6 Experimental Results for Dental Image Segmentation 

Evaluation 

We employed 100 bitewing images and 100 periapical images selected from large dental 

radiographic databases  [115] [116] in order to build the training sets of sub-classes presented 

in section  6.2.1. The selected dental radiographs have different quality, different intensity 

contrast, and part of them contains dental fillings. We first segmented the selected dental 

images using the approach presented in the previous chapter, and then we classified the 

segmentation outcomes into seven sub-classes for the bitewing images, four sub-classes for 

upper jaw periapical images, and four sub-classes for lower jaw periapical images. These 

sub-classes presented in Table 9. In order to increase the number of segmentation outcomes 

that are corresponding to improper objects, we change the value of thresholding presented in 

section  5.2.2 up and down to obtain more undersegmentation, oversegmentation, background 

outcomes. 

We build the training sets of each sub-class using the segmentation outcome of the 100 

bitewing images, 50 upper periapical images, and 50 lower periapical images. We tried to 

avoid any biasing in the training sets, therefore, we choose teeth from different types 

(Canine, Incisor, Premolar, and Molar), different intensity, different positions, and with and 
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without dental fillings. Each training set contains 100 objects that belong to the corresponded 

sub-class. We compute the Eigen subspace for each of the sub-classes presented in Table 9 as 

shown in section  6.4. 

In order to evaluate the performance of the described approaches using a large database, we 

used three test sets selected from  [115] [116]. The first test set contains 800 bitewing images, 

the second test set contains 321 upper periapical images, and the third one contains 333 lower 

periapical images. All of the images used to build the test sets are different from the one used 

in the training sets, and they belong to different records. Each record contains different 

number of dental images with variable views. In addition, the dental images in the records 

have different qualities, different intensity contrasts, and part of them have dental fillings. 

We applied the segmentation approach presented in the previous chapter on the three test 

sets. 

Table 10, Table 11, and Table 12 show the number of each subclass resulted from dental 

image segmentation for bitewing, upper jaw periapical, and lower jaw periapical images 

respectively. It is clear that the percentages of improper segments are 12.25%, 20.63%, and 

20.18% for bitewing, upper jaw periapical, and lower jaw periapical images respectively. 

Therefore, decreasing this percentage will enhance ADIS performance and the segmentation 

results.    

In practice, the number of principle components used for projection and reconstruction 

process will affect the performance of the Eigen-space method. Therefore, we need to 

determine the optimal number of the principle component that is corresponded to lowest 

error rate in evolution for proper and improper teeth segments. We perform the evaluation 

using different number of principle components, and then we report the results of each one.  

Figure 83, Figure 84, and Figure 85 show a plot of error rate vs. the number of principal 

components for bitewing, upper periapical, and lower periapical image segmentation 

outcomes respectively. The optimal number of principle components for proper segments in 

bitewing, upper periapical, and lower periapical is 20, 25, and 25 respectively. On the other 

hand, the optimal number of principle components for improper segments in bitewing, upper 

periapical, and lower periapical is 30, 30, and 25 respectively.  

Table 13, Table 14, and Table 15 show the number of segments for each subclass resulted 

from dental image segmentation after automated evaluation for bitewing, upper periapical, 
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and lower periapical respectively. These numbers correspond to optimal number of principle 

components shown in Figure 83, Figure 84, and Figure 85. 

Table 10: The number of each subclass resulted from dental image segmentation for bitewing dental 

images. 

 

Subclass 
Number of Outcomes 

for Bitewing set 

Total Number of 

proper segments  

Total Number of 

improper segments  

Upper Jaw  

Tooth 
2127 

Lower Jaw  

Tooth 
1749 

3876  

Upper Jaw 

Oversegmentation 
45 

Upper Jaw 

Oversegmentation 
74 

Upper Jaw 

Undersegmentation 
155 

Upper Jaw 

Undersegmentation 
243 

     Background 24 

 541 

 
 

Table 11: The number of each subclass resulted from dental image segmentation for upper jaw 

periapical images. 

 

Subclass 
Number of Outcomes 

for Bitewing set 

Total Number of 

proper segments  

Total Number of 

improper  segments 

Upper Jaw  

Tooth 
746 746  

Upper Jaw 

Oversegmentation 
45 

Upper Jaw 

Undersegmentation 
93 

     Background 56 

 194 
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Table 12: The number of each subclass resulted from dental image segmentation for lower jaw 

periapical images. 

Subclass 
Number of Outcomes 

for Bitewing set 

Total Number of 

proper segments  

Total Number of 

improper segments  

Lower Jaw  

Tooth 
788 788  

Lower Jaw 

Oversegmentation 
43 

Lower Jaw 

Undersegmentation 
105 

     Background 51 

 199 

 

 

 

 

Figure 83: Variation in ASE performance of the Eigen-space method using different number of 

principal components for bitewing image segmentation outcomes. 
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Figure 84: Variation in ASE performance of the Eigen-space method using different number of 

principal components for upper periapical image segmentation outcomes. 

 

Figure 85: Variation in ASE performance of the Eigen-space method using different number of 

principal components for lower periapical image segmentation outcomes. 
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Table 13: The number of each subclass resulted from dental image segmentation for bitewing dental 

images after evaluation. 

 

Subclass 
Number of Outcomes 

for Bitewing set 

Total Number of 

proper segments  

Total Number of 

improper segments  

Upper Jaw  

Tooth 
2080 

Lower Jaw  

Tooth 
1685 

3765  

Upper Jaw 

Oversegmentation 
19 

lower Jaw 

Oversegmentation 
24 

Upper Jaw 

Undersegmentation 
32 

Upper Jaw 

Undersegmentation 
37 

     Background 6 
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Table 14: The number of each subclass resulted from dental image segmentation for upper jaw 

periapical images after evaluation. 

 

Subclass 
Number of Outcomes 

for Bitewing set 

Total Number of 

proper segments  

Total Number of 

improper  segments 

Upper Jaw  

Tooth 
697 697  

Upper Jaw 

Oversegmentation 
20 

Upper Jaw 

Undersegmentation 
19 

     Background 13 

 52 

Table 15: The number of each subclass resulted from dental image segmentation for lower jaw 

periapical images after evaluation. 

Subclass 
Number of Outcomes 

for Bitewing set 

Total Number of 

proper segments  

Total Number of 

improper segments  

Lower Jaw  

Tooth 
720 720  

Lower Jaw 

Oversegmentation 
17 

Lower Jaw 

Undersegmentation 
14 

     Background 14 

 45 
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In Figure 86, we show examples where ASE is correctly evaluated the segmentation 

outcomes of different types of dental views. In Figure 87 , we show examples where ASE 

where unable to evaluate the segmentation outcomes correctly. Figure 88 shows the 

confusion matrixes of ASE performance for various views of dental images . 

 

Figure 86: Examples of correctly evaluated segments. 

 

Figure 87: Examples of incorrectly evaluated segments 
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Figure 88:  Confusion matrixes for various views of dental images. 

We can observe the following from the previous figures and tables in this section: 

1- Overall, the percentage of improper segment was 15.5% before evaluation and 

4.3% after the evaluation. In addition, the percentage of proper segments that 

evaluated as improper segments is 4.2%, while, the percentage of improper 

segments that evaluated as proper segments is 23.1%. the overall error of 

evaluation is 7.6% 

2- In the bitewing images, the percentage of improper segment was 12.25% 

before evaluation and 3% after the evaluation. The percentage of proper 

segments that evaluated as improper segments is 2.8%, while, the percentage 

of improper segments that evaluated as proper segments is 21.8%.  the overall 

error of evaluation is 4% 

3- In the upper periapical images, the percentage of improper segment was 

20.6% before evaluation and 6.9% after the evaluation. The percentage of 

proper segments that evaluated as improper segments is 6.5%, while the 
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percentage of improper segments that evaluated as proper segments is 26.8%.  

the overall error of evaluation is 10.7% 

4- In the lower periapical images, the percentage of improper segment was 

20.18% before evaluation and 5.88% after the evaluation. The percentage of 

proper segments that evaluated as improper segments is 8.6%, while, the 

percentage of improper segments that evaluated as proper segments is 22.6%.  

The overall error of evaluation is 11.35%. 

5- The evaluation of bitewing dental image segmentation outcomes is more 

accurate than the ones in the periapical views. The main reasons of that 

because the periapical images have more information about the teeth and the 

variations in the root shape. In addition, the high intensity of the bones in the 

periapical images increases the errors.  

6- The performance of evaluator in detecting the undersegmentation and 

oversegmentation outcomes in bitewing images is superior to its performance 

in both views of periapical images.  

7- The performance of evaluator in detecting the background outcomes in 

bitewing images and the periapical views is very close. 

8- The error rate in detecting oversegmentation and undersegmentation outcomes 

in the upper periapical is higher than the one in the lower periapical. This is 

due to presence of teeth that have three roots in the upper jaw which increase 

the interference between the teeth. 

In order to study the impact of ASE on performance of the matching process, we used the 

proposed ADIS system developed by WVU research team. The matching process and 

decision making scheme introduced in  [110]. We used closed set identification database that 

contains 24 dental records belongs to 12 subjects. Twelve dental records are AM records and 

twelve are PM records. We run each AM record against all PM records to find its match with 

and without the presence of ASE. The matching result of each PM record belongs to 

matched, unmatched, or undetermined list. Table 16 shows the results of matching 

with/without ASE using ADIS. The results show that ASE increases the efficiency of ADIS 

by increasing the number of match cases and decreasing the number of undetermined cases. 

Two of unmatched cases presented because there is no corresponding tooth to tooth between 
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AM record and PM record to implement matching. However, the ASE eliminates the 

improper segments results from errors in cropping and film type classification. 

Table 16: Result of Matching PM records against AM records for 1 2Subject using ADIS 

with/without ASE 

 # of Matched Cases 
# of Undetermined 

Cases 

# of Unmatched 

Cases 

Matching Results 

without ASE 
1 9 2 

Matching Results 

with ASE 
7 2 3 

 

6.7 Experimental Results for Ear Image Segmentation 

Evaluation 

We build the training set of sub-classes presented in section  6.2.2 for ear image segmentation 

evaluation using 30 subjects of database  [114]. In the selecting criteria, we tried to avoid any 

biasing in the training sets; therefore, we take into consideration choosing different genders, 

races, views, background, height, and illumination.   

We segmented the facial images of selected subjects using the approach presented in the 

previous chapter, and then we classify segmentation outcomes into five sub-classes as 

mentioned in section  6.2.2. We increase the number of segmentation outcomes that are 

corresponding to improper objects by changing the value of thresholding up and down. 

Each training set contains 200 objects that belong to the corresponded sub-class. After that, 

we compute the Eigen-space for each sub-class in the training sets. 

To evaluate the performance of ear segmentation evaluation, we build four test sets selected 

from databases  [114] for 190 subjects respectively. We applied the segmentation approach 

presented in the previous chapter on the facial images of selected subjects. Each test set of 

the proper segments contains 2000 ear images with different genders, races, views, height, 

and illumination. For each test set that belongs to partially succeeded or improper segments, 

we use 1000 segments.   

In order to determine the optimal number of the principle component that is corresponded to 

lowest error rate in evolution, we use various number of principle components for projection 

and reconstruction process.  
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Table 17 show the error rate vs. the number of principal components for correct ear segments 

and incorrect ear segments. It also shows that the minimum percentage of error in correctly 

recognizing the non-ear segments is 3.5%. 

Table 17: Error rates vs. of number of principle components for ear and non ear segments 

Number of 

Principle 

components 

Percentage of 

error for ear 

segments 

Percentage of 

error for non-ear 

segments 

10 12.25 18.4 

15,20 9.8 14.7 

25 7.45 12.8 

30,35 5.3 8.4 

40 3.3 5.4 

45 2.3 4.2 

50,55 2.3 3.5 

60 3.85 5.3 

 

In Figure 89, we show examples of successful ear segmentation outcomes evaluation of 

different facial image views. In Figure 90, we show examples of incorrectly ear segmentation 

outcomes evaluation of facial images. 

 

Figure 89: Examples of correctly evaluated segments. 
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Figure 90: Examples of incorrectly evaluated segments. 

In order to study the impact of evaluation on the performance of the matching process, we 

used standard Eigen-space recognition system. The process of normalization and projection 

of matcher are the same as the one introduced in sections  6.3.2 6.4. We used close set 

identification database that contains 100 subjects chosen from [113]. All ear images in the 

database have been segmented from facial images that have 15 degree angel view. For 

verification process, we used 1000 ear images belonging to the same 100 subjects in the 

database with angel views between [0, 30]. We chose 10 ear segments for each subject, seven 

of them are proper segments, and three of them are improper.  

We run three sets of images into the matcher. The first set contains the 700 proper segments, 

the second set contains 1000 proper and improper segments without using ASE, and the third 

set contains the proper and improper segments with presence of ASE. The ROC curve of 

running the three sets is shown in Figure 91. The results show that the performance of the 

matcher after including ASE is comparable to its performance when the segmentation 

outcomes are ideal.  In addition, we save time by eliminating the improper segments to be 

processed. 
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Figure 91: ROC Curve of matcher performance using Ideal segmentation, segmentation without ASE, 

and segmentation with presence of ASE. 

 

6.8 Summary 

In this chapter we presented a fully real time ASE used in the biometric systems to increase 

the performance efficiency, and to reduce the wasting time. We handle two different types of 

biometric image segmentation outcomes, the dental radiograph image segmentation 

outcomes evaluation, and ear segmentation outcomes evaluation from facial images. Our 

approach is based on low computational-cost and appearance-based features. It consists of 

two stages, off-line and on-line. In the off-line stage, we initially classify the segmentation 

outcomes in the biometric system into main sub-classes and create training sets, and then we 

standardize the view of the segmentation outcome. Finally, we create the Eigen-spaces 

corresponding to the chosen training sets. In the on-line stage, we project the segmentation 

outcome onto the Eigen-spaces after normalization, and then we used the evaluation scheme 

in order to determine if the outcome is proper or improper segment.  
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In the evaluation of dental image segmentation outcomes, we used three tests of dental 

radiograph images for bitewing, upper periapical, and lower periapical views. The total 

number of test images is 1454 taken from 216 dental records. The results show that we 

reduce the percentage of improper outcomes produced from segmentation from 15.5% before 

evaluation to 4.1% after evaluation. In addition, the results show that the performance of 

evaluation of bitewing image segmentation outcome is better than its performance in the 

periapical views. This is due to the presence of jaw bones and teeth root which increase the 

complexity of the problem. The performance of evaluator in detecting the oversegmentation 

and undersegmentation outcomes in the bitewing views is better than the one in the periapical 

views, however; its performance in detecting the background outcomes can be considered the 

same. 

The results also showed that the evaluator is more sensitive to detect the undersegmentation 

outcomes rather than the oversegmentation outcomes. This is due to presence of three types 

of teeth in terms of the number of the roots. Additionally, the presence of the filling that 

spread on more than tooth will increase the difficulties.  

Although the evaluator will eliminate some of the proper teeth, most of these proper 

segments have poor quality because of very low intensity, fillings, or teeth overlapping. 

However; the percentage of lost qualified teeth can be neglected comparing to percentage of 

eliminating the improper outcomes.  

In the evaluation of ear image segmentation outcomes, we classify the outcomes of 

segmentation outcomes into five sub-classes, two of them correspond to correct ear 

segments, two correspond to partially ear segments, and one corresponds to non ear objects. 

The results show that the percentage of error in detecting the non-ear segments is 3.5%, 

while it is 2.3% in detecting the ear segments. In addition, the performance of the matcher 

after including ASE is comparable to its performance when the segmentation outcomes are 

ideal
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Chapter 7: Conclusion 

In this dissertation, we addressed the problem of fully automated image segmentation in the 

context of dental and ear biometrics. We also address the problem of evaluating the quality of 

segmented image by designing an ASE.   

Image segmentation is essential for guiding the process of identification process. We employ 

the mathematical morphology to segment teeth and ear from dental radiographs and facial 

images. We use mathematical morphology operator to highlight the desired objects and 

suppress the others, and then threshold the resulting image to separate the desired objects 

from the background. We next analyze the connected components obtained from the 

thresholded image based on their geometric properties in order to isolate the desired objects. 

Results on dental radiograph images show that our approach has the highest optimality and 

lowest failure rate compared to the other automated approaches. In addition, it can deal with 

bitewing and periapical dental images. 

In ear images, the experimental results show that our segmentation approach achieves more 

than 90% accuracy based on three different sets of 3750 facial images for 376 persons, and it 

can deal with different poses, backgrounds, and illumination.   

We also present an approach for the automated evaluation of the quality of segmented 

images. Our approach is based on low computational-cost appearance-based features, and 

consists of two stages: off-line and on-line. In the off-line stage, we generate training sets by 

manually classifying the segmentation outcomes of proposed approach into several sub-

classes. Next, we create the Eigen-spaces corresponding to the different training sets. In the 

on-line stage, we project the outcome of segmentation onto the Eigen-spaces after view 

normalization, and use a Bayesian Classifier in order to determine whether the segmentation 

outcome is proper or improper segment.  

Results on dental images show that using ASE reduced the percentage of improper 

segmentation outcomes from 15.5% (without using ASE) to 4.1%. In addition, ASE 

enhanced the efficiency of ADIS and matching process  [110] by increasing the number of 

matched cases and decreasing the number of undetermined cases generated from the 

matching process. This is because ASE eliminates the improper segments produced not only 

from errors in segmentation but also from errors in cropping and film type classification.  

Results on ear images show that the percentage of error in detecting the non-ear segments is 
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3.5%, while it is 2.3% in detecting the ear segments. In addition, the performance of the 

matcher after including ASE is comparable to its performance when the segmentation 

outcomes are ideal. 

Our plan for the future is to expand the functionality of ADIS to work on oral photographs, 

dental Models, and CT scans. In addition we plan to develop algorithms to estimate the 

quality of dental images, and to predict dental clinical problems (e.g., bone density). 

In the context of ear images, we plan to develop the functionality of ear segmentation to 

work with cluttered background. 

 

.   
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