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Abstract. An object extraction problem based on the 
Gibbs Random Field model is discussed. The Maxi- 
mum a'posteriori probability (MAP) estimate of a 
scene based on a noise-corrupted realization is found to 
be computationally exponential in nature. A neural 
network, which is a modified version of that of 
Hopfield, is suggested for solving the problem. A single 
neuron is assigned to every pixel. Each neuron is sup- 
posed to be connected only to all of its nearest neigh- 
bours. The energy function of  the network is designed 
in such a way that its minimum value corresponds to 
the MAP estimate of the scene. The dynamics of the 
network are described. A possible hardware realization 
of a neuron is also suggested. The technique is imple- 
mented on a set of  noisy images and found to be highly 
robust and immune to noise. 

1 Introduction 

Image segmentation and object extraction play a key 
role in image analysis and computer vision. Most of the 
existing techniques, both classical (Gonzalez and Wintz 
1977, Rosenfeld and Kak 1982) and fuzzy set theoretic 
(Pal and Dutta Majumder 1986), are sequential in 
nature and the segmented output can not be obtained 
in real time. 

In order to get the output in real time by parallel 
processing, some researchers are trying to develop neu- 
ral network (NN) based information processing sys- 
tems (Hopfield 1984; Hopfield and Tank 1985; 
Kohonen 1989; Rumelhart et al. 1986). Here the basic 
aim is to emulate the human neural information 
processing system, thereby making the system (artifi- 
cially) intelligent. This NN based processing is suitable 
even when information is ill-defined and/or defective/ 
partial. The approach is highly robust and noise insen- 
sitive. 

The use of statistical techniques for modelling and 
processing image data is very common in computer 
vision. A specific example is the use of a Markov 

Random Field (MRF) to model real life images. 
Cohen and Cooper (1983); Derin and Elliot (1987); 
and Geman and Geman (1984); used Gibbs Distribu- 
tion (GD) for characterizing an MRF,  since a Gibbs 
Random Field (GRF) can be viewed as an M R F  for a 
large neighbourhood system (Besag 1974; Kinderman 
and Snell 1980; Splitzer 1971). Most of the above 
mentioned authors use maximization of a'posteriori 
probability (MAP) criterion for segmentation/restora- 
tion of  noisy images modelled as a GRF.  But the 
computation of MAP estimate of the scene in this type 
of problem is very hard. Use of GD for segmentation 
and restoration of a noisy image requires M N1 • 
possible combinations of its structure to be searched to 
get the best possible solution (M = number of discrete 
levels that the random variable can have, N~ x N2 are 
the dimensions of the image). Thus the problem has 
exponential complexity. Normally, in such cases, 
heuristic solutions (Derin and Elliott 1987) are sug- 
gested. Since they cannot be implemented in parallel, 
the output still cannot be obtained in real time. How- 
ever, by using parallel processing and exploiting the 
collective computational abilities of  the NNs, the 
search space can be reduced drastically even after get- 
ting a substantially good solution. 

The present work is an attempt to solve the com- 
putationally hard problem of finding the MAP esti- 
mate of a scene with a Neural Network. An N N  
architecture which is a modified version of that of 
Hopfield's continuous model (Hopfield 1984) is used in 
the proposed work. A single neuron is assigned for 
every pixel. Every neuron is assumed to be connected 
only to its neighbours, which may vary depending on 
the problem. The neurons have negative self feed back. 
The input bias of a neuron is a transformed version of 
the gray level of the corresponding pixel. Simple hard- 
ware able to realize a neuron for this problem, is 
suggested. 

The simulation study was done using a synthetic 
image corrupted by noise, as well as a real (noisy) image. 
The synthetic image was corrupted by adding noise with 
N(0, a2). The results obtained were satisfactory even 
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when the SNR was 0.75, where SNR is defined as 

range of  gray levels 
a 

This verifies the robustness and the noise immunity of  
the proposed technique. It was also found that the level 
of  precision used for testing the convergence affected 
the result to some extent, but not severely. 

2 Background on Gibbs distribution 

Here we present the basic definition of a particular class 
of  Gibbs Distribution (GD)  (Derin and Elliott 1987) 
which are mainly used in the modelling of images. For  
an extensive treatment on GD,  related to the M R F  and 
the equivalence of  the two see (Besag 1974; Kinderman 
and Snell 1980; Splitzer 1971). 
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2.1 Basic definition o f  GD 

We focus our attention on 2-D random fields defined 
over a finite N1 • N2 rectangular lattice of  points (pix- 
els) characterized by 

L =  { ( i , j ) : l  <~i <~N,, 1 <~j <~N2}. (1) 

Let us first define a neighbourhood system on the lattice 
L and the associated cliques. 

Definition 1. The d th order neighbourhood system (N u) 
on L is described as 

N a= { N ~ ' ( i , j )  ~ L, N~ ~ L}  (2) 

such that 

a) (i,j)  r N a, and 
b) if (k, l) ~ N a, then (i , j)  ~ Nal for any (i,j) ~ L. 

Different ordered neighbourhood systems can be 
defined considering different sets of  neighbouring pixels 
of  (i,j). N '  = {N]j} can be obtained by taking the four 
nearest neighbour pixels. Similarly, N Z= {N~. } consists 
of  the eight pixels neighbouring (i ,j)  and so on (as 
shown in Fig. l a). Due to the finite size of  the lattice 
(the size of  the image being fixed), the neighbourhood 
of the pixels on the boundaries are necessarily smaller 
unless a periodic lattice structure is assumed. 

The 'cliques' associated with the d th order neigh- 
bourhood system N a are defined as follows. 

Definition 2. A clique for the d th order neighbourhood 
system N a defined on the lattice L, denoted by c, is a 
subset of  L such that 

a) c consists of  a single pixel, or 
b) for ( i , j ) # ( k ,  l), ( i , j ) ~  c and (k, l ) ~  c implies 

that (i ,j)  ~ NgI. 

Fig. la-e, Neighbourhood system and clique types for a GRF. a d th 
order neighbourhood system N a for the pixel (i,j). b Neighbourhood 
system N' and the associated clique types, e Neighbourhood system 
N 2 and the associated clique types 

( i , j )  
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For illustration, first and second order neighbour- 
hood systems (N I and N 2) and the associated cliques 
are shown in Fig. lb and c. 

Now a Gibbs Distribution (GD) can be defined as 
follows. 

Definition 3. Let N d be the d TM order neighbourhood 
system defined on a finite lattice L. A random field 
X = {X+j } defined on L has a GD or equivalently is a 
Gibbs Random Field (GRF)  with respect to N d if, and 
only if, its joint distribution is of  the form 

p ( X  = x) = 1 e_U<_, 0 (3) 
L 

with 

U(x) = ~" Vc(x) ,  ( 4 )  
c e C  

where V~(x) is the potential associated with the clique c, 
C is the collection of all possible cliques and 

Z = ~ e -u<x) . (5) 
x 

Here Z, the partition function, is a normalizing con- 
stant, and U(x) is called the energy of the realization. 
The clique potential V,.(x) is assumed to depend on the 
gray values of  the pixels in c and on the clique types 
and nothing else. 

The joint distribution expression in (3) says that 
with a decrease in U(x) the probability p ( X  = x)  in- 
creases. In other words, the smaller U(x), the energy of 
the realization x, the more likely is the realization [i.e., 
larger p(A v = X)] and vice versa. 

In this context it may be mentioned that any ran- 
dom field can be viewed as a Markov Random Field 
(MRF)  when 

N~ = L for all (i, j )  ~ L 

and every M R F  with 

p ( X  = x) > 0 for all x 

is a G R F  and vice versa (Besag 1974). Hence a scene 
realization can be taken as a GRF.  Here, it is assumed 
that the random field X consists of  M-valued discrete 
random variables {X~j} taking values in Q =  
{ql, q2 . . . . .  qm }. To define GD it suffices to define the 
neighbourhood system N a and the associated clique 
potentials Vc(x ). It has been further found that the 2 "d 
order neighbourhood system is sufficient for modelling 
the spatial dependencies of  a scene consisting of  several 
objects. Hence we shall concentrate on the cliques 
associated with N 2. Extension to higher order neigh- 
bourhood systems and restriction to lower ones are 
self-evident. 

3 Image model and problem formulation 

In this section the formulation of the object extraction 
problem which finds maximum a'posteriori probability 
(MAP) estimate of  a scene is discussed. 
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3.1 Gibbsian model f o r  image data 

A digital image y = {y~j} can be described as an 
N I x  N2 matrix of observations. It is assumed that the 
matrix y is a realization from a random field Y = { Y~j }. 
The lattice associated with this is the collection of 
N I x  N2 pixels : {(i,j)}. The random field Yis defined in 
terms of the underlying random field X = {X a } (scene). 
The scene random field X is a discrete valued one, 
where X o can take values in Q = {ql, q2 . . . . .  qm } for 
each (i, j ) e  L. A realization X = x is a partitioning 
of the lattice into M region types such that xij = qk, if 
the pixel (i , j)  belongs to the k th region type. Each 
region type can occur in more than one location in the 
lattice. 

The Gibbsian Distribution basically characterizes 
spatial clustering of  pixels into regions. The distribution 
emphasizes spatial continuity, i.e., if a pixel belongs to 
region type k, then the probability of its neighbouring 
pixels to belong to the same region type is very high. 
The novelty of the G R F  lies in the fact that it takes into 
account the statistical information pertaining to size, 
shape, orientation and frequency of the regions. 

Regions are assumed to have uniform intensities 
and the realized image is a corrupted version of the 
actual one, corrupted by white (additive i.i.d., i.e., 
independent and identically distributed) noise. So Y can 
be written as 

Yij = F(X~j) + W a (i , j)  r L (6) 

where {W~j} is i.i.d, noise. It is also assumed that 
W 0 ~ N(0, a2). The function F( �9 ) is a simple mapping 
of  the region type to the corresponding gray level. In 
other words, 

F(Xjj )  = qm if X a = m .  (7) 

I 

3.2 The object extraction algorithm 

Here, the object extraction problem is simply the deter- 
mination of the scene realization x that has given rise to 
the actual noisy image y. The realization x can not be 
obtained deterministically from y. So the problem is to 
estimate :~ of the scene AT, based on the realization y. 
The statistical criterion of  maximum a'posteriori proba- 
bility (MAP) can be used to estimate the scene. The 
objective in this case is to have an estimation rule which 
yields ~ that maximizes the a'posteriori probability 
p < x :  x l r  = y). 

From Bayes rule we can write 

p ( X  = x] Y = y)  = p( Y = y [X = x ) p ( X  = x)  (8) 
p(r =y) 

Since y does not affect the maximization process, it is 
equivalent to maximize only the numerator of  the RHS 
of  (8), or its logarithm 

l n p ( Y = y [ X = x )  + l n p ( X =  x) .  (9) 

Let the scene random field X be a second order (N 2) 
GD. Then the second component of  (9) can be written 
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as (from Eq. (3)) 

ln p ( X =  x) = C, - ~ V,.(x) (10) 
c ~ C  

where C~ = - l n  Z = constant. 
The first term of (9) can be shown to be 

M 1 
l n p ( Y = y l X = x ) = C 2 -  ~. Z ~ - 2 ( Y i J - - q m )  2 

m = I ( i , j ) ~  S m .Z,O" 

( l l )  

where 

c2-  N, x N 2 ln(2x~r2 ) = constant 
2 

and 

Sm= {(i,j) ~ L : xij = q,, } .  

The difficulty in determining 2 is due to the fact that the 
maximization of  equation (8/9) requires M N' x N2 possi- 
ble scene configurations to be searched, making the 
problem computationally hard. In the following sec- 
tions, we shall exploit the collective computational abil- 
ities of a Neural Network (NN) to get the MAP 
estimate of a scene. 

4 Descr ip t ion  o f  neural  n e t w o r k s  

4.1 General description o f  neural networks 

Neural networks are designated by the network topol- 
ogy, connection strength between pairs of neurons 
(weights), node characteristics and the status updating 
rules. Node characteristics mainly specify the primitive 
types of operations they can perform, like summing the 
weighted inputs coming to them and then amplify them. 
The updating rules may be for the weights and/or states 
of the processing elements (neurons). Normally an ob- 
jective function is defined which represents the complete 
status of the network and its set of minima gives the 
stable states of the network. The neurons operate asyn- 
chronously (the status of any neuron can be updated at 
random times independent of the other) and in parallel 
thereby providing output in real time. Since there are 
interactions among all the neurons the collective prop- 
erty inherently reduces the computational task. Our 
study will be concerned with networks similar to that of 
Hopfield's continuous model (Hopfield 1984), for which 
a brief description is given below. 

The model is based on continuous variables and 
responses. Let the output variable Vi for i th neuron lie 
in the range [ - 1 ,  +1], and be a continuous and 
monotonically increasing (non linear) function of its 
instantaneous input U~. The typical input/output rela- 
tion 

V, = g(U~) (12) 

is sigmoidal with asymptotes - 1  and + 1. It is also 
necessary that the inverse of g exists i.e., g - ' ( V )  is 
defined. 

A typical choice of the function g is 

1 
g(x) = 2 . 1 +  e -(x-~ 1. (13) 

Here, the parameter 0 controls the shifting of the 
function g along the x axis and 00 determines the 
steepness (sharpness) of the function. Positive values of 
0 shift g(x) towards positive x and vice versa. Lower 
values of 0o make the function steeper while higher 
values make it broader. The value of g(x) lies in [ - 1, 1] 
with 0.0 at x = 0. 

For the realization of the gain function g we use a 
non linear operational amplifier with negligible re- 
sponse time. A possible electrical circuit for the realiza- 
tion of a neuron is shown in Fig. 2a. In the diagram 
V,, V 2, V 3 . . . . .  V, represent the output voltage (status) 
of the amplifiers (neurons) to which the i th amplifier is 
connected. Ro( = 1/Wij) is the connecting resistance be- 
tween the jth and the i th amplifiers. /,. is the input bias 
current for the i th amplifier. R is the input resistance of 
the amplifier and C its input capacitance. 

Suppose Ug is the total input voltage (potential at 
the point A, Fig. 2a) to the amplifier having a gain 
function g. Then applying Kirchoff's current law at the 
point A we get, 

V j -  U~ Ug dU~ 
j=l ~ j  + Ii =-R  + C dt 

Ril 
V 1 �9 ~ ] 

V 2 �9 
: : Ri l  : : 

: " Rin. 1 i [ 
Vn. 1 �9 I V n ,, 

[=[in 

' li Vi Vi 

L 
V 

Ii R I Vi 

V2 ~ ~ I V~o 

: i{ U, 
: i Rin d 

Vn. 1 ,, 

Rin 

Fig. 2a,b. Hardware realization of neuron, a Electrical circuit equiva- 
lent of a neuron (Hopfield). b Electrical circuit equivalent of a neuron 
presently used 



o r  

cdUi ~ Vj Ui [1 =~ 1 1] 
R, +4 2, 

Ui 
= ~ W , j ' V j - - ~ + I  i (14) 

j = l  

Here Ri is the total input resistance of the amplifier, the 
output impedance of  the amplifier being considered 
negligible. Equation (14) will be used later to find differ- 
ent equations governing the dynamics of the proposed 
network. 

Hopfield (1984) showed that 

E = - - E ~ W u V i V j - - Z V i l i 4 - E 1 7 g - I ( V )  d V  (15) 
i j i i - / ~ i 0  

is a Liapunov function for the above system and 
dE/dt  <~ O. He also showed that since E is bounded, the 
time evolution of  the system is a motion in the state 
space that seeks out and stops at minima in E. 

4.2 Description of  the network used in the present case 

The topology of the neural network used in the present 
case is such that each neuron is connected to all of  its 
N 2 neighbours. The network can therefore be thought 
of as a modified version of Hopfield's network 
(Hopfield 1984) with the connection strength to all 
neurons outside N 2 being zero. 

From equation (13) we notice that 

Lt g(x) = - 1 
x ~  - ~  

and 

Lt g(x) = + 1 
x ~ + 0 t  

In other words, as x --, + a, the function asymptotically 
approaches the limiting values of _+ 1. In the present 
case, since the number of  neighbours are fixed (8), for 
normalized values of connection strengths the input 
value to a neuron lies in [ - 8 ,  8]. A polynomial function 
defined over a finite domain may also be used as an 
input/output transfer function. One such choice might 
be, 

g(x) = -- 1 x <~a 

a <~ x <~ b 

b<~x<~c 

x >/c 

\ c  - a /  

2 , ( c - x y  (16) 
= 1 -  k ~ - a /  

= 1  

for n ~> 2 and b = (a + c)/2. In this case g(x) lies in 
[ - 1 ,  1] with g(x) = 0.0 at x = b. The domain of  x is 
[a, e]. The value of  n controls the sharpness (steepness) 
of the function. The above function is nothing but a 
generalized version of  the standard 'S '  function as 
defined by Zadeh (Zadeh 1965). 

For  the present case, the domain of x is [ - 8, 8] i.e., 
a = - 8 ,  c = 8. The function g then takes the form 
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g(x) = - 1 x ~ - 8 

1 
= 23--~ (x + 8)n-- 1 --8~<X~<0 

1 
= 1 - ~ ( 8 - x ) "  0~<x~<8 

= 1  x>~8 .  

(17) 

However, for quick convergence one can use the do- 
main [ - 1 ,  1], i.e., one may use the function 

g ( x ) =  --1 x ~ < - - I  

= ( x  + 1) " -  1 --1 ~<x ~<0 
(18) 

= 1 - ( I - x ) "  O<~x~<l 

= 1  x ~ > l .  

5 Algorithm for solving the MAP  estimation problem 
with NN 

5.1 Mathematical formulation of  the M A P  
estimation problem 

From (9-11),  the problem is to maximize 

lnp(X = x) + lnp (Y = y l X  = x) (19) 

where 

lnp(X = x )  = - y '  Vc(x ) + C1 (20) 
c E C  

and 
M 1 

l n p ( Y = y l X = x ) = -  ~ Z ~-~2(YiJ-q , , )2+C2 
m = I ( i , j )  ~ S m 

(21) 

where Sm= {(i,j) e L : xij = m}, and C 1 and C 2 are 
constants. 

In this study we shall con~ider only binary images 
corrupted by noise. In other words, the proposed 
method confines itself to the case when M = 2. Under 
this situation, without loss of  generality we can assume 
that the gray values of the realized image lie in [ -  1, 1]. 
It has already been discussed in Sect. II that even for 
the 2 nd order neighbourhood system (N=) different types 
of cliques are possible. For  the sake of simplicity we 
shall restrict ourselves only to cliques with two pixels. 
Further, we will not distinguish between the different 
possible types of cliques with two pixels. It has already 
been mentioned that if a pixel belongs to region type k, 
the probability of  its neighbouring pixels being in the 
same region type is very high. This suggests that if a 
pair of  adjacent pixels have similar values then the 
potential of  the corresponding clique should increase 
the value of p (X  = x), i.e., the potential of  the clique 
associated with these two pixels should be negative. If  
the values Vi and Vj, of  two adjacent pixels are of  the 
same sign, then Vc(x) should be negative, otherwise 
positive. 

One possible choice of the clique potential Vc(x), of 
a clique c of  the realization x, containing i th and jth 
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pixels is 

Vc(x) = - W,j V, Vj (22) 

where W,j is constant for particular i and j, and 
W~j > 0. This Wij can be viewed as the connection 
strength between the i th and jth neurons and V, as the 
output of  the i th neuron. 

In (11) Yij is the realization of  the modelled value x~j 
of the (i,j)th pixel and q,, is the value of the (i , j)  th pixel 
in the underlying scene, i.e., x,.j = q,,. For  an NN one 
can easily interpret x~j as the present status of the (i,j)  th 
neuron and y,j as the initial bias of the same neuron. 
Thus we can write 

Z Z ( y , j - q , , , ) = = C 3 - 2 2 Z I , j V i j + Z Z V g .  (23) 
m i. j  m i,j  m i , j  

using y~j = I~j and q,~ = V~j. Here C3 = 
Zm E~.j (yij)2 = constant. 

This can also be written in the form (replacing the 
two dimensional indices by one dimensional index) 

6"3 --2 Z I~V, + Z  V~ 2. (24) 
i i 

From (20-24) it can be said that maximization of (19) 
is identical to maximization of l( ) C, + ~ WijV, V j - ~  C3-2 I,V, + Z V~ + G 
i.e., minimization of (excluding the constant terms and 
multiplying by - 1) 

-~  WijV,.Vj--~IiVi+ ~--~ V ~ (25) 
1.3 

5.2 Realization with neural network 

The problem is now reduced to the minimization of  the 
expression in (25) with an NN. To do that, it suffices to 
establish an equivalence between (25) and the energy of 
an NN, and to provide an updating rule so that the 
convergence is guaranted. The state of  the network 
changes with time t, because of the interactions of the 
neurons. The dynamics of  the network are governed by 
differential equations which are obtained from 

8E _ dU,. 
vi  dt " (26) 

The gain function g can be realized by a non-linear 
operational amplifier with negligible response time. 
Comparing (15) and (25), one can see that a neural 
network whose neurons are as shown in Fig. 2a can not 
be used for the minimization of  (25) due to the presence 
of  an extra term 1 /2azz  Vi 2. In order to realize the 
expression in (25) with a neural network let us consider 
the electrical circuit of  Fig. 2b, which is similar to Fig. 
2a except for the feed back connection. The feed back 
can account for the extra term in (25). 

Let Ui be the total input to the amplifier (potential 
at point A, Fig. 2b) with gain function g. Then applying 
Kirchoff's current law at point A we get, 

L Vj--Ui --V,--U, Ui+cdU i 
j = l  ~ j  +Ii-~ R/. - R  dt 

o r  

cdU~= L W~jVj 
dt j= 

where 

14/'q = l/Rij 

and 

1 " 1 1 1 

Z R: R / / ~ j = I  

u~ v, +L 
R, Rf 

(27) 

Now considering the quantity 

1 

i j i .~l~.j' 

+Eli' g-'(V) dV (28) 
R i  o 

Now, 

d E _ x - ,  dE dV i 
dt ~ ~ Vi dt 

:~ (_~Wq.  f ~U~)" dVidt 

d O i ~  " d V ,  [from 27] 
= ~  - C .  dt ] dt 

Since g is a monotonic, increasing function and C is a 
positive constant, every term in {. } of the above 
expression is non negative, and hence 

dE 
d--t ~< 0 ,  (29) 

and 

d E  d r ;  
- -  = 0 =:- - -  = 0 for all i .  
dt dt 

E is easily seen to be bounded. As dE/dt <~ O, searching 
in the gradient direction will lead us to a minimum of  
E. So the evolution of the system is a motion in the 
state space that seeks and stops at minima in E. So, E 
can be considered as an energy function of  the network 
with neurons electrically equivalent to Fig. 2b. The last 
term in (28) is the energy loss of the system. In the high 
gain limit (Hopfield 1984), the stable states of  the 
network correspond to the local minima of the quantity 

1 
E= - Z  E wqv, .v i -  Z viIi + Z v~ (30) 

i j ' i ~ . / '  " 

The expressions in (25) and (30) are equivalent with 
proper adjustment of coefficients. So the minimal values 
of  the expression in (25) can be easily determined with 
an NN having the energy function in (28) and neuron 
realization of Fig. 2b. 

In order to get the equations governing the dynam- 



iCS of  the network, let us consider the energy function 

C 
E= - E  E 

i j 

�9 g - ~ ( V )  d V  (31) 

Here 

dE C C 1 
OVi= E CWijVj-}---~" Ii - ~'~ Vi -'-~i U' (32) 

J 
Differentiating (28) and equating with (27) we notice 
that 

8E = C. dU, 
g V~ dt 

Hence 

dU~ + 1  1 1 
dt = ~ WijVj a 2" I~ - ~ 5  V~ - -  U, (33) j "r 

where z = RC. 
Thus differential equation (33) will govern the state 

of  the system. 
To find a solution, we select an initial state of  the 

network at random, and let it evolve according to (33). 
It will eventually reach a steady state (minimum E) and 
stop. To get further improvement  in the solution one 
can use the Simulated Annealing (Kirkpatric et al. 
1983) type of  approach.  However, f rom the experimen- 
tal results it will be seen that, for this type of problem 
annealing is not required. 
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The network was assumed to attain a stable state if 
for every neuron i, ] V , ( t ) -  V,(t + At) I < e', where e 1 is 
a preassigned small positive quantity. I f  the precision 
level was increased (value of e' decreased) the network 
would take more time to converge. Quicker conver- 
gence could be obtained by increasing At or e '. 

For  network simulation the input bias was taken to 
be linearly proport ional  to the gray level of  the corre- 
sponding pixels mapped in the range [ - 1 ,  1]. Thus, i 
being the gray value of  a pixel, L the maximum avail- 
able gray level, the input bias ! is taken as 

i 
I = 2 ~ - -  1. (36) 

The input/output transfer function used was a second 
order polynomial (18 with n - - 2 ) .  The connection 
strengths were assigned as 

W i j = l  i f j e N  z } 

= 0 otherwise . 

The results obtained by the technique are shown in 
Figs. 3-4 .  In Fig. 3, the results are for a synthetic 

6 Computer simulation and results 

To check the validity and effectiveness of  the proposed 
technique, a computer  simulation was done using syn- 
thetic and real images. The synthetic image was an 
'ELLIPSE '  corrupted by N ~ (0, a 2) noise. The real 
image was a noise corrupted version of a tank ( 'NOISY 
TANK' ) .  The original synthetic image had only two 
levels which were corrupted by additive noise with 
different a values (15, 32). It is to be noted from (33) 
that in order to get the input to all neurons of  a 
network (of  sizes N l x  N2) at an instant (t + At) one 
has to solve NL x 5/2 differential equations with given 
initial values at time t. For  this the Euler method was 
used here, i.e., we iterated ( f rom 33) 

Ui(t + At) = Ui(t) + At(~.j W~jVj(t) + - ~ .  

1 
V~(t) - U~(t)) (34) 

~r 2 

until convergence. Here T is set equal to 1. A numerical 
solution for these differential equations requires a stop- 
ping criterion, which was 

[Ui(t + At) - Ui(t)[ < e, for all i (35) 

where e is a preassigned small positive quantity. In the 
present simulation study At ~ 10 -5 and e ~ 10 -6. 

Fig. 3a-e. Simulation results for a synthetic image of Ellipse. a 
Original image, b Noisy version with SNR = 1.6. c Extracted object 
when SNR = 1.6. d Noisy version with SNR =0.75. e Extracted 
object when SNR = 0.75 
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Fig. 4a,b. Simulation results for a real image of noisy tank. a Original 
image of noisy tank. b Extracted object of the noisy tank 

image corrupted by noise. It  is evident  that with lower 
value of  a (high SNR)  the object extracted was close to 
the actual  one; whereas with higher value of  a (low 
SNR) there was a slight deter iorat ion in the result. 
However,  even for low SNR the key features of the 
original input  were preserved. F r o m  Fig. 4 it is seen 
that  for a real image ( ' N O I S Y  T A N K ' )  the extracted 
object was compact  and  preserved its approximate  out-  
line. These results show the robustness  and  noise immu-  
ni ty of  the technique.  

7 Discussion and conclusion 

The present work demonst ra tes  a method  for solving a 
computa t iona l ly  hard  object extract ion problem with a 
modified Hopfield neura l  ne twork  architecture with a 
single neu ron  assigned to each pixel. The inpu t /ou tpu t  
transfer funct ion  used was a po lynomia l  over a fixed 
domain ,  instead of  an asymptot ic  funct ion.  The energy 
funct ion of  the ne twork  was designed so that  its mini-  
m u m  value cor responded to the M A P  estimate of  the 
scene. The dynamics  of  the network were described and  
a possible hardware  real izat ion of  a neu ron  was sug- 
gested. 

The proposed technique was implemented and  
tested on a synthetic image corrupted by noise and  on 
a real image. The results ob ta ined  were satisfactory, 
even with high degree of  noise. 
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