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_ABSTRACT

' In order to 're'pr’e'sent» a digital image, a very large number of bits isv'required; Fdr‘
exam’pié, a 512 x 512 pixel, 256 gray level image requires over two million bits. This
large number of bits isa substantial drawback when it is nece'ss'aiy to store or transmit a
d1g1tal image. Image compression, often referred to as ‘imag'er éoding, attempts to
reduce the numbcr of bits used to represent an image, while keeping tne degradation in
the decoded imagé to a minimum. | |

One approach to image compression is seg’mentation—bas‘éd image' compression.
The irr'ija'ge 1o be compressed is segmentéd, i.e. the pixels in the»imag'e are divided int_n
mutually exclusive spatial regions based on some criteria. Once the image has been
~ segmented, information is extracted describing the shapes and interiors of the irnagc
ségrhents, Compression is achieved by efficiently rcprescnting the image segmenbts. | |

In this thesis we propose an image segmentation technicj'ué which is based on
centroid-linkage region growing, and takes ad\}antage of human visual system (HVS)
properties. We ‘systematically determine through subjective experiments the parame- .
ters for our segmentation algorithm which produce the most visually plcasing‘“éeg- :
mented images, and demonstrate the effectiveness of our method. Wc also propose a
method for the quantization of segmented images based on HVS contrast sénsitivity, '

and investigate the effect of quantization on segmented images.
| . .
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We apply these segmentation and quantization methods in a new compression
technique Which fits into the category cpgnmonly known as "second generation” image
compression methods. Oﬁr cbmprcssion method is designed for application single-
frame vimagés (i.e. not time-varying imagery). Other scgmentation—based image
cbmpreSsion techniques have typically represented the image segments by encoding thé
\ bouﬁdaries bf the segrﬁents. _We:propose the use. of morphblogic‘al skeletons to
représent the’ segments. The mofphological skeleton of an image is similar to the
medial axis. We describe’ the application of mathematicdl mdrpho‘l’o‘gy to generate
‘svkréle‘to,ns for the image segments, and discuss the advéntages and disadvantages of ‘

using morphological skeletons in segmentation-based image compression.



INTRODUCTION

. -

Image compressmn often referred to as 1mage codmg, attempts to reduce the '
number of bits used to represent an image, while keeping the degradatlon in the
" decoded image to a minimum. Image compression is important in apphcations that
‘require efficient storage or transnussron of images or sequences of images.

Many different approaches to image compression have been investigated [1]. In
Chapter 1 of this thesis an extensive overview of image compression is given. One
approach to image compression discussed in Chapter 1 is segmentation-based image
‘compression [2-4]. With this technique, the image 'to be compressed 1s segmented, i.e.
- the pixels in the image are divided into mutually exclusive spatial regions based.on
some criteria. Once the image has been segmented, 1nformatlon 1s extracted describing
~ the shapes and interiors of the image segments, and compression is achieved by
efﬁc1ent1y representing the image segments. In this thesis we present a new
‘segmentation-based image compression technlque

Our compression technique is different from other segmentatlon-based image
compress1on schemes in several ways. First, we employ an improved version, of a
.prev10usly proposed image segmentation technique, centroid-linkage region growmg‘
151 Smce the decoded images will be viewed by humans, the motivation behind our
adaptation of this algorithm is the production of visually pleasing segmented images.

- Our. segmentation method takes advantage of human visual system (HVS) properties to
“achieve visually pleasing image segmentation. We present the results of systematic
subjective experiments performed to determine the parameters of the segmentatlon
: algorithm which result in the most visually pleasing segmented images, and we
“demonstrate the effectiveness of our method. The segmentation algorithm is discusscd v

in Chapter 2.

A second difference in our compression technique is the quantization of ‘the
segmented images. The segmented image is quantized to reduce the number of gray
levels in the segmented image, which results in a reduction in the bit rate. We have
investigated the effect of quantlzatlon on segmented images, and we show that a
: segmented image can be quantized from - approximately 200 gray levels to
approx1mate1y 25 gray levels, with virtually no visible degradation in the segmented
image. We also propose a method for the quantization of segmented images based on



HYVS contrast sens1t1v1ty, and compare this quantizer to both uniform and h1stogram
based quantlzers Quanuzauon is discussed in Chapter 3. :

A third difference in our compress1on techmque involves the representation we use
for the image segment shapes Other segmentatlon-based gray level image compression
techniques have typically represented the image segments by encoding the segment

boundaries [2,6,7]. We propose the use of skeletons generated using mathematical

~ morphology to represent the segment shapes. The basic operatlons in mathematical
- morphology [8] are reviewed in Chapter 4, and the process. for morphologlcal
. skeletomzanon of a blnary image [9] is described in Chapter 5. Binary morphological

~ skelefons have previously been used for compression of binary images[IO]"’ We
: descnbe the application of binary mathematical morphology in a segmentatlon-based

- image compress1on scheme to compress gray level images.

The techmques described above ‘have been combmed and apphed in a new
segmentation-based image compression scheme. A block dragram of this method is.
shown in Figure 1. The complete image compression algorithm is described in Chapter
‘5. In the first steps of this algorithm, the segmentation and quanuzatxon technlques' )
from Chapters 1and 2 are apphed to generate a segmented quantized image. The i 1mage
- resulting after segmentation and quantization is the image that will be decoded Next
~ the morphologlcal operations described in Chapters 4 and 5 are used to generate gray
"~ level skeletons to represent the image segments for. compression. Finally, these
skeletons are coded. We have explored several different options for coding the segment:
skeletons and segment gray levels. These options are described in detail in Chapter 5,
along with the decoding process for each option. Several test images have ‘been ‘coded
and . decoded to demonstrate our: compression algonthm and bit rates in the
ne1ghborhood of 0.5 to 2 bits per pixel (bpp) have been attained. Finally, we compare
our skeleton based method for coding the segment shapes to coding segment boundaries
to represent the shapes, and discuss the advantages and disadvantages of usmg
morphologlcal skeletons in segmentauon-based image compression. -

Qur research has resulted in contributions in the areas of i 1mage segmentanon
quantlzauon and compression.” We have systematlcally designed a centroid-linkage
~region growing algorithm which incorporates HVS properties - to produce ".visually
pleasmg segmented images. We have also designed a method for filtering segmented.
‘images to remove visually insignificant segments. We then evaluated the effecnveness ‘
of our methods through subjective tests. ’ -

‘We have proposed quantization of segmented images and designed a HVS based

’ quantlzer This quantizer was then compared through subjective tests to several other L

: quantlzers We also have 1nvest1gated the interactions between various steps in the
_ segmentation and quanuzatlon algonthms ' :
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Figure 1." A new scgmentatlon -based image cornpress1on technique. (a) Encoder. (b)
Decoder.  The image produced at "*" is the image that will be decodcd ("psf’
refers to post-segmentatlon ﬁltermg)
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We have applied our results in segmentation and quantization to a new image
compression technique. - This technique uses morphological skeletons in a new way for
image compression. We have also proposed the concept of the "minimal set of
segments," which is useful in our compression technique. Finally, we have compared
our compression technique to other segmentation-based image compression methods.



CHAPTER 1
AN ‘OVERVIEW OF IMAGE CQMPRESSION

In. order to-represent an image in a digitized format, a very: large -number of bits is -
-required. This large . number .of ‘bits is .a substantial drawback when . it is necessary to
store -or - transmit -an 1mage or sequence of images. ‘Image -bandwidth compression
‘techniques, often referred to as image coding, attempt to reduce-the number of bits used
- ‘to.represent an image, while keeping the degradation in-the quality of the decoded

'1mage 10 .a minimum. In this chapter we review a wide variety of image coding

~methods. We. divide i image coding:techniques into two general classes, and we describe
coding methods which fit -each of :these classes. In addition, some of the important
issues’in image coding are discussed. ‘We discuss the i image model the image quality
measure, and the coding ‘application. We also dlSCllSS the 1mpact of broadband
* communication: technology:on the image coding. problem '

- 1.1'Introduction

» In society ‘today - there are -a multitude of apphcatlons where the transnnssxon or
storage of images is required. Satellites transmit images to earth for use in areas such as
remote sensing, the study of weather patterns, and military reconnaissance. Satellite -
~links -are used .to -transmit television programs around the world. Images must be
transmitted for - v1deo-te1econferencmg, for facsimile transrmssron of pnnted matter and _
. for. deaf communlcatlon [11].- : S B

The transmission of i 1mages is either very tlme consurmng Or very expensive 1n‘
bandwidth. To represent an uncompressed 512 x 512 pixel, 256 gray level image .
requlres -over two million bits. Transmission of this image over a 64Kbit/s channel
requires more than thirty seconds. The requirements are even higher for a color i image
-of the same size. This virtually precludes the transmission of real time digital video
(time-varying imagery), -or the transmission of large volumes of high quality 'still
- images in a reasonable amount of time. In order to accomplish these tasks, some -
scheme for image data compression is necessary, and/or the data rate of the channel
must be dramatically increased beyond the 64Kb/s which is generally available today.
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Currently a new generation of high speed communication channels, such as the
Integrated Services Digital Network (ISDN) is being proposed. These channels may
~ have data rates as high-as 135Mb/s [12], which is fast enough to allow the transmission
- of most moderate resolution digital video in real time without the use of image
compression (with the notable exception of most conﬁgurations of High Definition
Television). However, - these high data rate channels will undoubtedly be more
expensive to use than their lower data rate counterparts, and therefore there will still be
~ many applications where image compression will be economically desirable. Also,
compression of image data will permit multlple signals to be transmltted s1mu1taneously

o over one high speed channel.

. Besides appllcatlons where the transmission of images is necessary, there are also
" many applications where the storage of images is required. Medical X-rays and
fingerprints are two examples of images that may need to be stored [11]. Computer
arch1v1ng of pictures such as architectural drawings would require the storage of digital

| images. As mentioned above, to represent a digital image can easily require over two
million b1ts Even with the computer memory density available today, this’ storage ,
requirement per 1mage is lmpracncal

The above mentioned requirements for image transmission and storage are what ,

' make image coding necessary. The goal of image coding is to-compress the image; that

- is, to represent the image in some way that requires as few bits as possible, withon't
noticeably degrading the image quahty This allows i nnages to be transmltted or stored
- much more efficiently. : e

" At a high level, image data compression can be thought of as a two-step process
[2], as -shown in Figure 1.1. In the first step of the process a digitized image is -
represented by a sequence of ' messages These messages can be chosen 1n a wide
variety of ways, however they must be chosen so that a reasonable approx1mat10n of the
original image can be reconstructed from a sequence of messages. In the second step of
the compression process the’ message sequence is coded to reduce the redundancy in the
- sequence. The overall goal is to generate a coded version of the image Wthh contains -
-all the important image information with absolutely no redundancy. '

A “Any image. compression method can be broadly classified as be1ng either
: 'statlstlcally-based (algebraic) or symbolically-based (structural). Statrstlcally based
1mage compression methods ‘are discussed in Section 1.3. The statistical approach to
image compressron is based on mformanon theoretlc principles and the methods used:
usually involve very localized, pixel-oriented features of the i image. Due to limitations
~of the statlstrcal approach to image compression which will be discussed later, a new
approach to rmage compression is necessary if very low bit rates are to be attalned
This new approach is known as symbohcally -based i 1mage compression. (Some have '
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referred to this new approach as second generation image coding [2]). Symbolically-
" based image compression methods employ computer vision and image understanding
techniques and human visual system (HVS) properties to achieve very low data rates.
The geometric structure of the image scene is emphasized in symbolically-based
compression methods, as opposed to the algebraic structure of the pixels used by
statistically-based compression methods. In Section 1.4 we summarize the work in the
developing area of symbolically-based image compression.

An image compression method can be further classified beyond the two main
categories mentioned above. This further classification is based on the techniques the
coding method employs, the type of image to which the coding method is applied, and
‘the distortion the coding method introduces in the image. One such classification of
coding methods is as adaptive or non-adaptive. The characteristics of an image almost
always vary to some extent as the space (and/or time, for time-varying imagery)
location in the image varies. To compensate for this, many compression techniques
change some parameters of the coder as the ‘space/time location in the image varies. A
coder that employs such parameter variation techniques is classified as adaptive. If this
type of variation is not used, the compression technique is non- adaptlve Some
examples of adaptive image compression techniques are adaptive differential pulse code
modulation, adaptive delta modulation, and adaptive transform coding [13-22].

Many image compression methods are implemented on a block basis. In block
compression methods, the image is partitioned into non-overlapping blocks and each of
these blocks is coded separately [19,23]. Block coding is based on ideas from rate-
distortion theory, which we will discuss in Section 1.3. One reason why block coding
. may be desirable is that dividing the image into blocks facilitates making thé image
compression algorithm adaptive to local image statistics. Also, by dividi'ng_ up the
image, coding of all blocks can be done in parallel. This is especially -attractive when
- using a very computationally complex coding algorithm. One disadvantage of block
compression techniques is that the borders of the blocks are often visible in the decoded
image. Some common block image compression methods are block transform coding
[24] and block truncation coding [23]. :

~ Virtually any image compression method can be applied to digital video (time- -
varying imagery) by applying the coding method to each of the "frames" of the image
sequence. This basic approach simply codes the digital video signal as a sequence of
single frame images. Itis often possible to greatly reduce the data rate by explomng the
temporal redundancy that exists from frame-to-frame in the image sequence. For
example, for a block coding method, three-dimensional blocks (two dimensions in space
and one in time) can be used for time-varying imagery. Techniques that exploit the
temporal redundancy in digital video can be quite sophisticated. One such technique is
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motion-compensated coding, in which only the portions of the image that have changed
from one frame to the next in the image sequence are coded [25]. Other examples of
coding applied to time-varying imagery can be found in [22, 26-30].

Image compression techniques can also be applied to color images. One approach
is to decompose the image into three component images (e. g. luminance, chrominance,
and saturation), and then code these three images individually, using appropriate coding
methods. Often, better coder performance can be obtained :by exploiting the spectral
and temporal redundancy in the color signals. For example, some compression
techniques encode the composite NTSC color baseband video signal directly. Methods
for coding color images are discussed in [14, 29-31]. : :

One more important. classification of compression techniques has to do with
whether the method is distortionless or non-distortionless.  If a coding method is
~ distortionless then the decoded image is a perfect recreation of the original image.

Nearly all distortionless techniques are based on information theoretic -approaches and
usually attain- data rates in the neighborhood of two to four bits per pixel [32]. Non-
distortionless coding methods introduce differences between the decoded image and the
original image, but they allow-tuch lower data rates. These distortions in the decoded
image must be kept as unobtrusive as possible. An important question in image coding
is how to measure the severity of the distortions caused in the image by the coding and
decoding process. This and other important general issues in image coding are
discussed in Section 1.2. ' ’ '

1.2. General Issues in Image Compression

In this section we will discuss three of the most important issues in image coder
‘ design: the image model, the imagé quality measure, and the impact of the application
on coder design. Since for most applications, a2 human is the image observer, some
important HVS properties will also be discussed. Obviously these are not the only
important issues in image compression. Other issues worthy of consideration include
- coding algorithm complexity and susceptibility of coding techniques to channel errors.

1.2.1. The Image Model

In order to design a compression method that is to perform well for a class of
images, some characteristics of the image must be used. That is, a model of the image
must be assumed. If the model of the image is not accurate, then the compression
method based on the model cannot be expected to work well. The problem of finding a
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good model for a natural scene is not simple, and it is even more difficult for time-
varymg scenes (digital v1deo) ' '

Many researchers have modeled images as random fields. This approach models
the pixel statistics of the image. This has proven to be difficult, due in a large part to
the highly nonstationary nature of images. Image pixel statistics can change
dramatically with time and spatial position in the image {11,33]. Also, there may be ;
information in an image that cannot be readily represented with pixel statistics. For
example, the idea that a particular scene is composed entirely of tnangles of different
sizes and orientations is difficult to express with pixel statistics. Another fact that
further complicates 1mage modeling is that different types of i nnages have very different
pixel statistics.

" Therefore, despite much work on devising pixel-based statistical models of
images, success has been limited. In [1 1]' it was observed that better statistical models
might be achieved by considering the i image to be the output of many sources, each with
its own type of statistics. In [34] and [17] this approach is taken, and leads to results that
may be among the more reallstlc and promising of recent statistical models of 1mages

- [11].

Another promising appfoach to image modeling is to not model the pixel statistics
of the image, but rather the statistics of some more global feature of the image, such as
the edges in the image. An example of this approach is an image model generated by
random tessellations of the image plane. Other examples of this type of image model
can be found in [35]. ‘

Despite all the dlfﬁClllthS, many different image models have been dev1sed for
various a‘pphc‘atlons,‘ For a discussion of image models relevant to image codmg_, see
[11,36].

1.2.”2v."T_he Image Quality. Measure

:As stated -above, every image compression technique can be classified as either
distortionless or non-distortionless. With distortionless coding methods; the decoded
image is identical to the original image. Therefore, a distortionless compression
technique can be evaluated solely on the basis of the merits of the coding algorithm.
~ (For example, a robust distortionless compression algorithm should have a low data
rate, should require a small number of low complexity computations, and should not be
susceptible to channel errors.) To fairly evaluate non-distortionless coding methods, -
orie must be able to measure the quality of the decoded image. A measure is needed of
the severity of the degradation to the original image caused by the coding and decoding
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process. Th1s dxstortlon measure is neccssanly a function of the original image and the
decoded image.

The specific method used to measure the distortion in a reconstructed i image can
vary greatly, depending on the application. For example, in a particular application the
edges in an image may be very important. In such a case it is vital that edges are unaf-
fected by the coding and decoding process. Therefore, the image quality measure used
to evaluate coding schemes for that application should weigh heavily the accuracy of
the edges in the reconstructed image. In other applications, other image characteristics
‘may be important. The characteristics of the decoded image that are important for a
given application should be reflected in the i Image quality measure used to appraise cod-
ing schemes for that application. The development of such a measure, however, is usu-
ally not straightforward. It is often very difficult to write an analytlcal expression that
quantifies degradation of i important image characteristics.

This difficulty in quantifying the distortion of important image characteristics has
led to the use of traditional mathematical measures of image quality. Two frequently
used measures are the mean-squared error (mse) [37], and the root mean-squared error
(rmse) [11] between the original and distorted images. The appeal of mse-based distor-
tion measures is their simplicity, however, such simple distortion measures nearly
always have poor correlation with human judgement of i image quality.

To improve the performance of these measures, a weighted version of mse or rmse
can be used [11,38]. The weighting function is designed to take into account variations
in sensitivity to distortion of the HVS with spatial frequency. 'As another alternative,
mse and rmse can be applied after a non-linear conversion of the i image [39,40]. The
non-linear operation uses HVS properties to transform the image to the perceptual
domain, where a unit change is perceptually equivalent at all points in the gray level
range. The validity of the distortion calculation for this technique is limited by the vali-
dity of the non-linear transformation.

A major problem with these traditional mathematical measures of i image quality is
that. they are pixel-based. Few pixel-wise mathematical i image quality measures have
consistently high correlation with human judgement of image quality.  Measures that
correlate well with human judgement of image quality need to take into account both
local, pixel-oriented distortions in the image, and more globally-oriented image distor-
tions [41]. Examples of various image quality measures can be found in [37, 39, 41-43].



12
* 1.2.3. The Impact of the Application

~ As mentioned in the previous section, a basic understanding of how the the
imagery will be used is needed in order to specify an accurate image quality measure.
'For example, questions may need to be answered having to do with the viewing distance
to the image display, the frame rate necessary for perception of motion in the scene, and '
whether color images are necessary. An understanding of the application is invaluable
not only in relation to the image quality measure, but throughout the whole image coder
design process. If we thoroughly understand the application, then we will know better
how to "hide" the inaccuracies introduced into the image by the coding and decoding
process. Few bits can be used to code "parts” of the image that are unimportant to the
- image observer, while more bits can be spent coding the parts of the image that are
important to the observer. In these ways a coding scheme can be tailored to the needs
of the image observer. Therefore, a crucial factor in the design of an efficient coding
method is a complete understanding of the image observer for the application under
consideration.

~ For simplicity’s sake let us assume that the application we are considering dictates
that the image observer is a "typical” human. Then, ideally, the image coder should use
very few bits to encode the information in the image that is not important for the human
viewer and use more bits to encode the information that the HVS is most sensitive to.
For th‘isj. reason, the more that is known about the requirements of the HVS, the better
the coding method that can be designed. The HVS is very complex, and the visibility. of
distortion in an image is.a function of many things. For example, it is a function of the
nature of the distortion itself, the image intensity in a space-time neighborhood of: the
+ distortion, the lighting in the room where the image is viewed, and the ' busyness of the
image in a space-time nelghborhood of the distortion. If more than one distortion is
introduced into an image, as is usually.the case, the interplay of these multiple distor-
tions can be very complicated. The complexity of the image observer is a major reason-
why image coding is so difficult a problem. But this complex1ty also is a key to attain-
ing very low bit rates with image coding. Further discussion on the important role of
the image observer in the image coding problem can be found in [40, 41].

Despite the complexity of the HVS, a great deal of research has been done in an
-~ effort to deterrmne some of its basic properties. This research is based on experiments
with human subjects, so the results are necessarily subjective; however much useful
information has been learned. Discussions of some of the basic techniques and
significant results in the area of HVS research can be found in (1,2, 11]. The books by
Marr [44] and Comnsweet [45] are useful references on human vision. In this section we
will briefly summanze some of the most well established properties of the HVS [1].
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~ One aspect of human vision that has been studied extensively is the contrast sensi-
tivity of the eye under varying conditions [46]. Contrast sensitivity is measured by
showmg a subject a test pattern, and varying the intensity of neighboring regions in the
* test pattern until the difference in intensity is just noticeable. Usmg the configuration
shown in Figure 1.2a, a simple measurement of contrast sensitivity is obtained. The
. observer is shown a field of uniform brightness C with a circle in the center of bright-
ness C + AC [1]. The Just-nonceable -difference, AC, is measured as a function of C.
- The fraction AC/C, known as the Weber fraction, is plotted as a functlon of C in Figure
1.2b [1]. The Weber fraction was found to be constant at about 2 percent over a wide
range (known as Weber’s region). Figure 1.2b also shows that the HVS has greatly
‘reduced contrast sensitivity in very bright or very dark intensity regions of an image.
However, the configuration:of Figure 1.2a is not very realistic; the test pattérn shown in
Figure 1.3a [1] gives results which are more useful. Again the just-noticeable-
difference, AC, is measured, this time as a function of Cgy and C. The results of this
experiment are shown in Figure 1. 3b [1]. From these plots it can be seen that the eye is
‘most sensitive to contrast in a range of about 2.2 log units, centered about the back-
ground brightness. Notice that the eye is less sensitive to contrast as C ¢ moves away
from C. Knowledge of the vanatlons in the contrast sensitivity of the eye can be useful
for such things as quantlzatlon of images, and human vision based image dlStOI‘thIl
measurements. '

Another 1mportant characterlstlc of human vision is the spatio- temporal frequency
response of the HVS. This response is often referred to as the modulation transfer func-
~ tion (MTF). The spatial and temporal responses of the HVS have often been examined
separately. However, it has been found that these frequency responses are closely inter-
related; therefore more recent research has dealt with the two acting in concert.

The MTF is measured by presenting a test subject with a periodic wave of some
type, usually a sine-wave or a square-wave, and then varying the modulatlon of this
wave until the threshold of visibility is determined. (The rnodulatlon of a periodic wave
: is the ratio of the wave’s amplitude to its average value) ‘The value of the MTF at a
particular frequency is the threshold modulation at which a stlmulus of that frequency is
just visible. ‘

Depalma and Lowry investigated the spatlal MTF of the HVS under varying con-
~ ditions using spatially varying sinusoidal and square-wave stimuli [47]. This research
did not include any temporal frequency effects. They found that, depending on the
viewing conditions, the HVS responded maximally to sine-waves at retinal frequencies
around 7-15 cycles/mm; with the response declining for lower and higher frequencies.
Similar research has been done to determine the temporal MTF using a test pattern that
varied in time. For example, in [48] experiments were done to measure the temporal
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Flgure 1.2. ‘(a) Test pattern for m'easuring the contrast sensitivity of ‘thc HVS. (b)
- Contrast sensitivity. of the HVS for the test pattern of Figure 1.2a (from
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Figure 1.3.  (a) Test pattern for measuﬁng the contrast sensitivity of the HVS (b) "
Contrast sensitivity of the HVS for the test pattern of Figure 1.3a (from
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MTF.

In the early 1960’s, the importance of the inter-connection between the spatial and
temporal frequency response of the HVS was observed [48,49]. One example of the
research dealing with the two responses interacting is [50]. The spatio-temporal MTF is
generally measured using either a flickering grating or a grating moving across the field
. of view [48,50-52]. In [52] a sinewave moving across the field of view was used as the
~stimulus and the result of this research is the spatio- temporal MTF shown in Figure 1.4.
- The non-uniform frequency response of the HVS, as demonstrated by the spatio-
temporal MTF, affects many aspects of human perception of images. For example, one
consequence is that the eye is less sensitive to distortion in the parts of a scene that are
moving.

There is another aspect of the time response of the HVS which is especially impor-
tant for the coding of digital video. Research has shown that the human viewer takes a
substantial fraction of a second to recover spatial acuity after a scene change [53]. It has
been found that reducing spatial resolution for as long as .75 seconds after a scene
change is not noticeable to a human observer [11].

All of the above properues help to determine the characteristic of human vision _
that is most important in the development of image compression techniques: the sensi-
tivity of the human viewer to noise and distortion in images. If an absolutely complete
description was known of the spatio-temporal response of the HVS, the visibility of any
type of degradation in an image could be calculated and there would be no need for sub-

jective observer tests of image quality. However, because of the complex1ty of human
vision, we are far from any such complete description. Nonetheless, some general state-
ments can be made about the response of the HVS to noise or distortion in images [11:
(1) Distortion is most visible in portions of the i image that are constant in intensity; the
more comphcated a part of the image, the less visible noise will be there. That is, spa-
tial "busyness" in an image has a masking effect on distortion. Temporal "busyness" in
an image also effects the visibility of distortion, although in a more complicated way.
(2) The sensitivity of the HVS to distortion varies depending on the way the distortion is:
correlated with the image. For example, quantization noise in an image is more annoy--
- ing than a similar quantity of random noise. This fact can be unfortunate for the i image '

coder designer, since many types of distortion introduced by the coding and decoding

process are correlated with the image in ways for which the HVS has hlgh sensmvﬁy '
(3) The HVS is more sensitive to distortion that is "structured" in some way than it is to
distortion occurring randomly in the image plane. For example, the distortion that

occurs along the grid that forms the block boundaries in a block compression method is -

more annoying to a human viewer than the same quantity of distortion distributed ran-
domly in the image plane. (4) The sensitivity of the HVS to noise is affected by the
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_ frequency spectrum'- of the noise, .in a cbrhplicated way. which depénds on -the spectrum
of the image. (5) The presence of any noise in an image reduces the contrast and sharp-
ness of the image and degrades its quality significantly.

With this view of the 1mportant issues in image coding, we now proceed to present
» some ~specific image compression methods. We will discuss the statistically-based
compression methods first.

1.3. Statistically-Based Image Compression Techniques

Much of the first twenty -five years of work in image compress1on from approxi-
mately. 1960 to the present, fits into the stanstlcally-based category. A block diagram of
the general statistical image compression system is shown in Figure 1.5. Statistically- _
based image coding techniques address the image compression problem from an infor-
mation theoretic point of view, with the focus on ellmmatmg the statxstxcal redundancy
among the pixels in the image. '

The "ideal" preprocessor shown in Figure 1 5 is one where the plxels are mapped
into independent data. For example, the mapping might be to take the Discrete Fourier
‘Transform of the image pixels. Usually, however, the best one can do is find a prepro-
cessor that makes the data uncorrelated. The desire for the pixels to be independent is
based on rate-distortion. theory. Rate distortion theory defines the optimum coder to be
the coder that attains the best possible signal fidelity for a given data tate, or the coder
that attains the best possible data rate for a given signal fidelity [54]. Shannon has
- shown that for any data source, better data rates can be achieved by coding blocks of the
data, rather than individual data points. In fact, the optimal coder is achieved as
N — o, where N is the length of the block of data being coded [43,55]. These block
coders are now more popularly known as vector quantizers [54]. Obviously, a coder
with infinite block length is impossible, and even a coder with reasonably long block
length is difficult to design and implement. However, it can be shown that if the data
samples are statistically independent, then N block length one coders are nearly as good»
(within about 0.25 bits/sample) as one block length N coder, for the squared error dis-
tortion measure [56]. So, if the data samples can be transformed so that they are statisti-
cally independent, then nearly optimum coder performance can be achieved with a
block length one coder, i.e. a simple quantizer. The above facts form the theoretic basis

for all types of statistically-based image coding. ,

For example, this is the reasoning behind the discrete Karhunen-Loeve transform
(KLT) [24]. For Gaussian distributed pixels, the KLT transforms the data so that the
samples are independent. These transformed pixels can be coded nearly optimally
~~using a simple quantizer. Another example of this reasoning is predictive coding [57].
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If the pixels can be modeled as a Markov random precess [58], then the differences
between consecutive pixels are independent. These differences can be coded nearly
optimally using a simple quantizer.

Unfortunately, there are problems with the application of rate-distortion theory to
image coding. In order to design the statistically-based coders discussed above two
things are important: first, a valid random field model of the image is needed, and
second a valid distortion measure is needed. However, as was discussed in Section
1.2.1, a simple statistical model of an image does not exist. Likewise, as discussed in
Section 1.2.2, a simple distortion measure is not known for images. Much recent
research has addressed issues having to do with vector quantizers such. as finding
efﬁc1ent design methods and appropriate distortion measures

There are many excellent reviews of statistical image compression techniques in
- the literature. A paper written by Schreiber in 1966 provides an interesting review of
early image compression [1]. In [59], the editor presents an overall summary of the
state of image compression in 1979. Netravali and Limb wrote an informative review
of image compression techmques in 1980 [11], as did Jain in 1981 [38]. In addition,
[38] contains an extensive blbhography of publications in image compression and
related areas. In [29] a review is presented of the advances made in image compression
‘techniques since 1981, with special emphasis placed on advances in the coding of color -
television and video-conference signals. In addition to these review papers, there are
many books and special issues of professional journals which deal exclusively with
image compression [60-63]. The above list is only a small subset of the published
research in statistically-based image compression techniques.

Statistically-based image compression techniques can generally be separated into
four categories: predictive coding, transform coding, interpolative and extrapolative
coding, and a fourth category of miscellaneous statistically-based coding techniques
[11]). A brief synopsis of each of these classes of coding techniques is given below.

1.3.1. Predictive Image Compression

The first category of statistically-based image compression techniques is predictive
'r'nét'hods (also known as Differential Pulse Code Modulation (DPCM)) [57,64]. The
idea behind predictive image coding is to first predict the value of a pixel based on the
values of a neighboring group of pixels. The group of pixels can be spatially distributed
‘or, for digital video, temporally distributed. The error in the prediction is then
‘quantized, coded, and transmitted. The basis of predlcuve techniques is that if the
pixels can be modeled as a Markov process [58], then the differences between
consecutive samples will be statistically independent, and a simple’ quantizer will be
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‘nearly optimum. A variatibn of this technique is delta r_nodulation [65]. Predictive
coding results in data rates from one to two bits per pixel. Predictive coding methods
can be made adaptive by varying the prediction algorithm or the difference quantizer
[18-20, 66]. Adaptive predictive coding achieves bit rates ten to twenty percent lower
than non-adaptive predictive coding. ' ’

1.3.2. Transform Image Compression

Another category of statistically-based image compression techniques is transform
image coding methods [11,24]. As has been mentioned, the motivation behind
“applying a transformation to an image before coding is toTtake the statistically
dependent image pixels and convert them into independent ﬁrmsfom coefficients.
Unfortunately, with almost no exceptions it is impossible to obtain independent
transform coefficients. However, it is sometimes possible to obtain nearly uncorrelated
transfom.'coefﬁcients. After performing the transformation on the image pixels, the
transform coefficients are quantized. The quantized values of the coefficients and the
coefficients’ locations are then encoded for transmission. Some examples of transforms
used for image coding include Karhunen-Loeve [67], Fourier [68], Hadamard [69, 70],
and Cosine [14,27]. Bit rates of slightly less than one bit per pixel can be achieved with
transform image compression methods. Transform coding can be made adaptive by
varying the way the coefficients are quantized or by varying the transformation used
[14,21,22). These adaptive algorithms can improve the data rate by about twenty-five
percent. :

- A disadvantage to transform coding is the number of computations required to
perform the image pixel transformation. For this reason, fast transform algorithms have
been developed and are often used for transform image coding [67,71,72]. Also,

 transform compression algorithms are nearly always implemented on a block-wise basis
~ to help reduce the computation time required [24].

1.3.3. 'Intierpola't'iv'e and Extrapolative Image Compression

A thifd'claSS“of statiStically-based image compression techniques are interpblatiVe
and ext:apolative methods [11]. With these methods, a subset of the pixels is obtained
by subsampling the image. This subset is then transmitted, and the decoder interpolates

or extrapolates to fill in the missing pixels. The subsampling of the image can be done -

in either of the spatial dimensions, or in the temporal dimension, or in any combination.
The interpolation function can use straight lines, or higher order polynomials. If higher
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order polynomials are used in the interpolation, it may be necessary to transmit
polynomial coefficients, in addition to the subset of image pixels. This class of
compression techniques can be made adaptive by varying the degree to which the image
is subsampled, the direction of the subsampling, or the function used to do the
interpolation/extrapolation. Interpolative compression techniques achieve bit rates in
- the neighborhood of two bits per pixel. Examples of interpolative image compression
techniques can be found in [73-75].

1.34. ':O’th'er*Stzi’t'iSti’cally-'Based Image Compression Techn‘iques

Examplcs of some important statistically-based techniques that do not fit into any
of the above: categories include bit-plane coding, curve fitting methods, and run-length
‘coding [76-80]. Some of these methods are simply ‘one- d1mens1onal compression
methods applied to two-dimensional i image signals.

1.4. Symbolically-Based Image Compression 'Techniques
‘ ‘ .

In the last few years the bit rates that have been attained using statistically-based
compression methods seemed to reach a saturation point at slightly less than one bit per
‘pixel [2]. For many apphcanons data rates as low as 0.01 to 0.1 bits per pixel are
desirable. A new approach to image compression is necessary if these very low bit rates
are to be attained. This new approach is known as symbolically-based, or "second
- generation" image compression. A block diagram of a general symbolic image

compression system is shown in Figure 1.6.

Symbolically-based image compression methods employ techniques from image
- analysis, computer vision and artificial mtelhgence along with HVS properties to
achieve very low data rates. Global, rather than local pixel-oriénted features of the
image ‘are emphasized. Examples of such global features include the size, shape, or
- orientation of objects in the image scene. These types of features can be used to
provide a symbolic description of ochcts and their relationships in a scene. To obtain a
complete high level description of the image scene is the ultimate goal of the "message
- extractor” in a symbolic image compression scheme. This symbolic description might
take the form of a list of scene attributes, for example "there is a chair in the upper left
corner of the scene," or "a man in a red shirt is running from left to right in the scene
while turning his head and looking at the camera.” Notice that these are very high level
descriptions of the scene and do not deal with actual i image pixel values, but with the
scene content. The encoder then efficiently encodes these scene descriptions or
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"messages."

The current state-of-the-art in symbolic image compression does not use the com-
plicated scene descriptions discussed above. Questions having to do with such issues as
- the optimal symbolic description of an image, the lowest achievable data rate for a

given image, and how distortion manifests itself in the decoded image are all open
research problems. : : : '
Since the symbolically-based approach is a fairly new direction in image compres-
“sion, there have not been many general reviews of these types of compression methods
published yet. There is, however at least one review of symbolically-based image
compression techniques in the literature [2]. In addition to this paper, there is mention
of some symbolically-based image compression techniques in [29] and [11].

The synthetic highs system of image compression will be discussed first in this
section [81, 82]. This method is thought to be one of the earliest image compression
techniques which can be classified as symbolically-based. Other symbolically-based
ﬂébmpression techniques include segmentation-based compression, compression using
fractals [83] , and subband type methods such as pyramidal compression, [84] and
directional decomposition based compression [2]. Subband compression techniques
[85] operate by using filters to frequency decompose the image into a series of images.
- These "subband" images are then coded. Compression is achieved by taking advantage
of certain characteristic properties of the subband images. Several of these
symbolically-based compression techniques will also be discussed in this section. In
addition, Chapter Five of- this thesis presents a new method of symbolically-based
image compression. ) :

‘ 14.1. Synthetic Highs Image Compression

The synthetic highs method was originally applied to an analog image signal. _'The

basic idea behind the synthetic high method of image coding is to decompose the image '

into a high frequency component (containing edge information), and a low frequency
~component (containing general area brightness information). The two parts of the
image are coded separately, using two different methods. By the two-dimensional sam-
pling theorem, the low-pass component of the imagc can be represented with very few
samples. These samples are coded to represent the low-pass component. An edge
detector is used to locate edges in the original image, then the high-pass portion of the
_ image is thresholded to determine which edge points are important. The locations and
magnitudes of important edges are coded to represent the high pass component. The
image is reconstructed by first using a filter to synthesize the high-pass part of the image
from the edge information, and then adding to that the low-pass component of the
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image. This method of coding leads to data rates slightly less than one bit per pixel. -
This method was first discussed in 1959 [81], and since then many other coding tech-
mques have been proposed which make use of the same basic prmc1p1e[31 34,86]. '

1

1.4.2. Segmentation-Based Image Compression

For segmentation-based image compression techniques [2-4, 6, 80, 82, 87-89]. the
“image to be cdmpressed is first segmented. In image segmentation, the pixels in an
image are divided into mutually exclusive spatial regions based on some criteria. The
criteria used could be as simple as the similarity of the pixel gray levels (yielding flat
image segments) [3, 6], or the criteria could be more complex, such as how well the pix-
els fit a given planar model (facet-based segmentation) [82], a two-dimensional polyno-
" mial model [87], or a statistical model (texture-based segmentation). After segmenfa-
tion, the image consists of regions separated by contours. This segmented vers1on of
the original irage is the versions that is reconstructed at the decoder. '

After the image is segmented, information is coded describing the shapes and inte-
riors of the segments. This description forms the symbolic representation for the image..
In most segmentation-based compression schemes, the shapes of the image segments
are represented by encoding the segment boundaries. These boundaries may be coded
by approximating them with straight lines and circle segments and then coding the
information describing this approximation [82], or by a more simple approach, such as
coding a binary image describing where segment boundaries are located in the image
[3,6].. The interiors of the segments are represented by encoding, for example, the
coefficients in the polynomial models describing each segment, or for flat segments, the
average gray level of the pixels in each segment. Segmentation-based compression
~ methods typically achieve data rates in the neighborhood of 0.5 bpp. :

1.4.3. Pyramidal Image Compression

‘ Pyramidal image compression [84] employs a hierarchical representation for the
image. The representation is generated using iterative applications of the low-pass
filtering idea introduced in the synthetic highs compression method described in Section
1.4.1. Pyramidal coding begins by low-pass filtering the original image, using local
averaging with a unimodal Gaussian-like two-dimensional impulse response. Viewing
the low-pass filtered image as a prediction of the original image, the difference between
the original image and the low-pass filtered image can be interpreted as a prediction
error. Clearly, coding the low-pass image and the prediction error is equivalent to
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coding the original image. Compression is achieved with this representation due to two
factors: (1) Since the error image is high-pass in nature, and the HVS has reduced sensi-
tivity at high frequencies, the error image could possibly be coded with fewer bits than
the original image. (2) By the two-dimensional sampling theorem, the low-pass filtered
image can be represented with fewer samples than the original image.

Up to this point, the pyranﬁdal method follows the same philosophy as synthetic
highs compression. The difference in pyramidal coding is that the procedure described
above is applied iteratively. Specifically, the low-pass filtered image is filtered a second
time, at a lower cut-off frequency (typically half the frequency of the first filtering
operation). This twice-filtered image is now a prediction for the once- filtered image,
- and the difference between the two filtered images is a new error image. By repeating
(say n times) the low-pass ﬁltenng and differencing operations, a series of n error
images can be obtained. At each iteration the dimensions of the error image are reduced
(through spatial decimation) by a factor equal to the ratio of the cutoff frequencies used
in that iteration and the previous iteration (typically a factor of two). The resulting error
images are quantized and coded to represent the image for coding.

To generate the decoded image, interpolation filters are used to: reconstruct the
error images from their dec1matcd versions. The pixel-by-pixel sum of the recon-
structed error images yields the decoded image. A desirable feature of this compression
technique is that it facilitates progressive reconstruction of the decoded image, and pro-
vides for convenient data rate/image quality trade-offs. Pyramidal compression typi-
cally achieves data rates in the neighborhood of 0.8 bpp. |

1.4.4. Directional Decomposition Based Image Compression -

Directional decomposition image compression [2] is largely motivated by the
existence of direction-sensitive neurons in the HVS. In this compression technique the
original image is decomposed into a series of images using filtering operations employ-
ing Gaussian windows. The entire spatial frequency plane is covered with one low-pass
filter, plus a set of high-pass, directional filters. The purpose of each directional filter is
to extract edges in the image with a particular spatial orientation. The filtered versions
of the original image are coded to form the compressed image.

The low-pass image is coded usmg transform coding. Each of the dlrectlonally
filtered i images is spatially decimated and then represented by codmg the positions and
magnitudes of the edges in the decimated image. The edge positions are coded using a
run-length Huffman code, and the magnitudes of the edges are quantized and coded

o 'usmg 3 bit codewords. This coarse quantization is possible due to the reduced contrast

_sensmvny of the HVS at high spatial frequencies.
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To generate the decoded image, first the low-pass image is reconstructed by
inversely tfansforming the coded coefficients. The high frequency directional edge
images are reconstructed by decoding the edge information and interpolating. Once all
the filtered images have been reconstructed, they are summed to form the final decoded
image. Directional decomposmon based compression typically achieves data rates in
the neighborhood of 0.25 bpp. '

As the techniques discussed above indicate, symbolic image compression tech-
niques rely on the nature of the image scene and the relationships of objects in the
scene, as described by image features such as edges and regions. These symbolically-
based techniques do not rely on the statistical properties of the,image pixels.

1.5 Conclusions

In this chapter we have discussed some of the important issues in image compres-
sion, and provided an overall review of past approaches to the image compression prob--
lem.. We then examined a new approach, symbolically-based compression, that can
lead to lower data rates than have been achieved with more traditional methods. Even
with the advent of high speed, broadband channels, bandwidth will never be so cheap as
to be of no economical consideration for the users of these channels. In addition, it will ,
- always be economically advantageous to store digital images using as few bits as possi-
ble. For these reasons, image coding will continue to be important for the economical
storage and transmission of both large volumes of fairly conventional images, and- the
new breed of high definition, high quallty, digital video.
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: CHAPTER 2
IMAGE SEGMENTATION USING
HUMAN VISUAL SYSTEM PROPERTIES

~ In this chapter we discuss a technique for the segmentation of discrete gray level |
images. In image segmentation, the pixels in an image are d1v1ded into mutually
exclusive spatial regions based on some criteria. Segmentation is a fundamental step in
computer vision [90]. There are several approaches to segmentation, including simple
thresholding, edge detection, and various forms of region growing [5,91-94]. A great
deal of work has also been done on segmentation techniques which are not based on

. gray level edges, such as texture-based segmentation. The output of an image
‘segmentation scheme is usually used to identify objects in the image scene. Such
. identification requires a one-to-one correspondence between the image segments and

the objects. This is fundamentally different from the approach we take. We are using
image segmentation for compression purposes. The segmented image will be the output
- of a decoder (described in Chapter 5) and will be viewed by humans. This segmented
image is, therefore, the "final product” of our algorithm, the decoded image. For such
' an application it is not important to have of one-to-one correspondence between objects
and image segments as noted above. It is only important to design our segmentation
algorithm so that image segments are allocated in a way that results in a visually
“pleasing segmented image. This is achieved by i incorporating properties of the human
visual system (HVS) at various stages in the segmentation algorithm. By using
knowledge of HVS properties to guide the image segmentation, the segments can be
chosen to produce a visually plcasmg segmented image. ‘

In segmentation-based 1mage compression algorithms, information is encoded
describing the segfnents in the segmented image. Thus, the number of image segments
will détermine, for the most part, the bit rate of the compressed image. For this reason,
producing an image with the minimum number of segments is critical. The goal of the
segmentation algorithm we propose is, for a given desired segmented image quality, to
produce a segmented image which has the minimum number - of 1mage segments,
allocated in a visually pleasing way.

The segmentation technique we present consists of two steps, an initial
segmentation step, and a post-segmentation filtering step. The initial segmentation.
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algorithm uses a variation of centroid-linkage region growing [5]. This portion of the
algorithm is described in. Section 2.1. The second step of the image segmentation
algorithm involves a filtering operation applied to the initial segmented image to
determine which image  segments are visually insignificant. Insignificant image
segments are then merged with neighboring segments. The filtering operation is
described in Section 2.2. In Section 2.3 we explore the interaction between the initial
segmentation and the post-segmentation filtering steps.

, Because of the wide variety of image types, d.1fferen't images will require different
numbers of segments in order to achieve the same segmented image quality. It is often
~‘useful to know, before actual segmentation, an estimate of the number of segments that
will be needed for a given image to achieve a particular image quality. In Section 2.4
we. propose a quanntanve measure that can be applied to an image to obtam such an
-estimate.

At severa.l points in this thesis it will be necessary to measure, in some sense, the
"quality" of our images. Since the images are to be viewed by humans, we would like
this measure to reflect human judgement of the images"quality. However, as'wask
discussed in Chapter 1, it is difficult to specify a quantitative measure that has
. consistent correspondence with human judgement of image quality. Therefore, it
becomes necessary to compare images based on subjective visual quality evaluations.
- In this thesis, the visual quality of the images is usually determined based on careful,
but nonetheless, subjective evaluation of the images by the authors. In addition, in
some cases experiments have been performed using test subjects to determine the visual
quality of the images. The images were observed on a DeAnza CRT monitor
(manufactured by Mitsubishi Electric, model C-3910), with 512 x 512 pixel resolution,
and 256 possible gray levels. The monitor was calibrated for a linear relationship
between gray level numeric value and output luminance, using the procedure described
in Appendlx E.

2.1 Human Visual System Based Image Segmentation

The initial- segmentation algorithm uses a variation of centroid- -linkage ‘region
growing [5], and is based on a technique presented in [6,95]. With centroid-linkage
reglon growing, the image pixels are scanned in a raster fashion. At each pixel; there
are three possible actions by which new image segments can be created, and already
existing segments can be increased in size: (1) two segments neighboring each other
’(and the current pixel) can be merged with each other, (2) the current pixel can be
v merged‘with-an already existing neighbor segment, or (3) a new segment can be created
with the current pixel as its first member. Note that at any one current pixel, actions (2)
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and (3) are mutually exclusive. Intensity:difference thresholds are used to determine
when each of the actions should be taken.

In relation to action (1) above, at each pixel the average intensities of segments
neighboring the current pixel are compared to each other to determivne whether any of
these segments should be merged. If any two neighboring segments have average
intensities within a HVS-based thi'eshold'of each other, the segments are merged to
form a new, larger segment. This action is taken, for example, at the vertex of an
upright "V" shaped segment. Since region growing is a raster scan method, before
_reaching the vertex of the "V," the two "legs" of a "V" shaped segment appear to be two
separate segments. Only when the raster scan reaches the vertex of the "V" does it
become apparent that the two "legs" are really parts of the same segment and therefore
should be merged.

Once all merging under action (1) above is complete, actions (2) and (3) are
considered. To determine whether the current pixel should be merged with an already
existing neighbor segment (action (2)), or used to start a new segment (action (3)), the
intensity of the current pixel is compared to the average intensity of each of its neighbor
segments. If the intensity difference between the current pixel and some neighbor
segment is less than a HVS-based threshold, then the current pixel is merged with that
neighbor segment, and the neighbor segment’s average intensity is updated (action (2)):
If the current pixel matches more than one neighbor segment, it is merged with the
segment it matches best. If the current pixel does not match any of its neighbor
segments, then a new segment is started with the current p1xe1 as -its first member
(action (3)).

After the image has been completely divided into segments, each segment is filled
in with the gray level closest to the average intensity of that segment. The result of
initial image segmentation is a gray level image composed of a number of regions, each
* with uniform gray level. |

An important reason why region growing was selected for our image segmentation
is that this method is guaranteed to produce disjoint segments with closed boundaries. '
This will be necessary when the segmentation technique is used in the image
compression algorithm we describe in Chapter 3. Other segmentation algorithms satisfy
~these conditions (e.g. split-and-merge [5] ), and would also be acceptable for use in

image segmentation for compression. A technique such as edge detection for
segmentation, or segmentation by thresholding the gray levels in the image, would not
“be applicable in our compression algorithm, because these techniques are not
- guaranteed to produce closed boundaries. A second reason for selection of centroid-
linkage region growing is that HVS properties can be readily 1ncorporated into the
algonthm via the segmentation thresholds. '
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2.1.1 Selection of the Segmentation Threshold

A key feature of the segmentation algorithm described above is the threshold used
to determine when regions and pixels should be merged. We have investigated several.
different thresholds, some based on HVS properties.” The HVS-based thresholds we
propose are adapted to local intensity characteristics of the image. As the segmentation -
algorithm progresses spatially through the image, the segmentation threshold is varied,
depending on the intensity of the image in a local area. The thresholds have all been
designed for use on images with 256 gray levels, and an average gray level of 128. ‘

The simplest threshold possible is a constant that is used for the entire image. We
refer to the constant threshold as threshold .

We will attempt to incorporate HVS properties in our segmentanon algonthm with
- the following threshold :

thresholdy, =(m xp)+d, - 2.1

where j is the average gray level of the eight pixels neighboring the current pixel, and
m and d are the slope and y-intercept, respectively, of the threshold function. The units
on the threshold are gray levels. This function is an approximation of Weber’s Law
[45,46], and is illustrated in Figure 2.1. (Weber’s Law is discussed in more detail in
Section 1.2.3.) Recall that Weber’s Law says that the contrast sensitivity,of the eye
varies with intensity. The threshold defined above is designed to take advantage of this
variation.- Since the eye is less contrast sensitive in certain parts of the gray level range,
it is possible to.segment more coarsely (that is, using fewer, larger segments) portions
of the image composed of pixels with gray levels in that range, without the coarseness
of the segmentation being noticeable to a human viewer. The threshold defined in
Equation 2.1 implements this idea. The threshold varies from a maximum in the hlghest
intensity areas of the image, to a minimum in the lowest intensity areas of the i image. |
This will result in fine segmentation (that is, with numerous small segments) in low
intensity image areas (where Weber’s Law says HVS contrast sensitivity is highest),
and coarser segmentation in higher intensity image areas (where Weber’s Law says
HVS contrast sensitivity is lowest). This threshold is robust with respect to noise inan
image because of the averaging operation in p. The total number of segments in the
se gmented image will depend onmandd. :

A refinement of threshold, can be made based on the fact that Weber’s Law does
not hold for the very hxghest and very lowest intensities. The new threshold i is defined
as. follows

o ,h,,,,-',,, ' thresholds < thmin |
threshold, = { threshold,, thmin < thresholdy <thmax (2.2
' thmax, thresholdy > thmax. '
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Figure 2.1. Plot bf threshold, (Equation 2.1) and threshold ,,; (Equation 2.2).
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With this threshold, illustrated in Figure 2.1, Weber’s Law is no longer used to deter-
mine the segmentation: threshold in the very highest and lowest intensity areas of the
image, but rather thmax or thmin, accordingly, is used in these areas. By introducing an
additional parameter in the segmentation threshold, this refinement permits further vari-
ation of the number of segments created in the image. S

Asa th1rd threshold consider ‘ o .
| thresholdg—(mx|128—p|)+d | o (23)‘

This functlon is an approxrmatlon for another contrast sensitivity curve, which was A
determmed by an extension of the Weber’s Law experiment [59], and is 1llustrated in.
Figure 2.2 (The. contrast sensitivity curve from which thresholds is modeled is dis-

- cussed in Section 1.2.3.). The motivation behind this threshold is similar to that dis-

cussed in relation to threshold,. This threshold is largest in the highest and lowest
intensity areas of the image and smallest in the middle intensity areas of the image. The
~ result is coarse segmentation of the image in low and high intensity areas, and finer seg-.
_ mentation of the image in middle intensity areas. As above, the number of segments in
the segmented image can be varied by changing m or d. A refinement can also be made
to threshold3 Cons1der ’

thresholdg, thresholds < thmax |

, 4y
thmax, . threshold s 2 thmax. - 24

th_réshold 3 = {
This threshold does not use the contrast sensitivity model in the very highest and lowest
intensity areas of the image, but rather thmax is used for the segmentation threshold in
these areas. This refinement, which is illustrated in Figure 2.2, also permits addmonal
vanatlon of the number of segments created in the image.

‘One further refinement of the segmentation thresholds proposed above has been
considered. - Since segments are generally ‘spatially larger than smgle pixels it may be
appropriate to apply tlghter restrictions when determining if two segments should be
merged than those apphed when determining if a pixel should be merged w1th a seg-
ment. This translates toa smaller threshold for merging two segments than for. merglng;
a pixel and a segment. In terms of the description at the beginning of this section, we
_propose using a smaller threshold for action (1), than the threshold used for actlons (2)
and (3). Letw be the ratio between the action (1) threshold and the actions (2),(3) thres-
hold (from the above discussion, w<1). For threshold, we implement this idea via.

' TH ;. We specify two different constant thresholds one for mergmg plxels, and another :
for mergmg segments: : '

THi.z{thseg, fOraCtion O

thpix, ~ for actionsv (2) and (3)', B ‘2.5).
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Figﬁre 2.2 Piot of thresholds (Equation 2.3) and thresholds, (Equation 2.4).
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~ In this case w = thg,/thy, <1. Note that theeg =0 implies that no segments are ever
merged; i.e. action (1) is never taken.

For threshold 2 and threshold3 we 1mplement this idea with the followmg thres-
holds: and '

TH, = w X threshold;a, for action (1) ‘ - (26)
Y7 threshold,,, for actions (2) and (3), i=2,3. -

©2.1.2 Experimental Resulis

The thresholds described above were used to segment the test images shown in
Figures 2.3a-f. These test images are 256 x 256 pixels, with 256 gray levels. Histo-
~ grams of all the test images are given in Appendix D. The first issue was to determine
for each of the thresholds, what combination of threshold parameters (thyy, thseg, d, m,

w, thmax, and thmin) resulted in the subjectively best visual quality segmented image,
for a given number of image segments. Once the parameters for the three different seg-

mentation thresholds (TH, TH3, and TH3) were chosen, they were compared to each

- other in order to determine which segmentauon threshold resulted in the most v1sually
pleasmg segmented images. »

First TH, was examined. This version of the segmenter requ1res two constant
thresholds, thseg and thy;,, be specified (see Equation 2.5). thy,, is used to decide when
to merge two segments, and thy; is used to decide when to merge. a pixel with a seg-
- ment. - We wished to determine approximately what ratio, w, between thy., and thy;

resulted in the subjectively best visual quality segmented image, for a fixed number of
image segments. Examples. of images compared in making this determination are
shown in Figures 2.4a-d. The images in any set of Figure 2.4 (for example, 2.42) have
- approx1_mate1y the same number of segments, and the images in the same position-in
each set all have approximately the same w ratio. The exact number of segments for
each image, and the values for thy;, and th, used to segment each image are given in
‘the ﬁgure Comparing images in any of the sets in Flgure 2.4, it can be seen that the
best visual quality segmented image for a fixed number of segments is consistently. the
image with w closest to 1:2. These images indicate that, when using a constant thres-
hold for centroid-linkage region growing, a ratio of approximately 1:2 between the
threshold used to decide when to merge two segments, and the threshold used to decide
when to merge a prxel with a segment, produces the most visually pleasrng segmented
1mage -

The second segmentation threshold T H 2, is given by Equation 2.6, and is 1llus-_ '
trated i 1n Flgure 2.1. Thrs threshold has five parameters the slope m, the y-mtercept d,
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(a) Natalje

® Airpl

~ Figure 2.3, (a-f) Original test images. Each image is 256x256 pixels, with 256 gray
’ levels. (a) Natalie. (b) Girl. (c) House. (d) Krista. () Eric. (f) Airpl.
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Figure 2;4. (a-d) Images compared to determine best w ratio in TH;. The parameters
used in TH; and the number of segments in each image are given below

~each image. :
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Figure 2.4. (continued)
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| :thp’l'x = 16, thseg =16, - thpi.x =19, thseg =8,
w = 1.0, # segments = 1816 w = 0.42, # segments = 1801

Ty a0,
w = 0.25, # segments = 1790 . w =0.0, # segments = 1820

- ©

Figure 2.4. (continued)
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Figure 2.4. (continued)
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the maximum value thmax, the minimum value thmin, and the ratio w. To begin with, w
. was fixed to be 1:1. We wished to determine what slope, m, resulted in the subjectively
best quality segmented image, for a fixed number of image segments. Three values for

m were considered: 0.100, 0.123, and 0.246. '

~In order to fairly compare segmented images generated using different slopes, the
images must have approximately the same number of segments. The parameters d,
thmin, and thmax were used to control the number of segments in the segmented image
for each slope. However, for a particular slope there can be several different combina-
 tions of d, thmax, and thmin that result in approximately the same number of segments.
Therefore, before the best value for m could be established, the best values for d, thmax,
and thmin had to be determined for each m value.

Several sets of images segmented using TH, are shown in Figures 2.5a-e. The
- images in each set (e.g. Figure 2.5a) were all generated using the same slope, and all
images in a set have an approximately equal number of segments. Each image in a par-
ticular set was generated using a different combination of d, thmax, and thmin (the exact
parameter values are given in the figure). Comparing the images in any set in Figure
2.5, one sees that the best quality image in each set is consistently the image in the
upper left corner (the images numbered (i)). Figures 2.6a-e show plots of the segmenta-
tion thresholds used to generate, respectively, the images in Figures 2.5a-e. The thres-
hold plots are numbered (i) through (iv) in correspondence with the images in Figures
2.5a-e. Itcan be seen from these plots that the images in Figure 2.5 with the best visual
- quality were all generated using parameters such that TH, was nearly constant, rather
than parameters such that TH ; realistically modeled Weber’s Law. e ’

These results indicate that a constant threshold produces better quality segrnented '
images than a threshold modeled after Weber’s Law. There is an explanation for why
Weber’s Law did not perform well as a segmentation threshold. Weber’s Law is based
on empirical data taken from a very simple visual stimulus (see Figure 1.2a), and
describes HVS contrast sensitivity at the most basic level. Since Weber’s Law
describes a very low level visual process, it cannot simply be directly applied to
describe HVS contrast sensitivity in the context of the complex images we are dealing
with. There are numerous factors not accounted for in Weber’s Law, which affect HVS
contrast sensitivity. For example Weber’s Law does not take into account the masking
effect of spatial "busyness" in the image on HVS contrast sensitivity. Because of the
poor. performance of TH; as a segmentation threshold, investigations to determine the
most vxsually pleasing values for m and w in TH, were not performed. :

The third segmentation threshold, TH 3 is described by four parameters (see. Flgure;- _
2.2): the slope m, the y-intercept d, the maximum thmax, and the ratio w. We wished to
determine what values of m and w resulted in the subjectively best visual quality
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(i) thymax =14, thpin =9,
d =1, # segments = 1109

(V) thpax =20, thpin =8,
d =0, # segments = 1105

Figure 2.5. (a-e) Imagcé compared to determine best parameter values in TH,. The
parameters used in TH, and the number of segments in each image are
given below each image. (a) m=.100. (b)-(d) m=.123. (e) m=.246.
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Flgure 2.5. (continued)
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Figure 2.6. . (a-e) Plots of the segmentation thresholds used to segment thc 1magcs
shown in Figures 2.5 (a-¢).
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segmented image, for a fixed number of image segments. This determination was
accomplished in two stages. In the first stage, w was held at 1:1 and only m was exam-
ined. Three values of m were considered: 0.123, 0.246, and 0.400. In order to fairly
compare images generated using different values of m , it is necessary that the images
have approximately the same number of segments. The parameters d and thmax were
used to vary the number of segincnts in an image for a particular m.

Examples of images compared in choosing the best slope are shown in Figures
2.7a-c. The images in any particular set of Figure 2.7 all have approximately the same
number of segments, and all images in a given position in the sets were generated using
the same value of m in TH3. The exact number of segments for each image, and the
values for w, d, m and thmax for each image are given in the figure. The images in Fig-
ure 2.7 show that a slope of 0.123 results in segmented images of clearly better quality
than 0.246 or 0.400. Large values of m consistently produce segmented i images with
low subjective visual quality.

. The second variable to be examined in relation to TH 3 was w, the ratio between
the segment threshold and the pixel threshold. - Three values of w were considered: 1:1,
1:2, and 1:3.33. Examples of images compared in choosing the best value of w are
shown in Figures 2.8a-d. The images in any given set of Figure 2.8 all have approxi-
mately the same number of segments, and the images in a given position in the subsets
- were all generated using the same w-ratio in TH3. In addition, all the images in Figures
- 2.8a-d have m =0.123, to avoid any bias in the judgement of w due to variations in m.
The exact number of segments for each image, and the values of d, w, and thmax for
each image are given in the figure. Comparing images in Figure 2.8, it can be seen that
for TH 3 the best visual quality segmented image for a fixed number of segments is con-
sistently the image with w = 1:2. From the comparisons discussed above it can be con-
cluded that, for TH 3 the subjectively best visual quality segmented images are obtained
withm=0.123andw =1:2.

The best parameters for TH, and TH3 have been determined and TH, has been
shown to be inferior. Next, comparisons were made between segmented images gen-
erated using TH,; and TH 5. Examples of images compared in choosing the best thres-
hold function are shown in Figures 2.9a and b. The images across a row in either set of
Figure 2.9 all have approximately the same number of segments, and the images down a

“column were generated using the same segmentation threshold (with various threshold
parameter values). The original images before segmentation are repeated at the top of
-each set for comparison purposes. The exact number of segments in each image, and
the parameters in the segmentation threshold used to generate each image are given in
the figure. From these sets of images it can be seen that TH 3 produces as good or
slightly better quality segmented images than TH . This is as expected because TH;
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m=.123, thy,, =17, m =246, thy,, =26,
- d=35, #segments = 1552 d =3, # segments = 1516

m = 400, thyp. =15,
d =2, # segments = 1508

(a)
Figure 2.7. (a-c) Images compared to determine best value of m in TH 3. The

parameters used in TH3 and the number of segments in each image are
. given below each image. (w = 1.0 for all the images.)
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Figure 2.7.. (continued)
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‘Figure 2.7. (continued)

54



55

W =10, thme = 10, =05, th = 11,
d =1, #segments = 1445 . d =8, # segments = 1496

d =9, # segments = 1490

(a)

Figure 2.8. (a-d) Images com;;ared to determine best value of w in TH3. The
’ parameters used in TH3 and the number of segments in each image are
given below each image. (m = .123 for all the images.)



w=10,thp =13, W=05,thns =15,
d =9, #segments =778 d =11, # segments = 780

w =0.33, thpa = 16,
d = 12, # segments = 796

(b)

Figure 2.8. (continued)
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CW=10, thpe =22, - W =05, thyy =25,
d =15, # segments = '1;1255'_‘ d = 18, # segments = 1277

- w=0.33,thp, =27,
d = 20, # segments = 1251

(©)

- Figure 2.8. (continued)
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 w=10,thpe =25, W =0.5, they =29,
d =16, # segments = 1077 d =20, # segments = 1105

- XY

=033, thpg =31,
d =22, # segments = 1064

@

- Figure 2.8. (continued)
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‘ thyix = 12, theey =5, , d=9,thna = 12 »
w =0.42, # segments = 1266 # segments = 1262~ .
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th,-_x = 14,'thseg = 6, : d=11, thmax = 14’
- w=0.43, # segments = 862 # segments = 856
(@) '

Figure 2.9. (a-b) Images used to compare TH, to TH3. The original test images are
shown at the top of (a) and (b). The segmented images vare siown below
them. The segmented images on the left were generated using TH; and the
segmented images on the right were generated using THj3. (The
parameters used in the segmentation thresholds and the number of
segments in each segmented image are given below each image. w = 0.5
and m = .123 for all the segmented images generated u‘sing TH3.)
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does not in any way take advantage of the HVS properties we have discussed.

The conclusion of this investigation into an initial image segmentation algorithm is
the selection of TH3 with parameters m = 0.123, and w = 1:2. This segmentation thres-
hold, which is based on HVS contrast sensitivity properties, has been systematically

.shown to produce better Quality segmented images than the two other proposed thres-
holds. By using TH 3 to vary the coarseness of the image segmentation according to the
intensity of the image and a model of HVS contrast sensitivity; we have designed a seg-
mentation technique that produces, for the same number of image segments, segmented
imagcs with better visual quality than those produced using TH or TH ,. TH 3 has suc-
cessfully incorporated HVS propertieé to improve the visual quality of a segmented
image. '

2.2 Human Visual System Based Filtering of Segmented Images for
Elimination of Visually Insignificant Segments

‘In this section we discuss a filtering techhique for the elimination of visually
~ insignificant segments from a segmented discrete gray level image [6]. This filtering
operation, which we refer to as post-segmentation filtering, takes advantage of HVS
properties relative to contrast sensitivity. The goal of post-segmentation filtering is to
detect image segments that are so small or so weakly contrasted with their neighboring
segments that they are insignificant to the human viewer. Such visually insignificant
image segments are merged with a neighboring segment. Since post-segmentation
filtering is designed to eliminate only those regions in the segmented image which are
unimportant to the human viewer, the filtering operation should not degrade the visual
quality of the segmented image.

In order to determine the visual significance of an image segment, some under-
standing of HVS contrast sensitivity is needed. The contrast sensitivity of the HVS, as a
function of spatial frequency, is shown in Figure 2.10 [47]. From this it can be seen that
HYVS contrast sensitivity is reduced for high spatial frequencies. Therefore, high spatial
frequency components of an image must have greater contrast than lower spatial fre-
- quency components, for the two to be equally noticeable to a human viewer. It can also
be said, in a general sense, that the smaller an image segment, the higher in frequency is
the spatial frequency content of the image near that segment. Therefore, the smaller an
image segment, the more contrast is necessary between the segment and its neighbors
for the segment to be visible to a human viewer. Following this reasoning, small
regions are relatively less visually significant than larger regions with similar contrast.
- Likewise, highly contrasted regions are relatively more visually signiﬁcant than lower
contrasted regions of similar size. We will take advantage of this property of the HVS
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Figure 2.10. The HVS spatial frequency contrast sensitivity (from [47]).
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in the design of our post-segmentation filter.

Only image segments with fewer than 16 pixels are considered as candidates for
elimination. This choice of size is based on a typical viewing distance of six times the
image height and image resolution of approximately 256 x 256 plxels {6]. Fora4x4
pixel segment, this corresponds to a spatial frequency of 3.36 cycles per degree of sub-
‘tended arc. These small segments represent the high spatial frequency parts of the
image, for which the HVS has reduced contrast sensitivity. The "energy" of the seg-
ment under test is measured using a technique that takes into account the size of the seg-
ment under test, and the contrast of the segment under test with its neighboring seg-
ments.  The energy measurement is designed so that the energy of a segment is directly
proportional to the visual significance of that segment. Highly contrasted segments
should have relatively higher energy than lower contrasted segments of like size, since
the more highly contrasted segments are more visually significant. Similarly, small seg-
- ments should have relatively lower energy than larger segments with like contrast. The
energy calculated for a segment is compared to a predefined fixed threshold to deter-
mine whether the segment is visually significant. Any segment with energy below the -
threshold is considered visually insignificant and is merged with the neighbor segment
which has average intensity closest to the average intensity of the segment under test.
The intensity of this new segment is the average intensity of the two segments which
‘were merged. Image segments with energy above the threshold remain unchanged. The
threshold can be adjusted to vary the number of segments eliminated from the image.

2.2.1 Selection of the Energy Measure

The key feature of the post-segmentation filtering technique described above is the
measure used for the energy of an image segment. We have examined six different
energy measures designed to model the HVS properties described above, and selected
- the one that resulted in the subjectively best visual quality filtered segmented image, for
a given number of image segments.

Four of the energy measures considered involve applying a window operator [6] to
- _each pixel in the region under test (a "region under test" is one of those segments with -
fewer than 16 pixels in the segmented image). The window, which is based on the spa-
tial frequency contrast sensitivity of the HVS [96], is equivalent to a two-dimensional
separable spatial hlgh-pass filter, and is given by: '

1/16 -1/8 1/16
-1/8 1/4 -~1/8
1/16 -1/8 1/16.
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The frequency transfer function of this window is shown in Figure 2.11. Let A; be the
result of applying the window at pixel i in the region under test. When the window is
applied at a pixel in the interior of the region under test, so that the window is entirely
contained in the region under test, A; is zero. This is because all the pixels within a seg-
ment are the same gray level, and the filter has zero dc response. When the window is
applied at a pixel near the border of the region under test, the window overlaps with -
segments neighboring the segment under test, and 4; may be non-zero. By spatially
high-pass filtering the image, we measure the amplitude of the spatial high frequency
content of the image in the neighborhood of the region under test. This indicates the
amount of contrast among the high frequency components of thc 1mage in that neigh-
borhood and therefore the visual significance of the segment.

- The first energy measure examined was proposed in [6] and is given by

1 o 4
Eﬁh—zh& @7

~ where N is the number of pixels in the region under test, and the summation is over all i
such that pixel i is in the region under test. We proposed three variations of E,:

Eya= Zh,, . 7 : 7-:._:.(2.8)
Fr=:ihl, ma @9

i : »
CEn=3Iml. EREECAT)

. v i v
Finally, wé‘ proposed two Oth_er e‘nergy measui'es for consideration: .
- Es=23l5nl wmd | @.11)
A

Esx=3 1ppil, BRNCAt)
i :

where N is the number of pixels in the region under test, p is the average intensity of the
region under test, p; is the intensity of pixel i, and the summation is over all i such that
pixel i is- eight-connected to the region under test, but noz in the region under test.
These last two energy measures, rather than using the window described above, Simply
‘measure the absolute value of the difference in gray level between the reglon under test
and its neighboring regions. |
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Figure 2.11. The frequency tranéfer function of the window given in Section 2.2.1. |
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2.2.2 Results

The six energy measures described above were compared using the test images
~ from Figure 2.3. The comparisons were performed in two steps. First £, was com-
pared to E,, E, was compared to E;, and E3 was compared to E3,. These three
comparisons were to determine the effect of the averaging term (1/N) in the energy
measures. In order to fairly compare the energy measure pairs, it was necessary to gen-
erate post-segmentation filtered images with approximately equal number of segments.
The number of segments-in the post-segmentation filtered i 1mages was varied by chang-
ing the energy threshold used in the filtering operation.

~ Figures 2.12a-c show examples of images comparing the energy measure pairs.
The segmented test images (generated using TH 3) before post-segmentation filtering are
shown in Figure 2.12a. The images across each row in Figure 2.12b or 2.12¢ all have

" approximately the same number of segments and were all segmented using the same

segmentation threshold. The images in the left columns of Figures 2.12b and 2.12c
were all post-segmentation filtered using an energy measure that included a 1/N factor
(E1,E: 2, or E3), and the images in the right columns were all post-segmentation filtered
using an energy measure without the 1/N factor (E 14, E 4, 01 E3,). The exact numbers
of segments in the images, and the energy thresholds used for filtering the images are
~ given in the figure. Since post-segmentation filtering mainly changes small image seg-

ments, the images in Figure 2.12 must be examined carefully in order to see any differ-
ences. However, close examination of each row reveals that the energy measures
without the 1/N term. cons‘istcritly produce slightly better visual quality post-
segmentation filtered images. This is most apparent in the areas around the eyes of the
images in Figure 2.12b. In order to more clearly see the differences in these images, we
show in Figure 2.12d enlarged versions of the eye area of the Krista image from 2 12a :
and the two images in the first row of Figure 2.12b.

The followmg example readlly 111ust1'ates a reason for the superior performance of
the energy measures without the 1/N term. Consider E; and E la for the 1-valued seg-
ments in the following two simple configurations:

00000 0000000
01110 0111110
00000 0000000.

The value of 4; in thations 2.7 and 2.8 is non-zero only at the endpoints of the 1-
- valued segments, where h; = 1/8. Since the segment on the left has only 3 pixels versus
5 pixels in the segment on the right, the value of E; for the segment on the left is larger |
than the value of E for the segment on the right ( (1/3)x(2/64) > (1/5)x(2/64) ). How-
ever, this is not consistent with HVS spatial frequency contrast Sensitivity. Since the



m=123,w=10 =128 w= 0’5‘

d=3, th,, =40, d 9, thiax = 40,
# segments = 3069 # segmcnts = 2719
(a)

Figure 2.12.(a-d) Images used to compare energy measures with and without 1/N for
post-segmentation ﬁltering (@) The original segmented test images
(generated using TH3). (b) The post-segmentation filtered versions of the

' Krista test image. (¢) The post-segmentation filtered versions of the Eric
test image. (d) Enlarged versions of the eye areas of the original
segmented Krista image from Figure 2.12a, and the ‘post-segmentation
filtered images in the first row of (b). In (b) and (c) the images in the left:
column were post-segmentation filtered using an energy measure with a

. 1N factor, and the images in the right column were filtered using a’
measure without a 1/N factor. (The parameters used in segmentation, the

- energy thresholds used in post-segmentation ﬁltermg, and the number of
segments in each image are given below the i 1rnages in (a-c).) '
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* Figure 2.12. (continued)
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E,, # segments = 1047,
energy threshold = 45

E 4, # segments = 1053,
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energy threshold = 363

Figure 2.12. (continued)
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Ey,, # segments = 1048,
‘energy threshold = 120

E,,, # segments = 1032,
energy threshold = 16

E3,, # gmes = 1016,
energy threshold = 680
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two segments have hke contrast and the segment on the left is smaller, the energy of the
segment on the left should be, at most, less than or equal to the energy of the segment
‘on the right. Certainly the energy of the smaller segment should not be greater than the
_energy of the larger segment, as it is with E;, E;, leads to visually better quality
filtered segmented images because E 1¢ assigns equal enei'gy to the tWo segments above,
~which is in better agreement with HVS spatial frequency contrast sensitivity. A similar
result holds for E, versus E,,, and E3 versus E3,. This example illustrates the general
‘result that division by N results in a measure of average energy per pixel in a segment.
-The total energy in a segment is desired to measure a segment’s -visual significance;
‘therefore energy measures without the 1/N term perform better for post-segmentanon
-ﬁltermg

The next companson to be made is between E 14, E2a, and E;,, to determme
which of these energy measures results in the subjectively best visual quality post-
segmentation filtered images. Examples of images compared in making this determina-
tion are shown in Figures 2.13a and b. ‘In both sets of images, the segmented test image
before post-segmentation filtering is shown in the upper left corner for comparison pur-
poses. The remaining three images in each set have approximately the same number of
~ segments, and the images in like positions in the two sets were post-segmentation
filtlered using the same energy measure. The exact numbers of segments for each
filtered image are given in the figure. Careful examination of these images reveals that
Ey, is shghtly better at removing visually insignificant image segments, without remov- -
- ing visible segments. For the i images Figure 2.13a, there are several visible segments in
the background of the ongmal segmented image that are not in the images filtered using
- E14 and E3,, but are preserved in the image filtered using E,. In the case of Flgure
2.13b, the superiority of E 5, is most evident in the areas around the eyes

The superiority of E,; over E3, is explained by the fact that, E3, only measures
- the total contrast of the segment under test with its neighbor segments. E 3¢ does not
-take into account the spatial frequency content of the image in the neighborhood of the
segment under test. For example consider E,, versus E3, for the 5-valued segments in .
the following two simple configurations:

010101 100000
055551 155550
010101 111110.

The value of E3, is identical for these two.‘conﬁgurations (7 x (5+4)). However, the
value of E, is different for these two configurations (13/8 for the segment on the left
and 9/8 for the segment on the right). Since E,, takes into account the spatial fre-
quency content of the image in the nelghborhood of the segment under test, it is a better
segment energy measure.
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m=.123,w=1.0, E 14, # segments = 634,

d =3, thpax = 40, ’ energy threshold = 58
~# segments = 3069 ' ‘

e

E g, # segments =632, E3,, # segments = 631,
~ energy threshold = 15 energy threshold = 600

(a)v

1
i

Figure 2.13.E 3,, for post-segmentation filtering. The original segmented test images
(generated using TH 3) are shown in the upper left corners. The parameters
used in segmentation, the energy thresholds used in post-segmentation

‘filtering, and the number of segments in each image are given below each
image. ' :
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Figure 2.13. (continued)
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The superiority of E,, over Ey, is explained by the fact that, for certain image
segment configurations, it does a slightly better job of modeling HVS spatial frequency
contrast sensitivity. An example can be given of image segment configurations which
illustrate this. Consider E 1a and E,, for the 1-valued segments in the following two
simple configurations: :

00000 00000
00000 01110
01110 01110
00000 00000

The value of A; in Equations 2.8 and 2.10 is non-zero only at the endpomts and corners
of the 1-valued segments. The value of E , for the segment on the left is larger than the
value of E1, for the segment on the right ( 2/64 > 1/64 ). However, this is not con-
sistent with HVS spatial frequency contrast sensitivity. Since the two segments have
‘like contrast and the segment on the left is smaller, the energy of the segment on the left
should be, at most, less than or equal to the energy of the segment on the right. Cer-
tainly the energy of the smaller segment should not be greater than the energy of the
larger segment, as it is with E'1,. By contrast, £, is the same (1/4) for the two seg-
ments above. Ej, leads to visually better quality filtered segmented. i images because
E,, assigns equal energy to the two segments above, Wthh is in better agreement with
~ HVS spatial frequency contrast sensitivity. :

The conclusion of this 1nvest1gat10n_ into post-segmentation filtering of segmented
discrete 'grayr level images, is the selection of E,, as the best measure of the visual
signiﬁcance of small image segments. For the images tested, this HVS contrast sensi-
- tivity based energy measure has been shown to produce better quality post-segmentation
filtered images than the other proposed energy measures, for the same number of image
segments. ' : C

One further relevant issue in relation to post-segmentation filtering is evaluatlon of

its overall effectiveness at eliminating visually 1n81gmﬁcant regions in a segmented: -

image, without degrading the visual quality of the image. Figures 2.14a and b show. two
-sets. of ‘segmented images. Each set consists of a segmented image before post- -
- segmentation filtering (in the upper left corner), and versions of that segmented image
‘after - increasing degrees of post-segmentation filtering. By "degrees" of ‘post-
segmentation filtering, we refer to the number of segments removed during the filtering
~operation. Increasing degrees of ‘post-segmentation filtering result in “increasing
- numbers of segments removed from the segmented image (Recall that the number of
segments removed during post-segmentanon filtering is determined by the energy thres-
hold used.) The number of segments in each of the i images is given in the figure. These
- images show that post-segmentanon filtering can reduce the number of segments in the
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m=.123,w=10,  Eqg, # segments = 813,
d =3, thpme = 40, ' ~  energy threshold = 10
# segments = 3069

'E, # segments =583, " E,,, # segments = 516,
energy threshold = 20. " energy threshold = 60

(a)

Fxgure 2. 14. (a-b) Images demonstrating post-segmentation ﬁltermg The orlgmal
segmented test images (generated using TH3) are shown in the upper left
- corners. The parameters used in segmentation, the energy thresholds used
in post-segmentation filtering, and the number of segments in each image
- are given below each image.
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 Figure 2.14. (continued)
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image by as much as a factor of four with virtually no degradation in the quality of the
~segmented image. Several pairs of segmented images before and after post-
segmentation filtering are shown in Figure 2.15 to further demonstrate the effectiveness
“of the post-segmentation filtering operation. These images demonstrate that our filter- -
ing tcchmque is very successful at exploiting HVS properties to. ehrmnate v1sually
7ms1gmﬁcant regions from a segmented i image.

2.3 Interaction Between Segmentation and Post-Segmentation Filtering

An ir‘n‘pOrtant question in relation to the segmentation algorithm described in Sec-
‘tions 2.1 and 2.2 has to do with the interaction between the two steps: ségmentation and -
post-segmentation filtering. What combination of segmentation and post-segmentation
filtering results in the subjectively best visual quality segmented image, for a given
number of image segments? Does very fine segmentation followed by filtering which
removes a large number of image segments, or coarse segmentation without any filter-
ing, or something in between, ledd to a subjectively better visual quality segmented
image? This question was addressed fhrough a series of subJectlvc tests.

- The subjective tests were performed using a variation of a method of psychophy-
sics “discussed by Stevcns [46]. Stevens mentions seven different p_sychophyswal
methods: | . | "

‘ (1) the adjustment method, where the subject adjusts a stlmulus unt11 it is sub-
- jectively equal to, or in some desired relation to a criterion,
-(2) the minimal change method, where the experimenter varies the stlmulus
and the subject indicates its apparent relation to a criterion, .
(3) the paired comparison, where stimuli are presented in all possible pairwise
combinations, and the subject indicates which in each pair is greater with
respect to a given attribute,
(4) the constant stimuli method, where stimuli are paired with a fixed standard -
and the subject indicates whether the stimulus is greater or less than the stan-
dard, _ :
(5) the quantal method, where various fixéd increments are »addved to a stan-
dard, each several times in succession, and the subject indicates the presence or
. -absence of the increment, - :
- .= (6) the order of merit method, where groups of stlmuh are presentcd and the
ey subject sets the stimuli in apparent rank order, |
(7) the rating scale method, where the subject gives each of the stimuli an
absolute rating in terms of some attribute (the rating may bc numerical or

~ descriptive).
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m=.123,w=0.5, E2,, # segments = 1084,
d=13,thp, =20, . energy threshold =20
#segments =3474 ' o S

m=.123,w=05, : E g, # segments = 9.867,_‘,.‘ !
o d=5,thpy =12, energy threshold =20
- #segments = 4094 - : o

m=.123,w=05, | Ega, #segments =791,
o d=9, thyy =40, ‘ energy threshold = 25 -
# segmcnts =2719 e
Flgure 2, 15 Images demonstrating the effectiveness of post-segmentauon ﬁltermg The

~ images on the left are original segmented i images (generated using TH3),
- -and the images on the ng]ht are post-segmentation filtered versions of the

images. The parameters used in segmentation, the energy thresholds used '

.. post-segmentation filtering, and the number of segments in each image are
given below each image. :

A
B



79

These methods can be used to measure response to any type of sensory stlmulus for
example taste, hearing or vision. This list is not exhaustive; for any method proposed
for one problem, there are many variations that suggest themselves for other problems.
- For our subjecﬁve tests, we use a variation on the orderv of merit 'method"((6)
~ above), which incorporates an aspect of the constant stimuli method ((4) above). The
“subject is presented with sets of stimuli and is instructed to rank the stimuli in the sets,
- as in (6). However, the subject is at the same time given a fixed standard, as in (4), and
_the rankings are determined based on subjective "closeness”" to the standard. We
designed our method based on the question we are. trying to answer. We wish to deter-
mine which of the three options for segmentation and post-segnientation filtering pro-
posed above, results in the segmented image which subjectively looks most like the ori-
ginal, unsegmented image. Since we want to determine which method is "best", the
order of merit method is appropriate. Since the judgement of "best" is based on which
segmented image looks most like the original unsegmented image, the use of the orlgr-
" nali 1mage as a standard, as in the constant stimuli rnethod is appropnate

The subjecnve tests were performed us1ng 10 test subjects, the six test images
shown in Figure 2.3, and 18 test image sets. A test sub_]ect was presented with one test
. image set at a time. Each test image set consisted of four images: an unsegmented test

_image (the "standard"), and three segmented versions of that image (the "stimuli"
images to be ranked). One segmented "stimuli" image was generated using coarse seg-
mentation and no post-segmentation filtering, one was generated using slightly finer
segmentation and moderate post-segmentation filtering, and the last segmented
- "stimuli" image was generated using very fine segmentation - and extensive post-

- segmentation filtering. (More segments are removed from the segmented image as a
result of “extensive" post-segmentation filtering than are removed as a res’ultv of
"moderate” post-segmentation filtering.) All the images were segmented using TH 3
with m=.123 and w=0.5, and post-segmentation filtered uslng E,,. The parameters d -
and thma.x were adjusted to vary the coarseness of the segmentanon, and the energy
threshold was adjusted to vary the extent of post-segmentation filtering. The four
images were arranged in a square configuration, with the unSegmented "standard" image .
in the upper left corner of the square. An example of a test image set is shown in Flgure '
2.16. ' '

‘Each test'image set was presented to a test subject twice, w1th the placement of thej ;
three segmented "stimuli" images varied. All of the segmented i images in any one test
image set had approximately equal number of segments; and for each test image there
were two or three different test image sets, each composed of images having a differenit
number of image segments. For example,. two test image sets were constructed from the
"house" test image. One set was composed of the unsegmented standard "house" image
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Fxgure 2.16. An example of a test image set used in the subjective tests to deterrmne the
1nteract10n between segmentation and post-segmentanon ﬁltenng '
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and three segmented versions of "house," all having approximately 2000 segments, and

“the other was cemposed of the unsegmented standard "house" image and three seg-
mented versions of "house,” all having approximately 1500 segments. Both of these
test image sets were presented twice to each test subject, with the locations of the seg-
mented "stimuli" images varied. '

- The test image sets weré presented to the test subject on a DeAnza CRT monitor
~ (manufactured by Mitsubishi Electric, model C-3910) in a darkened room. This moni-
“tor has 512 x 512 pixel resolution, with 256 possible gray levels. The monitor was cali-
brated for a linear relationship between gray level numeric value and output luminance.
The calibration procedure is described in Appendix E." The test subject sat a distance of
approx1mately six times the image height away from the screen. Each test subject was
glven approximately three minutes before the start of the experiment, to allow for adap-
tion to the room’s illumination (known as "dark adaption"). The test subject was
instructed to rank the three segmented images in each test image set in order from the
one that most closely resembled the original image, to the one that least resembled the
original image. The subject was given 30 seconds to make this determination. An
entire trial with one test subject took approximately 25 minutes. In order to compensate
for any "learning" by a test subject, or any fatigue in a test subject during the 25 minute
testing process, each subject viewed the test image sets in a different order. This varia-
tion also compensates for any additional dark adaption by the test subjects after the ini-
_ tial three minutes. ‘

The raw data from the experiment described above is summarized in Appendix A.

The median rankings of the three types of segmented images in each test image set, for
both presentations of that test image set to all the test subjects, are given in Table 2.1.
The overall median rankings of the three types of segmented images for each test image
are given in Table 2.2. The coarsely segmented image with no post-segmentation filter-
ing had a median ranking of last for all of the test image sets. The moderately seg-
mented and filtered image had a median ranking of second for five of the six test
images, and the finely segmented and extensively filtered i image had a median ranking
of first for five of the six test images. Overall, the coarsely segmented image was
ranked last in 91 percent of the trials, the moderately filtered image was ranked second

- in 71 percent of the trials, and the extensively filtered image was ranked first in 74 per-
cent of the trials. This data strongly indicates that post-segmentation filtering is very
useful for removing visually insignificant image segments. For a given number of
image segments, a much better visual quality segmented image is generated by doing
fairly fine segmentation followed by extensive post-segmentation filtering, than by only .
coarsely segmenting the image.
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' ‘Table2.1 Median rankings of the three types of segmented images in each test image
;o B set, for both presentations of that test image set to all the test subjects
("psf" refers to post-segmentation filtering). :

_ Median Rankings

: approx. |- coarse " medium : fine
image | number of | segmentation, segmentation, | segmentation, | '
_segments no psf moderate psf | extensive psf

Airpl | 2684
2688
2911 -
Eric 1434 -
1916
2301
Girl - 1064

: 1273
o 1652
House 2314
2774 |
2834 ||
3504
Krista 685
L . 948
Natalie | 714
855
1076

NNNHHNNP‘NNNNNNNNNN
H»—A»—-NNp-dpat\)p-—»—A»-lr-Av—lr—-r—nr—-o-ﬂr—-
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Table 2.2. Overall median rankings (for both prescntatién’s, to all test subjec‘tsi, for all
o different number of image- segments) of the three types of segmented
images for each test image ("psf" refers to post-segmentation filtering).

Median Rankings'
coarse . | .. -' medium . fine ‘
image . segmentation, segmentation, | segmentation,
no psf moderate psf | extensive psf- |
Airpl 3 2 o 1
Eric 3 2 1
Girl - 3 2. 1
House 3 2 1
Krista 3 1 2
Natalie 3 2 1
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Thls result can be explamed by exammlng centroid-linkage region growmg versus
post-segmentation ﬁltenng ‘Centroid-linkage region growmg is a raster scan method. _
Therefore, the algorithm only allows for segments to be grown from above and the .

' immediate left of the current pixel. No segments can exist below and to the immediate

right of the current pixel, so characteristics of image segments in those areas cannot be
’ accounted for as segments are grown. Also, as the centroid-linkage algorithm
progresses, the average intensity and shape of an image segment may change consider-
ably. This means that decisions about how segments should be formed are made with
incomplete information about the configuration of the segments that already exist in the
image. In contrast, during post-segmentation filtering, characteristics of ’segments :
~ neighboring the segment under test in all directions are considered, and in addition,
. most of those neighbor segments are in their final form. The information available on
which to base decisions about how the image should be segmented is more complete at
the post-segmentauon ﬁltenng stage.

2 4. A Quantitative Measure for the Number of Segments ’
Required by an Image

~In this section we propose a quantnanve ‘measure wh1ch specifies the number of
: 1mage segments necessary for an 1mage to achieve a particular segmented quahty ’
~ Since the number of segments m the image plays a major role in determining the bit rate
for the image, such a measure would allow estimation of the bit rate requlred for an' '
1mage, thhout actually compressmg the image. ‘ :

The number of segments requlred by an image depends on two bas1c 1mage
characteristics: the high: spatial frequency content of the image and the amount of con-
trast in the image. In general for two images with similar spatial frequency content, the'
image with the greater contrast will require more segments. As an example of this con-‘
sider two images of a sinewave grating with a particular spatial frequency. Suppose that
the sinewave in the first i image has several times the amplitude of thesinewave in the
" second i image. In order to achieve the same quality in the segmented versions of these

~ images, the first image will require more segments, because a wider range of gray levels

_must be represented Likewise, for two images with similar contrast, the image with
 higher spatial frequency content. will require more segments. As an example : of thlS

- consider two images of a squarewave grating with a particular contrast. Suppose that )
'the squarewave in the first image has several times the spatial frequency of theﬁv
squarewave in the second 1mage Since each "stripe in the i image requires a segment to

- represent, in order to achieve the same quahty in the segmented versions of these

o 1mages the ﬁrst 1mage will obv1ously requu'e more segments than the second (because :
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there are more "stﬁpes in the higher frequency image). Taken together these two ideas |
‘lead to. the conclusion that, in general, images with large amounts of hlgh spanal fre- :
quency content, accompanied by high contrast, require numerous segments. '

The measure we propose qu»anuﬁes the combination of high contrast and high spa-
tial frequency content in the image by measuring the average differences between
neighboring pixels in the image. If the image has high contrast, differences between
neighboring pixels will tend to be large. However, if the image in addition has rela-
tively low frequency content, then these large differences will occur infrequently, and
therefore the average difference will be relanvely small. By contrast, if the image has
- high contrast accompanied by significant high frequency content, large differences will '
occur frequently in the image, and the average difference will be large. Therefore, by_
averaging the differences between neighboring pixels in the image, we obtain a measure :
which reflects the number of segments required by an image.

The measurement technique we propose involves taking horizontal, vertical, and

~diagonal "slices” through the image. The average of the absolute value of the difference

between successive pixels along each slice is calculated. In terms of the ith row in an
" NN image this can be written: o | '

Mr; = Z \pij - plj+l i ' : (213)
ji=0 : S

where p; j is the gray level of the pixel in the ith row and jth column of the image. A,

similar expression can be written for the jth image column:

N-2 R
Mej = 'Zolpi'j —Disjls (2.14).
i= oo

and for the two corner-to-corner image diagonals:

N-2 : : . )
Md= Y, |pii —DPi+riv1| + |PiN-1-i = Pisi,N-2-il- - (2»15)
i=0
Then the total segment measure, ¥, for an image is the average of these measures. over
all the rows and columns plus the two diagonals of the image:

M= ———— | Mi+ T M + Mr; }. -(2.16)

QN+2N-1) © T ‘}.;0 ‘ | ¢ o

Is is also possible to use a subset of the rows and columns, for example every third row
and column. This saves on computation time, however as the subset becomes smaller,

the reliability of the measure may be reduced.
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2.4.1 Experimental Verification

The measure described above was computed for five of the test images shown in
Figure 2.3 in an effort to determine its accuracy at estimating the number of segments
required by an image. This verification was difficult due to problems in determining
when the segmented quality of two different segmented images was equal. Previously
in this chapter, we have compared a segmented version of an image to other segmented
versions of the same image. However, in order to evaluate the validity of 4 it is neces-
sary to compare the quality of two different segmented images. In this comparison we
must subjectively determine when the quality of the two different segmented images is
- equal. Though this determination can be made approximately, it is virtually impossible
to make with any precision. ‘ '

If a meaningful quantitative quality measure for segmented images existed, each
image could be segmented to have a specific, precise quality measure value. Then the
number of segments in each image could be compared to each image’s M measure in
order to verify #. - Since no applicable quantitative quality measure is known, we are

left to subjectively evaluate the equality of the visual quality of deferent segmented‘ '

images

Despite these difficulties, segmented versions of the test images in Figure 2.3a-¢
were generated having, as closely as could be determined, equal subjective visual qual-
jty. These segmented images are shown in Figure 2.17. The number of segments in
- each of these images, and the 9 values for each image are shown in Table 2.3. Table
2.3 also gives values for M calculated using several different subsets of the image Tows
and columns. Comparing M values for one image using various row and column sub-
sets, we. see that computing A using a few as every eighth column and row does not
have a significant effect on. the value of M.

Comparing the values for 2 to the number of segments in each of the segmented
images, we see that the two numbers are nearly monotonically related. The data also
shows that, for the most part; the larger the difference between the number of segments
in two images, the larger the difference in the M values for the two images. However,
since this verification is based on a difficult subjective comparison of the quality of dif-
- ferent segmented images, 44 cannot be absolutely verified as a estimator for the number
of segments required by an image. A can only be verified to the same rehablhty as the
segmented image quality measure used in #€s evaluation. :
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d=T,thmg =1 T d=5,thye =8,
# segments = 551, # segments = 690,
energy threshold = 15 energy threshold = 13

d =7, thye = 10, d=10, thye =13, -

# segments = 780, # segments = 871,
energy threshold = 17 energy threshold = 24

d =13, thp = 16,
# segments = 898,
- energy threshold = 30

Figure 2.17.The segmented and post-segmentation filtered images used to verify M.

' The parameters used in segmentation, the energy thresholds used in post-
segmentation filtering, and the number of segments after post-segmentation
filtering are given below each image. (TH3 with w =0.5 and m =.123 was
used to segment all the images, and E,, was used to post-segmentation
filter all the images.) ‘
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Table 2.3. Summary of the number of segments and the M values for each of the
segmented images in Figure 2.17. ‘

_ M Values
image | numberof | allrowsand | every 8-throw | every 32-nd row
o segments columns and column - and column

“Krista 551 21.958 21.866 22.512
Natalie 690 25.184 - 25.201 25.295
Girl - - 780 - 21.399 21.228 - 21.364
Eric 871 - 28,961 . 28.383 - 27.280

'| House 898 27.942 . 21.144 - 26.651



In this chapter we have described investigations: into what type of segmentation
threshold in the centroid-linkage region growing image segmentation algorithm gen-
erates the best visual quality segmented images with the least number of segments.
‘From these investigations we have determined the characteristics of a HVS-based thres-
" hold which leads to the best visual quality segmented image, for a given number of
~ image segments. We have also described a HVS-based method for filtering a segmented
image to eliminate visually insignificant i image segments. In both these techmques we
" have successfully exploited HVS properties to improve our image segmentation. Sum-
marizing, the segmentation algorithm we have designed consists of two steps, illustrated
in Figure 2.18: o
(1) Centroid-linkage region gl'owing.using TH4 (see Equations 2.3,2.'4,“
and 2.6, and Figure 2.2), with m = .123 and w =0.5. The parameters d
and thmax are adjusted to control the number of image segments created.

(2) Post-segmentation filtering using energy measure E,, (see Equation
2.10). The energy threshold is adJusted to control the number of seg- .
ments eliminated from the image. . .
We have also, through a series of subjective tests, demonstrated clearly the
supenonty of image segmentanon followed by post-segmentation filtering over unage
_ segmentatlon alone
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The segmentatmn (discussed in Chapter 2) and quantlzatlon (dlscussed
in Chapter 3) algorithms. The parameters d and thmax are adjusted to

* -~ control the number of segments created in the segmented image. The

energy -threshold is adjusted to control the number of segments

- eliminated from the image during post-segmentation filtering, Nis the -
number of quantization intervals, and M is the number of gray levels in -
'~ the range of the ongma] 1mage v ’ »
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CHAPTER 3 -
QUANTIZATION OF SEGMENTED IMAGES

In the previous chapter we presented a human visual systém (HVS) based
algorithm for segmenting a gray level image. In this chapter we describe a technique
for quantizing the segmented image. We show that the number of gray levels in a
segmented image can be reduced significantly, with little or no degradation in the
" quality of the segmented image. We have found that the number of gray levels in a
segmented image can typically bc’reduced» from 256 to on the order of 20, i.e. from 8
bits per gray level to approximately 4.5 bits per gray level (a reduction of more than
40%). The quantizer we propose is designed to produce visually pleasing quantized
. segmented images. This is achieved by incorporating HVS properties in the process
used to select the quantizer characteristics.

" Other quantxzcrs have been proposcd which exploit. HVS properties
[29,38,97,98]. For example, quantizers which incorporate 'HVS properties have been
proposed for use in quantization of normal (not segmented) gray level images [99-102],
in differential pulse code modulation (DPCM) [103-109] and transform coding
[21,22,24,110-112].

~ In [101] a companded quantizer was designed for gray level images that
incorporates a model for HVS contrast sensitivity. The motivation was to reduce
artifacts in the quantized image due to false contouring. False contours occur in an
image when a smooth gray level ramp in the image is quantized and thus converted to a
series of steps. In [101] a non-linear mapping, modeled after HVS contrast sensitivity,
from image luminance to the perceptual quantity, brightness, is proposed. The
brightness values are then uniformly quantized for minimum mean square error. An
exponential probability density was assumed for the image luminance values. |
, In DPCM, quantizers are used for the differences between neighboring pixels.:
, 'Non-uniform quantizers can be designed for these pixel differences which exploit the
'HVS property that sensitivity to quantization noise decreases at and adjacent to large
intensity changes [105]. A function that measures intensity activity, known as a
masking function is constructed. This masking function is incorporated into a subjective
distortion measure, and a non-uniform quantizer is designed which minimizes this
distortion measure. The distortion measure basically weights the quantization error at a
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particular image location by the value of the masking function at that location. The
result is that larger quantization errors are permitted in "busy” parts of the image, where
such errors are less noticeable. In smoother parts of the image, where quantization
noise is more objectionable, quantization errors are smailer. '

Quantizers incorporating HVS properties have also been designed for use in
transform coding techniques [21,22]. As discussed in Chapter 1, transform coding
methods are typically implemented on blocks of pixels. The image is divided into
blocks and the transform is applied to each block individually. The transform
coefficients are then quantized. Non-uniform quantizers can be designed for the
transform coefficients which exploit HVS properties. based on local = image
characteristics. Transform coefficients which are critical to the visual quality of the
image are quantized with more precision than those coefficients considered less critical.

In this chapter we design a HVS-based quantizer for the pixels in a scgmented‘
image, rather than for pixel differences or transform coefficients. The quantizer we
propose is designed to produce visualiy pleasing quantized segmented images. This is
accomplished by incorporating HVS properties relative to contrast sensitivity in the
design of the quantizer. According to-a model of HVS contrast sensitivity presented in
Chapter 1, the HVS is most contrast sensitive in the middle of the gray level range, with
the sensitivity decreasing toward the ends of the gray level range. Based on this
characteristic, - the quantizer we propose is non-uniform, with the spacing of the
quantization thresholds varying according to the contrast sensitivity curve shown in
Figure 1.3b. This will result in relatively fine quantization for mid-range gray level
values, and more coarse quantization toward the extremes of the gray level range. Our
quantizer does not incorporate a priori information about the 1mage to be quantized,
such as the image h1stogram The only information about ghe 1mage used by our
quantizer is the range of gray levels in the image. | '

The suitability of segmented images for quantization is du'e to at least two factors.
The first has to do with the contrast sensitivity of the eye 41,45]. HVS contrast
sensitivity is a function of, among other things, spatial separation. The difference in
gray level required between two test patches in order to be discernible to a human
- viewer varies as the spatial séparation between the two patches changes. For example,
it is easier to tell whether two test patches are the same gray level when they are directly
adjacent to each other than when they are separated by some distance spatially. This
-~ HVS property. can be exploned when quantizing a segmented image. Consider the
simplified segmented image shown in Figure 3.1. Suppose that the two shaded
‘segr’n'e-nts have different gray levels in the original segmented image, but both gray' ,
levcls fall in the same quantization interval. Then these two segments will have the
same | gray level after quantization. This does not cause noticeable degradation in the



Figure 3.1. A simplified segmented image.
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segmented image because the spatial separation of thcse two scgments makes this
change in gray level imperceptible to the human viewer. :

© The second factor that makes segmented images suitable for quantization has to do
with the typical difference in gray level between adjacent image segments. First assume
that there are an "adequate" number of quantization levels. (What constitutes "ade-
quate" will be discussed in more detail later in this chapter.) Since segmentation
divides an image into dissimilar regions, it is infrequent that two adjacent segments fall
in the same quantization interval. Therefore, though two neighboring segments may
~ both have their gray levels changed by quantization, it is unlikely that they both will be
changed to the same gray level (and essentially be merged to form one larger segment).
This is important because, assuming that an image has been segmented in such a way
that each segment in the image is critical to the visual quality of the image, we would
like quantization to preserve intact all the image segments. As long as quantization
preserves a large number of the image segments intact, the quality of the segmented
image is maintained. In summary, though quantization affects the gray level of each
image segment, it preserves the contrast between segments well enough that the eye
does not perceive a difference after quantization. : :

In Section 3.1 we present a design method for the HVS- based quantizer descnbed
- above. In Section 3.2 we present the results of subjective tests comparing the perfor-
mance of the proposed quantizer to a simple uniform quantizer and to a histogram- -
based quantizer. The tests were performed using the five segmented images shown in
‘Figure 3.2. Histograms of these segmented images are given in Appendix D. In Section
3.3 we determine the extent of quantization possible before noticeable degradauon
occurs in a segmented image. Finally, Section 3.4 explores quantization of a segmented
image that has been post-segmentation filtered (as described in Chapter 2),.'versus
quantization of a segmented image that has not been post-segmentation filtered. - ’

3.1 Human Visual System Based Quantization of Segmented Images =

The design of a quantizer requires speciﬁcation of quantization thresholds and
quantizer output levels. A widely used approach to the specification of these parameters
is classical optimum quantizer design, for example that of Max [113]. With this
approach, a distortion function is defined which is a function of the quantization error.
Given the quantizer input amplitude probability density, the quantizer is designed ‘to
minimize the expected value of the distortion measure. However, there is a problem
with applying the methods of Max in the specific case of quantization of a segmented
image. The methods of Max require specification of a distortion measure, which is :
- difficult for images (see Section 1.2.2). Therefore, a different approach to the design of
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d=4,th,, =8 w=0.5,  d=5,thy, =12, w=0.5,

energy threshold = 20, energy threshold = 20,

# segments = 579 S # segments = 986

o d=13, thy, =20, w = 0.5, d=3,thpy =40,w=10,

energy threshold = 20, ~energy threshold = 15, o
-# segments = 1084 #segments =632 .

d=9, thy, =40, w =05,
energy threshold = 25,
# segments = 791

e Flgure 3.2. Original segmented images used to compare - d1fferent quarmzers The

parameters used in segmentation, the energy thresholds used in post-
segmentation filtering, and the number of segments in each image are given
below each image. (TH3 with m =.123 was used to segment all the
images, and E,, was used to post-segmentation filter all the images.)

/
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a quantizer for segmented images is necessary

We propose determination of the quantizer characteristics based on HVS contrast
sensitivity. The spacmg of the quantization thresholds in our quantizer will be varied
according to the contrast sensitivity curve shown in Figure 1.3b. This will result in a
non-uniform quantizer, with quantization thresholds densely spaced in the middle range
of gray levels, and spaced further apart toward the edges of the gray level range. The .
quantizer des1gn algonthm will center. around determining the length of each quantiza-
- tion interval. “The length of the intervals will be varied according to the approx1mat10n
~ for HVS' contrast sensitivity shown in Figure 3.3. The value of this approximation
ranges from 4.0 to 19.8, which is a ratio of approximately 4.75. Accordingly, we will
design our quanuzer so that the ratio between the length of the longest quantization
mterval and the length of the shortest quantization interval is also approx1mately 4.75.

' Suppose that the image to be quannzed has gray levels with range M. In other
words, the gray levels in the segmented image range from some gray level p, to gray
level p + M. Also, suppose that we desire the segmented image to be quanuzed to N dif-
* ferent gray levels. The values of M and N are the only input necessary for our quantizer
design. Let the unit quantization interval length, Q, be the integer closest to M/N (Q

~ has units of gray level). By appropriately welghnng Q by a function of M and N, the

quanuzanon 1nterva1s lengths (measured in number of gray levels) can be varled
accordmg to Flgure 3.3. : c

There are two sets of equations which together deterrmne the lengths of the. quantl-
zauon mtervals, one set for N odd and one set for N even. We begin by numbering the
quantization intervals, starting with 1 for the interval comspondmg to the lowest input
gray level values, and up to N for the interval corresponding to the highest input gray
level values It should be noted that since the quantization intervals must be integer in
length, the values given by the equations below for quautlzatlon mterval length are
always roundéd to the nearest integer.

* We will first consider the case of N even. For this case, the middle two quantlza-
tlon mtervals are specified to be 0.35Q gray levels in length. In other words, the length
of .the intervals numbered N/2 and (N+2)/2 is O. 35Q gray levels each. For’ mtervals '
' numbered between 1 and (N-2)/2, the length ofa quantlzatlon mterval is glven by :

260,

, v

where iis the 1nterval number and L; is the length of interval i, measured in number of
gray levels. For intervals numbered between (N+4)/2 and N, the length of a quantlza-
tion mterval is glven by > ol

i+ 65+——)Q, | o (3 1)'.

2 6Q 1 3(N+2)
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. Figure33. An approxiﬁlation for HVS contrast sensitivity.
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~ Next we consider the case of N odd. For this case, the middle three quantization
intervals are specified to be 0.35Q gray levels i in length. In other words, the length of
the intervals numbered (N-1)12, (N+1)/2, and (N+3)/2 is 0.35Q gray levels each. For
intervals numbered between 1 and (N-3)/2, the length of a quantization mterval is given

by:

260, 26 | o aa
L=5w +(165+N 50 | 6y

: where i is the 1nterva1 number, and L; is the length of interval i, measured in number of
" gray levels. For intervals numbered between (N+5)/2 and N, the length of a quantlza-

tion mterval is ngen by:
' 2. 2.60 .
N- 3

With these equations defined, quantization thresholds are obtamed by centermg the
middle quantization intervals in the middle of the gray level range of the input image.
For example for N and M even, set the quantization threshold for the lower edge of

L; =

13N43) . L
i+ 035+ 1300 e ee

. quantization interval number N/2 to be gray level s + (M/2) — Ly, and the quantlzatlon
‘ threshold for the upper edge of that quantization interval to be gray level s + (M 12)-1.

Slmllarly, set the quantization threshold for the lower edge of quantization interval

_,' ’ number (N+2)/2 to be gray level s + (M/2) and the quantization threshold for the upper
.~ edge of that quantization interval to be gray level s + (M/2) + Ly42y2 — 1. By working.
- outward and adding the quantization interval lengths given by Equations (3.1) and (3.2)
B (Equatlons (3.3) and (3.4) for N odd) to the quantization thresholds that have already
o been determmed the remainder of the quantization thresholds can be specified. - All that
__remains in the design of the quantizer is to specify an output level for each of the quant-
' ization intervals. We considered two options for defining the output levels of the quan-

tizer: the mean gray level of the p1xe1s in each quantization interval, and the median
gray level of the pixels in each quantization interval. In our experience the mean and
the medlan were always: w1th1n two or three gray levels of each other, therefore there
was no noticeable dlfference in performance between the two. We chose to use the
mean of the pixels in each of the intervals as output the levels for the quanmer Table
3.1 shows the thresholds, output levels, and interval lengths for a typical quantlzerv

; des1gned using the method described above. Flgure 3.4 shows a plot of this HVS based

quannzer charactenstlc
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" Table 3.1. A HVS-based quantizer designed for the image of Figure 3.5a using the
: "~ method outlined in Section 3.1 (M =12, N = 225).

{ Bin Bin Gray Levéi’ Output .
Number | Length Range | Gray Level
1 31 | 1747 | 29
2 26 4873 | 60
3 22 7495 | 84
4 16 96-111 103
5 12 112-123 | 117
6 | 124129 127
7 6 130-135 133
8 12 | 136-147 142
9 16 148-163 155
10 22 164-185 173
11 26 186-211 202
12 30 | 212-241 225
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3.2 Experimental Comparisons of Quantizers

The quantizer proposed above has been compared experimentally to both a uni-
form quantizer and a histogram-based quantizer. To facilitate these 'cor'nparisons, the
uniform quantizers and histogram based quantizers were designed for each of the seg-
mented test images, for several different numbers of quantization levels. The quantiza-
tion intervals of the uniform quantizers were uniformly spaced over the range of gray
levels in the segmented images, and the output level for each interval was the average of
image pixels in that interval. The histogram-based quantizers were designed based on
the shapes of the histograms of the segmented images, and the output level for each
interval was the average of image pixels in that interval. For M quantization intervals,
the quantization thresholds were chosen by manually inspecting the image histograms
- and subjectively finding the M—1 most significant "valleys" in the histogram. The
thresholds were placed in these valleys. Since these quantizers were designed by
inspection, this aspect of the experiment is not precisely reproducible. However, since
histogram-based quantizer design algorithms are generally heuristic in nature, the exact
specifications of these quantizéts is not critical in our experiment. Examples of a uni-
form quantizer and a histogram-based quantizer designed for the i 1mage in Flgure 3.2a
are shown in Flgures 3.5 and 3.6. .

These compansons were accomplished through a series of psychophys1ca1 tests.
As was the case with the subjective tests performed in Chapter 2, we again have three
algorithms we wish to evaluate with respect to how well they preserve the quality of a
standard image. Therefore, the design of these subjective tests was identical to that dis-
cussed in Chapter 2. The subjective tests were performed using eleven test subjects,
and the five segmented images shown in Figure 3.2. A test subject was presented with
one test image set at a time. Each test image set consisted of four images: an original
segmented image (one of those shown in Figure 3.2), and three quantized versions of
that image. Using the terminology of Chapter 2, the original segmented image is the
"standard" image, and the three quantized versions are the "stimuli" images to be
ranked. One quantized stimulus image was generated using a uniform quantizer, one
was generated using a hnstogram-based quantizer, and the last was generated using the
HVS-based quantizer described above. The four images were arranged in a square
- configuration, with the original segmented "standard" image in the upper left corner of
the square. Each test image set was presented to a test subject twice, with the placement
of the three quantized segmented "stimuli" images varied. All of the quantized seg-
mented "stimuli” images in any one test image set were quantized to the same number
of gray levels. For each of the segmented "standard" images shown in Figure 3.2, there
were several different test image sets, each composed of images quantized to a different
number of gray levels. For example, two test image sets were constructed from the



102

255 —

Uniform
225 , Quantizer

209 —

187 —

168

153 —

Olltplit 134
gray
level 6.

I 1 | f | ] | { | | ] 1
35 53 71 89 107 125 143 161 179 197 215 255

input gray level

Figure 3.5. The characteristics of a uniform quantizer designed for the image of
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 "house" test image. One set was composed of the segmented "house" kimage and three
~quantized versions of the segmented "house," all having 12 gray levels, and the other
was composed of the segmented "house" image and three quantized versions of "house,"
all having 8 gray levels. Both of these test image sets were presented twice to each test
- subject, with the locations of the three quantized "stlmuh" 1mages varled An example

- of a test image set is shown in Frgure 3.7.

‘The test image sets were presented to the test subject on a DeAnza CRT momtord
(manufactured by Mitsubishi Electnc, model C-3910), ina darkened room. This moni-
tor has 512 x 512 pixel resolution, with 256 possible gray levels The monitor was cali-
brated for a linear relationship between gray level numeric value and output lurmnance
The calibration procedure is described .in Appendlx E. Each test subject was given -
approximately three minutes for adaption to the room’s illumination (known as "dark
adaption"). ‘The test subject sat a distance of approximately six times the image height ‘
away from the screen, and was instructed to rank the three quantized segmented images
in each test image set in order from the one that most closely resembled the original
segmented image, to the one that least resembled the original segmented image. The -
subject was given 30 seconds to make this determination and an entire trial with one test
subject took approxrmately 15 minutes: In order to cornpensate for any "leammg bya.
test subject, or any fatigue i in a test subject durmg the 15 minute testing process, each
subJect viewed the test image sets in a different order. This variation also compensates
for any additional dark adaptron by the test subJects after the initial’ three mlnutes
allowed o ,

v The raw data from- the expenment described above is summarized in Append1x B :
- The median rankmgs of the three quantized images in each test image set, over both
' presentations of that test image set to all the test subjects, are shown in Table 3.2. The
~ overall medlan rankings (over both presentations, for all test subjects, for the various
numbers of gray levels) of the three types of quantized images are shown in Table 33.
Overall the HVS-based quantizer was ranked third in 49 percent of the tnals, the
h1stogram-based quantizer was ranked first in 42 percent of the trials, and the. unrform
~ quantizer was ranked second in ‘47 percent: of the trials. The slight superiority of the -
hlstogram-based quantizer over the other two quantizers can be explained by the fact
that the hrstogram -based quantizer makes use of szgmﬁcant a priori information about
“thei 1mage being. quantized, namely the histogram of the image. Neither the umform nor
the HVS- based quantizer makes use any such 1nformat10n The hlstogram-based quan-t
tizer is. strongly image dependent; while the other two quantizers are not. The perfor-
mance of the HVS- based quantizer could be 1mproved by incorporating information
from- the i 1mage hlstogram, and by allowmg the quantizer characteristic to vary. wrth spa- |

- tial posmon in the image.
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_Figure 3.7. An example of a test 1ma
' quantizers.

ge set used in the subjective tests of the
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Table 3.2. Median rankings of the three quantized i images in each test 1mage set; over
both presentatlons of that test image set to all the test subjects.

o Median Rankings v
7 number of HVS | Histogram | Uniform |
| image | quantization || quantizer | quantizer | quantizer |
S : levels || ranking -ranking rankmg
|Eric | 12 ’ 3 1 ' 2
18 3 1 2
Girl 20 '3 1 22
e 24 3 1 2
House | 8 1 2 3
: 12 2 1 2
{ Krista 10~ 2 3 1
- 15 2 3 2
, 20 2 3 1
Natalie 12 3 1 2
. 20 3 1 2
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Table 3.3. Overall median rankings (over both presentations, to all test subjects, for -

all different number of image quantization levels) of the three quantizers
for each test image. :

Median Rankings
HVS | Histogram | Uniform
image | quantizer | quantizer | quantizer
' ~ ranking ranking ranking -

" [Eric 3 1 2
Girl 3 1 2
House 2 2 2
Krista 2 3 2
Natalie 3 1 2
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3.3 Maximum Allbwable Extent of Quantization

A important question in relation to segmented image quantization is how many
quantization levels are necessary to avoid visible degradation in the quantized seg-
mented image. We have experimented with quantizing segmented images composed of
between 200 and 8000 segments. From these experiments we have found that the key
factor in determining the extent of quantization possible before noticeable degradation
occurs in a segmented image is the percentage of segments that are merged during
quantization. Since we assume that each segment in the image being quantized is visu-
ally critical, we would like for as few as possible segments to be merged during quanti-
zation. (This idea was discussed in the beginning comments of this chapter.) There-
fore, an appropriate indication of whether a segmented image has been quantized to too
few gray levels is the percent reduction that has occurred in the number of segments in
the image. ' v

Figures 3.8b-d through 3.12b-d show quantized yefsions of the segmented images
of Figures 3.8a-3.12a. The quantization was performed using the HVS-based algorithm
described in Section 3.2. The number of segments and gray levels in each image is
given in Table 3.4. Histograms of the segmented images'in Figures 3.8a-3.12a are

~ given in Appendix D.. Examining Figures 3.8-3.12, notice that as the number of quanti- -
zation ‘intervals is decreased, the number of segments in the image also decreases. As
the number of image segments begins to decrease. significantly, the degradation in: the
quantized image becomes noticeable. For example, in the case of the image in Figure
3.8, quannzanon to 25 gray levels (approximately 4.5 bits) reduces the number of seg-
ments in the image only from 579 to 512, a change of only 12%. Therefore there is vir-
tually no. degradation in the visual quality of the segmented image. However, further
quannzatlon down to 10 gray levels (approximately 3.5 bits) reduces the number of seg-
ments by approximately 53% and the segmented i image’s quality suffers noticeably. A
similar progression occurs in the images in Figures 3.9-3.12. These images verify that
the key factor in determining the extent of quantization possible before noticeable
degradation occurs in a segmented image is the percentage of segments that are ehm—
mated due to 1nadvertent merging of segments durmg quannzauon

34 Quantization versus Post-Segmentation Filtering

’ In Chapter 2 we presented an algorithm for segmentatlon of a gray level image.
The algonthm consisted of two steps: an initial segmentation step, and a post-

segmentation filtering step. The purpose of the filtering step was to eliminate visually

insignificant segments  in- the segrpented« image, so that there were no unnecessary
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“-!- .\ 3
(@) d=4,thn, =8,
energy threshold = 20,
# segments = 579

(b) 25 quant. levels,
# segments = 512

() 18 quant. levels, ~ (d) 10 quant. levels,
# segments =412 ‘ # segments = 275

. Figure 3.8. A segmented image and three quantized versions. (a) the original
segmented image. This image was generated using TH 3 with m =.123 and |
w=0.5, and post-segmentation filtered using E,,. (b-d)- Quantized
versions of the segmented image in (a). These images were quantized
using the HVS-based quantizer described in Section 3.1. The parameters
used in segmentation, the energy threshold used in post-segmentation
filtering, the number of segments in the images, and the number of
quantization levels in the quantized images are given below each image.
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(@) d=S5, thnw =12,
- energy threshold = 20,
~ #segments =986 -

(b) 26 quant. levels,
# segments = 873

: | . (d) 10 quant. levels,
#segments = 800 R . # segments =476

(c)' 20 quant levels,

x Flgure 39. A segmented image and three quantlzed versions. (a) the ongmal
' - segmented image. This image was generated using TH 3 with m =.123 and
- w=05, and post-segmentatlon filtered using Ez,, ‘(b-d) - Quantized
- :';ff-{.vers1ons of the: segmented image in (a). These images were ‘quantized
.. using the HVS-based quantizer described in Section 3.1. The parameters
" ~used.in segmentation, the energy threshold used in post-segmentation .
:.ﬁltermg, the number of segments in the images, and the number of
quantization levels in the quantized images ate given below each image.
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@) d =13, thpax =20,
energy threshold = 20,
# segments = 1084

(b) 28 quant. levels,
# segments = 1041

(c) 15 quant. levels, : (d) 8 quant. levels,
# segments = 972 - # segments =746

Figure 3.10.A segmented image and three quantized versions. (a) the original
segmented image. This image was generated using TH 3 with m = .123 and
w=0.5, and post-segmentation filtered using E,,. (b-d) Quantized
versions of the segmented image in (a). These images were quantized
using the HVS-based quantizer described in Section 3.1. The parameters
used in segmentation, the energy threshold used in post-segmentation
filtering, the number of segments in the images, and the number of
quantization levels in the quantized images are given below each image.
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(@) d =3, thpa =40,
energy threshold =15,
# segments = 632

(b) 25 quant levels,
# segments = 587

(¢)- 15 quant. levels, - » (d) 10 quant. levels,
~ #segments =514 . - # segments = 350

Flgure 3.11.A segmented 1mage and three quantized versions. (a) the original

segmented image. This image was generated using 7H 3 with m =.123 and

=1.0, and post-segmentation filtered using Eo,. (b-d) Quantized

vers1ons of the segmented image in (a). These images were quantized

‘using the HVS-based quantizer described in Section 3.1. The parameters

‘used in segmentation, the energy threshold used in post-segmentation

filtering, the number of segments in the images, and the number of
zquarmzatlon levels in the quantized images are glven below each image.



(@) d=9, thya, =40,
energy threshold = 25,
# segments = 791
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b

(b) 25 quant. levels,
# segments = 758

(c) 18 quant. levels, : (d) 10 quant. levels,

# segments = 722 # segments = 594

- Figure 3.12.A segmented image and three quantized versions. (a) the original

segmented image. This image was generated using TH 3 with m = .123 and
w=0.5, and post-segmentation filtered using E,,. (b-d) Quantized
versions of the segmented image in (a). These images were quantized
using the HVS-based quantizer described in Section 3.1. The parameters
used in segmentation, the energy threshold used in post-segmentation
filtering, the number of segments in the images, and the number of
quantization levels in the quantized images are given below each image.



Table 3.4. Summary of the numbers of segments and gray levels in the images in Figures

3.17.

Nuinbér of

Number of '
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3.8-

Image | Gray Level
: Range Gray Levels | Segments
3.8a 17-241 80 | 379 |-
b 24-228 25 512
c 24-228 18 412
b 30-221 10 275
[ 30a 4.247 201 986
b 13-237 26 873
c 14-232 20 800
d 26-215 10 476
3.10a 24-228 189 1084
b 31-222 28 1041
c 32-214 15 972
d 44-202 8 746
3.11a 27-233 142 632 |
b 29-237 . 25 587
c 29-230 15 514
d 31-226 10 350
3.12a | 16-238 198 791
b 21-237 25 758
c 21-227 18 722
d 24-216 10 594
3.13a 16-242 | 213 2848
b 24-228 |’ 22 2439
c 24-227 22 483
"~ 3.14a 3-254 225 4094
b 20-231 15 3021
c 19-227 15 700
3.15a 21-228 204 3474
b 30-217 20 3398 .
c 32-218 20 1019 . .
3.16a | 26-235 172 3069
b 28-235 20 2527
C 29-233 20 563
3.17a 15-241 214 2719
b 21-227 15 2467
c 21-226 15 697
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segnients in the image. In this chapter we have discussed quantization of segmented
images such as those produced by post-segmentation ﬁltering. Since every segment in
" the image was assumed to be critical to the quality of the segmented image, the goal has
been to quantize the segmented image without reducing the number of segments in the
image. ' ' ‘ ,
| Suppose instead, we apply the quantizer discussed above to the segmented image
before post-segmentation filtering. We are now quantizing an "over-segmented" image,
that is, one that contains some visually insignificant segments. Since we know that
quantization of a segmented image results in the elimination of some image segments, it
‘may be possible that quantization of such an "over-segmented"” image would accom-
plish the task of eliminating insignificant image segments, making post-segmentation
filtering unnecessary. Figures 3.13-3.17 show examples of images compared to explore
this possibility. The images in Figure 3.13a-3.17a have been segmented using the algo-
rithm of Chapter 2. These images have nor been post-segmentation filtered. Refer to
‘Appendix D for histograms of the segmented images in Figures 3.13a-3.17a. The
images in Figure 3.13b-3.17b are quantized versions of the images in Figure 3.13a-17a
(generated using the HVS-bage,d quantizer described in this chapter). The images in
Figure 3.13c-17c are post-segmentation filtered and quantized versions of the images in
Figure 3.13a-17a. They have been filtered using the post-segmentation filtering algo-
rithm described in Chapter 2, and quantized using the same quantizers as the images in
Figure 3.13b-17b. Refer to Table 3.4 for the number of segments and gray levels in
these images. Comparing Figures 3.13b-17b to 3.13c-17c we see that the segmented
images that have been filtered and quantized have much fewer segments with the same
subjective visual quality as the segmented images that have only been quantized.

This result is not surprising, when the operations of segmented image quantization
and post-segmentation filtering are compared. When an image segment is eliminated by
being merged with another segment during quantization, this merging happens without
any consideration of the segment’s size, or the relationships between that segment and
neighboring segments. The merging is done using no information about the spatial
configuration of the image segments. In contrast, when an image segment is eliminated
during post-segmentation filtering, it is only after consideration of the size of the seg-
ment and the contrast of the segment with its neighbor segments. Since more complete
information is used when eliminating segments during post-segmentation filtering, it is
to be expected that post-segmentation filtering produces better decisions are about what
segments should be eliminated. The conclusion of this investigation is that quantization
does not do a good job of eliminating visually insignificant segments in a segmented
~ image. Quantizing a segmented image cannot take the place of post-segmentation filter-
ing the segmented image. : ' '
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@) d=4, thpg =
# segments = 2848

(c) energy threshold 20
22 quant. levels,
# segments = 483

(b) 22 quant. levels,
- # segments = 2439

Flgure 3.13.Images comparing the effect of quantization with and without preceding
post-segmentation filtering. (a) The original segmented image: (generated
using TH3 with m =.123 and w =0.5) (b) The segmented image of (a),
after HVS-based quantization. (c) The segmented image of (a) after post-
segmentation filtering (using E;,) and HVS-based quantization. The
parameters used in segmentation, the energy threshold used in post-
‘segmentation ﬁltermg, the number of segments in the images, and the
number of quantization levels in the quantized images are glven below
each image.
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() d=5, thye =12,
# segments = 4094

i ~ i | (c) energy threshold = 20,
(b) 15 quant. levels, 15 quant. levels,

# segments = 3021 # segments =700

Figure 3.14. Images comparing the effect of quantization with and without preceding

post-segmentation filtering. (a) The original segmented image.
(generated using TH3; with m =.123 and w =0.5) (b) The segmented

image of (a), after HVS-based quantization. c¢) The segmented image of
(a) after post-segmentation filtering (using E,;) and HVS-based
quantization. The parameters used in segmentation, the energy threshold

used in post-segmentation filtering, the number of segments in the

images, and the number of quantization levels in the quantized images

are given below each image.
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(@) d= 13 th max = 20,
# segments =3474

(c) energy threshold = 20,
20 guant. levels,
# segments = 1019

(b) 20 quant. levels,
# segments = 3398

Flgure 3.15. Images comparing the effect of quantization with and without precedmg
post-segmentation filtering. (a) The original segmented image. (generated
using TH3 with m =.123 and w =0.5) (b) The segmented image of (a),
after HVS-based quantization. (c) The segmented image of (a) after post-
segmentation filtering (using Ej,) and HVS-based quantization. The
parameters used in segmentation, the energy threshold used in post-
segmentation filtering, the number of segments in the images, and the
number of quantization levels in the quantized images are glven below
= each image.
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(@) d=3,
" thmax =40, .
# segments = 3069.

(c) energy threshold = 15,
20 quant. levels,
# segments = 563

(b) 20 quant. levels,
- # segments = 2527

Figure 3.16.Images comparing the effect of quantization with and without preceding
post-segmentation filtering. (a) The original segmented image. (generated
using TH3 with m =.123 and w = 1.0) (b) The segmented image of (a), -
after HVS-based quantization. (c) The segmented image of (a) after post-
segmentation filtering (using E,,) and HVS-based quantization. The
parameters used in segmentation, the energy threshold used in post-
segmentation filtering, the number of segments in the images, and the
number of quantization levels in the quantized images are given below
each image. U
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(@) d=9, thye =40,
o #segments =2719

pachy A5l
(c) energy threshold =25,
15 quant. levels,
# segments = 697

~ (b) 15 quant. levels, -
© # segments = 2467

~ Figure 3.17.Images comparing the effect of quantization with and without preceding

. _post-segmentation filtering. (a) The original segmented image. - (generated

using TH3 with m =.123 and w =0.5) (b) The segmented image of (a),

after HVS-based quantization. . (c) The segmented image of (a) after post-

- segmentation filtering (using Ej;,) and HVS-based quantization. The -

- parameters- used in segmentation, the energy threshold used in post-

- segmentation filtering, the number of segments in the images, and the

~-number of quantization levels in the quantized images are given below
each image. I S S
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In this chapter we proposed a 'HVS-based quantizer for segmented images and
“described the procedure for its design. We compared the performance of this quantizer
through a series of subjective experiments to a uniform quantizer and a histogram-based
quantizer. The histogram-based quantizer was ranked slightly'higher than the other two
quantizers. This was as expected, since the histogram-based quantizer takes advantage
of a priori information about the image not used by the other two quantizers. We
_showed that the extent of quantization possible for a segmented image is limited by the
‘percentage of segments the quantization operation eliminates from the segmented
image. Finally, we investigated the interaction between the operations of quantizing a
v 'scgmented image, and post-segmentation filtering a segmented image. These experi-
- ments demonstrated the importancc of each operation. Both post-segmentation filtering
~and quantization successfully exploit HVS properties in generating visually pleasing
~ segmented images with the minimum number of segments and gray levels. o
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) CHAPTER 4
MATHEMATICAL MORPHOLOGY

‘Mathematical morphology is a set theoretic method for the quantitative analy_;sis of
the geometrical form of sets in a Euclidean space. The foundations of mathematical
“ morphology were developed in 1964-1968 by G. Matheron and J. Serra at the Paris

School of Mines at Fountainbleu, France [8, 114]. The word "morphology" comes from

the Greek word meaning "the study of forms" [9]. ‘Morphology has its mathematical
_roots in the areas of integral geometry and geometrical probabilities (8]. Specifically,

morphological transformations are based on the set operations of Minkowski set
addition and Minkowski set subtractzon, which emerged from Minkowski’s work in the
study of ill-behaved sets [115- 117]. By representmg images as sets, Mmkowsk1 set

. algebra can be applied to images.

" In order to use morphology, an image is treated as a set in an N-diménsional
- Euclidean space. This image set interacts with a structuring element, which is also a set
in the same Euclidean space. The goal of this interaction is to transform the image set
into a new form which is more expressive of some selected geometric property of the

image. This new form can be used as a symbolic representation of the original image
set. Also, this new form allows for quantification of the selected geometric property,',:
and thus the quantitative analysis of the geometric form of the image can be
accomplished. This two step approach of morphology is illustrated in Figure 4.1. A
significant characteristic of this approach is that the image is treated as a whole entity

(the image set), rather than as a collection of local details. This idea of transforming an

image into a more meaningful form is basic to the philosophy of morphologlcal 1magc' .
processing, and it stems from fundamental facts about i image perception. '

In the mind’s image perception process, transformation of an image to makc it
more meaningful in some partiéular way is used extensively. According to Serra, "Fozf
any type of perception, the mind remodels the stimulus, in order to assimilate it to its
own patterns...To perceive an image is to transform it” [8]. The work of the gestaltists
in the field of psychology, especially W. Kohler [118], has found this structuring
activity of the mind in even the most simple perceptive phenomena [8]. The
- transformational nature of the mind’s visual perception process provides justification for
the transformational approach of morphological image processing. '
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Figure 4.1.  The two step morphological gperaﬁon.
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Another fundamental fact of image perception is that it is not purely objective; the
important aspects of the geometrical structure of an image vary from observer to
observer. When viewing an image "we see only what we want to look at” [8]. In order
to extract the information from an image that is of interest to a specific observer, the
morphological transformation performed on the image must‘s()meh_ow be adapted for
the observer. Morphology incorporates this requirement through' the use of the
structuring clement. Serra summarizes this idea: "...(geometrical structure) does not
exist in the phenomenon itself, nor in the observer, but somewhere in between the two.
Mathematical morphology quantifies this intuition by introducing the concept of
structuring elements” [8]. The structuring element set is generally smaller and has a
simpler shape than the image set. It acts as a kind of probe of the image; and the
- particular property expressed through a morphological transformation is determined by
the structuring element used. For example, through the use of different structuring
elements information can be extracted about the size, shape, onentanon connectlvuy,
or smoothness of the i image obJect

The basic building blocks of any morphological transformation are set union and
set intersection. Certain restrictions must be placed on the allowed combinations of
these set operations in order for the results of a morphological transformation, ¥(:), to
be meaningful for image analysis. Let A represent the original image set. Then the
restrictions can be expressed by the following four quantification constraints [8, 9]:

(1.) ¥(A) must be translation-invariant, i.e. W(A4,) = [¥(4)],.
(2.) ¥(A) must be scale-invariant, ie. for a scale parameter A>0,
FOX) = LX) : .
(3.) Y(A) must be a function of only a bounded local area, i.e. for any
bounded mask X" within which we want to know ‘I’(A ), there exists a
bounded mask X such that ¥(A)N\X " = =[YAMNX )](\X .
(4.) ¥(A) must be upper-semicontinuous, i.e. for an increasing set
transformation W(), and a decreasing sequence of closed sets A,
: approaching the limit A, the sequence ‘¥(A ;) must approach ¥(4).
~ Every set transformation which satisfies these four principles is known as a quantitative
- morphological transformation, or just a morphological transformation when there is no
chance of confusion. ' V

~ For a detailed theoretical discussion of mathematical morphology, the book by
Serra is an excellent reference [8]. A more compact presentation of the basics of
morphology can be found in [9,119]. A slightly different approach to morphology is
presented in [120]. All of the above references discuss both binary and gray scale
morphology. Concise presentations on binary morphology are contained in [10] and
[121], and Sternberg has written a paper dealing with only gray scale morphology [122].
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4.1 Basic Morphoiogical Set Transformations

' Morphology deals with sets and set operations in N-dimensional Euclidean space.
This Euclidean space can either be continuous, R", or discrete, Z". Erosion, dilation, '
~ opening, and closing are the basic quantitative morphological transformations. All of
these transformations are based on Minkowski set addition and Minkowski set
subtraction. The Minkowski set addition (MSA) of two sets, A and B, denoted A ®B,is
defined as ‘ ‘ _ :

AeB—{a+b acAbeB)=\U 4, | (4.1)
‘ : beB | . o
Minkowski set subtraction (MSS), denoted A ©B, is the dual transformation with
respect to complementation of MSA, and is defined as ’ S
AOB =(A° ®B)° = M Ap. | @42
beB S o

Examples of these transformations in Z? are shown in Figure 4.2 [10].

‘Using MSA and MSS, the morphological transformations of erosion and dtlatzon _
can be deﬁned The erosion of a set A by a set B, denoted A e B, is :

AcB=AOB*, @
where B® = {—b: be B} is the symmetric set of B with respect to the origin. Expressmg
Equauon 4.3 another way,

AeB—{ZB eA}—ﬁAb ' ) (4.4
: beB* '_ ‘

The dilation of A by B, denoted A d B, is o
L AdB=A®B", = (4.5)
or equivalently |

AdB={z:B, NA#3}= U A,. o (4.6)
beB’ .
Notice that if B =B* then MSA is equivalent to dilation and MSS is equivalent to
erosion... Figures 4.2 and 4.3 show examples of erosion and dilation in Z? and R2 [10].
It can be seen from these examples that erosion shrinks a set, while dilation expands a
set. Erosion and dilation are dual transformations with respect to complementation, and
these two transformations are generally non-invertible. Also, erosion and dilation are
translation invariant, and both are increasing transformations with respect to the first
operand. If the second operand, B, contains the origin, then erosion is anti-extensive
and dilation is extensive. Other interesting and useful properties of these two
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© | | @

Figure 42 Morphological transformations of discrete sets in Z2 (a) M1nkowsk1 set
subtraction. (b) erosion. (c) Minkowski set addmon (d) dilation.

(e = objectpoints, + = origin) (from [9]).
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Dilation: A @ B

=

Figure 4.3. (a) Erosion, (b) dilation, (c) oﬁcning, and (d) closing of A by B in R2.
- The shaded areas correspond to the interior of the sets, the dark solid
curve to the boundary of the transformed set, and the dashed curve to the

boundary of the original set, A (from [91).
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morphological operators are given in [10, 119].
| Based on the definitions of erosion and dilation, the qhantitative morphological
. transformations of opening and closing can be specified. The openmg of A by B, -
denoted Ap, is defined as ‘

Ap =(AOBS)®B = (AeB)dB‘ | @7

The dual with respect to complementation of openmg is closmg The closing of A by B,
denoted A3, is defined as : :

=(A®B*)OB=(AdB)eB*. | 4.8)
. Equivalent alternative definitions of opening and closing are: 4 ,‘ ,
' Ap={aec A:forsomey,ae BycA} (@9
and
—{zeE forallysuchthatzeBS, By ('\A;&Q} (410

Examples of opening and closing in R? are given in Figure 4.3. The examples illustrate
that opening or closing A by B suppresses all details in A that are smaller than B.
Opening A by B eliminates narrow peninsulas and necks in A; closing A by B fills in thin
rivers and bays, and eliminates small holes in A. Opening and closing are increasing,
~ translation invariant transformations. Opening and closing are also both idempotent
transformations, in other words (Ap)p =Ap, and likewise (A%)8 =AB. Other useful
properties of these transformations are discussed in [8, 10].

It is important to note here that the definitions for the basic morphological
transformations often vary slightly from author to author. The definitions given above
agree with those of Maragos and Serra [9, 10,119, 120]. The main difference is in
where B* is used. Despite the dlfferences, the definitions of Maragos, Serra, and
Haralick for opening and closing all agree.

All of the above discussion applies to both binary and gray scale morphology. The
set transformations defined can be applied to sets in a Euclidean space of any finite
dimension. The main distinction between binary and gray scale of morphology is the
dimension of the Euclidean spaces in which the sets reside. Binary-morphology deals
with sets in two-dimensional Euclidean space, while gray scale morphology deals with
sets in three-dimensional Euclidean space. In Sections 4.2 and 4.3 we will present the
basics of binary morphology and gray scale morphology, respectively.



129
4.2 Binary Morphology

Binary morphology applies the basic morphological set transformations outlined in
' Secuon 4.1 to sets in two-dimensional Euclidean space. In order to use binary morphol-

ogy to analyze a two-dimensional blnary image, the image must be represented as a set
in this space. The two-dimensional image set is formed by assigning all locations in the
image with one binary value (e.g: "0") to be in the image set, and all locations in the
image with the other binary value (in this case, "1") to be in the complement of the
image set. To morphologically process a binary image, the basic quantitative morpho-
logical transformations are applied to the i image set and the structuring element set in
Euclidean 2-space. The first operand in these transformations is the image set and the

~ second operand is the structuring element set. The structuring element is chosen by the‘

user to fit the desired purpose. It can be vmually any set in the same Euclidean space as
the image set. Since the images we deal with are usually sampled and therefore .
discrete, normally E will be Z? (as opposed to R?). '

4.3 Gray Scale Morpholog_y

Gray scale morphology applies the basic morphological set transformations out-
lined in Section 4.1 to sets in three-dimensional Euclidean space. In order to use gray
scale morphology to analyze a two-dimensional gray scale image, the image must be
represented as a set in this space. As was the case with binary images, a two-
dimensional gray scale image can be represented as a set in this space, though the
representatlon process for gray scale images is not as simple as for binary images.
Since the images we deal with are usually sampled and therefore discrete, ‘normally E
~ will be Z3 however the d1scus51on below is applicable to either Z3 or R3.

In order to specify the basic quantitative gray scale morphological transformations, -
first some mathematical preliminaries must be understood. A key mathematical princi-
ple in morphology is that of the umbra. The set F in Z* is an umbra if it satisfies the
followmg property :

, (x,y,'z) € F = (x,yw) e F forall ws z. ‘ 4.11)
Umbra can also refer to a set operation. The umbra of a set F in Z3 is deﬁned to be
U[F]-{(xy,z) (x,y,a)e Fandz<ag}. ' (4.12)

The set operations union and intersection are defined for umbras as follows:

UIF1U U[G] = U[{(x,y,c)': (x.a) € F or (1,y,b) € G, c=rnax(a,b)}].(4.l.3),
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UIF1 N\ U[G] = U[{(x y,c): (xy.a) & F and (x, y,b) € G, c=min(a, b)}] 4.14)

Obviously the union or mtersecuon of two umbras is an umbra. Also umbras remain
umbras under translation.

Another useful mathematical concept is that of the top of a set, denoted T[F],
which is defined

T[F]=_{(x»)”z):z=(,,;?;i)’;1,a}, - (4.15)

Further explanations of the concepts of top and umbra are giVeh in [8, 120, 122].

With these preliminaries taken care of, we are ready to detail the process of
representing a gray scale image as a set in Euclidean 3-space. A gray scale image is a
function f (x,y) on the points in Euclidean 2-space. This function on Euclidean 2-space
can also be thought of as the set, F, in Euclidean 3-space, where the coordinates in the
setare [x, y, f(x,y)]. Since f (x,y) is a function, F would take the shape of a thin con-
tour in Euclidean 3-space. Using our previous definition of umbra, the umbra of F is

UIF] = {(x, »z):z<f(x,y)} =U[f). : (4.16)

Note that U[f] is also a set in Euclidean 3-space. Gray scale morphological transforma-
tions on an image f(x,y) are expressed as set operations on the set U[f] in Euclidean
3-space . Since umbras remain umbras under union, intersection, and translation, mor-
- phological transformations on umbras always produce umbras.

As was the case for binary morphology, the basic quantitative gray scale morpho-
~ logical transformations of erosion, dilation, opening and closing are obtained by apply-
'1ng the set transformations specified in Section 4.1, this time to sets in Euclidean 3-
space. This extension to three-dimensional Euclidean space is justified by a principle
known as the umbra homomorphism theorem, which states that the operation of taking
an umbra is a homomorphism from gray scale functions to binary set transformations.
By using the umbra operator, gray scale morphological transformations can be
expressed in terms of basic morphological set transformations. This idea can be
expressed in equation form as follows:

Ulf(i,j) ag(i,j)] =Ulf14 Ulg), ) 4.17)
~and ‘ » | . v
Ulf(i,j) eg(i,j)l =Ulfl e Ulg]. | (4.18)

- The left hand sides of these equations specify transformations on the gray scale
representation of the image, while the right hand sides. specify transformations on the
set representation of the gray scale image. For proof of this theorem, see [120]. If
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umbra and top are not used, gray scale morphological transformations can be expressed
in terms of the function, f (x,y), which defines the image. Both these modes of
definition for gray scale morphological transformations will be given below.

The gray scale morphological erosion of the function f by the function g is a set
operatlon in Euchdean 3-space defined as follows: '

fxy)eg(t,y) =TI U[F]eU[G]] : 4.19)

Note that the e symbol on the left hand side of this equation represents gray scale ero-
sion, while the e symbol on the right hand side represents basic morphological set ero-
sion. This equation demonstrates how the umbra and top functions enable us to express
gray scale morphological transformations in terms of the basic morphological set
transformations that have already been defined. Using the functional representation of
the image, an alternative definition of the erosion of f (x,y) by g (x,y), denoted e(x,y),
is :

e(xy) = Jmin_ [ (v—a,y-b) = g(~x, )] . (4.20)
The tWo analogous definitions for dilation are '. | ]
" fexy)ag(ny) =TI UIF1aUIG] ] @

and S PR
d(ry)= max [ (x-a,y=b) +g (xy)1. @ 22)

Following the pattern of the basic morphologlcal set transformations, gray sca]c open-
ing and closing are defined in terms of gray scale erosion and dilation: :

f(x,y) opened by g(x,y) =Fg =(F ©G) DG, (4.23)
f(x;y) closed by g (x,y) =FC=(F®G)OG. ' R (4.24)

With this background in the basics of morphology, we are prepared to apply mor-
phology to skeletonize a binary image. The application of morphological skelctomza-
tion in image compression is described in detail i in the following chapter.
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CHAPTER 5
A NEW SEGMENTATION-BASED IMAGE CODING ALGORITHM

In segmentation-based image compression [2-4, 6, 80, 82, 87-89]. the image to be
compressed is segmented, and information is extracted describing, the shapes and interi-
ors of the segments in the segmented image. This information is used to form the coded
version of the image. For segmentation-based compression methods, the segmented
version of the original image is reconstructed at the decoder. Segmehtation-basg'd
image compression is obviously not a distortionless codmg method.

Since in segmentation-based compression, information must be coded descnbmg
each image segment, the number of segments in an image determines, for the most part,
the bit rate of the coded image. For this reason, segmentation-based compression
methods are best suited for use in applications where the images can be estimated with
few, large segments (for example simple "head and shoulders" images like those typi-
cally found in video-telephone or v1deo-teleconferencmg applications). Since our seg-

~mentation technique uses flat segments, this implies that our compression method is not

well suited for highly textured images, since textured areas in an image would produce
numerous segments in the segmented image.

In this chapter we present an image compression method which is based on this
approach, and employs the image segmentation and quantization techniques discussed
in Chapters 2 and 3. The compression method we propose differs in a significant way
from other segmentation-based image compression methods. In the past, the shapes of
the image segments were represented by the segment boundaries [6, 80, 87, 89]. With
our compression technique, an alternative representation of the segments’ shapes is
used. Instead of segment boundaries, morphological skeletons are used to represent the -
segments. o

The proposed compression technique is composed of four steps, shown in Figure
5.1. The first step is preprocessing. This is discussed in-detail in Section 5.1. After
- preprocessing, the gray level image is segmented and quantized using the methods
- described in Chapters 2 and 3. The parameters necessary as input for this stage of the
compression algorithm are d and thmax which determine the number of segments in the
segmented image, the energy threshold which determines the number of segments
removed during post-segmentation filtering, M, the number of gray levels in the range



image _|

data

Figure 5.1.

~ thmax

d M N

by il

pre-
process

segment,
psf, and

quantize

T

energy
threshold

Generate
BDI’s

BDIL morphologically skf(BDIQ
skeletonize Code
.Pl

A block diagram of the encoder for a new segmentation-based compression.
technique for gray level images. The image at produced at "*" is the image
that will be decoded. The first two blocks in this diagram are shown in
more detail in Figure 2.18 ("psf" refers to post-segmentation filtering).

compress
—

data

€el



| 1;34:,

~ of'the segmented image, andN the number of gray levels des1red in the quanuzed seg—
mented image. These methods are brleﬂy reviewed, and the advantages of quantization-

'are dlscussed in Section 5.2. The third step in our compression algorithm is the genera-
tion of morphologlcal skeletons to represent the image segments. A skeleton is.a thin-.
lined caricature of the segment that summarizes its shape and conveys information. -
about its size, orientation, and connectivity. In [10] a simple. procedu_re is described
v ,ﬁsmg binary morphology: to find the skeleton: of a binary image. Section 5.3 describes.

- this skeletonization technlque and its application to skeletonize the image segments.
- The final step in our compression algorithm is. the actual coding of the segments’ skele-

- tons and interiors. Three alternatives.for this part of the algonthm are presented in Sec-

tion 5.4, One of these alternatives involves an idea we refer to as the "minimal set of
segments" to reduce the bit rate required for the coded image. The process for decodmg
a compressed image is described in Section 5.5.

~ Experiments. have been performed to evaluate various aspects of the compression -
algonthm and to compare different coding options. These expenments and their results
are detalled in Section 5.6. The advantages and disadvantages of our morphological
skeleton approach: to. segmentation-based image compression are also discussed. We
- also: compare segmentanon-based compression using skeletons to segmentatxon based
compresslon where segment boundaries are coded

5.1. Preprocessing

- In any segmentation-based compression algorithm, a descnptlon must be encoded
for each segment in the segmented image. Thus, the number of image segments deter-
rmnes, for the most part, the bit rate of the coded i image. Because of this, a minimum
‘number of i image segments is critical. The main purpose of preprocessing is to alter the
- image in such a way that fewer segments are produced by the segmenter, w1thout
, degradmg the visual quality of the segmented image. 2 ,

One possible preprocessing operation proposed in [6] is clamping. Clamping
reduces the dynamic range of the image by setting all pixels with gray level above a
- threshold to that threshold, and setting all pixels below a second threshold to the second
- threshold. This can be expressed

thy, p <thy, o S :
p=1D; thy 'Sp <thy ' . (5.1)
. th2, D> thz, ) | .

where p is the gray level of a pixel in the image, and th anddthg are the two clamping
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thresholds. - Clamping is motivated by the contrast sensitivity of the eye, which is
known to decrease as the intensity of the visual stimulus moves away from the middle
range of intensity values [45]. The reasoning is that, since the eye has reduced sensi-
 tivity to differences in very high gray levels and differences in very low gray levels,.
vanety in gray levels at these extremes of the gray level range 1s unnecessary.

A second possible preprocessmg operation proposed in [6] is medlan filtering.
_ Smce the MTF of the eye indicates that the eye has reduced sensitivity to very high and
very low spatlal frequencies, isolated pixels may not be perceptually s1gmﬁcant to the
human viewer, and could possibly be removed from the image without degrading the
subjective image quality A two-dimensional, 3x3, separable median filter [123]is used

to remove these supposedly insignificant fluctuations in the i image data. A median filter

moves a window along the data to be filtered and sets the output to be the median value
of the data points in the window. A two-dlmenswnal separable 3x3 median filter
applies this procedure serially, to first the rows, then the columns of the image, usinga 3
pixel wide window. This filter has the effect of eliminating all "splkes in the image
data which are one pixel in width i in either the vertical or the horizontal dlrectron ‘For

example, any one pixel wide line in the i ‘image would be removed by this filter. '

" The result of preprocessing is a somewhat smoother image with reduced dynamlc .
range. This should mean fewer segments in the segmented image, and thus a lower bit
~ rate code. ‘The effectiveness of these preprocessing operations has been evaluated

’ expenmenta.lly, and the results of these experiments are discussed in Sectlon 5. 6

5.2, Image Segmentation and Quantization

After the appropriate preprocessmg has been performed the next step of the
vcompress1on algorithm is segmentation and quantization of the image. Image segmen-'
tation is accomplished in two steps, both of which were detailed in Chapter 2. Fll‘St, a
- variation of centroid-linkage regron growing [5] is used to form an initial segmentatlon
of the image." There are two main reasons why centrold-hnkage region growmg was' ‘
chosen to perform the segmentation in our compressron algorithm. First, HVS proper-
ties can be readily incorporated into centroid-linkage region growing via the segmenta-
tion thresholds. This was described in Chapter 2. ‘The second reason is. that region
growing segmentatlon techniques are ‘guaranteed to produce d1s301nt segments with
closed boundaries. This is lmportant because segmentatlon-based compression requires
a descnpnon of the shape and interior of each image segment. Such a description
. would be impossible if the segments overlapped or did not have closed boundaries. =

After initial segmentation, post-segmentation: ﬁltermg is performed on the seg- .
- . mented image to eliminate visually insignificant segments. Both of these operations
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1ncorporate HVS properties. The result of the segmentation is a gray level i 1mage com-
posed of a number of regxons, each with umform gray level.-

After the 1mage has been segmented it is quantized using the HVS-based quan-
tizer described in. Chapter 4. By quantizing the segmented image, the number of dif:
ferent gray levels used to describe the segment interiors is reduced. Therefore fewer

‘bits are required to encode the ségmeénts’ gray levels. Thus, quantization of a seg-
mented image leads to a réduction in the number of bits required to code the description
- of the regions in the segmented image.

The data rate can be reduced even further by utilizing quantlzatlon in another way.
With the i image segments assigned one of a limited number of gray levels, it is feasible
for all segments with the same quantized gray level to be grouped together for transmis-
sion. In this way, it is necessary to transmit the gray level only once for each large
group of segments, rather than for each individual segment. We will use this approach
~in coding the segmented image. The actual codmg procedure is discussed in more
detail in Section 5.4.

The ﬁnal result of segmentatlon and quantlzatlon isa gray level image composed

......

els. This is the image that will :be generated at the output of the decoder.
53 Segment Ske’let’Onization

Once the image has been segmented, the next step is to generate representatlons :
for the shapes and interiors of the segments in the image. In our compress1on algorithm,
the shapes of the image segments are represented by morphological skeletons. A skele-
ton is a thin-lined caricature of the segment that summiarizes its shape and conveys
infofmation about its size, orientation, and connectivity. Segment skeletons will be
generated: using the morphological skeletonization algorithm of [10]. A summary of
this skeletonization process, and a description of its application to the image segments is
- given below. _ '

In mathematical morphology, the form and structure of sets in Euclidean N-space
are studied [8]. The basics of mathematical morphology were presented in Chapter 4.

- Through the application of morphologlcal operations such as dilation, erosion, opening,
. and closing to a binary image; a gray level skeleton of a binary i image can be generated

" [8,10,120]. '
: Given a b1nary image set, A the skeleton of A is formally defined to be the set of -

- centers of the maximal disks inscribable inside A. A maximal disk is one that is not

- contained in any other disk totally included in A. The idea of the skeleton was first
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introduced by Blum [124], who referred to it as a medial axis, or symmetric axis [125].
The definition of a skeleton given above is the same as Blum’s definition for a medial
axis. Figure 5.2 shows examples of maximal disks and skeletons of binary images {10].
It can be seen from these examples that if we draw the maximal disk at each point on
the skeleton of A, then the union of these maximal disks will be exactly equal to A. The
set of the centers of all maximal disks in A with radius r (r20), is called the r’th skele-
ton subset of A, denoted S,(A). The skeleton subsets are mutually exclusive. An exam-
ple of an r’th skeleton subset is shown in Figure 5.2. These skeleton subsets can be
~ obtained using the morphological set operations of opening and erosion. It should be
noted that the morphological transformation that maps a set into its skeleton is not upper
_semi-continuous as defined in Chapter 4, and therefore is not a quantitative morphologi- -
cal operation. An example demonstrating this is shown in Figure 5.3. The skeletoniz-
ing transformation is translation and scale invariant, and lower semi-continuous.

We are interested in applying morphology to skeletonize image segments. These
segments can be viewed as sets in Z2; therefore we now limit our discussion to morpho-
logical skeletonization in Z°. 2 Using the notation introduced in Chapter 4, the skcleton
of a set, A€ Z2, can be obtained as follows: :

S(A) (AenBs) (AenB‘)B, n=0,1,2-N - (52

sx(A)—us,,(A), 63
n=0 : .

where §, (A) denotes the n’th skeleton subset of A, SK(A) denotes the binary morpho-
logical skeleton of A, B is the structurmg element used to perform the skcletomzatlon
and : Co

nB=BO®B®-- @B (ntimes).

N is the maximum n after which a further erosion of A by B results in the empty set. B is
the structuring element, and can be chosen as desired. For skeletonization of the image
segments, B is chosen to be a 3x3 pixel square, with the center of B in the middle of the
square. thice'that since. SO(A) (ASO0B%)-(A ©0B°)p =A — Ap, the 0 th skeleton
subset simply contains all features of A that are smaller than B. :

An altemate, more compact representation of the information in the skeleton is the | ‘
gray level skeleton function, defined as the following two—dxmensmnal dlscrete image
array:

| n+l, GeS@) o
skf(A)I(, 1) = ’ . ' A X
Lwwien {o /)¢ SK(A), B
where i and J index the rows and columns of the image. The gray level of a point on the
skeleton function indicates the skeleton subset to which that skeleton point belongs, i.c.
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radius r

(b) (©)

Figure 5.2. Examples of skeletons and maximal discs of sets in R2. (a) the set of
maximal disks and their centers for a cone-shaped set, A. Since the
skeletons shown are binary, they represent SK (A) (from [9]) (b) SK (A) for
a stickman-shaped set, A (from [9]). (c) The r’th skeleton subset of the
SK (A) shown in (b) These points on SK (A) would have gray level r+1 on

[skf (A)]G.J).
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Figure 5.3. A series of sets in R2 and their morphological skeletons illustrating that
morphological skeletonization is not a continuous transformation (from

) R
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>rad1us of the maxlmal dlSC centered at that pomt In Section 5. 6 we w1ll glve cxamples
 binary images and their correspond:mg gray level skeleton functions. An ‘important

: property of the morphologlcal skeleton as defined above, is that it is uniquely invertible
'[10]. If the structuring élement is known, binary i 1mage can be perfectly and umquely
" reconstructed ﬁ‘om its morphologlcal skcleton The inversion process is described in

~Section 5.5.

Ongce the skeleton described above has bcen generated, further processmg of th1s
skeleton: yields thé globally minimal skeleton [10]. The aim of the processmg is to
rethové redundant skeleton points from the skeleton; and thus produce the globally
'rmmmal skeleton. The motivation for this is that; since the’ globally minimal skeleton
has fewér points it wﬂl réquire fewer bits to éncode. The following algorithm is used to
determirie what points should be removed from a morphological skeleton in order to
: generatc the globally minimal skeleton [10}. '

Assume A€Z? is the onglnal binary i image, and S,(4), n= 0 1,...N are the skele-
~ton subsets of A with respect to. the structuring element B. "The following steps are
- répeated for n =0, 1,. N Deﬁnc k,,(z, j) to be the bmary charactenstlc function of the

, 1 setnBeZz Inotherwords, , _ - ,
| ' 1, G, '-énB SR
n(l, = { @0 SR (5.5

0; G, J)énB
j Then gcncrate a pseudo-graytone functzon as follows: |
[pgf(A)](I,J)— E 2 kali=s je—“t-).' e (5.6):
n=0(s;t)eS, (A) S :

Thc région. of support of [pgf(A)](t, J).is the same as the reglon of support of A and
pgf(A)1G, /)21 at every point in A. An example of a binary image and its pscudo-
graytone furiction is given in Figure 5.4

Whethet or not a: partlcular point; (s;¢)e S,l (A)-can be: rcmoved from the skeleton i is
‘ ‘determined as follows. If [pgf(A )1, j) 2.2 at every point in the region of support of
- ki(i=s; j—t), then (s,) can be removed from the skeleton. When a point (s,z) ‘is
removed from the skeleton, then the shifted characteristic function &, (i —s j—t) is algc-
braically subtracted from [Pgf(A)1G,j) before the algonthrn proceeds to test the next
- skeleton point for removal. If (s,7) is not removed from the skeleton, [pgf(A )G, J) is
not changcd and the algorithm proceeds to test the next skeleton point for removal.
_ Thls algorithm is illustrated with the flowchart in Figure 5.5. After all skeleton points in
- every skeleton subset have becn tested, and the redundant points removed, the skeleton
“points that remain form the globally minimal skeleton function. For further details on
this minimal skeleton algonthm and for a description of fast algorithms for morphologi- -
cal skeletomzauon, refer to [10] Hereafter, when we refer to a skeleton function we
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@ ®

Figure 5.4. = (a) A binéfy iniage and, (b) its pseudo-graytone function; The gray level
C values of the pseudo-graytone function have been scaled for illustrative
purposes. : ‘ _ o
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[ ‘pick new 5,0)e S, (1)

TpefA)G,) 2 2™\
all (i,]) in region of support
: :‘O'f kn‘(i;S;j—t) ')

rfg‘r'

subtract kn(i=s, j~1)
. from [pef(A)IGi))

, Y
‘delete (s,) from S, (1)

< Anothér’(s,t)e Sp(t) 25

n=n+1

Figure 5.5. The ‘a-lgorithi’n’ to generate a globally minimal skeleton.
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will mean the globally minimal skeleton function.

- 5.3.1. Skeletonization of the Image Segments

“We wish to apply the skeletonization and minimal skeleton procedures described
above to generate morphological skeletons for the segments in our segmented quantized
image. In order to do this, the segmented quantized gray level image is decomposed
into a series of binary images known as binary decomposmon images (BDI). In this
decomposition, any pixel in the segmented image belonging to a region with a particular
gray level is set to "one" in the corresponding BDI, while all other pixels in that BDI are
set to "zero." The BDI’s are analogous to indicator sets for particular gray level seg-
ments in the segmented image. For example, one BDI may consist of all pixels from
the segmented image that were contained in a segment with gray level 30. A BDI is
generated for each different gray level in the segmented image, so the number of BDI’s
is equal to the number of gray levels in the segmented quantized image. For a seg-
mented quantized image with M gray levels, we obtain a series of BDI’s, each with an
associated gray level, P;: :

(BDII,PI) = 0,1,2, -, M-1. , : (57)

The skeletomzanon procedures summanzed above are used to generate a skeleton
for each BDL Equations 5.2 and 5.4 are used to transform each BDI into a gray level-
skeleton function; and the minimal skeleton algorithm is used to prune each skeleton.
Since all the image segments are mutually exclusive, the net effect of skeletomzmg a
BDI is the skeletonization of all the image segments in that BDL. For a segmcnted
quantized image with M gray levels, the end result of skeletonization is a set of gray
level skeleton functions, each representing one BDI, and a set of associated gray levels:

( [skfBDIIG./): Pr), 1=0,1,2, -, M~1. | E 63

These pairs of gray level skeleton functwns and associated gray levels form a compact
and uniquely reversible representation of the segmented image for coding purposes.
Note that there are two categories of gray levels in the representation of Equation 5.8.
First are the associated gray levels, P;, 1 =0, 1,..M—1. These indicate the gray level of
the segments represented by the particular skeleton function. Since there is one skele-
ton for each BDI, there is also one associated gray level for each BDI, and thus one
associated gray level for each skeleton. To avoid confusion, this first class of gray lev-
els will always be referred to as associated gray levels. Second are the gray levels along
each skeleton function. Each BDI has a skeleton, and each of these skeletons is com-
posed of many- different gray levels (recall that a binary BDI produces"a'gray level
skeleton). The gray levels along a skeleton simply indicate to which skeleton subset a -
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particular skeleton point belongé;
5.4, C‘oding of the Skeietons and Associated Gray Levels

"~ The last step in the compression process is to | actually encode the
( [skf(BDIPI(i.Jj), Py ) pairs using a source coding technique. We have considered
‘three possible schemes for this encoding. In the first approach, [skf(BDI)]I(, j) is coded
in its entirety for M—1 of the BDI’s, where M is the total number of BDI’s. The result
is a complete skeleton encoded for a subset of the image 'segmexits‘ In the second
approach the 0’th skeleton subset of every [skf(BDI;)1(i,/) is deleted before encoding,
and a [skf(BDI,)](l, j) is encoded for every BDI. In other words, reduced forms of
- [skfBDI)IG, /), 1=0, 1,..M— 1 are encoded. The net effect of this approach is a skele-
“ton coded for every image segment; however with the 0’th skeleton subset of each
skeleton omitted. In the third approach, a "minimal set of segments" is selected from
the image, and only skeletons for segments in this group are encoded. A
[skf(BDI)](,j) is encoded for every BDI, however, as with the second approach, the
[skf(BDI)1(, /) are in a reduceéd form. In this case, complete skeletons are coded, but
only for a subset of the image segments. These approaches are described in detail in the
* remainder of this section, and each is experimentally evaluated in Section 5.6.
: All of the encoding .tcchi_liques we have proposed above require coding of a gray
blevg:l skeleton for each BDL In [10] the authors investigated several different possible
techniques for encoding a gray level skeleton, using a variety of source coding tech-
" niques. They found that the best compression was achieved by coding the shape of the
gray level skeleton (i.e. SK'(A))in the form of a binary image, and then coding the gray
levels along the skeleton function ([skf (A)](i,/)) using a Huffman code. They proposed
~ using a form of runlength coding proposed by Elias [126] to code the binary image
describing the skeleton funcnon s shape. We will also use these methods to code our

skeleton functions. .

- Runlength coding is a techmquc des1gned to work well on sparse binary sxgnals,, _
for ¢xample an image made up of mostly zeros, with a few ones. The image rows are
catenated together to form a vector, and all runs of consecutive 0’s are found. The
lengths of these runs, separated by a symbol (referred to as a "comma") to mark the end
of a run (i.e., the presence of a 1), completely describe the original image. The run-
~ lengths and commas are then coded using a source coding technique such as the one

- -described in [126]. This 'tcchnique involves using n symbols in an n-ary arithmetic sys-

tem to represent the runlengths, and an n+1°th symbol to represent a comma, and is
described in detail in Appendlx C.
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Huffman coding [127] is a variable length coding technique where the codewords
are chosen based on the probability distribution of the source symbols. The idea is to
assign short codewords to source symbols that occur frequently, and longer codewords
to source symbols which occur less frequently.

The remainder of this section is devoted to describing the three techniques we have
proposed for coding the set of ( [skf("BDI;)]V(i, J), P ) pairs which represent the image.

5.4.1. Approach 1: Coding Complete Skeletons

| The obvious approach to coding the skeleton functions and associated gray levels
is to simply apply the coding techniques described above to code the skeleton function

and associated gray level for every BDI. However since the BDI’s are mutually
[=M-1

exclusive, and U BDI; covers the entire image, 1t is actually only necessary to code
=0

_the skeleton functions for M—1 of the BDI's. The shape of the missing BDI can be
implied from the coded BDI's. So with this coding technique the runlength Elias
‘ method‘mentioned above is used to code the shape of each of the M—1 of the ‘skeleton
funcuons, and a Huffman code is used to code the gray levels along each skeleton func-
tion. ‘ ' _
In Chapter 2 we saw that a segmented quantized image typically has on the 'order '
of 20 gray levels; and for the images we are using these 20 gray levels could be any of
the 256. Since there is one skeleton function and associated gray level for each gray
level in the segmented quantized image, there are also typically on the order of only -
twenty associated gray levels to code (one for each skeleton function). Since no two
associated gray levels are the same, each P; can be coded directly, using eight bits each. '
With this coding method, an exact duplicate of the segmented quantized image is
decoded. The decoding method is described in Section 5.5.1. . ‘

54.2. Approach 2: Coding Without 0?th Skeleton Subsets

In the discussion in Section 53 relative to morpholog1cal skeletonization we ‘saw
. that’ the 0’th skeleton subset of a BDI’s skeleton consists of all the features of the BDI
which are smaller than the structuring element. An example of the 0’th skeleton subset
of a set is shown in Flgure 5.6 1In our experiments applying the skeletomzatlon pro-
cedure to BDI’s we have found that typically there are nearly as many skeleton points in
the 0’th subset of a BDI’s skeleton as there are in all the other skeleton subsets of the
BDI combined. This means that the 0’th skeleton subsets contribute a. disproportionate |
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O

Figure 5.6. A structuring element (on the left), an imagcv set (on the right), and the
_ set’s 0’th skeleton subset (the shaded portion of the set on the right).



| amount to the total cost of coding a skeleton. For this reason, we propose omrttmg the -
-.0’th skeleton subsets from the BDI skeleton functions when coding. We will slmply
--;_;j;;delete the 0’th skeleton subsets from all [skf(BDIl)](z, J), and then these reduced skele-

: '}"fton functions, denoted [skf* (BDI;)](i, /), will be coded as described in the previous sec-

- t10n We will still use a runlength Elias code for the reduced skeleton functions’ shapes,
and a Huffman code for the gray levels along the reduced skeleton functlons The P;’s
can again be coded directly with eight bits each. :

- The cost of omlttmg the 0’th skeleton subsets is increased distortion in the decoded -

-, image. When the 0’th skeleton subset i is deleted from [skf(BDI)](, j), this means that

- certain pixels in BDI; have no representatives in the skeleton function. Therefore, when

o BDI; is reconstructed from the reduced skeleton function, these pixels cannot be recon-
- structed. All the features of BDI; that were smaller than the structuring element used

" for skeletonization will be lost. Specifically, rather than reconstructmg BDI,, we actu-
o ally reconstruct (BDI,),, the opening of BDI; by B. '

In Secnon 5.6 we show examples illustrating the unreconstructed pxxel problem-
and the effect on image reconstruction of deleting the 0’th skeleton subsets from the »
[skf(BDI,)] @i, /). In Section 5.5.2 we describe the post-processmg techmque we propose

to "ﬁll m" the unreconstructed pixels.

5.4.3. App‘roach 3:‘Coding the Minimal Set of Segments

‘ Consrder the mformatlon represented when a skeleton is coded for every segment,
in ‘a segmented image. Given skeletons for two neighboring segments, mformatlon
about the shape of the segments’ common boundary is represented in both skeletons.
This. means that when both of the skeletons are coded, redundant information about the.
segmented image is coded. This observation is the motivation behmd the codmg tech-
'mque we propose in this section. : : :

‘Consider the simplified segmented 1mage shown in Figure 5.7. It is possrble to-
. ~select a subset of the segments in this 1mage, from which the shapes of all the other'
- image’ segments can be implied. The set of segments 1= {a, 6, ¢, £, 4, i, j, kK m, o, q) is
.~ one'such subset. Together the segments in 4, imply completely the shapes of the- seg-"

. f._',ments in the set 31— {4 & & L n p}. We refer to the subset 4; as a minimal set of seg-v
~-ments for the image in Figure 5.7. The minimal set of segments is not necessanly‘

© -unique . There is usually more than one such set for any given segmented image.
* Another mlmmal set of segments for the segmented image of Figure 5.7 is 22—

{acdef h, i, k, [ m, n, n q}. These segments, together, completely imply the “
L shapes of the segments in the set By= {6 & 5 o} Both these minimal sets of segments
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are demonstrated in Figure 5.8.

We can apply this idea ofa minimal set of segments to the coding of a segmented o
image. Generate a minimal set of segments, call it 4, for the segmented image bemg »
- coded. Since the shapes of all the segments not in 4 are implied by the shapes of the

- segments in 4, it is only necessary to code skeleton functions for the image segments in

' A Therefore, before skeletonization of the BDI’s, all segments not in 4 can be deletedf .
" from the BDI’s. We will refer to these reduced BDI’s as BDI’r The reduced BDI's =

will be composed of fewer segments, and when skeletonized will have fewer skeleton - _
points. Thus the number of skeleton points in [skf(BDITI)](z, N 1=0,1,:-M-1, w1ll -

c ‘be less than the number of skeleton pomts in [skf(BDI,)](l, N, 1=0, 1 M l andi -

g - therefore [slgf(BDIT )G, 5), =0, 1, M -1, should requn'e fewer bits to code
” A minimal set of segments is found for a segmented i 1mage by applymg the follow- '

| : .. ing “algorithm to the segmented image. In the description of the algonthm we refer to | “ |
' ~ the minimal set of segments as 4 The complement of the set Ais B.. Then av 'B is

.equal to the set of all image segments. The algorithm begins at the segment at the upper RS
. left comer of the segmented image. “This image segment is ass1gned to ‘B, a.nd all 1mage -

- segments bordering the segment are assigned to 4. The algonthm proceeds to’ scan ‘the |

.. image in a raster fashion until a segment which has not yet been ass1gned to 4 or B 1s FEn

encountered ‘and the process is repeated. The unassrgned segment is assigned to B. and ;

all segments bordenng that segment are assigned to 4. The rastér scan of the i 1mage and e e
the assigning of segments to set 4 or B is repeated until all image segments ‘have beenv: R

assigned. . This algorithm is not necessanly an optimal algorithm. It maybe poss1b1e to
apply graph theoretlc concepts to develop an optimal algorlthm for ﬁndmg a mmnnal
: setofsegments SRR R

Figure 5. 9 shows examples of actual segmented 1mages, and bmary 1mages show-
ing the rmnnnal set of segments found for these unages The numbers of segments in
the images and in the minimal sets of segments are given in the ﬁgure The number of
segments in a minimal set can be as litdle as.60% of the segments in'the original seg-
mented image. This means that we can reduce the number of segment skeleton func-
tions that are encoded by as ‘much as 40% by only codmg skeleton funcnons for a, '
mlmmal set’ of segments : SRS

Smce the segments in B are not included in- any BDI, in n order to reconstruct theset: '

‘ segments at the decoder, we must encode the gray level of each segment in B. The gray - )

levels of the segments in B will be coded in raster scan order. Since there will be: "
_numerous segments in B, we propose using a Huffman code for the gray levels of these g

s segments. The same Huffman code can also be used for coding the associated gray lev-

els, P.. As w1th the two previous codmg techmques, we will also use a Huffman code

i for codmg the gray levels along the skeleton functions. Wlth this codmg method an
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- Figure 5.8. Two different minimal sets of segments for the segmented image shown in
: Figure 5.7. The minimal set of segments consists of all the white

segments. The shaded segments’ shapes are implied by the minimal set of

segments. g :
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(a-b) Minimal sets of segments for two actual segmented images. . The
segmented images are shown on the left, and the minimal set of segments
found for each of the segmented images are given by the binary images on
the right. The white pixels are in segments in the minimal set of segments
and the black pixels are in segments whose shapes are implied by the
minimal set of segments. There are 473 segments in segmented quantized
Krista and 275 segments in Krista’s minimal set of segments. There are
769 segments in segmented quantized House and 480 segments in House’s
minimal set of segments. ' »
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exact duphcate of the segmented image is decoded. The decodmg method is descnbed
in Section 5.5.3. :

One point must be made about this approach to the codjng of the Skeletori func-
tions. When only coding skeleton functions for a minimal set of segments, the 0’th
skeleton subsets of [skf(BDIT,)](i, N 1=0,1, - M-1, cannot be deleted. If these
skeleton subsets were deleted, then when the segmented image was reconstructed at the
decoder, it would be impossible to distinguish between image pixels not reconstructed
- due to missing 0’th skeleton subset points, and image pixels not reconstructed because
they were in implied image segments. This ambiguity would make reconstruction: of a
reasonable approximation of the segmented image impossible.

5.5. Image Reconstruction

The reconstrucuon process for each of the three coding methods described above is
_ shghtly different. The basic outline, however, is the same for all three. The first step is
to recreate the skeleton function shapes from their Elias runlength code, and then fill i in '
the gray levels along each skeleton function from the Huffman coded versions. QOnce
- the skeleton functions are known, a morphological process is used to "grow" back the
- BDI’s from the skeleton functions. Finally, each BDI is then "painted in" with its asso-
ciated gray level value and the BDI's are combined to form the reconstructed seg-
mented quantized image. The basic reconstruction process is illustrated in Figure 5.10.
The details of decoding for each of the three coding techniques are given below.

5.5.1. Approach 1: Reconstruction From Complete Skeletons

The process by which the original quantized segmented gray level image is recon-
structed from the coded version as defined in Section 5.4.1 is described here. The
reconstruction process begins by decoding the shape of each skeleton function,
[skf(BDIIG, J), from its runlength code description, and decoding the gray levels along
each skeleton function from their Huffman coded versions. This information is then
combined to form the set of skeleton functions, [s&/(BDIDIG, /), [=0,1, - -M-1,
which represent the BDI’s. §

Using Equation 5.4, each skeleton function, [skf(BDI,)](i, /), can be transformed to
a set of skeleton subsets, S,(BDI;), n =0, 1,..N;, where N; + 1 is the number of skele-
_ ton subsets in [skf(BDI;)](i,/). This transformation is performed for / =0, 1, - - - M —1..
Next, the following morphological operation is used to perfectly reconstruct BDI; from

" its skeleton subsets:
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‘BDI; = U[S..(BDI,)enm 69
n= 0 . -

:‘Th1s reconstruction is also performed for I = 0,1,---M-1.

- After BDI, has been reconstructed from [slg”(BDII)](z, . BDII is pamted in" with
o its assocmted gray level, P;. Recall that the P; s had been coded directly, using eight
- bits each. Agam, this is done for /=0, 1, --- M—1. The reconstructed segmented
quantized- gray level image is then formed by simply taking the union of the mutually
exclusive reconstructed "painted in" BDI’s. An exact replica of the ongmal segmented .
B quantlzed image is reconstructed by this process - :

, 5.5..2. Approach 2:' Reconstruction Without ¢’th Skeleton Subsets

The process for reconstrucnon of a segmented quantized gray level image from the
~coded version described in Section 5.4.2 is very similar to the reconstruction process
described in Section 5.5.1. As before, the reconstruction process begins by decoding
~ the shape of each reduced skeleton function from its runlength code description, and
decoding the gray levels along each reduced skeleton function from its Huffman coded
-~ version. This information is then combined to form the set of reduced skeleton func-
- tions, [skf* (BDI)]G, J»1=0,1,--M-1, which represent the BDI’s. Recall that we
refer to these as reduced skeleton funcuons because the 0’th skeleton subset is m1ssmg

. from each of them. :

' Usmg Equatlon 5.4, each reduced skeleton functlon [skf (BDI[)](l, ]), can ‘be

- transformed to a set of skeleton subsets, S,(BDI)), n =1, 1,. ..N;, where Ny is the number; :

_ of skeleton subsets  in [skf(BDI)](i,j). This transformation is performed for

1=0,1, - M-1. Notice again, because we deleted the 0’th skeleton subsets before

‘ encodmg the skeleton functions, there are no 0’th skeleton subsets. Next, the followmg
-morphological operauon is used to perfectly reconstruct ( BDI; )p from the skeleton
subsets:

(BDI); = O [sn(BDII)enBl | o (5‘,‘.1'6)

n=1

-~ As was discussed in Section 5.4.2, since the 0’ th skeleton subsets were deleted from the» ‘

BDI skeleton functions, all features in the BDI's that were smaller than the structuring -
element used in skeletonization have been lost. From a reduced skeleton funcuon, we ‘
~ reconstruct ( BDI; )p rather than BDI;. Equation 5.10 is applied for / =0, 1, - - - M~1.

R After  (BDI)p has . been - reconstructed from its  reduced skeleton
function,( BDI, ) is "painted in" with its associated gray level, P;. Recall that the P;’s
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~had - been coded directly, using eight bits each. Once more, this is done for - -

1=0,1,---M-1. As in the previous section, the reconstructed quantized segmented

image is formed by ta.kmg the union over [ =0, 1, -+ - M—1, of the mutua‘lly’ exclusive

reconstructed pamted in" (BDI, ). However, in this case , since some BDI points :

. were not reconstructed from the reduced skeletons, there will be "holes" in the recon-

: 2 structed 1mage -Some i 1mage plxels will not yet have ‘been ass1gned a gray level in the
j_'reconstrucnon process. » -

: Post-processmg is necessary to "fill in" these unreconstructed plxels We propose

“° " an averaging filter to accomplish this. The filter scans the reconstructed segmented
S image in a raster fashion until it encounters an unreconstructed pixel. At each unrecon-

_structed pixel the filter calculates the average of the known pixels in an eight-

o ~neighborhood of the unknown pixel. This average value is assigned to the unrecon-

structed pixel. When no pixels in an eight-neighborhood of an unreconstructed pixel

S - are known, that pixel cannot be filled i in. This occurs when blocks of size 3x3 plxels or
" larger of unreconsu'ucted pixels exist in the image. ‘Therefore, i in order to fill in all the
" reconstructed p1xels, multiple passes of the averaging filter are sometimes necessary

[skf(BDfr DG, 1=0, 1, - M~1, which represent the reduced BDIs.

Since the ﬁltenng operation only changes unreconstructed pxxels, mulnple passes of the
- filter do not effect the known pixels in the i nnage This postprocessmg operauon com-
pletes the reconstrucuon process : C ‘ . :

. -5.'5'.'3‘{ Approach 3: Re_construction From the Minimal Set of Segments

The process for reconstructlon ofa segmented quanuzed gray level 1mage from the' v
coded version descnbed in Section 5.4.3 is very similar to the reconstrucnon process’ ,
already described in Secuon 5. 5.1. The reconstruction process begins by decodmg the
: shape of each reduced skeleton function from its runlength code description, and decod- B
" ing the gray levels along each reduced skeleton function from its Huffman coded ver-

" sion. - This' information 1s then combined to form the set of skeleton funcnons,'_'

Using Equauon 5.4, each skeleton funcuon can be transformed to a set of skeleton :

. subsets, S,(BDI';), n=0, 1,..N;, where N, is the number of skeleton. subsets in '

[Skf(BDITI)](l, - ThlS transformation is performed forl 0,1,---M-1. Next usmg- '
Equatlon 5.9, BDIT, can be perfectly reconstructed. from the skeleton subsets,‘
' A:S (BDITI) n=0, 1,..N,. Thls reconstrucuon is performed forl= 0 1,- M 1. .

Once BDIT, has been reconstructed from its skeleton funcuon it is pamted in"

.’ w1th its assoc1ated gray level, P;.. Reca]l that the assoc1ated gray levels had ‘been coded |

- vusmg a Huffman code. This is done for I = O 1, <M-1: Asin the prev10us secuon,{

g the reconstructed quant12ed segmented unage is formed by takmg the umon overf._' '
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" 1=0, 1, -+ - M~1, of the mutually exclusive reconstructed "painted in" BDI';. In this

“case when the BDI’s are overlayed, since skeleton functions were only coded for image

' segments in 4, segments not in 2 will not have been assxgned a gray level yet. But the
gray levels of these segments were coded. Recall that the gray levels of all the seg—

" 'ments not in 4 were encoded in raster scan order using a Huffman code. These gray
= levels can be decoded and used to fill in the unfinished image segments. This completes

d the-decoding process. An exact rephca of the onglnal segmented image is created w1th

o tlus process.

5.6. Expe‘t'imental Results

i In this section we discuss experiments performed to evaluate various aspects of the
- coding algorithms presented in this chapter. The eéxperiments were performed using the
256x256 pixel, 256 gray level test images shown in Figure 5.11. In the discussion in
- this section, we will refer to the image on the left in Figure 5.11 as Krista, and the

~ image on the right as House. Segmented versions of Krista and House are shown in
‘Flgure 5.12. These images were segmented using the technique describe in Chapter 2,

and the exact parameters used in the segmentation algorithm are given in the figures.

. Information about the number of gray levels and number of segments in the images in
Figures 5.11-5.17 is summarized in Table 5.1. In the experiments discussed in this sec-

o tion, it will sometimes be necessary to compare the "quality”" of images. Since the

. image are being generated for viewing by humans, we would like a quality measure that
has good correspondence with human judgement of image quality. However, as was
- discussed in Chapter 1, no such quantitative measure is known. Therefore, it becomes
~ necessary to compare images based on subjective visual quality. In the experiments we
* " have performed, the visual quality of the images was determined by the authors’ care- g
- ful, but nonetheless, subjective evaluations of the images. ‘ )

: ~.In Section 5.6.1 we examine the preprocessing procedures described in Seetxon :
S 1 The three coding approaches proposed in Section 5.4 are demonstrated in Sectwns
56.2- 5.6.4, and are theni compared in Section 5.6.5. : ’

" 5.6.1. Preprocessing

‘Two preprocessing techniques were presented -in Section 5.1. The goal of these

v techmques was to alter the image so that fewer segments are produced by the image - |

- segmenter, without degrading the subjective visual quality of the segmented image.
.VExpenments to evaluate the effectiveness of these techniques are discussed in this
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: Flgure 5. 11 Two test 1mages to be compressed Each image is 256><256 plxels, with -
256 gray levels .
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m =‘.123,> w=0.35

d=T,thnx =10, d=13,thpy =16,
#segments = 1925 - # segments = 3806

- Figure 5.12 Segmented w)ersions of the test images in Figure 5.11. The parameters
used in segmentation threshold TH 3, and the number of segments in the
images are given below each image.
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section. _
The first experiment was to compare the results of segmentmg an 1mage with and

without the clampmg operation proposed in Section 5.1. The test images shown in Fig- =

ure 5.11 were clamped according to Equation 5.1. The clamped images are shown in
Figure 5.13. The clamping thresholds were chosen in order to reduce the number of
- gray levels in the images by a factor of two, thereby reducing by one the number of bits
' required to represent the gray levels. The specific threshold values were subjectively

s chosen for. each image to be the best to achieve this, and are given in the figure. These -

- images. were then segmented using the same parameters as those’ used to generate the

L images of Figure 5.12, and the clamped and segmented images are shown in Figure

5.14. Information about the number of segments and gray levels in all the 1mages is
- summarized in Table 5.1. Comparing the i images in Figure 5.11 to the images in Figure
5.13, it can be seen that the clamping operation very noticeably degrades the subjective
quality of all the images, and hence the segmented and clamped images of Flgure 5.14
are also of lower quality than the images that were not clamped before segmentlng,
“shown in Flgure 5.12. These expenments indicate that, while clamping does reduce the
" number of segments in the segmented image shghtly, clampmg also reduces the v1sual

. quality of the segmented image noticeably. This result is contrary to the goals we stated‘ .

for preprocessmg Therefore, clamping is not an effective preprocessing operatron A
- possible explanation for the seeming failure of the contrast sensitivity model, is that the
model does not hold for the very highest and very lowest intensities. However, since the

compression' algorithm we have proposed includes quantization of the segmented
image, it is not important to reduce the number of bits required to represent the. gray
levels in the image at the preprocessing stage. This will be achieved when the seg-
mented unage is requantized and therefore clamping is not necessary. ‘

.- The second expenment performed in relation to preprocessmg was to evaluate the '
’ effecuveness of median filtering an image before segmentation. The test images shown

L in Figure 5. 11 were median filtered using the two-dimensional, separable 3x3 median -

filter described in Section 5.1. The median filtered images are shown in Flg_nre 5.15,
- and the median filtered and segmented images are shown in Figure 5.16. Again, the

L segmented 1mages were generated  using the same segmentation threshold parameters :

used to generate the i images of Figure 5 12, and information about the number of- seg-
ments and gray levels in each unage is summarized in Table 5.1. Companng the
~ images in Fxgure 5.11 to the images in Figure 5.15, it can be seen that the median ﬁlter-;
ing operation removes some important image features, for example around the eyes in
the Krista image. This. performance is not surprising, ‘given the median filter’s -
~ definition. Medran filters are typlcally used to remove "spiky" noise from an image.

When such noise is present in an image, image details tend to be somewhat- obscured to
begm w1th and when the filter removes the noise, the apparent quality of the image
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Figure 5.13.The imageé in Figure 5.11, clamped to gray levels 50-177 and 66-193,
R respectively. Both images have 128 gray levels after clamping.




Figure 5.14. Segmented versions of the clamped images in Flgure 5 13. Thesef
- images were segmented using the same segmentation thresholds as the '
unages in Figure 5.12. v
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Flgure 5 15. - Median ﬁltered versions of the test images in Figure 5.11. These images
were. filtered using a two-dimensional, 3x3, separable ‘median filter. -
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Flgure 5.16. . Segmented versions of the median ﬁltered images in Figure 5.15. These
- images were segmented using the same segmentatlon thresholds as the
1mages in Flgure 5.12.
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1mproves Since our ongmal image does not have much of any type of noise, image
details are very visible in the ongmal image. Therefore, it is obJectlonable ‘when the
ﬁlter removes these image details. ' ' :

" Since the median filtered i images are m1ss1ng important unage features, the seg-
mented versions in Figure 5.16 of the median filtered images are also missing the same
unportant image features. This is not in keeping with the goal we stated in Section 5.1
of only removing insignificant image fluctuations. Therefore, median filtering is not an :
effectlve preprocessing operation. '

* From these experiments evaluating the preprocessing operatlons proposed in Sec-
~ tion 5. 1, we have determined that neither of the operations are appropnate for prepro-
cesslng an image before segmentation. -

| 5;6.2.'Approach 1: Coding Complete Skeletons

~In this section. we present the results of'compress'ing' the two segmented, post-
- segmentation filtered, and qua;gtized test images shown in Figure 5.17, using the tech-
niques outlined in Sections 5.4.1 and 5.5.1. The images in Figure 5.17 were segmented
:usihg the same threshold parameters as the image in Figure 5.12, post'-seg‘mentation
filtered using E,, described in Chapter 2, and quantized using the HVS-based technique
outlined in Chapter 3. Information about the number of segments and gray levels in the
'1mages is summarized in Table 5.1.

The first step in this coding method is to decompose the segmented and quantlzed
image into a series of BDI’s. Examples of BDI’s from each of the test images are
~ shown i in thure 5.18. Since the Krista image in Figure 5.17 has 19 gray levels, there
will be a total of 19 BDI’s for Krista. Using similar reasoning, House will have 17
BDI’s. In the second step of the coding algonthm M -1 (M is 19 for Krista, and 17 for
.House) of the BDI's are skeletonized using the morphological procedure described in
Section 5.3. Figure 5.19 shows the globally minimal gray level morphological skeleton
functions, [skf(BDI;)](, ), of tl1e binary BDI’s shown in Figure 5.18. The final step in
the coding .algorithm is'to generate the Elias runlength code representing the M—1
skeleton functions, and the Huffman code for the gray levels along the skeleton func-
tions. Table 5.2 gives, for Krista, the number of points in each of the 19 BDI’s, the
number of points in each skeleton function, and the number of bits required for the Elias
- runlength code (with m=3) for each [skf(BDI;)](i,j). Table 5.2 also gives similar infor-
~ mation for House. Adding up the bits in the third column of Table 5.2, we see that
* Krista requires 109,184 bits to code the shapes of 18 skeleton functions. This is the sum
of the number of bits required to code the 18 smallest of the 19 skeletons described in
~ Table 5.2. Recall that we only need to code 18 of the 19 skeletons, and the shape of the
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energy threshold = 15, - energy threshold = 30,
19 quant.levels, 17 quant.levels,
_# segments =473 : # segments = 769

Figure 5.17. Post-segmentation filtered and quantized versions of the segmented
images in Figure 5.12. Both images were post-segmentation filtered
using E,,, and the images were quantized using the  HVS-based.

~ quantizer described in Chapter 3. The energy thresholds used in post- -
segmentation filtering, the number of quantization levels for each image,
and the number of segments in each image are given below each image.
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Tablé 5.1. Summary of the numbers of segments and gray levels in the images in
' Flgures 5.11-5.17. \ . '

‘Image | GrayLevel | Numberof | Numberof |

; Range Gray Levels chm¢nts ,
5.1t Krista | 14-249 234 | NA
_ Howe | 13235 | 223 | Na

512Krista | 19239 | 193 | 1925
‘House | 19228 200 | 3806
5.13Krista | 50-177 | 128 | NA
_ House | 66193 | 128 | NA
5.14Krista | 50-177 | 122 1573
House | 66-193 128 3125
5 15 Krista 15-245 230 - NA
~ "House | 17-233 - 217 ~NA
| 5.16 Krista | 19-238 188 | 1192
_ House | 22223 192 1438
5.17Krista | 25-232 19 473

House 32-217 17 769
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(a)

Figure 5.18. Sample BDI’s from each of the images in Figure 5.17. (a) Two BDI’
-~ from Kiista, (b) Two BDI’s from House. -
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(a)

(b)

Figure 5.19. (a-b) Globally minimal morphological skeletons corresponding to the
BDI’s of Figure 5.18. : S
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Table 5.2.  Summary of BDI skeleton coding information for Krista and House images for the
- coding method (Approach 1) of Sections 5.4.1 and 5.5.1. :
Krista , House
#of #of # of #of #of # of
points in points in bits for Elias points in points in bits for Elias
l BDJ, skf (BDI;) | runlength code BDJ; skf (BDI;) | runlength code
1 252 - 30 422 5165 980 6292
2 92 45 414 20477 1186 © 7978
3 192 89 804 6011 2283 13578
4 985 313 2436 4031 1588 9682
5 1794 543 . 3564 9063 2866 16716.
6 3297 1044 6888 3232 1540 9344
7 | 4169 1512 9798 2754 1642 9784
8 3969 934 6454 1655 1336 8022
9 7599 1725 11600 1693 1079 6784
10 3425 1307 8922 1737 1159 7178
11 8292 1634 10618 1158 - 859 5834
12 4506 1214 8258 1470 993 6408
13 1952 891 6390 1351 1036 7026 -
14 3190 1184 8542 1728 962 6672
15 1326 912 6912 1381 924 7130
16 || - 2588 1166 8498 639 363 2680
17 1893 1094 8038 1991 433 3090
18 2832 973 7444 - - -
19 13183 534 4782 - - -
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19’th BDI is implied from the shapes of the other 18. In the case of Krista we do hot
code a skeleton for BDIy, and for House, we do not code a ‘skeleton for BDIs. This
number does not include a nominal number of overhead bits to signify the end of the
code for one skeleton function and the beginning of the code for the next skeleton func-
tion. Adding up the 16 smallest numbers of the 17 numbers in the sixth column of
‘Table 5.2 we see that 117,482 blts are required to code the shapcs of the skeleton func-
tlons for House.

This coding technique also requires a Huffman code for thc gray levels along the
skeleton functions. The source symbol frequencies for Krista, and the Huffman code
designed based on these frequencies is given in Table 5.3. Slrmlar information for
House is also given in Table 5.3. These source symbol frequencies are the frequencies
of the gray levels along M1 of the skeleton functions. Multiplying the length of each
Huffman codeword by the number of times the source symbol associated with that
- “codeword occurs and summing the results, (e.g. (12292 x 1) + (1827 X2)+ (536 x 3) +
...) we see that for Krista, this portion of the code requires 22,232 bits. A similar calcu-
lation results in 22, 389 bits for this portion of the code for House. These bit require-
ment calculations do not mclude a nominal number of overhcad bits requued to transmit
the Huffman codebook. |

- Finally, the coding technique requires eight bits to code each of the M assoc1ated
gray levels. For Krista this requires 19x8 bits, or 152 bits. Similarly, House requires
17x8, or 136 bits to code its associated gray levels. Adding up the three numbers calcu-
lated for each of the images, we find that Krista' requires approximately 109,184 +
22,232 + 152 = 131,568 bits, or 2.00 bpp for this coding method. Similarly, House
requires approximately 117,482 + 22.389 + 136 = 140,007 bits, or 2.14 bpp for this cod-
ing method. :

_ As detailed in Section 5.,5.1, the decoding process for this coding method consists
of perfectly reconstructing the:,18 BDI’s from the skeleton functions and then combin--

‘ing them to form the reconstructed image. A perfect replica of the original segmented
quantized image is reconstructed by the decoding process. The decoding process is the
exact inverse of the coding process for this coding method. '

. 5.6.3. Appi'oach.Z: Coding Without 0’th Skeleton Subsets

In ihis section we present the results of compressing the two segmented and quan-
tized test images shown in Figure 5.17, using the techmqucs outlined in Sect10n 542
and 5.5.2. :
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Table 5.3. The source symbol frequencies and the Huffman code designed for the gray levels
along the skeleton functions for the Krista and House images, using the coding

technique (Approach 1) described in Section 5.4.1.

Krista House
source symbol Huffman symbol Huffman
symbol || frequency * | codeword frequency ** | codeword
1 12292 | 1 16028 | 1
2. 1827 | 01 1612 | 01
3 536 | 000 361 | 000
4 266 | 00111 184 | 0011
5 140 | 00100 46 | 001010
6 69 | 0011011 29 | 0010111
7 36 | 0010101 18 | 0010011
8 35 | 0010100 16 | 0010001
9. 27 | 00110100 1 | 60101100100
10 43 | 0011000 6 | 001001010 -| -
11 20 | 00101111 2 | 00101100111
12 17 | 00101110 2 | 00101100110
13 14 | 001101010 3 | 0010110001
14 44 | 0011001 3 | 0010110000
15 38 | 0010110 3 | 0010010111
16 10 | 0011010111 3 | 0010010110
17 3 | 00110101101 15 | 00101101
18 2 | 00110101100 -2 | 00101100101
25 0| - 9 | 00100001
27 0] - 9 | 00100000
28 0| - 11 } 00100100

%X 15149
#* X 18363
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As in the previous section, the first step in this coding method is to decom_pose -t—he
segmented and quantized image into a series of BDI’s. These are the same BDI’s as in
the previous section, and examples are given in Figure 5.18. The next step in the coding
algorithm is to skeletonize all the BDI’s using the morphological procedure described in
Section 5.3. After the BDI’s are skeletonized, the 0’th skeleton subsets of all the BDI’s
are discarded, as described in Section 5.4.2. Figure 5.20 shows the reduced gray level
'amorphologlcal skeleton functions, [skf (BDIp1(,j), of the binary BDI’s shown in Fig-
~ure 5.18. By comparing the reduced skeletons of Figure 5.20 to the complete skeletons
of Figure 5.19, one can see approximately how many skeleton points are eliminated
when the 0°th skeleton subset is omitted. This information can also be deduced by com-
, pa.nng the number of points in [skf (BDIPIG,j), given in Table 5.4, to the number of
points in [skf(BDI})](i, /), given in Table 5.2. :

~ The next step in the coding algorithm is to generate the Elias runlength code
representing each of the reduced skeleton functions, and the Huffman code for the gray
levels along the reduced skeleton functions. Table 5.4 gives, for Krista and for House,
the number of pomts in [skf (BDI))](i,/), and the number of bits required-to Elias run-
length code [skf (BDI)IG,j)sfor 1 =0, 1, - - - M—1. Adding up the bits in the second
column of Table 5.4, we see that Krista requires 35,264 bits for this portion of the code.
-~ Again, this number does not include a nominal number of overhead bits to signify the
‘end of the code for one reduced skeleton function and the beginning of the code for the
next reduced skeleton functlon By a similar calculation on the fourth column of Table
5.4 we see that the number of bits required for House for this stage of the coding is

- 25,768 bits.

Asin the previous section, this coding technique also requires a Huffman code for
the gray levels along the reduced skeleton functions. The source symbol frequencies for
Krista and for House, and Huffman codes based on each of these distributions are given
in Table 5.5. Multiplying the length of each Huffman codeword by the number of times
the source symbol associated with that codeword occurs and summing the results, (e.g.
(2084 x 1) + (613 x 2) + (305 x 4) + 7,826 bits. A similar calculation (e.g. (1902 x 1) +
(423 X 2) + (205 x 3) + ...) results in 4,857 bits for this portion of the code for House.
These bit requirement calculations do not include a nominal number of overhead bits
~ required to transmit the Huffman codebook. :

‘ Finally, the coding technique requires eight bits to code each of the M associated
- gray levels. The bit requirements for this portion of the code are identical to the
requirements of the previous section. Adding up the three numbers of bits calculated
for each of the images, we find that Krista requires approximately 35,264 + 7,826 + 152
= 43,242 bits, or 0.66 bpp for this coding method, and House requires approximately
25,768 + 4,852 + 136 = 30,761 bits, or 0.47 bpp for this coding method.
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Figure 5.20. (a-b) The red{lced morphological skeletons formed by discarding the
0’th skeleton subsets of the skeletons shown in Figure 5.19.



Tablé 5.4. Summary of BDI skeleton cdding information for Krista and House images for the

coding method (Approach 2) of Sections 5.4.2 and 5.5.2.

~ Krista House
number of number of number of number of
points in bits for Elias points in bits for Elias

! || skf*(BDIL) | runlength code || skf*(BDI;) | runlength code
1 30 30 300 782

2 11 20 285 861

3 24 66 380 1874

4. 89 88 227 1082

5 137 406 430 2529

6 270 915 164 1097

7 317 1190 153 1443

8 259 750 59 991

9 469 1167 92 784
10 255 1119 88 964
11 272 1077 50 575
12 203 914 - 82 754
13 109 751 62 530
14 187 1059 117 729
15 78. 682 60 776
16 200 986 53 9%
17 105 691 163 395
18 175 597 - -
19 406 534 - -

174
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Table 5.5. The source symbol frequencies and the Huffman code des1gned for the gray levels
along the skeleton functions for the Krista and House images, using the codmg
techmque (Approach 2) described in Sections 5.4.2 and 5.5.2.

Krista House

source symbol Huffman symbol | Huffman

symbol | frequency * | codeword frequency ** | codeword
2 2084 | 1 1902 | 1
3 613 | 00 423 | 00
4 305 | 0111 205 | 010
5 168 | 0100 65 | 01110
6 87 | 01011 39 | 011111
7 57 | 011001 26 | 011010
8 45 | 011000 22 | 011001
9 31 | 0110101 2 | 0110110111
10 43 | 010100 9 | 0110000
11 20 | 01101101 4 | 011110001 |
12 17 | 01101100 -3 { 011011001 .| -
13 14 | 01101000 4 | 011110000
14 44 | 010101 9 | 01111011
15 38 | 0110111 3 | 011011000
16 10 | 011010011 3:| 011011010
17 3 | 0110100101 15 | 0110111
18 2 | 0110100100 2 | 0110110110
25 0| - 9 | 01111010
27 0] - 9 | 01111001
28 0 - 11 | 0110001

* X 3585

** X 2765
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The first step in decodmg the segmented quantlzed 1mage from the code described
above is to reconstruct the reduced skeleton functions, [skf (BDI)(i, ), as described in
Section 5.5.2. Then using the morphological process of Equauon 5.10, the set
- (BDIg, =0, 1,.M-1is reconstructed. Flgure 5.21 show these versions of the BDI’s

from Figure 5.18. From a close comparison of Figures 5. 21 and 5.18 the "unrecon-
-structed pixel" problem is apparent. It can be seen that the fine details of the BDI’s in
Figure 5.18 are not recreated in the images in Figure 5.21. Reiterating, this is due to the
fact that the 0’th skeleton subsets of the skeleton functions were not encoded.

. The next step in decoding is to "paint in" each reconstructed BDI with its associ-
ated gray level, P;, and then combine these images as described in Section 5.5.2, to
begin to form the reconstructed image. Figure 5.22 shows the reconsu'ucted'images,at :
this point in the algorithm. In Figure 5.22 the unreconstructed pixel is again apparent.
We can see in both images that many image pixels have not been assigned a gray level
(these pixels appear black in Figure 5.22). In order to demonstrate the problem more
clearly, Figure 5.23 shows in black all the unreconstructed pixels foi' 'each'test image.

The caption of Figure 5.23 tells exactly how many unreconstructed pixels appear in-
each test image. , :

The final step to complete the decodmg is post-processmg o "ﬁll in" these
unreconstructed pixels. An averaging filter to accomplish this is described in-detail in
‘Section 5.5.2. Figure 5.24 shows the images resulting from applying this filter to the -
images of Figure 5.22. Comparing the reconstructed image of Figure 5.24 the the origi-
nal segmented quantized images of Figure 5.17, distortion in the reconStnictcd images is
quite apparent. This coding technique does not perfectly reconstruct the segmented
quantlzed 1mages of Figure 5.17.

5.6.4. Approach 3: Coding the Minimal Set of Segments

- In this section we present;the results of compressing the twe segmented and quan-
tized test images shown in Figure 5.17, using the techniques outlined in Section 543 _
and 5.5.3.
_ With this coding method, the first step after segmenting and quantizing the image -

is to find a minimal set of segments for the segmented and quantized image. Using the
algonthm described in Section 5.4.3, this was done for each of the images in Figure
5.17. The minimal set of segments for each test image is illustrated in Figure 5.25. The
caption of Figure 5.25 gives the number of segments in the minimal set of segments .
found for each of the test images. The segments in white in Figure 5.25 are the seg—b
‘ments that will be in the reduced BDI’s, and eventually have their skeleton functions.
encoded. The image segments in black in Figure 5.25 will not have skeleton functions
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(b) o

Figure 5.21. = (a-b) The BDI’s reéonstructed from the reduced skeletons of Figure
5.20. ‘
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Figure. 5.22. The segmented images. reconstructed from reduced 'morphologi:ca'l‘
skeletons like those shown in Figure 5,20 (that is, skeletons missing their
0’th skeleton subsets). The black pixels are unreconstructed pixels.



Figure 5.23.

- from reduced skeletons, black pixels will not. There are 13,548 (21%)

179

Binary images demonstrating the unreconstructed pixels in the
segmented images of Figure 5.22. White pixels will be reconstructed

unreconstructed pixels in Krista, and 18,464 (28%) unreconstructed
pixels in House. :
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Fxgure 5.24. The reconstructed segmented images of Figure 5.22 after the averagmg
filter designed to fill in the unreconstructed pixels. The Krista image

required five passes of the filter, the House image requxred ten passes of
the filter.



Figure 5.25.
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Minimal sets of segments for the segmented quantized images of Figure

. '5.17. The white pixels are in segments in the minimal set of segments

and the black pixels are in segments whose shapes are implied by the
minimal set of segments. There are 473 segments in segmented
quantized Krista and 275 segments in Krista’s minimal set of segments.
There are 769 segments in segmented quantized House and 480

segments in House’s minimal set of segments
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' coded.
_ After the segments not in the minimal set have been set to zero in the segmented
quantized image, the next step is to generate the senes of reduced of BDI’s,
. 'BDITI, 1=0, 1,..M-1. Examples of reduced BDI’s for each of the test images are
“shown in Fxgure 5.26. These reduced BDI's correspond to the complete BDI’s of Fig-

* ure 5.18. Notice that the reduced BDI's in Figure 5.26 have much fewer segments than
the complete BDI’s in Figure 5.18. Table 5.6 gives, for Krista and House, the number
of points in BDI'; for /=0, 1,..M~1. The next step in the codmg algorithm is to
. skeletomze the reduced BDI’s using the morphological procedure described in Section

.53, Fxgure 5.27 shows the gray level morphological skeletons, [sl‘;f(BDIT DI, J), of the

reduced BDI’s shown in Figure 5.26. Comparing the numbers in Table 5.2 to those i in
Table 5.6 it can be seen that the skeleton functions for the reduced BDI’s have
’ sxgmﬁcantly fewer pomts than the skeleton functions for the complete BDI’s. This can
also be seen by comparing the skeletons in Figure 5.27 to those in Figure 5.19.

The next step in the coding algorithm is to generate the Elias runlength code
‘representmg each of the skeleton functions, and the Huffman code for the gray levels
along the skeleton functions. ‘-‘%‘%}:?able 5.6 gives, for Krista and for House, ‘the number of
v pomts in each of the reduced BDI’s, the number of points in each skeleton function, and
‘ Nthe number of bits required for the Elias runlength code for each [Skf(BDITI)](l, D.
Adding up the bits in the third column of Table 5.6, we see that Krista requires 93,424
bits for this poruon of the code. Once more, this number does not include a nominal
~ number of overhead bits to signify the end of the code for one skeleton function and the
;begmnmg of the code for the next skeleton function. The number of bits required for
House for this stage of the codmg (the sum of the numbers in the sixth column of Table

- 5.6) is 104,922 bits.

As with the other two techmques, this coding technique reqmres a Huffman code
for the gray levels along the skeleton functions. The source symbol frequencies for
. Krista and for House, and the Huffman codes designed based on these distributions are
given in Table 5.7. Multiplying the length of each Huffman codeword by the number of
times the source symbol associated with that codeword occurs and summing the results,
(e.g. (10 064 x 1) + (1631 x 2) + (521 x 3) + 19,969 bits. A similar calculation (e.g.
(13 969 x 1) + (1,477 x 2) + (385 x 3) + ...) results in 21,930 bits for this portion of the
~ code for House. These bit requirement calculations do not include a nominal number of
overhead bits required to transmit the Huffman codebook.

o Flnally, this codmg technique requires a second Huffman code to be used for the
| gray levels of the image segments not in the minimal set of : segments, along with the
associated gray levels. The frequencies of these source symbols, and the Huffman code
~ designed for Krista is shown in Table 5.8. The same 1nformat10n for House is given in



 Figure 5.26.

(a-b) The BDI's of Fi

removed. : -

gure 5.18, with segments not in the minimal set
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(b)

Figure 5.27. (a-b) Globally minimal morphological skeletons corrésponding to the
' reduced BDI’s of Figure 5.26.




Table 5.6. Summary of BDI skeleton coding information for Krista and House i 1mages for the

coding method (Appmach 3) of Secnons 543 and 5.5.3.

534

4782

- Krista g _ House _
number of | number of number of number of | number of number of
points in points in bits for Elias points in -poinis in bits for Elias

l BDIT, skf BDI')) | runlength code BDI', skf BDI')) | runlength code
1 252 30 422 4646 782 5096

2 57 20 182 19710 861 6008

3 130 66 616 5460 1874 11324

4 223 88 670 3161 1082 6872

5 1513 406 2716 8600 2529 14900

6 2926 915 - 5964 2570 1097 6800

7 3420 1190 7768 2509 1443 8566

8 3651 750 5216 1233 991 6106

9 5480 1167 8298 1333 784 5182

10 3054 1119 7706 1494 964 5968

11 7584 1077 7054 831 575 _ 4118

12 3963 914 6246 1163 754 . 4854
13 1645 751 5410 719 530 4002
14 2849 1059 7794 1117 729 5278
15 1078 682 5426 1097 776 6252
16 || 2388 986 7294 129 94 720
17 1092 - 691 5206 1832 395 2876
18 2411 597 4664 - - -
1’9 13183 - - -

S81
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Table 5.7. The source symbol frequencies and the Huffman code designed for the

gray levels along the skeleton functions for the Krista and House images,
using the coding technique (Approach 3) described in Sections 5.4.3 and

5.5.3.

b Kdsa House
source | symbol Huffman symbol = |  Huffman -
symbol |{ frequency ¥ | codeword frequency **- | codeword = |

i 10064 | 1 13960 | 1

2 1631 | 01 - 1477 | 01

3 521 | 000 385 | 000

4 265 | 00111 197 {.0010 .

5 156 | 00100 62| 001110

6 81 | 001010 39 | 0011111

7 53 | 0011001 26 | 0011010

8 49 | 0011000 22 | 0011001

9 31 | 00110101 - 2.1 00110110110

10 43 | 0010110 9 | 00116000

11 20 | 001101101 4 | 0011110001

12 17+ 0011'01100 '3 | 0011011001

13 14 | 001101000 4 | 0011110000

14 44 | 0010111 9 | 001111011

15. 38 | 00110111 3 | 0011011000

16 10 | 0011010011 3 | 0011011010

17 3 | 00110100101 15 | 00110111

18 '2° | 00110100100 2 | 0011011011

25 0l- ' 9 | oo1111011

27 0q- 9 | 001111001

28 0 - 11 | 00110001
* X 13042

*¥ % 16260
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Table S 8 The source symbol frequencles and the Huffman code designed for the gray levels
of the segments not in the minimal set of segments and the associated gray levels
for the Krista image, using the codmg techmque (Approach 3) described in ,

' Secnons543and553
: , Krista : !
source || symbol Huffman |
symbol || frequency * | codeword
| 42 8 . 11011
- 59 - 18, 1111
75 o 10 0000
86 13 1000
95 12 0101
104 8 11010
110 14 1100
120 _ 19 1 001
125 12 0110
132 25 | 101
139 12 0111
145 | - 16 1110
156 5 | 01000
164 10 0001
175 13 11001
187 ff 3 010010
202 5 010011

*x 186
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Table 5.9. Multiplying the codeword lengths by the number of times the source symbol
associated with that codeword occurs, and summing the results, we calculate that Krista
- requires 805 bits for this portion of the code. A similar calculation results in 1,211 bits
for this portion of the code for House. Adding up the three numbers of bits calculated
for each of the i nnages, we find that Krista requires approximately 93,424 + 19.969 +
805 = 114 125 bits for this coding method, and House requires approxlmately 104,922 +
21,930 + 1,211 = 127,451 bits for this ‘coding method. These numbers provide a bit
rate of 1.74 bpp for Krista and 1.94 bpp for House. All the bit rates discussed in this
section and the preceding two sections are summarized in Table 5.10.

' The first step in decoding the segmented quantized image from the code described
‘above is to reconstruct the skeleton functions, [skf(BDI' D1G, ), as described in Section

552, Then using the morphological process of Equation 5.10, the set

BDIf,, =0, 1,..M-1is exactly reconstructed. These reduced BDI’s will be 1dent1ca1
to those shown in Figure 5.26.

The next step in decoding is to "paint in" each reconstructed reduced BDI with its
associated gray level, Py, and then combine these images as described in Section 5.5.2,
to begin to form the reconstructed image. Recall that the P; values were encoded using
a Huffman code. Figure 5.28 shows the reconstructed segmented quantized images at

~ this point in the reconstruction algorithm. We can see in both images in Figure 5.28
~ that the image segments not in the minimal set of segments have not been assigned a
- gray level yet (these segments appear black in Figure 5.28).

The final step to complete the decoding is post-processing to "fill in" the unrecon-
structed segments with their gray level values, which were encoded in raster scan order,
‘using a Huffman code, as described previously. ‘A perfect replica of the original seg-
mented quantized image is reconstructed by this decoding process. : |

5.6.5. ‘Comparisons

- We have proposed three iechniques for coding a segmented quantized gray level
image using morphological skeletons. The bits required and the resulting bit rates for
the three methods are summarized in Table 5.10. We will refer to the method from Sec-
~ tions 5.4.1 and 5.5.1 as "Approach 1," the method from Sections 5.4.2 and 5.5.2 as

“"Approach 2," and the method from Sections 5.4.3 and 5.5.3 as "Approach 3," These
- results show that the lowest bit rate is attained using Approach 2. However this method
introduced substantial distortion in the decoded segmented i image.

Approach 1 and Approach 3 both resulted in perfect recreation of the segmented
quantized image at the decoder output. Of these two methods, the Approach 3 had a



189

Table 5 9 The source symbol fnequenmes and the Huffman code designed for the gray levels
of the segments not in the minimal set of segments and the associated gray levels
for the House image, using the coding technique (Approach 3) described - in

3 Secuons543and553
House

source symbol Huffman

symbol || frequency * | codeword
32 5 00010
52 19 .| 1001
66 10 00011
82 13 11101
93 , 31 001
102 17 0000
111 19 1010

117 13 11110
122 13 11111
129 : 20 1011
135 12 11100

143 17 0110

- 153 . 17 0111
166 22 1100
177 24 1101
199 ' 18 - 1000
217 .32 010

*x285
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Table 5.10. Summary of codmg requu'ements for Knsta (Flgure 5 17) Housc (Figure
5 17), and Krista2 (Figure 5. 29)

R b1ts for blts for ~ bits for '

: approach | skeleton skeleton - | associated total bitrate |
image | number. shapes | gray levels | graylevels |  bits (bpp)
Krista 1 109,184 | 22,232 152 131,568 | 2.00 |
' 2 35,264 7,826 152 43242 | 0.66

, 3 93424 | 19,969 805* | 114,198 | 1.74
House | 1 117,482 22,389 136 140,007 | 2.14
2 25,768 - 4,852 136 | 30,761 0.47
L -3 104,922 21,930 1,211 * | 128,063 1.95
| Krista2 | 3 32,630 10,678 161 * 43,469 | 0.66

* Also includes bits to code glay lev¢ls for segments not in the minimal set.
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The segmcnted quantmed images reconstructed from reduced BDI’s like
- those shown in Figure 5.27 (that is, BDI’s without segments not in. the
minimal set). The black pixels are m segments whxch are not-in the

‘minimal set of segments. -
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lower data rate. Recall that Approach 3 made use of the minimal set of segments. By
using this idea, we aehieved a reduction in the data rate of between _nine and thirteen
percent.

- 5.6.6. A Low Bit Rate Example

‘We have apphed our new compression method, using Approach 3 to compress a
more coarsely segmented and quantized image. The segmented quanuzed 1mage we
have compressed, referred to as Krista2, is shown in Figure 5.29. This i image is com-
posed of 79 segments, with 9 gray levels, and was segmented and quantized using the
methods described in Chapters 2 and 3. The parameters used in those algorithms are
given in the figure. Figure 5.30 shows the minimal set of segments that was found for
this image. There are 35 segments in the minimal set, and 45 segments have their
shapes implied by the minimal set. Table 5.11 gives the coding information for Krista2.
Adding up the bits requlred for each skeleton function we see that this image requires

32,630 bits to code the shapes of the skeleton functions. A Huffman code was designed
for the gray levels along the skeleton functions, and these gray levels were found to
require 10,678 bits to encode. Finally, a second Huffman code ‘was des1gned for the
gray levels of the segments not in the minimal set, along with the assoc1ated gray levels.
These were found to require 161 bits for coding. Adding we find that the i lmage of Fig-

- ure 5.29 takes 43,469 bits to code, for a bit rate of 0.66 bpp. The bit requirements for

Krista2 are summarized in Table 5.10. This example illustrates that by relaxing the

visual quality requirements on the segmented quantized image, the bit rate can be
lowered substantially.

5.7 Comparison to Boundafy Coding

- As mentioned above, one significant difference between the compression method
we propose and other segmentétion-based image compression methods is the method
for coding the segment shapes. Where we propose coding segment skeletons, other
have coded segment boundaries to represent the segment shapes. In this section we will
. compare the bit rates achievable with both these methods applied to the same seg-
mented quantized images. In the previous section we calculated the bit rates for the
images in Figure 5.17 using our new compression technique. Now we will estimate the
bit rates for these images using a boundary coding segmentauon -based compression
technique.
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m=.123, w=05,
d =22, thp,; =25,
energy threshold = 20,
9 quant. levels,
# segments = 79

Figure 5.29, The segmented quantized image Krista2 to be compressed. The image wés
segmented using TH3 with the parameters given below the image, and
quantized to nine gray levels using the HVS-based quantizer described in
Chapter 3. ' :



Figure 5.30.
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The minimal set of segments for the segmented quantized image of
Figure 5.29. The white pixels are in segments in the minimal set of
segments and the black pixels are in segments whose shapes are implied
by the minimal set of segments. There are 82 segments in segmented
quantized Krista2 and 35 segments in Krista2’s minimal set of segments.
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Table 5.11. Summary of BDI skeleton coding information for Krista2 (Flgure 5 29) for the :
codmg method (Approach 3) of Sections 5.4.3 and 5.5.3.

number of | number of number of
|l pointsin | -pointsin | bits for Elias

[ BDIY skf BDI';) | runlength code
1 324 43 474

2 412 115 - 816

3 2353 180 _ 1462

4 3650 472 3442

5 21826 1011 6826

6 885 212 - 1518

7 5934 981 7140

8 4276 890 . 6320

9 16581 . | - 490 4632
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For boundary coding methods, two pieces of information are coded to describe the
segmented image: a binary image of the boundaries of the image segments and the
gray level of every segment in the image. Figure 5.31 shows the bmary edge images for
the segmented quantized images of Figure 5.17. These i images were coded using the
same runlength Elias method as was used previously in this chapter to code skeletons.
The Kirista image required 77,092 bits to represent the segment boundaries, and the
House image required 86,834 bits to represent the segment boundaries. A Huffman
code was designed to code the segment gray levels for each image. The Krista image
- has 473 segments and was found to require a total of 1,859 bits to code the gray levels
of those segments. The House i image has 769 segments and was found to require a total

of 3,068 bits to code the gray levels of those segments. Adding, Krista requires a tota!

of 78,951 bits, for a bit rate of 1.20 bpp, and House requires a total of 89,902 bits, for a
bit rate of 1.37 bpp. These bit rates are approximately thirty percent lower than the bit
" rates we obtained using skeleton coding segmentation-based compressmn (1.74 bpp for
Knsta and 1.95 bpp for House). The data rates are summarized in Table 5. 12

There have been other methods proposed to code the boundaries using fewer bits.
- than above. It has been found that by estimating the segment boundaries using line seg-
ments and arcs, bit rates in the neighborhood of 1.2 bits per contour point are achievable
for the boundary image [2]. Using this result, since the edge image for Krista has
- 16,566 points, it may be possible to code the segment boundaries with as few as 19,879
bits, resulting in an overall bit rate of 0.33 bpp. Similarly, the edge image for House has
19,850 pomts requiring 23,820 bits, resulting in an overall bit rate of O 41 bpp. The
- data rates are also summarized in Table 5.12.

5.8 Conclusions

These results indicate that, using the present methods, data rates in the neighbor-
hood of 1.5 to 2.0 bpp are attainable with the compression method we have proposed.
These rates are somewhat higher than those achieved by coding boundaries rather than
skeletons. This result may be due in part to the significant efforts that have been
‘devoted in the past to efficient schemes for coding boundary images. Similar long term
efforts have not been spent on the problem of coding morphological skeletons. Such -
efforts would almost certainly lead to a more efficient method for coding our skeletons
than the one we have used.

Though morphological skeletons may result in a higher data rate in a
segmentation-based compression scheme, there are also certain advantages to using
-morphological skeletons. One advantage is that the skeleton method for segmentation-
based compression is a more parallel approach than boundary coding. This allows fora
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Figure 5.31. The binary edge images of the segmented quantized images of Figure
5 . '

. .
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Table 5.12. Summary of bit requirements for Krista (Figure 5.17), and House (Figure 5. 17) for
boundary segmentation-based compression.

bits for bits for
boundary | segment total bitrate
image | = method image gray levels bits (bpp)
Krista runlength 77,092 1,859 78,951 1.20
line and arc 19,879 1,859 21,738 0.33
House | runlength 86,834 3,068 89,902 | 1.37 .
line and arc 23,820 3,068 26,888 041
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faster implementation of the coding algorithm. The algorithm for finding and coding
the segment boundaries is not conducive to being done in a parallel fashion. The skele-
tonization of the BDI’s, and the coding of each skeleton are perfectly suited for parallel
implementation, both at the coder and at the decoder.

Another advantage of the skeleton method for segmentation-based compressxon is -
that it allows more readily for data rate/image quality trade-offs. After an image has
been segmented, the data rate can be varied by varying the number of 0’th skeleton sub- -
sets that get coded. For example, to get a low data rate, do not code any O’th skeleton
subsets. Our experiments have shown the data rate is typically reduced by a factor of
three to four by not coding any 0’th skeleton subsets. The data rate can be gradually -
increased by increasing the number of 0°th skeleton subset points encoded. The data
rate can also be varied to a lesser extent by varying the number of quantization levels in
the segmented image quantizer. This will change slightly the number of segments in
the image, and the number of bits required to code the associated gray levels. It will
also effect the number of bits needed to code the gray levels of the segments not in the
minimal set of segments. In contrast, the only plausible way to vary the data rate for
boundary segmentation-based image compression is to completely re-segment the_
image. :

One more advantage of skeleton segmentation-based compression algorithms is
that they are well-suited to allow progressive reconstruction of the image at the decoder.
With skeleton techniques, the image is represented in a hierarchical fashxon The
higher-order skeleton subsets will to reconstruct a coarse estimate of the image, that is

 an estimate of the image composed of large, "blobby" segments. The lower the order of
the skeleton subset, the finer the image detail represented by that subset. Therefore, the
lower order skeleton subsets can be gradually included in the image reconstructlon to
progressively add finer detail in the image. This type of progression is not poss1ble with
boundary segmentation-based compression techniques.

In this investigation into skeleton segmentauon-based image compression we have
found that the data rate possible with these techniques is presently higher than that for
boundary segmentation- based compression techniques. However, there are many
important advantages of skeleton over boundary coding that may, for some applications,
offset the disadvantage of a somewhat highef data rate.
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CONCLUSIONS

In this thesis we proposed a new segmentation-based gray level image compres-
sion technique, which achieves data rates in the neighborhood of 1.5 {0 2.0 bpp. The
formulation of this technique required investigations into image segmentatlon and
quantization, and included the application of mathemancal morphology in a new way to
compress gray level images.

Our compression technique is different in several key ways from other
. segmentatlon-based image compression schemes. First, we employ an improved ver-
. sion of a previously proposed image segmentation technique (centroxd-lmkage reglon
- growing). This improved segmentatlon method takes advantage of HVS properties to
-achieve visually pleasing image segmentation. A second difference in our compression’
technique is that we propose quantization of the segmented i 1mage to reduce the number

- of gray levels in the segmented image. This results in reduction in the bit rate requlred

~for the image. Our compression technique also employs a new representation for the
image segment shapes. Other segmentation-based gray level image compréssion tech-
niques have typically represented the image segments by encoding the segment boun-
daries. We use skeletons generated using mathematical morphology to represent the
segment shapes. This application of morphology is also new in the sense that we use
morphological skeletons in the compression of gray level images, while others have
' only used morphological skeletons for binary image compression. '

- Our research has resulted in contributions in the areas of i image segmentation,
quantization, and compression. We systemaucally designed a version of the centroid-
linkage region growing algorithm which incorporates HVS propertxes to produce visu-
>ally pleasing segmented images. This design entailed investigations and comparisons of
several different segmentation thresholds. We also investigated a method for filtering
segmented images to remove visually insignificant segments.  This required comparis-
ons and evaluations of numerous different measures for the energy in an image seg-
ment. We then evaluated the interactions between the steps in our algonthms through
subjective tests.

We proposed the quantization of segrnented images, and showed that quantization
- can be done to reduce by a factor of 2 the number of bits required to code the gray lev-
els in the segmented image, with little or no degradation in the quality of the segmented
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_ 1mage We proposed a HVS-based quantizer, and compared this quantizer through sub-
jective tests to several other quantizers. We also 1nvest1gated the mteractlons between
our segmentation and quantization algorithms.

Finally, we applied our results in segmentation and quantization to a new image
- compression technique. This technique employed morphological skeletons in a new
way for gray level image compression. We investigated the appropriateness of two
preprocessing steps which had been previously proposed by other researchers. We pro-
posed the idea of the "minimal set of segments,” which reduced the data rates achieved
by our compression technique by approximately 13%. Finally, we compared our
compress1on techmque to other segmentation-based image compression methods. '
There are many aspects of the work presented here that offer avenues for further
- research.  In relation to image segmentation, investigations into different criteria for
segmentation are possible. For example, others have used polynomial medels for the
~ image segrnents. It may be possible to use this type of segmentation criteria while also
capitalizing on HVS properties. Further work needs to be done to verify and calibrate
the measure proposed in Section 2.4 for the number of segments required by an image.
This would require the use of some type of quantitative measure for segmented unage,.
quality. :

-The performance of the HVS-based quantizer proposed in. Chapter 3 could poss1-:
bly be improved by incorporating a priori information relative to the image being quan-
tized, perhaps in the form of the image histogram. It may also be appropriate to spa- :
tially vary the quantlzer characteristics, according to some local image characteristic.

" Further work is also possible to improve the data rate achieved by the compression |
technique proposed. For example, perhaps a better technique for coding the skeletons
of the image segments could be found. In relation to this, one possible improvement
has to do with the mznner in which the skeletons for the BDI’s are generated. Suppose
the BDI’s were give:: labels from O to M-1. Using the binary representation for. these
labels, the BDI’s could be grouped in a b1t-p1ane fashion. For example, all BDI's hav- k
ing labels with the most significant bit a "1" would be logically OR’ed to form a b1nary3
image, and a morpholc gical skeleton could be generated for this binary image.: Th1sf
method. would result in logyM morphological skeletons (one for each bit required to
represent the labels), rather than M skeletons (one for each BDI). Since fewer skeletons ‘
would need to be coded, the bit rate required may also be reduced. ‘

The compress10n techniqus we proposed makes use of the idea of a mlmmal set of
segments. Recall that this minimal set is not unique. Since a skeleton is coded for each
segment in the minimal set, and each segment skeleton requires a different number of
bits to code, we would like to chcose the minimal set- of segments which requires the
overall fewest blts to code, i.e. the opttmal mmlmal set of segments. Further research
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- could lead to a technique to find the optimal minimal set of segments. |
Research such as that described above would certainly reduce the data rate
~ achieved by our compression method. We feel that by implementing the improvements
discussed above, data rates in the neighborhood of 0.4 to 0.6 bpp could be achieved.
Such a data rate would make our compression technique comparable w1th other
segmentation-based image compression schemes. -

Another area for research to improve the proposed compression technique' is in
post-processing. The decoded image is a segmented quantized version of the original
image. Such images have certain types of distortion, the most significant being false
contouring in areas of gradual change in gray level. The visual quality of the decoded
image could almost certainly be improved with some type of post-processing ﬁltenng
operation. The post-processing operation should preservc unchanged high contrast
edges, and smooth low contrast edges.
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APPENDIX A,

Table Al. Number of times each test image set received each ranking in the experiment
destribed in Chapter 2. There were ten test subjects, each of whom ranked
each test image set twice, for a total of 20 rankings for each test image set.
("psf" refers to post-segmentation filtering). :

coarse segmenta- | medium segmenta- || fine segmenta-

~ tion, no psf tion, moderate psf || tion, extensive psf
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APPENDIX B.

| -Table B1 Number of times: each test image set recelvcd each ranlqng in the experiment |

described in Chapter 3. There were eleven test ‘subjects, each of whom
viewed each test image set twice, for a total of 22 rankmgs for ach test
image set.

image

HVS-based i Hlstogram Umform
quantizer | quantizer |  «quantizer

numberof | rank | rank | rank || rank | rank | rank || rank | rank | r

Eric

18

14
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ank ‘
| quantlevels || 1 2 | 3 4 1
= 5 :

0

1

1

House |

3

Krista |

15

LNmﬂk‘

20
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APPENDIX C.

‘In this appendix we describe a technique propésed by Eiias foi coding a sparse
binary image. Suppose‘a binary image is mostly 0’s with only a few 1’s. The rows of
the NxN image are concatenated together to form a vector of N2 gray level values, and
all runs of consecutive 0’s in this vector are found. The lcngths- of these runs, separated
by a symbol (referred to as a "comrha") to mark the end of a run (i.e., the presence of a
1), completely describe the original binary image. Elias has proposed coding these
runlengths (viewed as decimal numbers) using an n-ary arithmetic system, and using an
n+1’th symbol to represent a comma. For example, for n=3 th¢ runlengths are
represented in a ternary system. The comma requires aﬁ additional symbol, for a total of
four symbols. These four symboli are represented using a two bit code. One possible'-

choice to represent the four symbols is: 00=comma, 01=0, 10=1, 11=2.

Consider the following 40 bit binary sequence:
00001 10000000000010001000000000100000000

The runlengths for this sequence are: 4, 0,11, 3,9, 8, and the ternary representations for
these runlengths are: 11, 0, 102, 10, 100, 22. Finally, using the representation dcscribéd

above, the Elias code representation for the original binary sequence is:
1010 60 01 00 100111 00 1001 00 100101 00 1111

We have represented the original 40 bit sequence using 36 bits.
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Histograms for the images in Figures 2.3 and 3.2.
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APPENDIXE.

For all the work in this thesis, the images were observed on a DeAnza CRT
| monitor, manufactured by Mitsubishi Electric, model C-3910. This monitor has 512 x
512 pixel resolution, with 256 possible gray levels. The monitor was calibrated so that
luminance was linearly related to the gray level numeric value. In the first step of the
calibration process a Minolta Chromai Meter (model CL-100) was uscd to measure the
luminance of the screen for a variety of gray level values. A plot of the luminance
versus gray level value before calibration is %_hown by the dotted line in Figure D1. A
mapping was then defined to reassign the gray level values to achieve the desired linear
relationship. This mapping is given in Table D1. The plot of luminance versus gray
level value after the re-mapping?is shown by the solid line in Figure D1. This plotr

shows that we have achieved the desired lineal‘ relationship.
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