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Abstract

Image segmentation is one of the most important area of image
retrieval. In colour image segmentation the feature vector of each
image region is 'n’ dimension different from grey level image. In
this paper a new image segmentation algorithm is developed and
analyzed using the finite mixture of doubly truncated bivariate
Gaussian distribution by integrating with the hierarchical
clustering. The number of image regions in the whole image is
determined using the hierarchical clustering algorithm. Assuming
that a bivariate feature vector (consisting of Hue angle and
Saturation) of each pixel in the image region follows a doubly
truncated Dbivariate Gaussian distribution, the segmentation
algorithm is developed. The model parameters are estimated using
EM-Algorithm, the updated equations of EM-Algorithm for a
finite mixture of doubly truncated Gaussian distribution are
derived. A segmentation algorithm for colour images is proposed
by using component maximum likelihood. The performance of the
developed algorithm is evaluated by carrying out experimentation
with six images taken form Berkeley image dataset and
computing the image segmentation metrics like, Probabilistic
Rand Index (PRI), Global Consistency Error (GCE), and
Variation of Information (VOI). The experimentation results show
that this algorithm outperforms the existing image segmentation
algorithms.

Keywords: Image Segmentation, Finite Doubly Truncated
Bivariate Gaussian distribution, Hierarchical Clustering, Image
Quality Metrics, EM algorithm.

1. Introduction

Image segmentation is an important early vision task, where
pixels with similar features are grouped into homogeneous regions
(Zoltan Kato and Ting-Chuen Pong, 2006). Colour image
segmentation has recently been an intensive topic in image
processing and computer vision. It can be viewed as an

generalization of grey level image segmentation (Cheng etal,
2001). The image segmentation methods can be classified into
four categories namely cluster based segmentation (Roberts.S.J.
(1997)), edge or contour detection based segmentation (Canny
(1986)), Region or area extraction based segmentation (Adams
and Bischof (1994)) and model based segmentation. Among these,
model based image segmentation is more efficient compared to
other methods (Lei T.and Udupa J. (2003)). In image
segmentation, unsupervised clustering techniques have high
reproducibility because its results are mainly based on the
intensity information of image data itself. They do not require
training data, but they do require an initial segmentation and they
rely only on the intensity distribution of the pixels and disregard
their geometric information (Sujaritha M. and Annadurai S.
(2010)).

Much work has been reported regarding image segmentation
using Gaussian mixture model. In Gaussian mixture model, each
image is divided into K regions and each region is characterized
by a Gaussian distribution. For obtaining the number of regions, it
is customary to consider the K-means algorithm (Prasad Reddy
P.V.G.D. et.al (2007)). However, the K-means algorithm requires
the initial number of clusters and it is semi-unsupervised. To
overcome this problem one can consider hierarchical clustering.
In hierarchical clustering, the clusters are formed by collecting
similar clusters at different levels of detail into a single cluster
using a multi branch tree structure. Such a system allows for
selection of a set of clusters for further exploration. A number of
Segmentation algorithms for building a hierarchical image
representation have been proposed (Montanvert A. et al (1991),
Nacken P.F.M. (1995) and Molina L. et al (2000)).

In colour images the pixel intensity distribution may not be able
to characterize the image region as in the case of grey images.
This problem can be resolved by considering the feature vector of
the colour image. The colour features can be extracted from the
images by utilizing CIE-L*U*V* colour space using the method
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given by (Sangwine and Horne (1998)). In this colour space the
important features of each colour image region can be identified
as Hue angle and Saturation. Even the value is also important it
can be considered as a function of Hue and Saturation. This is also
supported by experimental evidence. In addition to this the feature
vector is having finite range and may not be symmetric and
mesokurtic. To have an accurate modeling of this feature vector
one has to consider the truncation of bivariate Gaussian
distribution of each image region. This consideration
characterizes the whole image as a finite doubly truncated
bivariate Gaussian mixture model.

Hence, in this paper we develop an efficient image segmentation
algorithm by assuming that the feature vector of the entire image
follows a finite doubly truncated bivariate Gaussian mixture
distribution and hierarchical clustering. The numbers of image
regions are determined by using the hierarchical clustering. The
model parameters are estimated with the updated equations of
the EM algorithm. The EM algorithm (Expectation Maximization
algorithm) has been extensively used to estimate the mixture
parameters (McLanchlan G. and Krishnan T. (1997), Yiming Wu
etal (2003), Lei T. et al (2003)).

In any image region the feature vector lie between two finite
values and may be distributed as asymmetric. Neglecting the
reality of finite range leads to serious falsification of model
estimation. Let W = [X Y] is a bivariate random variable
representing feature vector of an image region. The
probability density function of the Doubly Truncated Bivariate
Gaussian distribution is

f(x,
9(x.y.0) = V)
t{bj f(x,y) dxdy

b <X<a ;b <y<a
) ,2)’ )

(1)
where, (by, a;) are the truncation points of the Hue angle and (b,,
ay) are the truncation points of the Saturation, f (X, Y)is the

probability density function of the bivariate Normal distribution

AP v

m<x<m; 400<y<+oq
0 >0;0,>0; —1<p<1,
—oo<y4 <+o0; —0<4 <400
2
The value of [1_ II f f(x,y) dxdy} is significant based on the
b, b,

values of the parameters. This distribution includes the skewed,
asymmetric and finite range bivariate distributions as particular
cases for limiting and specific values of the parameters. This
model also includes bivariate Gaussian distribution as a limiting
case. The various shapes of the frequency curves of the
doubly truncated bivariate Gaussian distribution are shown
in Figure 1.

Figure 1: Shapes of doubly truncated blvarlate Gaussian frequency
surfaces

As a result of this finite range in the feature vector, it is needed to
consider the feature vector of the entire image follows a finite
doubly truncated bivariate Gaussian mixture distribution.

The performance of the developed segmentation algorithm is
compared with finite Gaussian mixture model with K-Means
through Image segmentation Measures like, Probabilistic Rand
Index (PRI), the Variation of Information (VOI), and Global
Consistency measure (GCE), and the Image Quality Measures
like, Maximum distance, Image Fidelity, Mean Square Error,
Signal to Noise Ratio, and Image Quality Index. Six images

namely OSTRICH, POT, TOWER, BEARS, DEER and

BIRD are used for experimentation.
2. Truncated Gaussian Mixture Model

The effect of truncation in bivariate Gaussian distribution has
been discussed by several researchers (Norman L.Johnson,
Samuel Kotz and Balakrishnan (1994)). Following the heuristic
arguments given by Bengt Muthen (1990), the mean value of
‘X’(hue) is obtained as

EX)= M+ O, A (3)

where,

and C =(1_ p2)7]/2,¢, @ are the ordinate and area of a

standard Normal distribution.

Similarly the mean value of “Y’(saturation) is
E(Y)= u,+ 0,B “4)

where,

1JCSI

www.lJCSl.org



1JCSI International Journal of Computer Science Issues, Vol.
ISSN (Online): 1694-0814
www.IJCSl.org

e REErey i Clies
S
A
A
and € = (1-p7)
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The Variance of X is
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A and B are as given in equations (3) and (4)

Since the entire image is a collection of regions, which are
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The Covariance of (X, Y) is
COV(X,Y)=0, 0,U-AB[O, +0,-1]

2
and B are as given in equation (4)

(N

characterized by doubly truncated bivariate Normal distribution, it
can be characterized through a K-Component finite doubly
truncated bivariate Gaussian distribution and its probability
density function is of the form

(x Y) = 3 0405, ¥3:0)

where, K is the number of regions, 0 < ¢; <1;i=1.2,...K

®)

K
are weights such that Zai =] and 9:{;{1(,;5(,012'00&/}(} is
i=1

the parametric set. (X, Y /@) given in equation (1) represent

the probability density function of the i image region. Q; is the

probability of occurrence of the i component of the finite doubly
truncated bivariate Gaussian mixture model (FDTBGMM) i.e.,
the probability that the feature belongs to the i image region.

The mean vector representing the entire image is

ZK:aiE(Xi)

2 a; E(Y;)

where, Ei(X) and Ei (Y) are given in equations (3) and (4)

for the i image region.

E(W") = ©

3. Estimation of the Model Parameters by EM
Algorithm

To obtain the estimation of model the model parameters, we
utilized the EM-Algorithm by maximizing the expected likelihood
function for carrying out the EM-Algorithm. The likelihood

function of bivariate observations (X, Y,),(X,, ¥, ) (X, Y3 )seees (X Yy )

drawn from an image is
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Solving the equations (15), (16) and (17) iteratively using
we get the revised estimates of 0'12k ,0'22k and O, .

4. Initialization of Parameters by Hierarchical
Clustering

To utilize the EM algorithm we have to initialize the
2 2
parameters &) , U, >, Moy > O » Oy > and O and | for

k=1,2...,.K. The Truncation Points (b;, a;) and (b,, a;) can be
estimated with the values of the maximum and the minimum
values of Hue and Saturation of the entire image respectively.

The initial values of &; can be taken as &; =—, where, K is the

number of image regions obtained from the Hierarchical
clustering algorithm. The steps involved in hierarchical clustering
algorithm are as follows (S.C. Johnson (1967)).

Step 1: Start by assigning each item to a segment. Each of the N
items, are associated with N segments, each containing just one
item. Let the distances (similarities) between the segments be the
same as the distances (similarities) between the items they
contain.

Step 2: Find the closest (most similar) pair of segments and
merge them into a single segment. The number of segments is
now reduced by one. Compute distances (similarities) between the
new segment and each of the old segments.

Step 3: Repeat the steps 2 and 3 until all items are segmented.

Step 3 can be done in different ways, namely i) Single-Linkage ii)
Complete-Linkage and iii) Average-Linkage segmenting. We
consider the Average -Linkage methodology.

In Average-Linkage segmenting (also called the unweighted pair-
group method using arithmetic averages), is one of the most
widely used hierarchical clustering algorithms. The average
linkage algorithm (Richard A. Johnson and Dean W. Wichern
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(2009)) is obtained by defining the distance between two
segments to be the average distance between a point in one
segment and a point in the other segment. The algorithm is an
agglomerative scheme that erases rows and columns in the
proximity matrix as old segments are merged into new ones.

The proximity matrix is D = [d(i,j)]. The segments are assigned
sequence numbers 0,1.., (n-1) and L(k) is the level of the K™
segment. A segment with sequence a number m is denoted (m)
and the proximity between segments (r) and (s) is denoted d

[(©),(s)]-
The algorithm is composed of the following steps:

Begin with the disjoint segment having level L(0) = 0 and
sequence number m = 0.

Find the average dissimilar pair of segments in the current
segment, say pair (1), (s),
where the average of all pairs of segments in the current segment.

1. Increment the sequence number: m = m +1. Merge segments
(r) and (s) into a single segment to form the next segmenting
m. Set the level of this segmenting to

L(m) = d[(r).(s)]

2. Update the proximity matrix, D, by deleting the rows and
columns corresponding to segments (r) and (s) and adding a
row and column corresponding to the newly formed segment.
The proximity between the new segment, denoted (r,s) and
old segment(K)is defined in this way.

> Z d(i.j)

N N

(r.s) K

(r,s) K

where, d(i,j) is the distance between object i in the cluster (r,s)

and object j in the cluster K, and N__ and N, are the number

()
of items in the clusters (r,s) and K respectively. The above
procedure is repeated till the distance between two clusters is less
than the specified threshold value.

After obtaining the final value for the number of regions K, we
obtain the initial estimates of L{;, , L4, , O, 12k , O 22k ,and o, for

the k™ region using the segmented region values with the method
of estimation given by Bengt Muthen (1990) for truncated
bivariate Normal distribution with initial parameters. After

. o . 2 2
getting these initial estimates for 44, , L, , Oy, O, , and

P > we obtain the final refined estimates of the model

parameters through EM algorithm given in section (3).

5. Segmentation Algorithm

After refining the parameters the prime step is image
segmentation, by allocating the pixels to the segments. This
operation is performed by Segmentation Algorithm. The image
segmentation algorithm consists of four steps
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Step 1) Obtain the number of image regions using hierarchical
clustering algorithm.

Step 2) obtain the initial estimates of the Model parameters using
Hierarchical clustering and moment estimates for each image
region as discussed in 4

Step 3) Using the initial estimates of the parameters the final

estimates of the model parameters Lf, , Ly 0'12k , O 22k > Py
and & fork=1,2,... K are obtained using the updated equations
given in section 3.

The EM algorithm contributes to the segmentation algorithm by
improving the parameters of the model.

Step 4) The image segmentation is carried out by assigning each
pixel into a proper region(segment) according to the Maximum
likelihood Estimate of the i™ component (L ).

ie., (XS , ys) is assigned to the j™ region for which LJ- is

maximum.

[771 X~ My 2, Xs — Mk Yo — Mo Ys — Moy 21
explz(l_f’kz){[ Ok ] ZPk[ O J[ O ]Jr[ O J}[

L, = max;

= 27ra,k02k1l1—,okz]l } fo(w,0)dw
b b

6. Experimental Results

To demonstrate the utility of the image
segmentation algorithm developed in this chapter, an
experiment is conducted with six images taken from
Berkeley image data set (http://www.eecs.berkeley.edu
/Research/Projects/CS/Vision/bsds/BSDS300/html)  .The
images namely, OSTRICH, POT, TOWER, BEARS,
DEER and BIRD are considered for image segmentation.
The feature vector consisting of hue and saturation values
of the whole image is assumed that it follows a mixture of
doubly truncated bivariate Gaussian distribution. That is
the whole image is a collection of K-components and the
feature vectors in each component follows a doubly
truncated bivariate Gaussian distribution. The number of
image regions of each image considered for
experimentation is determined by hierarchical clustering
algorithm.

The number of image regions for each image obtained through
hierarchical clustering for the images under study are given in

Table 1.

Table 1: Estimated value of K (Hierarchical Clustering Algorithm)

IMAGE OSTRICH POT TOWER BEARS | DEER BIRD
Estimate of 2 3 4 3 3 2
K

After assigning these initial values of K to each image data
set, the K-Means algorithm is performed. The initial values
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of the model parameters £; , ,uzi,O'IZi,O'zzi, p; and ¢; for

i=1,2,...,K for each image region of the images are
computed by using the method given in section 3. Using
these initial estimates, the refined estimates of the model
parameters for each image region are obtained by using EM
algorithm given in section 3. The computed values of the
initial estimates and the final estimates of the model

parameters K, L4;, 14,; ,Ulzi ,0'22i , P and ¢ for i=1,2... K

for each image are shown in tables -2.a, 2.b, 2.c, 2.d, 2.e
and 2f.

TableZa
Estimated Vahies of The Pavameters For CSTRICH Tmage
Hunber of Inage Ragions (F=2)

Estonation of Intial P arameters Estomation of FmalFammeters
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P
Fegions (71 Fegions (1)
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P OI72 OI5ET [ 029
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a -04665 [ 00s20 [ )
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=3 oo 00033 00004 01328 05541 0.1341
o TATEE 05T 02008 OTER EIEC) 1] 020G |
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T ] E] T ]
o lid 1id 1i4 1id 01805 | 00801 onsT? 07218
= 0135 0145 [ 05/@L [056 | 03475 [ 05912 | OAFI0 | OZ7E] |
H 03830 03165 | 07724 | 02813 | 01517 | 07157 | 09689 | 05634
o 073 OO | 0006 | 00077 | 0043 | 012 | 00512 | 02539
o ool 0030 | 00054 | 00181 | 01064 | 01457 | 01883 | 01328
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Substituting the final estimates of the model parameters, the
probability density function of the feature vector of each image
are estimated. Using the estimated probability density functions
and the image segmentation algorithm given in section 5, the
image segmentation is done for each of the six images under
consideration. The original and segmented images are shown in

Figure 2.

Figure 2: Original and Segmented Images
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7. Performance Evaluation

The developed algorithm has been tested on a variety of colour
images using Berkeley image data set. The performance of the
developed algorithm is compared with the segmentation method
based on FGMM with K-means given by Prasad Reddy P.V.G.D.
et.al (2007). The comparison is based on three performance
measures namely, Probabilistic Rand Index (PRI) given by
R.Unnikrishnan and et.al (2007), the Variation of Information
(VOI) given by Meila M. (2005), and Global Consistency

157

measure (GCE) given by Martin D. and et al (2001). The
objective of the segmentation methods are based on regional
similarity measures in relations to their local neighborhood.

The performance of developed algorithm using finite doubly
truncated bivariate Gaussian mixture model with hierarchical
clustering(FDTBGMM-H) is studied by computing the
segmentation performance measures namely, PRI, GCE and VOI
for the six images under study. The computed values of the
performance measures for the developed algorithm and the earlier
existing Finite Gaussian Mixture Model (FGMM) with K-Means
algorithm are presented in Table 3 for a comparative study.

Table 3: Segmentation performance measures

PERFORMANCE

IMAGES METHOD MEASURES
PRI GCE VoI
M 0.9234 | 04317 | 22761
OSTRICH FDTEGMM-H | 09812 | 03331 | 0.8829
POT MM 09456 | 05281 | 25873
FDTEGMM -H | 0.9310 | 03335 | 16067
G 09815 | 04469 | 37121
TOWER FDTEGMM -H | 0.9329 | 03814 | 16159
G 09121 | 04418 | 32693
BEARZ | FOTBGMM-H | 00835 | 04315 | 258935
DEER GIIM 09774 | 04329 | 22863
FDTEGMM -H | 0.9861 | 03312 | 0.4119
MM 0.9673 | 0.4671 | 27197
BIRD FDTEGMM -H | 09705 | 03572 | 10251

From the above table 3, It is observed that the developed
algorithm is having high PRI and low GCE and VOI compared to
finte Gausiisn mixture model (GMM). Therefore the segmentation
method proposed outperforms the existing algorithms.

The developed image segmentation method can also used to
reconstruct the image. The Performance Evaluation of the
retrieved image is done by Subjective Image Quality testing or by
Objective Image Quality testing. The Objective Image Quality
testing methods are often used since the numerical results of an
objective measure are readily computed and allow a consistence
comparison of different algorithms. There are several Image
Quality measures available for Performance Evaluation of the
Image Segmentation method. An extensive survey of Quality
Measures is given by Eskicioglu A.M. and Fisher P.S. (1995). For
the Performance Evaluation of the developed Segmentation
algorithm, we consider the Image Quality Measures namely (a)
Maximum Distance, (b) Image Fidelity, (¢) Mean Square Error,
(d) Signal to Noise Ratio and  (e) Image Quality Index. Using
the estimated probability density functions of the images under
consideration, the retrieved images are obtained and shown in
Figure 3.
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Figure 3: Original and Retrieved Images

There are several Image Quality measures available for
Performance Evaluation of the Image Segmentation method. An
extensive survey of Quality Metrics is given by Eskicioglu A.M.
and Fisher P.S. (1995). Using the formulas of Image Quality
Metrics namely, Maximum Distance, Image Fidelity, Mean
Square Error, Signal to Noise Ratio and Image Quality index are
computed for all the Six images with respect to the developed
method and earlier methods and presented in  Table- 4.

Table 4: Comparative study of Image Quality Metrics

IMAGE Quality Metries GMM | FDTBGMM | Standard | Opitimal Crileria
with-H Limits
Il Distance 05013 0.4209 -lto+l Closeto 1
limage Fidelity 0.7910 0.9139 Oto+l Close to 1
Tilean Sguare Ermor 00932 0.0320 ltn Close to 0
OSTRICH | Signalto Noise Ratio | 13.3781 152311 Otoe 15 big as possible
Trage Cluality Index 03102 0.8928 -lto+l Close to 1
. Distance 0.3200 0.3850 -lto+l Closeto 1
limage Fidelity 04720 06726 Oto+l Close to 1
Tilean Sguare Ermor 007338 0.0459 ltn Close to 0
POT Signal to Moise Ratio | 11.7401 130036 Otoe 15 big as possible
Trage Cluality Index 06075 0.6179 -lto+l Close to 1
. Distance 02481 0.9832 -lto+l Closeto 1
Trage Fidelity 05217 0.8173 Oto+l Cloge to 1
Tilean Sguare Ermor 02101 0.0520 ltn Close to 0
TOWER | Signaltc Noise Ratin | 88724 11.5633 Otoe 15 big as possible
Trage Cluality Index 06271 0.8303 -lto+l Close to 1
. Distance 05387 06061 -lto+l Closeto 1
Trage Fidelity 04277 0.6269 Oto+l Cloge to 1
BEARS Ilean Square Error 0.0572 0.0430 Otom Close to 0
Signal to Moise Ratin | 129217 105372 Otooo A5 hig as possihle
Trage Cluality Index 05851 0.6161 -lto+l Close to 1
. Distance 06217 06133 -lto+l Closeto 1
Trage Fidelity (05982 0.8724 Oto+l Cloge to 1
Tilean Square Exror 00528 0.0154 Otom Close to 0
DEER Signal to Moise Ratio | 100629 153428 Ot 15 big as possible
Trage Cluality Index 03783 0.8366 -lto+l Close to 1
. Distance 02420 09500 Slto+l Closg to 1
limage Fidelity 0.1920 0.7668 Oto+l Close to 1
Tilean Sguare Exror 02013 0.0289 Otoo Close to 0
BIRD Signal to Noise Ratio 85231 11 8708 Otoo b5 big as possible
Twage Ouality Index [ 03481 0.7983 Slto+ Close to 1

From the Table 4, it is observed that all the image quality metrics
for the six images are meeting the standard criteria. This implies
that using the proposed algorithm the images are retrieved
accurately. A comparative study of proposed algorithm with that
of algorithm based on Finite Gaussian Mixture Model (FGMM)
and Finite doubly truncated bivariate Gaussian mixture model
(FDTBGMM) with K-means reveals that the Mean Square Error

158

of the proposed model is less than that of the FGMM and
FDTBGMM. Based on all other quality metrics also it is observed
that the performance of the proposed model in retrieving the
images is better than the finite Gaussian mixture model with K-
means .

8. Conclusion

In this paper a new image segmentation algorithm is developed
and analyzed based on Finite doubly truncated bivariate Gaussian
mixture distribution. Here two important characteristics of the
colour image namely, Hue and Saturation are considered as
feature vector. Using EM algorithm the parameters are estimated,
the hierarchical algorithm is used to obtain the initial estimates.
The segmentation algorithm is developed with component
maximum likelihood. The experimentation with Berkeley colour
images reveals that this algorithm outperforms the existing
algorithms in both image segmentation and image retrievals. The
image quality metrics also supported the utility of the proposed
algorithm. It is possible to develop image segmentation algorithm
with finite mixture of doubly truncated multivariate Gaussian
distribution with more image features which require further
investigations.

9. References

[1] Adolfo Martine et al, (2006) “Unsupervised Image
Segmentation Using Hierarchical clustering Selection Process”,
IEEE Transactions on Image Processing, Vol.3.

[2] Adams.R. and Bischof L. (1994)“ Seeded region growing,”
IEEE Trans. On PAMI, Vol.8, no.6, pp.679-698.

[3] Bengt Muthen (1990) “Moments of the censored and truncated
bivariate normal distribution”, British Journal of Mathematical
and Statistical psychology, No.43, pp.131-143.

[4] Canny.J.F. (1986), “ A computational approach to edge
detection,” IEEE Trans.on PAMI, vol.8,n0.6,pp.679-698.

[5] Cheng H., X.Jiang, Y.Sun, and J.Wang (2001) “ Color image
segmentation: advances and prospects”, Pattern Recognition ,
Vol.34, pp2259-228]1.

[6] Eskicioglu M.A. and Fisher P.S (1995) “Image Quality
Measures and their Performance”, IEEE Transactions On
Communications, Vol.43, No.12.

[7] Johnson S.C. (1967), “A Tutorial on Clustering
Algorithms*, http://home.dei.polimi.it/matteucc /Clustering
/tutorial _html/hierarchical.html.

[8] Lei T. and Udupa J. (2003) “Performance evaluation of finite
normal mixture model-based image segmentation techniques,”
IEEE Transactions on Image Processing, vol. 12, no.10, pp.
1153-1169.

[9] Martin D. , Fowlkes C., D. Tal, and J.Malik (2001) “ A
database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring

1JCSI
www.lJCSl.org



1JCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011

ISSN (Online): 1694-0814
www.IJCSl.org

ecological statistics,” in proc. 8" Int. Conf Computer vision,
vol.2, pp.416-423.

[10] Molina I. et al, (2000.) “ Hierarchical Image Segmentation
Based on Nearest Neighbor Region Chains”, IEEE Electronic
Letters, Vol 36, issue 12.

[11] Montanvert A. et al (1991.), “ Hierarchical image analysis
using irregular tessellations”, Transactions on Pattern Analysis
and Machine Learning, Vol 13, No.4.

[12] Mclanchlan G. And Krishnan T(1997)., “ The EM Algorithm
and Extensions”, John Wiley and Sons, New York -1997.

[13] Meila M. (2005) “ Comparing Clustering — An axiomatic
view,” in proc.22™ Int. Conf. Machine Learning, pp. 577-584.

[14] Nacken P.F.M. (1995), “Image segmentation by connectivity
preserving relinking in hierarchical graph structures”, Pattern
Recognition, 907-920.

[15] Norman L.Johnson, Kortz and Balakrishnan(1994),
“Continuous Univariate Distributions”Volume-I, John Wiley and
Sons Publications,Newyork.

[16] Pal S.K. and Pal N.R. (1993), “ A Review On Image
Segmentation Techniques”, Pattern Recognition, Vol.26, N0.9, pp
1277-1294.

[17] Prasad Reddy P.V.G.D, Srinivas Rao.K and
Srinivas.Y(2007), “ Unsupervised image segmentation Method
based On Finite Generalized Gaussian Distribution with EM and
k-menas algorithm”, International Journal of Computer Science
and Network Security, VOL.7. No.4, pp.317-32.

[18 JRichard A. Johnson and Dean W. Wichern (2009),

“Applied multivariate Statistical Analysis- 5" edition”,
Eastern economy edition, PHI.
[19] Roberts.S.J.(1997), “ Parametric and non-parametric

unsupervised cluster analysis,” Pattern Recognition, Vol.30, no.2,
pp.261-272.

[20] Srinivas. Y and Srinivas. K (2007), “Unsupervised image
segmentation using finite doubly truncated gaussian mixture
model and Hierarchial clustering ”,Journal of Current
Science,Vol.93,No.4, pp.507-514.

[21] Sangwine S.J. and R.E.N.Horne (1998), “The Colour Image
Processing Hand Book,” Chapmann and Hall, UK.

[22] Sujaritha M. and Annadurai S. (2010), Color image
segmentation using Adaptive Spatial Gaussian Mixture Model”,
International journal of signal processing 6:1, pp. 28-32.

[23] “The Berkeley segmentation dataset”
http://www.eecs.berkeley.edu/ Research/ Projects/CS/ vision/
bsds/BSDS300/html/dataset/images.html.

[24] Unnikrishnan R., C,Pantofaru, and M.Hernbert,( 2007), “
Toward objective evaluation of image segmentation algorithms,”
IEEE Trans.Pattern Anal.Mach.Intell. Vol.29, no.6, pp.929-944.

159

[25] Wei Yu. , Jason Fritts et al, (2002) “An Hierarchical Image
Segmentation Algorithm’, IEEE International Conference on
Multimedia and Expo, pp.105.

[26] Yiming WU. et al(2003), “Unsupervised Color Image
Segmentation based on Gaussian Mixture Models” Proceedings
of 2003 Joint Conference at the 4™ International Conference
on Information, Communication and Signal Processing, voll, pp.
541-544.

[27] Zoltan Kato, Ting-Chuen Pong (2006), “A Markov random
field image segmentation model for color textured images”, Image
and Computing Vision, 24(10), pp 1103-1114.

Author’s profile:

Mr. GVS RAJKUMAR is presently working as Associate
professor in the Department of Information Technology, GITAM
University, Visakhapatnam. He presented several research papers
in national and International conferences and seminars. He
published a good number of papers in national and International
journals. He guided several students for getting their M.Tech
degrees in Information Technology. His current research interests
are Image Processing, Internet Technologies and Network
security.

Dr. K.Srinivasa Rao is presently working as Professor and Head,
Department of Statistics, Andhra University, Visakhapatnam. He
is elected chief editor of Journal of ISPS and elected Vice-
President of Operation Research of India. He guided 28 students
for Ph.D in Statistics, Mathematics, Computer Science,
Electronics and Communications Engineering, Industrial
Engineering and Operations Research. He published 90 research
papers in national and International journals with high reputation.
His research interests are Image Processing, Communication
Systems, Data Mining and stochastic models.

Dr. Peri. Srinivasa Rao is presently working as Professor in the
Department of Computer Science and Systems Engineering,
Andhra University, Visakhapatnam. He got his Ph.D degree from
Indian Institute of Technology, Kharagpur in Computer Science in
1987. He published several research papers and delivered invited
lectures at various conferences, seminars and workshops. He
guided a number of students for their Ph.D and M.Tech degrees in
Computer Science and Engineering and Information Technology.
His current research interests are Image Processing,
Communication networks, Data Mining and Computer
Morphology.

1JCSI
www.lJCSl.org



