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Abstract. We consider the problem of segmenting an image through the minimization of an
energy criterion involving region and boundary functionals. We show that one can go from one class
to the other by solving Poisson’s or Helmholtz’s equation with well-chosen boundary conditions.
Using this equivalence, we study the case of a large class of region functionals by standard methods
of the calculus of variations and derive the corresponding Euler–Lagrange equations. We revisit this
problem using the notion of a shape derivative and show that the same equations can be elegantly
derived without going through the unnatural step of converting the region integrals into boundary
integrals. We also define a larger class of region functionals based on the estimation and comparison
to a prototype of the probability density distribution of image features and show how the shape
derivative tool allows us to easily compute the corresponding Gâteaux derivatives and Euler–Lagrange
equations. Finally we apply this new functional to the problem of regions segmentation in sequences
of color images. We briefly describe our numerical scheme and show some experimental results.
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1. Introduction. Many problems in image processing, such as segmentation,
tracking, or classification, can be cast in the framework of optimization theory, e.g.,
as the minimization of some energy measure. The energy is often some combination
of region or boundary functionals. The minimization is usually not trivial, and many
methods have been developed to reach an optimum which may be only local.

We address here the problem of the optimization of region or boundary functionals
with the method of active contours. Active contours have been introduced by Kass,
Witkin and Terzopoulos [34] and were originally boundary methods. Snakes [34], bal-
loons [10], or geodesic active contours [4] are driven towards the edges of an image
through the minimization of a boundary integral of functions of features depending on
edges. Active contours driven by region functionals in addition to boundary function-
als have appeared later. Introduced by [11] and [43], they have been further developed
in [52, 5, 9, 38, 39, 40, 41, 21, 51] and [31, 33]. In effect, the use of active contours
for the optimization of a criterion including both region and boundary functionals
appears to be really powerful.

In general, features of the image region to be segmented, tracked, etc., . . . are
embedded in region functionals while the boundary functional allows smoothness and
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regularity of the region boundary. The basic principle is to construct a parabolic
partial differential equation (PDE) from the energy criterion, e.g., by computing some
sort of Euler–Lagrange equations; this PDE changes the shape of the current curve
according to some velocity field which can be thought of as a direction of descent of the
energy criterion. Given a closed curve enclosing an initial region one then computes
the solution of this PDE for this initial condition. The corresponding family of curves
decreases the energy criterion and converges toward a (local) minimum of the criterion
hopefully corresponding to the objects to be segmented. To compute such a PDE,
several methods have been proposed.

Some authors do not compute the theoretical expression of the velocity field (ba-
sically the gradient of the energy criterion) but choose a deformation of the curve that
will make the criterion decrease [5, 9] (they compute a direction of descent). Other
authors [52, 39, 41] compute the theoretical expression of the velocity vector from the
Euler–Lagrange equations. The computation is performed in three main steps. First,
region integrals representing region functionals are transformed into boundary inte-
grals using the Green–Riemann theorem. Second, the corresponding Euler–Lagrange
equations are derived and used to define a dynamic scheme to evolve the initial re-
gion. Another alternative is to keep the region formulation to compute the gradient
of the energy criterion with respect to the region boundary instead of reducing region
integrals to boundary integrals. In [21], the authors propose computing the derivative
of the criterion while taking into account the discontinuities across the contour. In
[31, 33] the computation of the evolution equation is achieved through shape deriva-
tion principles.

This computation becomes more involved when global information about regions
is present in the energy criterion, the so-called region-dependent case. It happens,
for example, when statistical features of a region such as, for example, the mean
or the variance of the intensity are involved in the minimization. This case has
been studied in [6, 7, 20, 21, 31, 33, 51]. In [31, 33] the authors show that the
minimization of functionals involving region-dependent features induces additional
terms in the evolution equation of the active contour that are important in practice.
These additional terms are easily computed thanks to shape derivation tools.

In this article we clarify the relationships between the boundary and region func-
tionals that arise naturally in several image processing tasks. We show in section 3
that one can go from one to the other by solving Poisson’s equation with Dirichlet
conditions or Helmholtz’s equation with Neumann conditions.

We then concentrate on the problem of finding local minima of a large class of
region functionals. In section 4 we first transform them into boundary functionals
and apply methods from the calculus of variations to compute the corresponding
Gâteaux derivatives and construct a velocity field on the region boundary. This field
defines a PDE whose solution for a given initial boundary condition defines a one-
parameter family of regions which, in practice, converges towards a local minimum
of the functional. The problem of the existence and uniqueness of a solution to this
PDE is not addressed in this article.

We next change our point of view and rederive the same equations in a simpler and
more natural way, i.e., without going through the trouble of turning region integrals
into boundary integrals; this is achieved in section 5 by applying shape derivation
methods [49, 22]. This line of approach has already been followed in [46] in his work
on the estimation of the optical flow.

We then turn in section 6 our attention to a new class of region-based functionals
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by considering histograms of image features. The shape derivation tools allow us to
easily derive the velocity field that defines the evolution of the region boundary.

Section 7 is devoted to an application of the previous methods to the problem
of region segmentation with a given color histogram in a sequence of images. Our
experimental results show that the technique indeed has some interesting potentials.

2. Problem statement. In many image processing problems, the issue is to
find a set of image regions that minimize a given error criterion. This criterion is
often a combination of region and boundary functionals.

A local minimizer for such a criterion including both region and boundary func-
tionals is usually hard to compute. This is mostly due to the fact that the set of image
regions, i.e., the set of regular open domains in R

n (whose boundary is a closed, C2

manifold), does not have a structure of vector space, preventing us from using in a
straightforward fashion gradient descent methods. In order to circumvent this diffi-
culty, calculus of variations and shape optimization techniques can be brought to bear
on the problem. The basic idea is to use them in order to derive a PDE that will drive
the boundary of an initial region toward a local minimum of the error criterion. The
key point is to compute the velocity vector at each point of the boundary at each time
instant. In this paper we propose a framework for achieving these goals in a number
of practically important cases.

To fix ideas in the two-dimensional case, the evolving boundary, or active contour,
is modeled by a parametric curve Γ(s, τ) = (x1(s, τ), x2(s, τ)), where s may be its arc-
length and τ is an evolution parameter—the time. The active contour is then driven
by the following PDE:

Γτ
def
=
∂Γ(s, τ)

∂τ
= v with Γ(τ = 0) = Γ0,(2.1)

where Γ0 is an initial curve defined by the user and v the velocity vector of Γ(s, τ).
This velocity is the unknown that must be derived from the error criterion so that
the solution Γ(., τ) converges towards a curve achieving a local minimum and thus,
hopefully, towards the boundary of the object to segment as τ → ∞.

2.1. Boundary and region functionals. Let us now define more precisely the
region and boundary functionals. Let U be a class of domains (open, regular bounded
sets, i.e., C2) of R

n and Ω an element of U of boundary ∂Ω, which we sometimes
denote Γ. A boundary functional, Jb, may be expressed as a boundary integral of
some scalar function g of image features:

Jb(∂Ω) =

∫
∂Ω

g(x) da(x),(2.2)

where ∂Ω is the boundary of the region and da its area element. The derivation of
this boundary functional is classical [4, 35] and leads to the following velocity vector:

vb = [g(x)κ−∇g(x) ·N]N,

where N is the inward unit normal vector of Γ and κ its mean curvature. The idea
is to use a local parametrization of Γ to reduce (2.2) to a standard problem in the
calculus of variations.

A region functional, Jr, may be expressed as an integral in a domain Ω of U of
some function f of some region features:

Jr(Ω) =

∫
Ω

f(x,Ω)dx.(2.3)



IMAGE SEGMENTATION USING ACTIVE CONTOURS 2131

In that case, the computation of the velocity vector for (2.1) is not as easy. We
propose comparing two main approaches. The first approach is based upon the idea
of transforming all functionals into boundary functionals, thereby reducing (through
a local parametrization of the boundary) the problem of minimization to a standard
problem in the calculus of variations from which the computation of the Gâteaux
derivatives follows. The second approach is based upon the use of shape derivation
tools. In a sense it is more natural since it keeps the region representation.

Note that the scalar function f in (2.3) is generally region-dependent. This is
important since this dependency on the region must be taken into account when
searching for a local minimum of the functional, as discussed in later sections.

Also note that we could have added a dependency of g on ∂Ω, i.e., write g(x, ∂Ω)
in (2.2), to keep the symmetry with the region functional. This is not necessary since
the results in section 4.2, in particular Theorem 4.6, do in fact provide an answer for
this case.

2.2. Examples of such optimization problems in image processing. An
image is represented by its intensity I(x) defined on some region of R

n.
Active contours were originally introduced to search for minima of boundary

functionals. In [4, 35], the function g is a function of the magnitude of the image
gradient through a strictly decreasing function ϕ : [0,+∞[→ R

+ such that ϕ(r) → 0 as
r → +∞. Hence g(x) = ϕ(|∇I(x)|). The minimization amounts to the minimization
of the length of a curve in a Riemannian space. Local minima are obtained via the
steepest descent method.

Region functionals have also been introduced. The region information is em-
bedded in the function f of (2.3). These functionals have been used for many
applications such as moving objects detection [38, 40, 30, 32], image segmentation
[5, 21, 7, 39, 40, 51], or classification [52, 44, 45, 41]. For example, people have used
statistical features such as the mean or the variance of a region Ω:

{
µΩ = 1

|Ω|
∫
Ω
I(x)dx with |Ω| =

∫
Ω
dx,

σ2
Ω = 1

|Ω|
∫
Ω

(I(x) − µΩ)2dx.

We use these two examples to motivate the introduction of a general region func-
tional

Jr(Ω) =

∫
Ω

f(x, G1(Ω), G2(Ω), . . . , Gm(Ω)) dx,(2.4)

where the functionals Gi are given by

Gi(Ω) =

∫
Ω

Hi(x,Ω) dx, i = 1 . . .m.(2.5)

As shown in this equation, the function Hi is itself region-dependent; more precisely,

Hi(x,Ω)
def
= Hi(x,Ki1(Ω),Ki2(Ω), . . . ,Kili(Ω)) ,(2.6)

where

Kij(Ω) =

∫
Ω

Lij(x) dx, j = 1 . . . li i = 1 . . .m.(2.7)
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Note that we have stopped the process at the second level but it could conceivably
continue. We have chosen this special case of dependency because it often arises in
applications, as shown in the next two sections. The various methods that we develop
can be extended in a fairly straightforward fashion to more complicated situations if
needed; see, for example, section 6.

2.3. An example involving the mean. Let us choose

f(x,Ω) = �(I(x) − µΩ),(2.8)

where � : R → R+ is a positive function of class C1. f is region-dependent. This
is an example where the process described in the previous section stops at the first
level:

J(Ω) =

∫
Ω

f(x,Ω) dx =

∫
Ω

�(I(x) − µΩ) dx =

∫
Ω

�

(
I(x) − G1(Ω)

G2(Ω))

)
dx,

where

G1(Ω) =

∫
Ω

H1(x,Ω) dx with H1(x,Ω) = I(x) ,

G2(Ω) =

∫
Ω

H2(x,Ω) dx with H2(x,Ω) = 1 .

In this case, the functions Hi, i = 1, 2, do not depend on the region Ω, l1 = l2 = 0,
and Kij(x) = 0 for all i, j.

2.4. An example involving the variance. Let us take an example where we
stop the process at the second level. Consider the case where the function f is a
function of the variance given by

f(x,Ω) = �(σ2
Ω).(2.9)

� : R+ → R+ is of class C1. We write

J(Ω) =

∫
Ω

f(x,Ω) dx =

∫
Ω

�(σ2
Ω) dx =

∫
Ω

�

(
G1(Ω)

G2(Ω))

)
dx .

Therefore we have

G1(Ω) =

∫
Ω

H1(x,Ω) dx , H1(x,Ω) = (I(x) − µΩ)
2
,

G2(Ω) =

∫
Ω

H2(x,Ω) dx , H2(x,Ω) = 1 ,

with

H1(x,Ω) =

(
I(x) − K11

K12

)2

, l1 = 2,

H2(x,Ω) = 1 , l2 = 0 ,

and finally

K11(Ω) =

∫
Ω

I(x) dx , L11(x) = I(x) ,

K12(Ω) =

∫
Ω

dx , L12(x) = 1 .
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3. Expression of region functionals as boundary functionals and vice
versa. In this section, we show that a region functional may always be expressed as
a boundary functional and vice versa.

3.1. Tranformation of region functionals into boundary functionals.
Consider the region functional (2.3); the next proposition shows that, under some
reasonable assumptions on the function f , it can always be turned into a boundary
functional (2.2).

Proposition 3.1. Let Ω be a bounded open set with regular boundary ∂Ω. Let
f : Ω → R be a continuous function and u be the unique solution of Poisson’s equation:{ −∆u = f in Ω,

u|∂Ω = 0.

We have the following equality:∫
Ω

f(x,Ω) dx =

∫
∂Ω

∇u ·N da(x),

where N is the inside pointing unit normal to ∂Ω and da(x) its area element.
Proof. Because of our assumptions, Poisson’s equation has a unique classical, i.e.,

C2, solution in Ω [2, 25], and we have∫
Ω

f(x,Ω) dx = −
∫

Ω

∆u dx =

∫
∂Ω

∇u ·N da(x),

the last equality being a consequence of the Green–Riemann theorem.
A region functional can always be expressed as a boundary functional, via the

solution of Poisson’s equation with Dirichlet conditions.

3.2. Tranformation of boundary functionals into region functionals.
The converse of Proposition 3.1 is also true. Let us consider the boundary functional
(2.2).

Proposition 3.2. Let Ω be a bounded open set with regular boundary ∂Ω. Let u
be the unique solution of Helmholtz’s equation:{ −∆u+ u = 0 in Ω,

∂u
∂N |∂Ω

= −g.
Then we have the following equality:∫

∂Ω

g(x) da(x) =

∫
Ω

u(x,Ω) dx,

where da(x) is the area element of ∂Ω.
Proof. Because of our assumptions, Helmholtz’s equation has a unique classical,

i.e., C2, solution in Ω [42, 13, 14, 15, 16, 17, 18], and we have∫
Ω

u dx =

∫
Ω

∆u dx = −
∫
∂Ω

∇u ·N da(x),

the last equality being a consequence of the Green–Riemann theorem. Therefore∫
Ω

u dx = −
∫
∂Ω

∂u

∂N
da(x) =

∫
∂Ω

g(x) da(x).

A boundary functional can always be expressed as a region functional, via the
solution of Helmholtz’s equation with Neumann boundary conditions.
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4. Computation of the evolution equation using a boundary approach.
Originally, the derivation of region functionals has been performed by using the Green–
Riemann theorem to transform region functionals into boundary functionals and then
by computing the Euler–Lagrange equations. In this section, we recall the principles
of the derivation and we explicitly take into account the case of region-dependent
features when computing the Gâteaux derivative. Region functionals are transformed
into boundary functionals by using Proposition 3.2. The region functional to minimize
is (2.3).

The computation of a velocity field for the evolution of the boundary in order to
reach a minimum of the error criterion proceeds in three main steps:

1. Tranformation of the region functionals into boundary functionals.
2. Computation of the Gâteaux derivatives of the boundary functionals.
3. Construction of a velocity field for the evolution of the boundary.

The first step can always be performed as it has been proven in Proposition 3.1.
The computation of an optimal velocity field is carried out for region-independent

features first, i.e., when the function f does not depend on Ω. We then consider the
more general case where f has some region dependency. We derive our results in the
two-dimensional case; the generalization to any dimension is tedious but straightfor-
ward.

4.1. Region-independent features. In this part, we detail the three steps for
region-independent features. We do it for two-dimensional images (n = 2) to keep
notation simple, but the results hold in any dimension greater than 2.

We parameterize ∂Ω through the C2 function Γ : [0, 1] → R
2 such that when p

varies from 0 to 1 we go once around ∂Ω counterclockwise. The unit tangent vector
to ∂Ω is the vector Γ′(p)/|Γ′(p)|, where ′ indicates the derivative with respect to the
parameter p. The inside pointing normal N is the vector Γ

′⊥(p)/|Γ′(p)|. The vector
Γ

′⊥ is obtained by rotating Γ′ by 90 degrees counterclockwise; hence if Γ′ = [Γ′
1,Γ

′
2]T ,

Γ
′⊥ = [−Γ′

2,Γ
′
1]T .

4.1.1. Transformation of region functionals into boundary functionals.
The following proposition is a straightforward consequence of Proposition 3.1

Proposition 4.1. If f satisfies the hypotheses of Proposition 3.1, the functional
(2.3),

Jr(Ω) =

∫
Ω

f(x) dx,

is equal to

Φ(Γ) =

∫ 1

0

(ux2(Γ(p))Γ′
1(p) − ux1(Γ(p))Γ′

2(p)) dp
def
=

∫ 1

0

ϕ(Γ(p),Γ′(p)) dp,(4.1)

where Γ = ∂Ω and u is the unique classical solution of{ −∆u = f in Ω,
u|∂Ω = 0.

Therefore minimizing (2.3) with respect to Ω is equivalent to minimizing (4.1) with
respect to Γ.

Proof. According to Proposition 3.1, we have∫
Ω

f(x) dx = −
∫

Ω

∆u dx =

∫
∂Ω

∇u ·N da(x),

and since da(x) = |Γ′(p)|dp, the result follows.
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4.1.2. Computation of the Gâteaux derivative. According to Proposition
4.1, minimizing (2.3) with respect to Ω is equivalent to minimizing (4.1) with respect
to Γ. Thus, we have to compute the Gâteaux derivative of the functional Φ.

Theorem 4.2. The Gâteaux derivative in the direction γ of the functional Φ is

〈Φ′(Γ), γ〉 = −
∫ 1

0

f(Γ(p)) (Γ
′⊥(p) · γ(p)) dp.

Proof. Let γ : [0, 1] → R2 be a C2 parametrization of an arbitrary closed curve.
The Gâteaux derivative of Φ(Γ) in the direction γ noted 〈Φ′(Γ), γ〉 > is defined by

〈Φ′(Γ), γ〉 = lim
τ→0

Φ(Γ + τγ) − Φ(Γ)

τ
.

We have

lim
τ→0

Φ(Γ + τγ) − Φ(Γ)

τ
=

∫ 1

0

(ϕΓ(Γ(p),Γ′(p))γ(p) + ϕΓ′(Γ(p),Γ′(p))γ′(p)) dp,

where ϕΓ = ∂ϕ
∂Γ (Γ,Γ′). Integrating by parts, we obtain the following expression for

the Gâteaux derivative:

〈Φ′(Γ), γ〉 =

∫ 1

0

(
ϕΓ(Γ(p),Γ′(p)) − d

dp
ϕΓ′(Γ(p),Γ′(p))

)
· γ(p) dp.

We then explicitly compute the derivative of ϕ with respect to Γ using (4.1),

ϕΓ = ∇ux2(Γ(p))Γ′
1(p) −∇ux1(Γ(p))Γ′

2(p),

and with respect to Γ′,

ϕΓ′ = [ux2
,−ux1 ]T .

Therefore

d

dp
ϕΓ′ = [∇ux2 · Γ′,−∇ux1 · Γ′]T .

Putting everything together we obtain

ϕΓ − d

dp
ϕΓ′ = ∆uΓ

′⊥ = −f Γ
′⊥

thanks to Proposition 4.1.
The Euler–Lagrange equations associated with the Gâteaux derivative are thus

given by

ϕΓ − d

dp
ϕΓ′ = −f(Γ(p))Γ

′⊥.

An interesting point to note is that the intermediary function u disappears.

4.1.3. Construction of an optimal velocity vector for the evolution of
an active contour. In order to find a local extremum of the criterion (4.1), we evolve
a curve using the steepest descent method, starting from an initial curve defined by
the user. Thus, we obtain the following evolution equation:

∂Γ

∂τ
= f(Γ)N with Γ(τ = 0) = Γ0.(4.2)

This is the classical result [52, 38, 40, 51] when f has no region dependency. Let us
now consider the more general case where the function f has some region dependency.
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4.2. General case. Let us now derive the evolution equation in the general case.
As in the previous case, we follow our three steps.

4.2.1. Transformation of the region functional into a boundary func-
tional. In the following, to simplify the proofs and the notations, we take m = 1
and l1 = 1 and drop the indexes. The equations for m > 1 and li ≥ 1 are then given
without proof.

Because of the form of (2.4)–(2.7), we have to go through three levels of transfor-
mations. We start with the first level and the following proposition.

Proposition 4.3. If L satisfies the assumptions of Proposition 3.1, the func-
tional

K(Ω) =

∫
Ω

L(x) dx

is equal to

Θ(Γ) =

∫ 1

0

(ux2(Γ(p), L(Γ))Γ′
1(p) − ux1(Γ(p), L(Γ))Γ′

2(p)) dp

def
=

∫ 1

0

θ(Γ(p),Γ′(p)) dp,

where Γ = ∂Ω and u is the unique classical solution of{ −∆u = L in Ω,
u|∂Ω = 0.

Proof. The proof is identical to that of Proposition 4.1.
In the same manner, for the second level, we have the following proposition.
Proposition 4.4. If H satisfies the assumptions of Proposition 3.1, the func-

tional

G(Ω) =

∫
Ω

H(x,K(Ω)) dx

with K(Ω) =
∫
Ω
L(x)dx is equal to

Ψ(Γ) =

∫ 1

0

(vx2(Γ(p),Θ(Γ))Γ′
1(p) − vx1(Γ(p),Θ(Γ))Γ′

2(p)) dp

def
=

∫ 1

0

ψ(Γ(p),Γ′(p),Θ(Γ)) dp,

where Γ = ∂Ω and v is the unique classical solution of{ −∆v = H in Ω,
v|∂Ω = 0.

Θ is given by Proposition 4.3.
Proof. The proof is identical to that of Proposition 4.1.
We finally reach the third and last level with the following proposition.
Proposition 4.5. If f satisfies the assumptions of Proposition 3.1, the functional

J(Ω) =

∫
Ω

f(x, G(Ω)) dx ,(4.3)
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with G(Ω) =
∫
Ω
H(x,K(Ω))dx and K(Ω) =

∫
Ω
L(x)dx, is equal to

Φ(Γ) =

∫ 1

0

(wx2(Γ(p),Ψ(Γ))Γ′
1(p) − wx1(Γ(p),Ψ(Γ))Γ′

2(p)) dp(4.4)

def
=

∫ 1

0

ϕ(Γ(p),Γ′(p),Ψ(Γ)) dp,

where Γ = ∂Ω and u is the unique classical solution of{ −∆w = f in Ω,
w|∂Ω = 0.

Ψ(Γ) is given by Proposition 4.4. Therefore minimizing (4.3) with respect to Ω is
equivalent to minimizing (4.4) with respect to Γ.

Proof. The proof is identical to that of Proposition 4.1.

4.2.2. Computation of the Gâteaux derivative. According to Proposition
4.5, minimizing (4.3) with respect to Ω is equivalent to minimizing (4.4) with respect
to Γ. Thus we compute the Gâteaux derivative of Φ given by (4.4).

Theorem 4.6. The Gâteaux derivative in the direction γ of the functional Φ
defined in (4.4) is

〈Φ′(Γ), γ〉 = −
∫ 1

0

[f(Γ(p),Ψ(Γ)) +AH(Γ(p),Θ(Γ))

+ABL(Γ(p))] q(p) dp,

where

A =

∫
Ω

fG(x,G(Ω)) dx and B =

∫
Ω

HK(x,K(Ω)) dx

with fG = ∂f
∂G , and q(p) = (Γ

′⊥(p) · γ(p)) .
Proof. The Gâteaux derivative of Φ(Γ) in the direction γ denoted 〈Φ′(Γ), γ〉 is

given by

〈Φ′(Γ), γ〉 = lim
τ→0

Φ(Γ + τγ) − Φ(Γ)

τ
.

We have

lim
τ→0

Φ(Γ + τγ) − Φ(Γ)

τ

=

∫ 1

0

(ϕΓ(Γ(p),Γ′(p),Ψ(Γ))γ(p) + ϕΓ′(Γ(p),Γ′(p),Ψ(Γ))γ′(p)) dp

+

∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))〈Ψ′(Γ), γ〉 dp,

where ϕΨ = ∂ϕ
∂Ψ (Γ,Γ′,Ψ). Integrating by parts, we obtain

〈Φ′(Γ), γ〉 =

∫ 1

0

[
ϕΓ − d

dp
ϕΓ′

]
γ(p) dp(4.5)

+

∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))〈Ψ′(Γ), γ〉 dp.
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According to Theorem 4.2, we obtain ϕΓ − d
dpϕΓ′ = −f Γ

′⊥. The Gâteaux derivative

of Ψ(Γ) in the direction γ is computed in the same manner and we find

〈Ψ′(Γ), γ〉 = −
∫ 1

0

H(Γ(p),Θ(Γ)) q(p) dp

+

∫ 1

0

ψΘ(Γ(p),Γ′(p),Θ(Γ))〈Θ′(Γ), γ〉 dp.

According to Theorem 4.2, the Gâteaux derivative of Θ(Γ) in the direction γ is given
by:

〈Θ′(Γ), γ〉 = −
∫ 1

0

L(Γ(p)) q(p) dp.

Putting all terms together in (4.5), we find the following expression for the derivative:

〈Φ′(Γ), γ〉 = −
∫ 1

0

f(Γ(p),Ψ(Γ)) q(p) dp

−
∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))dp

∫ 1

0

H(Γ(p),Θ(Γ)) q(p) dp

−
∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))dp

∫ 1

0

ψΘ(Γ(p),Γ′(p),Θ(Γ)) dp

∫ 1

0

L(Γ(p)) q(p) dp.

Using Propositions 4.4 and 4.5, we find that

∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))dp =

∫
Ω

fG(x, G(Ω))dx
def
= A.

Similarly, using Propositions 4.3 and 4.4, we obtain

∫ 1

0

ψΘ(Γ(p),Γ′(p),Θ(Γ))dp =

∫
Ω

HK(x,K(Ω))dx
def
= B.

The equation of the derivative is obtained:

〈Φ′(Γ), γ〉 = −
∫ 1

0

[f(Γ(p),Ψ(Γ)) +AH(Γ(p),Θ(Γ)) +AB L(Γ(p))] q(p) dp.

The Euler–Lagrange equations associated with the Gâteaux derivative are given
by

− [f(Γ(p),Ψ(Γ)) +AH(Γ(p),Θ(Γ)) +ABL(Γ(p)) ] Γ
′⊥ = 0.

Note again that the intermediate functions u, v, and w do not appear in this expres-
sion.

We can now state the general theorem for m > 1 and li ≥ 1.

Theorem 4.7. The Gâteaux derivative in the direction γ of the functional J
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defined in (2.4) is

〈Φ′(Γ), γ〉 = −
∫ 1

0


f(Γ(p), G1(Γ), . . . , Gm(Γ))

+

m∑
i=1

AiHi(Γ(p),Ki1(Γ), . . . ,Kili(Γ))

+

m∑
i=1

Ai


 li∑

j=1

BijLij(Γ(p))




 (Γ

′⊥(p) · γ(p)) dp,

where

Ai =

∫
Ω

fGi(x,G1(Ω), . . . , Gm(Ω)) dx, i = 1 . . .m,

and Bij =

∫
Ω

HiKij
(x,Ki1(Ω), . . . ,Kili(Ω)) dx, i = 1 . . .m, j = 1 . . . li.

4.2.3. Construction of an optimal velocity vector for the evolution of an
active contour. In the general case, according to Theorem 4.7 the steepest gradient
descent method yields the following evolution equation for the active contour:

∂Γ

∂τ
=


f(Γ) +

m∑
i=1

AiHi(Γ) +

m∑
i=1

Ai


 li∑

j=1

BijLij(Γ)




N(4.6)

with Γ(τ = 0) = Γ0. Compared with (4.2), some additional terms appear that come
from the region dependency of the descriptors.

5. Computation of the derivative using shape derivation tools, or “how
to keep a region formulation.” In the previous part, region functionals were first
transformed into boundary functionals for the computation of the derivative. This
step is neither natural nor straightforward. Therefore, we propose another solution
based on shape derivation tools [49, 22]. The region formulation is maintained for
the computation and this provides a suitable way of obtaining the derivative of the
criterion and the evolution equation of an active contour.

We perform three main steps:

1. Introduction of a dynamic scheme. Since the set of all image regions is not
a vector space, it is difficult to compute the derivative of the criterion with
respect to the domain Ω. To circumvent this problem, we apply a family of
transformations Tτ , indexed by a real parameter τ ≥ 0, to Ω, and we denote

Ω(τ) = Tτ (Ω). The region functional becomes a function of τ , J(τ)
def
=

J(Ω(τ)).
2. Derivation of the criterion based on shape derivation principles. The error

criterion J(τ) is then derived with respect to τ using shape derivation prin-
ciples.

3. Computation of the evolution equation from the derivative. From the deriva-
tive, we deduce the velocity field of the active contour that will make it evolve
towards a local minimum of the error criterion.
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5.1. Introduction of transformations. As it has already been pointed out,
the optimization of the region functional (2.3) is difficult since the set of regular
domains (regular open bounded sets) U of R

n does not have the structure of a vector
space. Variations of a domain must then be defined in some way. Let us consider
a reference domain Ω ∈ U and the set Â of applications T : Ω → R

n, which are at
least as regular as homeomorphisms (i.e., one to one with T and T−1 continuous).
We define

Â =
{
T one to one, T, T−1 ∈W 1,∞(Ω,Rn)

}
,

where

W 1,∞(Ω,Rn) = {T : Ω → R
n such that T ∈ L∞(Ω,Rn) and

∂iT ∈ L∞(Ω,Rn), i = 1, . . . , n}.

Given a shape function F : U → R+ for T ∈ Â, let us define F̂ (T ) = F (T (Ω)). The
key point is that W 1,∞(Ω,Rn) is a Banach space. This allows us to define the notion
of derivative with respect to the domain Ω as follows.

Definition 5.1. F is Gâteaux differentiable with respect to Ω if and only if F̂ is
Gâteaux differentiable with respect to T .

In order to compute Gâteaux derivatives with respect to T we introduce a family
of deformation (T (τ))τ≥0 such that T (τ) ∈ Â for τ ≥ 0, T (0) = Id, and T (.) ∈
C1([0, A];W 1,∞(Ω,Rn)), A > 0. From a practical point of view, there are many ways
to construct such a family. The most famous one is the Hadamard deformation [27].

For a point x ∈ Ω, we denote

x(τ) = T (τ,x) with T (0,x) = x,

Ω(τ) = T (τ,Ω) with T (0,Ω) = Ω.

Let us now define the velocity vector field V corresponding to T (τ) as

V(τ,x) =
∂T

∂τ
(τ,x) ∀x ∈ Ω ∀τ ≥ 0.

5.2. Computation of the derivative using shape derivation tools. We
now introduce three main definitions.

Definition 5.2. The Gâteaux derivative of J(Ω) =
∫
Ω
f(x,Ω)dx in the direction

of V, denoted 〈J ′(Ω),V〉, is equal to

〈J ′(Ω),V〉 = lim
τ→0

J(Ω(τ)) − J(Ω)

τ
.

Definition 5.3. The material derivative of f(x,Ω), denoted fm(x,Ω,V), is
equal to

fm(x,Ω,V) = lim
τ→0

f(x(τ),Ω(τ)) − f(x,Ω)

τ
.

Definition 5.4. The shape derivative of f(x,Ω), denoted fs(x,Ω,V ), is equal
to

fs(x,Ω,V) = lim
τ→0

f(x,Ω(τ)) − f(x,Ω)

τ
.
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5.2.1. Relation between the Gâteaux derivative and the shape deriva-
tive. The following theorem gives a relation between the Gâteaux derivative and the
shape derivative for the region functional (2.3). The proof can be found in [49, 22],
we provide an elementary one here for completeness.

Theorem 5.5. The Gâteaux derivative of the functional J(Ω) =
∫
Ω
f(x,Ω) dx

in the direction of V is the following:

〈J ′(Ω),V〉 =

∫
Ω

fs(x,Ω,V)dx−
∫
∂Ω

f(x,Ω)(V(x) · N(x))da(x),

where N is the unit inward normal to ∂Ω and da its area element.
Proof. As far as the computation of the derivative is concerned, only small de-

formations are relevant, and we thus consider a first order Taylor expansion of the
transformation:

T (τ,x) = T (0,x) + τ
∂T

∂τ
(0,x)

= x+ τV(x),

where V(x) = ∂T
∂τ (0,x).

We obtain the following expressions for the material and the shape derivatives:

fm(x,Ω,V) = lim
τ→0

f(x+ τV(x),Ω + τV) − f(x,Ω)

τ
,

fs(x,Ω,V) = lim
τ→0

f(x,Ω + τV) − f(x,Ω)

τ
.

If we assume that limτ→0 ∇f(x,Ω + τV) = ∇f(x,Ω), we can write

fm(x,Ω,V) = fs(x,Ω,V) + ∇f(x,Ω) ·V(x).(5.1)

We are now ready for the computation of the Gâteaux derivative of J(Ω) in the
direction of V. We have

J(Ω(τ)) − J(Ω)

τ
=

1

τ

[ ∫
Ω(τ)

f(x,Ω(τ))dx−
∫

Ω

f(x,Ω)dx

]
.(5.2)

In the first integral, we make the change of variable x→ x+ τV(x) which yields∫
Ω(τ)

f(x,Ω(τ))dx =

∫
Ω

f(x+ τV(x),Ω + τV)|det Jτ (x)|dx,

where Jτ (x) is the Jacobian matrix,

Jτ (x) =




1 + τ ∂V1

∂x1
· · · τ ∂V1

∂xn

...
...

...

τ ∂Vn

∂x1
· · · 1 + τ ∂Vn

∂xn


 ,

V(x) = [V1(x), . . . , Vn(x)]T , and x = [x1, . . . , xn]T . It follows that

det Jτ (x) = 1 + τdiv(V(x)) + o(τ).
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This shows that if τ is small enough, detJτ (x) > 0 and

lim
τ→0

det Jτ (x) − 1

τ
= div(V(x)).

Equation (5.2) can now be rewritten as

J(Ω(τ)) − J(Ω)

τ
=

∫
Ω

f(x+ τV(x),Ω + τV) − f(x,Ω)

τ
det(Jτ (x))dx

−
∫

Ω

f(x,Ω)
det(Jτ (x)) − 1

τ
dx

def
= I1 − I2.

If τ goes to 0, using (5.1) and Definitions 5.3 and 5.4, we get

lim
τ→0

I1 =

∫
Ω

fm(x,Ω,V)dx

=

∫
Ω

fs(x,Ω,V)dx+

∫
Ω

∇f(x,Ω) ·V(x)dx,

lim
τ→0

I2 =

∫
Ω

f(x,Ω)div(V(x))dx.

We find that the Gâteaux derivative is given by

〈J ′(Ω),V〉 =

∫
Ω

fs(x,Ω,V)dx+

∫
Ω

(∇f(x,Ω) ·V(x) + f(x,Ω)div(V(x)))dx(5.3)

=

∫
Ω

fs(x,Ω,V)dx+

∫
Ω

div(f(x,Ω) V(x))dx.

Applying the Green–Riemann theorem in (5.3), we finally obtain

〈J ′(Ω),V〉 =

∫
Ω

fs(x,Ω,V)dx−
∫
∂Ω

f(x,Ω)(V(x) ·N(x))da(x),

where N is the unit inward normal to ∂Ω.
Note that Theorem 5.5 provides a necessary condition for a domain Ω̂ to be an

extremum of J(Ω):∫
Ω̂

fs(x, Ω̂,V)dx−
∫
∂Ω̂

f(x, Ω̂)(V(x) ·N(x)) da(x) = 0 ∀V.

5.3. Construction of the velocity vector of the active contour from the
Gâteaux derivative. We now make good use of the previous tools to derive the
velocity vector of the active contour for the same functionals as those which were
considered in section 5. As expected we find the same results but in a way which, we
feel, is more natural, since we do not have to turn a region integral into a boundary
one, and simpler. The evolving region boundary ∂Ω, denoted Γ, is modeled as an
active contour: the user defines an initial curve Γ0 = ∂Ω0 that evolves towards a local
minimum of the region functional (2.3) according to a PDE that we will now derive.

5.3.1. Region-independent features. We first consider the simple case where
the function f does not depend on Ω, i.e., f = f(x). In that case, the shape derivative
fs is equal to zero and the Gâteaux derivative of J is simply (Theorem 5.5)

〈J ′(Ω),V〉 = −
∫
∂Ω

f(x)(V(x) · N(x))da(x).
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This leads to the following evolution equation for region-independent descriptors:

∂Γ

∂τ
= f(Γ)N

with Γ(τ = 0) = Γ0.
We notice that, as expected, the evolution equation is the same as (4.2) in section

4.

5.3.2. General case. Let us now tackle the same general case as in section 4.2,
using the functional defined by (2.4)–(2.7). We similarly restrict the computation of
the Gâteaux derivative of J to the case m = 1 and li = 1, state the result for m > 1
and li ≥ 1, and drop the indexes.

Theorem 5.6. The Gâteaux derivative in the direction of V of the functional J
defined in (4.3) is

〈J ′(Ω),V〉 = −
∫

Γ

(AB L(x) +AH(x,K(Ω)) + f(x,Ω)) (V(x) ·N(x))da(x),

where

A =

∫
Ω

fG(x,G(Ω)) dx and B =

∫
Ω

HK(x,K(Ω)) dx.

Proof. According to Theorem 5.5, we have

〈J ′(Ω),V〉 =

∫
Ω

fs dx−
∫

Γ

f (V ·N)da(x).

Let us first compute the shape derivative of f . From the chain rule we get

fs(x,Ω,V) = fG(x, G)〈G′(Ω),V〉,(5.4)

where fG denotes the partial derivative of the function f with respect to its second
argument.

Next we compute the Gâteaux derivative of G in the direction of V. We again
apply Theorem 5.5, and we get

〈G′(Ω),V〉 =

∫
Ω

Hs dx−
∫

Γ

H (V ·N)da(x).

Plugging this into (5.4), we obtain∫
Ω

fs dx = A

(∫
Ω

Hs dx−
∫

Γ

H(V ·N)da(x)

)
,

where

A =

∫
Ω

fG(x, G(Ω)) dx.

We also compute the shape derivative of H through Theorem 5.5:

Hs(x,Ω,V) = HK(x,K)〈K ′(Ω),V〉.
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We continue with the Gâteaux derivative of K in the direction of V:

〈K ′(Ω),V〉 =

∫
Ω

Ls dx−
∫

Γ

L(x)(V (x) ·N(x))da(x).

Since L does not depend on Ω, we obtain Ls = 0 and we are done.
Putting all terms together, we obtain the complete expression of the Gâteaux

derivative of J :

〈J ′(Ω),V〉 = −
∫

Γ

(AB L(x) +AH(x,K(Ω)) + f(x,Ω)) (V(x) ·N(x))da(x)

with B =
∫
Ω
HK(x,K) dx.

The general case follows easily and is stated in the following theorem.
Theorem 5.7. The Gâteaux derivative in the direction of V of the functional J

defined in (2.4) is

〈J ′(Ω),V〉 = −
∫

Γ


 m∑

i=1

Ai

li∑
j=1

(Bij Lij(x)) +

m∑
i=1

(AiHi) + f


 (V(x)) ·N(x)da(x),

where

Ai =

∫
Ω

fGi(x,G1(Ω), . . . , Gm(Ω)) dx, i = 1 . . .m,

and Bij =

∫
Ω

HiKij
(x,Ki1(Ω), . . . ,Kili(Ω)) dx, i = 1 . . .m, j = 1 . . . li.

From the Gâteaux derivative of J , we deduce the corresponding evolution equa-
tion:

∂Γ

∂τ
=


f(Γ) +

m∑
i=1

AiHi(Γ) +

m∑
i=1

Ai


 li∑

j=1

BijLij(Γ)




N,(5.5)

which, as expected, is identical to (4.6). As far as the final result is concerned, the
two methods of computation are equivalent.

5.4. Application. Let us now apply this method to the first example in section
2.3. The function f is given by (2.8). The corresponding functions Gi, Hi are given
in section 2.3. We need the terms Aj , j = 1, 2:


A1 = − ∫

Ω
1
G2
�′
(
I(x) − G1

G2

)
dx = −1

|Ω|
∫
Ω
�′(I − µΩ)dx,

A2 =
∫
Ω

G1

(G2)2
�′
(
I(x) − G1

G2

)
dx = µΩ

|Ω|
∫
Ω
�′(I − µΩ)dx.

Since the terms Hi are not region-dependent, the terms Bij are equal to zero. The
velocity vector of the active contour is then the following:

∂Γ(τ)

∂τ
=

[
f − (I − µΩ)

|Ω|
∫

Ω

�′(I − µΩ)dx

]
N.

In this example, the additional term coming from the region dependency of f is equal

to (I−µΩ)
|Ω|

∫
Ω
�′(I−µΩ)dx. Note that in the particular case of �(r) = r2, this additional
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term is equal to zero [6, 7, 20, 21]. However, in the general case, the additional term
is not nul.

Let us apply this method to the second example in section 2.4. The function f is
a function of the variance given by (2.9). The corresponding functions Gi, Hi, Kij ,
and Lij are also given in section 2.4. We need the terms Aj , j = 1, 2:


A1 =

∫
Ω

1
G2
�′
(

G1

G2

)
dx = �′(σ2

Ω),

A2 = − ∫
Ω

G1

(G2)2
�′
(

G1

G2

)
dx = −σ2

Ω �
′(σ2

Ω).

The terms Bij are given by

B11 =

∫
Ω
H1K11

(x,K11,K12) = −2 1
|Ω|
∫
Ω

(I(x) − µΩ)dx = 0,

B12 =
∫
Ω
H1K12

(x,K11,K12) = 2µΩ

|Ω|
∫
Ω

(I(x) − µΩ)dx = 0.

We can then compute the velocity vector of the active contour from (5.5) and we find

∂Γ(τ)

∂τ
= [ f + �′(σ2

Ω)
(
(I − µΩ)2 − σ2

Ω

)
] N.

In this simple example, we notice that the dependency of the function on the region
induces an additional term in the evolution equation compared with the evolution
equation obtained in the case where the function is region independent (equation
(4.2)). This additional term is �′(σ2

Ω)
(
(I(x) − µΩ)2 − σ2

Ω

)
. It must be included in

order to reach a true minimum of the criterion as proved in [33].

6. Matching histograms. A natural way of generalizing the use of statistical
image features such as the mean and the variance of the intensity for image segmenta-
tion is to consider the full probability distribution of the feature of interest within the
region, e.g., intensity, color, texture, etc., . . . . It turns out that in attempting to do
so, one is naturally led to extend the criterion (2.4) to the case where the function f
depends on a continuous family of region criteria. Consider a function h : R

n → R
m

which describes the feature of interest. Suppose we have learnt the probability density
function (pdf) of the feature h within the image region of interest, and let q(α) be
this pdf. Given a region Ω, we can estimate the pdf of the feature h through the use
of the Parzen method [24]: let p : R

m → R
+ be the Parzen window, a smooth positive

function whose integral is equal to 1. For the sake of simplicity but without loss of
generality, we assume that p is an m-dimensional Gaussian with 0-mean and variance
σ2, we note

p(α) = gσ(α) =
1

(2πσ2)m/2
exp

(
−|α|2

2σ2

)
,

and we define

q̂(α,Ω) =
1

K(Ω)

∫
Ω

gσ(h(x) − α) dx,

where h(x) is the value of the feature of interest at the point x of Ω and K is a
normalizing constant, in general depending of Ω, such that∫

Rm

q̂(α,Ω) dα = 1.
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Therefore

K(Ω) =

∫
Ω

∫
Rm

gσ(h(x) − α) dα dx = | Ω | .

We next assume that we have a function ϕ : R
+ × R

m → R
+ which allows us to

compare two pdfs. This function is small if the pdfs are similar and large otherwise.
It allows us to introduce the following functional which represents the “distance”
between the two histograms:

D(Ω) =

∫
Rm

ϕ(q̂(α,Ω), q(α)) dα.(6.1)

The distance can be the square of the L2 norm when

ϕ(q̂(α,Ω), q(α)) = (q̂(α,Ω) − q(α))2,

or the commonly used Kullback–Leibler divergence when

ϕ(q̂(α,Ω), q(α)) =
1

2

(
q(α) log

q(α)

q̂(α,Ω)
+ q̂(α,Ω) log

q̂(α,Ω)

q(α)

)
,

or the Hellinger distance when

ϕ(q̂(α,Ω), q(α)) = (
√
q̂(α,Ω) −

√
q(α))2 ,

or the nonsymmetric chi-2 comparison function when

ϕ(q̂(α,Ω), q(α)) =
(q̂(α,Ω) − q(α))2

q(α)
.

A further generalization of the previous case is to consider second order histograms
which describe the probability of having the value α1 at pixel x and the value α2

at pixel x + δ, where δ is a fixed (usually small) vector of Rn. This has been used
very much in computer vision for analyzing textures [28, 29]. The corresponding pdf,
denoted qδ(α1,α2), can be estimated with the same Parzen window technique. We
define

q̂δ(α1,α2,Ω) =
1

Kδ(Ω)

∫
Ω

gσ(h(x) − α1)gσ(h(x+ δ) − α2) dx.

The normalizing constant Kδ(Ω) is given by

Kδ(Ω) =

∫
Ω

∫
Rm×Rm

gσ(h(x) − α1)gσ(h(x+ δ) − α2) dα1 dα2 dx =| Ω | .

We therefore define

Dδ(Ω) =

∫
Rm×Rm

ϕ(q̂δ(α1,α2,Ω), qδ(α1,α2)) dα1 dα2.(6.2)

Using the tools developed in section 5, we compute the Gâteaux derivative of the
functional D. We have the following theorem.
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Theorem 6.1. The Gâteaux derivative in the direction V of the functional D
defined in (6.1) is

〈D′(Ω),V〉 = − 1

| Ω |
∫

Γ

(
∂1ϕ(q̂(.,Ω), q(.)) ∗ gσ(h(x)) − C(Ω)

)
(V ·N)da(x),

where C(Ω) =
∫

Rm ∂1ϕ(q̂(α,Ω), q(α))q̂(α,Ω) dα.
Proof. By the definition of D we have

〈D′(Ω),V〉 =

∫
Rm

〈(ϕ(q̂(α,Ω), q(α)))′,V〉 dα.

Let us compute the Gâteaux derivative of ϕ(q̂(α,Ω), q(α)). We define

ϕ(q̂(α,Ω), q(α)) = f(G1(α,Ω), G2(Ω)) = ϕ

(
G1(α,Ω)

G2(Ω)
, q(α)

)
,

where

G1(α,Ω) =

∫
Ω

gσ(h(x) − α) dx with H1(α,x) = gσ(h(x) − α),

G2(Ω) = | Ω |=
∫

Ω

dx.

We obtain

〈f ′,V〉 = fG1〈G′
1,V〉 + fG2〈G′

2,V〉

=
∂1ϕ(q̂(α,Ω), q(α))

| Ω | (〈G′
1,V〉 − q̂(α,Ω)〈G′

2,V〉)

and, using Theorem 5.5,

〈f ′,V〉 = −∂1ϕ(q̂(α,Ω), q(α))

| Ω |
∫

Γ

( gσ(h(x) − α) − q̂(α,Ω)) (V ·N)da(x).

Plugging this result into the expression of 〈D′(Ω),V〉 and swapping the order of
integration, we obtain

〈D′(Ω),V〉 = − 1

| Ω |
∫

Γ

(∫
Rm

gσ(h(x) − α)∂1ϕ(q̂(α,Ω), q(α)) dα

−
∫

Rm

∂1ϕ(q̂(α,Ω), q(α))q̂(α,Ω) dα
)

(V ·N)da(x).

The first integral on the right-hand side is the convolution ∂1ϕ(q̂(.,Ω), q(.))∗gσ of the
function ∂1ϕ(q̂(.,Ω), q(.)) : R

m → R with the function gσ. The final result is

〈D′(Ω),V〉 = − 1

| Ω |
∫

Γ

(
∂1ϕ(q̂(.,Ω), q(.)) ∗ gσ(h(x)) − C(Ω)

)
(V · N)da(x),

where C(Ω) =
∫

Rm ∂1ϕ(q̂(α,Ω), q(α))q̂(α,Ω) dα.
This solves the question of first order histograms. For second order histograms

we have the following theorem.
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Theorem 6.2. The Gâteaux derivative in the direction V of the functional Dδ

defined in (6.2) is

〈D′
δ(Ω),V〉 = − 1

| Ω |
∫

Γ

(
∂1ϕ(q̂δ(., .,Ω), q(., .)) ∗ (gσ ⊗ gσ)(h(x),h(x+ δ))

− Cδ(Ω)
)

(V ·N)da(x) ,

where Cδ(Ω) =
∫

Rm×Rm ∂1ϕ(q̂δ(α1,α2,Ω), q(α1,α2))q̂δ(α1,α2,Ω) dα1 dα2, and gσ⊗
gσ(α1,α2) = gσ(α1) gσ(α2).

Proof. The proof is identical to that of Theorem 6.1.

7. Color histograms: Segmentation of regions in video sequences. This
work has been motivated by [12, 8] where the tracking algorithms take advantage of
statistical color distributions. We propose here to use active contours in order to fit
exactly the shape of the object to be segmented. We consider a video sequence where
each frame is represented by the color function h : R

2 → R
2. The color space used

is (H,V ), where H stands for the hue and V for the value.1 The goal is to segment
a reference region, given in the previous image of the sequence, into the current one
by minimizing the distance between the reference histogram q of the region in the
previous image and the estimated histogram q̂ in the current frame. From an initial
curve chosen by the user in the current frame, we want to make an active contour
evolve towards the region in the current frame whose histogram is closest to the
reference histogram of the previous frame.

In order to introduce a competition between the region of interest and the back-
ground region, we also consider the complement Ωc of the region Ω of interest. They
share the same boundary, Γ, but with normals pointing in opposite directions. We
denote qc the reference histogram of Ωc, and we look for the region Ω which minimizes
the following criterion:2

J(Ω) = D(Ω) +D(Ωc) + λ

∫
Γ

ds.(7.1)

In this criterion, the first two terms are region functionals while the last one is a
boundary functionals. The last one minimizes the curve length and is a regularization
term weighted by the positive parameter λ. We have, of course,

D(Ω) =

∫
R2

ϕ(q̂(α,Ω), q(α)) dα,

D(Ωc) =

∫
R2

ϕ(q̂(α,Ωc), q(α)) dα.

Computation of the Gâteaux derivative. A straightforward application of Theo-
rem 6.1 yields

〈D′(Ω),V〉 = − 1

| Ω |
∫

Γ

(
∂1ϕ(q̂(.,Ω), q(.)) ∗ gσ(h(x)) − C(Ω)

)
(V ·N)ds

1We ignore the saturation to avoid the curse of dimensionality.
2The results are even better if we introduce the region area in the criterion by minimizing

D(Ω)|Ω| + D(Ωc)|Ωc| + λ
∫
Γ ds.
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with

C(Ω) =

∫
Rm

∂1ϕ(q̂(α,Ω), q(α))q̂(α,Ω) dα .(7.2)

Similar results hold for Ωc:

〈D′(Ωc),V〉 =
1

| Ωc |
∫

Γ

(
∂1ϕ(q̂(.,Ωc), qc(.)) ∗ gσ(h(x)) − C(Ωc)

)
(V ·N)ds ,

with

C(Ωc) =

∫
Rm

∂1ϕ(q̂(α,Ωc), qc(α))q̂(α,Ωc) dα .(7.3)

Computation of the evolution equation of an active contour. It is well known that
the minimization of the curve length leads to the Euclidean curve shortening flow λκ
[4, 35]. Then, from the previous derivatives, we can deduce the evolution of an active
contour that will evolve towards a minimum of the criterion Jn defined in (7.1). We
find the evolution equation

∂Γ(τ)

∂τ
= FN(7.4)

with

F = λκ+
1

| Ω |
(
∂1ϕ(q̂(.,Ω), q(.)) ∗ gσ(h(x)) − C(Ω)

)

− 1

| Ωc |
(
∂1ϕ(q̂(.,Ωc), qc(.)) ∗ gσ(h(x)) − C(Ωc)

)
,

where κ is the curvature of Γ and C(Ω), C(Ωc) are given by (7.2) and (7.3), respec-
tively.

Let us take the example of the Hellinger distance, where ∂1ϕ(r,α) = (
√
r −√

q(α))/
√
r. We find for the velocity vector

F = λκ+
1

| Ω |

(
(
√
q̂(. ,Ω) −√q(.))√

q̂(. ,Ω)
∗ gσ(h(x)) − C(Ω)

)

− 1

| Ωc |

(
(
√
q̂(. ,Ωc) −√qc(.))√

q̂(. ,Ωc)
∗ gσ(h(x)) − C(Ωc)

)
.

And for the chi-2 comparison function where ∂1ϕ(r,α) = 2(r − q(α))/q(α), we find

F = λκ+
2

| Ω |
(

(q̂(. ,Ω) − q(.))
q(.)

∗ gσ(h(x)) − C(Ω)

)

− 2

| Ωc |
(

(q̂(. ,Ωc) − qc(.))
qc(.)

∗ gσ(h(x)) − C(Ωc)

)
.

In the velocity, the convolution term allows us to compare locally the reference his-
togram to the current histogram.
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7.1. Implementation. As far as the numerical implementation is concerned,
we can model the active contour with either an explicit parameterization (Lagrangian
formulation) or an implicit one (Eulerian formulation). See [23] for an interesting
comparison between the two methods. Another interesting review may be found in
[36].

Here, we use the level set method approach first proposed by Osher and Sethian
[37] and applied this to active contours in [3]. The key idea of the level set method
is to introduce an auxiliary function U(x, τ) such that Γ(τ) is the zero level set of
U . The function U is often chosen to be the signed distance function of Γ(τ) which
satisfies

Γ(τ) = {x | U(x, τ) = 0} and |∇U | = 1.

This Eulerian formulation presents several advantages [47]. First, the curve U may
break or merge as the function U evolves, and topological changes are thus easily
handled. Second, the evolving function U(x, τ) always remains a function allowing
efficient numerical schemes. Third, the geometric properties of the curve, like the
curvature κ and the normal vector field N, can be estimated directly from the level
set function:

κ = div

( ∇U
|∇U |

)
and N = − ∇U

|∇U | .

The evolution equation (7.4) then becomes

∂U(τ)

∂τ
= F |∇U |.(7.5)

The velocity function F is computed only on the curve Γ(τ), but we can extend
its expression to the whole image domain Ω. To implement the level set method,
solutions must be found to circumvent problems coming from the fact that the signed
distance function U is not a solution of the PDE (7.5); see [26] for details. In our
work, the function U is re-initialized so that it remains a distance function. Details
on the re-initialization equation are provided in [1, 19].

In order to improve numerical efficiency, we compute the equation in a narrow
band enclosing the 0 level of the level set function [47, 48]. We also use multiresolution
techniques by making the active contour evolve first in a low resolution image. The
final contour obtained for this reduced image is then used as an initial curve for
the real size image. Another possibility for increasing efficiency would be the use of
accurate operator splitting (AOS) schemes [50].

7.2. Experimental results. Experimental results have been obtained on the
sequence “Erik” from the European group COST211. Experiments are conducted
using the chi-2 comparison function with ϕ(r, α) = (r− q(α))2/q(α) and ∂1ϕ(r,α) =
2(r − q(α))/q(α).

The region of interest is the face. We assume that it has been segmented in the
first image as shown in Figure 1(a). The first two reference histograms are computed.
The two reference histograms are also given Figure 1(b) for the background reference
histogram qc and Figure 1(c) for the object reference histogram, q. For a given region
Ω and for a point α = [α1, α2]T , the function q̂(α,Ω) represents the probability to
obtain H(x) = α1 and V (x) = α2 for x belonging to the region Ω.

Then, using the two reference histograms of the previous frame, we make the
active contour evolve using (7.4) in the current frame. The initial curve is chosen
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a. Reference segmentation

b. Background reference histogram c. Object reference histogram

Fig. 1. The reference segmentation of the previous frame (a), the corresponding background
reference histogram qc (b), and the corresponding object reference histogram q (c).

to be a circle. The evolution of the active contour in the current frame is shown in
Figure 2. We notice that the final contour in Figure 2(c) nicely describes the region
of interest, and the face is accurately segmented. We can also visualize the evolution
of the object histogram, q̂(α,Ω), during the propagation of the active contour. The
final object histogram given in Figure 2(d) can be compared to the reference object
histogram in Figure 1(c), showing an efficient minimization of the distance between
the two histograms.

8. Conclusion. In this article we have clarified the relationships between the
boundary and region functionals that arise naturally in several image processing tasks.
We have shown that one can go from one to the other by solving Poisson’s equation
with Dirichlet conditions or Helmholtz’s equation with Neumann conditions.

We have then concentrated on the problem of finding local minima of a large
class of region functionals. By first transforming them into boundary functionals and
applying methods from the calculus of variations we have computed the corresponding
Gâteaux derivatives and constructed a velocity field on the region boundary. This
field defines a PDE whose solution, for a given initial boundary, generates a one-
parameter family of regions which, in practice, converges toward a local minimum of
the functional. The problem of the existence and uniqueness of a solution to this PDE
has not been addressed.

Changing our point of view, we have then rederived the same equations in a
simpler and more natural way, i.e., without going through the trouble of turning
region integrals into boundary integrals; this is achieved by applying methods of
shape derivation [49, 22].
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a. Initial contour b. Initial histogram q̂(α,Ω)

c. Final Contour d. Final histogram q̂(α,Ω)

Fig. 2. Evolution of the region histogram q̂(α,Ω) of the current frame during the evolution of
the active contour.

We have then turned our attention to a new class of region-based functionals by
considering histograms of image features. The shape derivation tools have allowed us
to easily derive the velocity field that defines the evolution of the region boundary.

The final part of the paper has been devoted to an application of the previous
methods to the problem of region segmentation with a given color histogram in a
sequence of images. Our experimental results show that the technique has indeed
some interesting potentials.

Acknowledgments. We thank Rachid Deriche for his helpful comments on an
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[44] C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zerubia, A level set model for image
classification, in Scale-Space Theories in Computer Vision, Lecture Notes in Comput. Sci.
1682, Springer, Berlin, 1999.
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