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Abstract

In image processing, the segmentation algorithms constitute one of the main focus of research. In this

paper, new image segmentation algorithms based on a hard version of the information bottleneck method

are presented. The objective of this method is to extract a compact representation of a variable, considered

as the input, with minimal loss of mutual information with respect to another variable, considered as

the output. First, we introduce a split-and-merge algorithm based on the definition of an information

channel between a set of regions (input) of the image and the intensity histogram bins (output). From

this channel, the maximization of the mutual information gain is used to optimize the image partitioning.

Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the

loss of mutual information. From the inversion of the above channel, we also present a new histogram

clustering algorithm based on the minimization of the mutual information loss, where now the input

variable represents the histogram bins and the output is given by the set of regions obtained from

the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show

how the information bottleneck method can be applied to the registration channel obtained when two

multimodal images are correctly aligned. Different experiments on 2D and 3D images show the behavior

of the proposed algorithms.

Index Terms

Image segmentation, image registration, information theory, information bottleneck method.

I. INTRODUCTION

The main objective of image segmentation is to divide an image into regions that can be considered

homogeneous with respect to a given criterion such as color or texture. Image segmentation is one of the

most widely studied problems in image analysis and computer vision and it is a significant step towards

image understanding. Many different methods, such as thresholding, region growing, region splitting
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and merging, active contours, and level sets, have been proposed. Each one of these methods considers

the segmentation problem from a different perspective and is suitable for solving a limited number of

situations. For a survey of segmentation algorithms see [13].

The purpose of this paper is to introduce new segmentation algorithms using a hard version of the

information bottleneck method [29]. The use of this method requires the definition of an information

channel where a random variable controls the clustering of the other by preserving the maximum mutual

information between them. That is, the objective of this method is to extract a compact representation of

a random variable with minimal loss of mutual information with respect to another variable.

In this paper, the information bottleneck method will be applied to two different channels: (i) the channel

defined between the set of regions of a given image and its histogram bins, and (ii) the channel built

between the histogram bins of two multimodal registered images. From the first channel, both split-and-

merge and histogram clustering algorithms are introduced and, from the second channel, both one-sided

and two-sided histogram clustering algorithms are presented. While the splitting process is guided by the

maximization of the mutual information gain, all the other processes (merging and clustering) are driven

by the minimization of the mutual information loss.

The following information-bottleneck-based algorithms represent the main contributions of this paper:

• Split-and-merge algorithm (Section III). In the first phase, a top-down strategy is applied to partition

an image into quasi-homogeneous regions using a binary space partition (BSP) or a quadtree partition.

In the second phase, a bottom-up strategy is used to merge the regions whose histograms are more

similar.

• Histogram clustering algorithm (Section IV). Neighbor bins of the histogram are clustered from a

previously partitioned image. After assuming that the split-and-merge algorithm provides us with

the structure of the image, our clustering algorithm tries to preserve the correlation between the

clustered bins and the structure of the image.

• Histogram clustering algorithms for two registered multimodal images (Section V). Two different

algorithms are presented. The first one segments just one image at a time, while the second one

segments both simultaneously. The clustering process works by extracting from each image the

structures that are more relevant to the other one. In these algorithms, each image is used to control

the quality of the segmentation of the other.

The proposed methods have several advantages. In the split-and-merge algorithm, this channel makes

the correspondence between the structure of the image and the histogram bins. This spatial information

makes the method robust to texture analysis, without assuming any a priori intensity or texture distribution.
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The proposed histogram clustering algorithm considers the spatial distribution of the intensities to achieve

a good representation of the colors of the image. The obtained segmentation tries to preserve with a given

number of colors the maximum spatial information of the original image. Finally, the registration-based

segmentation is able to segment one image from the information of another. For instance, this algorithm

enables us to segment images of low quality from the information contained in high quality images. This

technique could be used to segment intraoperative images using high quality preoperative ones. A global

advantage of these methods is that they do not assume any a priori information about the images (e.g.

intensity probability distribution). The results of our experiments show the feasibility of the information

bottleneck method to deal with different 2D and 3D image segmentation techniques.

II. PREVIOUS WORK

In this section we review some basic concepts on image segmentation [13], information theory [8],

and information bottleneck method [29], [26].

A. Image Segmentation

In image processing, grouping parts of an image into regions that are homogeneous with respect to one

or more features results in a segmented image. Segmentation algorithms are generally based on one of

two basic properties of intensity values: discontinuity and similarity. In the first category, the algorithm

partitions the image based on abrupt changes in intensity, such as edges [6], [24]. The principal approaches

in the second category are based on partitioning an image into regions that are similar according to a set

of predefined criteria. Thresholding, region growing, histogram clustering, split-and-merge, and random

fields are examples of methods of this category [2], [10], [13], [1], [30], [12], [18]. For our purposes,

we briefly review the thresholding, histogram clustering, and split-and-merge algorithms.

Thresholding [13], [23], [28] is a basic technique of image segmentation with a significant degree

of popularity, especially in applications where speed is an important factor. The thresholding algorithm

provides a number of threshold levels, which determine the region in which each pixel belongs depending

on its intensity value. In order to find these thresholds, almost all methods analyze the histogram of the

image. In most cases, the optimal thresholds are found by either minimizing or maximizing an objective

function, which depends on the positions of the thresholds. Thresholding is best suited for bimodal

distribution, such as solid objects resting upon a contrasted background [23]. A similar approach is given

by image clustering algorithms (e.g. k-means algorithm [15]), which discover groups of similar intensity

values. These methods tackle the segmentation problem from a different perspective: instead of finding
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the levels which separate one group from the other (as thresholding techniques do), they group similar

bins. This notion of similarity can be expressed in very different ways, according to the purpose of the

segmentation, the domain-specific assumptions, and the prior knowledge of the problem. Image clustering

is traditionally seen as part of unsupervised learning [14].

The split-and-merge algorithm [16], [11], [28], [13] is composed by two steps. First, the method

subdivides the entire image into smaller regions following a dissimilarity criterion. To divide the image,

different strategies can be adopted, such as a quadtree partition (where each region is subdivided into four

equal regions) and a binary space partition (BSP) (where an optimal partition is selected to divide the

region). Second, the neighbor regions obtained from the splitting step are merged if they verify a similarity

criterion. These similarity and dissimilarity criteria can be based on an intensity range, gradient, contrast,

region statistics, or texture. The combination of splitting and merging steps allows for the segmentation

of arbitrary shapes, which are not constrained to vertical or horizontal lines, as occurs if only the splitting

step is considered.

B. Information Theory

Let X be a finite set and X a random variable taking values x in X with distribution p(x) = Pr[X = x].

Likewise, let Y be a random variable taking values y in Y . An information channel X → Y between the

random variable X (input) and Y (output) is characterized by a probability transition matrix (composed

of conditional probabilities) which determines the output distribution given the input [8].

The Shannon entropy H(X) of a random variable X is defined by

H(X) = −
∑

x∈X

p(x) log p(x). (1)

It is also denoted by H(p) and measures the average uncertainty of a random variable X . All logarithms

are base 2 and entropy is expressed in bits. The convention 0 log 0 = 0 is used. The conditional entropy

is defined by

H(Y |X) = −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log p(y|x), (2)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability. The conditional entropy H(Y |X)

measures the average uncertainty associated with Y if we know the outcome of X . In general, H(Y |X) 6=

H(X|Y ), and H(X) ≥ H(X|Y ) ≥ 0.
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The mutual information (MI) between X and Y is defined by

I(X, Y ) = H(X) − H(X|Y ) (3)

=
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log
p(y|x)

p(y)
(4)

and measures the shared information between X and Y . It can be seen that I(X,Y ) = I(Y, X) ≥ 0 [8].

A fundamental property of MI is given by the data processing inequality which can be expressed in the

following way: if X → Y → Z is a Markov chain, i.e., p(x, y, z) = p(x)p(y|x)p(z|y), then

I(X, Y ) ≥ I(X, Z). (5)

This result demonstrates that no processing of Y , deterministic or random, can increase the information

that Y contains about X .

A convex function f on the interval [a, b] fulfils the Jensen inequality:
∑n

i=1 λif(xi)−f (
∑n

i=1 λixi) ≥

0 , where 0 ≤ λ ≤ 1,
∑n

i=1 λi = 1, and xi ∈ [a, b]. For a concave function, the inequality is reversed.

If f is substituted by the Shannon entropy, which is a concave function, we obtain the Jensen-Shannon

inequality [5]:

JS(π1, . . . , πn; p1, . . . , pn) ≡

H

(
n∑

i=1

πipi

)
−

n∑

i=1

πiH(pi) ≥ 0, (6)

where JS(π1, . . . , πn; p1, . . . , pn) is the Jensen-Shannon divergence of probability distributions {p1, . . . , pn}

with prior probabilities or weights {π1, . . . , πn} fulfilling
∑n

i=1 πi = 1. The JS-divergence measures

how far the probabilities pi are from their likely joint source
∑n

i=1 πipi and equals zero if and only

if all the pi are equal. It is important to note that the JS-divergence is identical to I(X, Y ) when

{π1, . . . , πn} and {p1, . . . , pn} represent, respectively, the input distribution and the probability transition

matrix of the channel X → Y , where n = |X | and m = |Y|. That is, ∀i ∈ {1 . . . n}.πi = p(xi) and

∀i ∈ {1 . . . n}.pi = p(Y |xi), where p(Y |xi) = {p(y1|xi), . . . , p(ym|xi)} is the conditional probability

disribution [5], [26].

C. Information Bottleneck Method

The information bottleneck method, introduced by Tishby et al. [29], extracts a compact representation

of the variable X , denoted by X̂ , with minimal loss of MI with respect to another variable Y (i.e.,

X̂ preserves as much information as possible about the relevant variable Y ). Soft [29] and hard [25]

partitions of X can be adopted. In the first case, every cluster x ∈ X can be assigned to every cluster
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x̂ ∈ X̂ with some conditional probability p(x̂|x) (soft clustering). In the second case, every cluster x ∈ X

is assigned to only one cluster x̂ ∈ X̂ (hard clustering).

In this paper, we focus our attention on the agglomerative information bottleneck method [25]. Given

a cluster x̂ defined by x̂ = {x1, . . . , xl}, where xk ∈ X , and given probability distributions p(x̂) and

p(y|x̂) defined by

p(x̂) =
l∑

k=1

p(xk), (7)

p(y|x̂) =
1

p(x̂)

l∑

k=1

p(xk, y) ∀y ∈ Y, (8)

the following properties are fulfilled:

• The decrease in the mutual information from I(X, Y ) to I(X̂, Y ) due to the merge of x1, . . . , xl is

given by

δIx̂ = p(x̂)JS(π1, . . . , πl; p1, . . . , pl) ≥ 0, (9)

where πk = p(xk)
p(x̂) and pk = p(Y |xk). An optimal clustering algorithm has to minimize δIx̂.

• An optimal merge of l components can be obtained by l − 1 consecutive optimal merges of pairs

of components.

Dhillon et al. [9] presented a co-clustering algorithm applied to word-document clustering that simul-

taneously clusters X and Y into disjoint or hard clusters. An optimal co-clustering algorithm has to

minimize the difference I(X,Y ) − I(X̂, Ŷ ).

III. SPLIT-AND-MERGE ALGORITHM

In this section we present an split-and-merge algorithm that is constructed from an information channel

R → B between the random variables R (input) and B (output), which represent, respectively, the set

of regions R of an image and the set of intensity bins B (see Fig. 1). This channel is defined by a

conditional probability matrix p(B|R) which expresses how the pixels corresponding to each region of

the image are distributed into the histogram bins. Throughout this paper, the capital letters R and B as

arguments of p() will be used to denote probability distributions. For instance, while p(R) will represent

the input distribution of the regions, p(r) will denote the probability of a single region r.

Given an image with N pixels, Nr regions, and Nb intensity bins, the three basic elements of the

channel R → B are:
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Fig. 1. The information channel between the regions of the images (R) and the intensity bins (B) for the split-and-merge

algorithm. The reverse of this channel used in the histogram clustering algorithm.

• The conditional probability matrix p(B|R), which represents the transition probabilities from each

region of the image to the bins of the histogram, is defined by p(b|r) = n(r,b)
n(r) , where n(r) is the

number of pixels of region r and n(r, b) is the number of pixels of region r corresponding to bin

b. Conditional probabilities fulfil
∑

b∈B p(b|r) = 1, ∀r ∈ R.

• The input distribution p(R), which represents the probability of selecting each image region, is

defined by p(r) = n(r)
N

(i.e. the relative area of region r).

• The output distribution p(B), which represents the normalized frequency of each bin b, is given by

p(b) =
∑

r∈R p(r)p(b|r) = n(b)
N

, where n(b) is the number of pixels corresponding to bin b.

From the data processing inequality (5) and the information bottleneck method (Section II-C), we

know that any clustering or quantization over R or B, respectively represented by R̂ and B̂, will reduce

I(R, B). Thus, I(R,B) ≥ I(R, B̂) and I(R,B) ≥ I(R̂, B).

A. Splitting

The splitting phase of the algorithm is a greedy top-down procedure (see Fig. 2) which partitions

an image in quasi-homogeneous regions. Our partitioning strategy takes the full image as the unique

initial partition and progressively subdivides it (e.g. with vertical or horizontal lines in 2D images (BSP))

chosen according to the maximum MI gain for each partitioning step. In our experiments, BSP and quad-

tree strategies will be used. Note that similar algorithms have been introduced in the context of pattern

recognition [22], learning [17], and DNA segmentation [4]. This splitting algorithm has been previously

presented in [21].

The partitioning process is represented over the channel R̃ → B, where R̃ denotes that R is the variable

to be partitioned. Note that this channel varies at each partition step because the number of regions is
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Input

Joint probability distribution: p(x, y)

Number of clusters: m ∈ {1..|X|}

Output

A partition of X into m clusters

Computation

X̃ ← U

∀i ∈ {1..|X| − 1}.compute(δIx̃(i)) (see Eq.

(12))

while |X̃| < m do

k ← maxi(δIx̃(i))

{xk, xk+1} ← split(x̃,k)

X̃ ← (X̃ − x̃)
⋃
{xk, xk+1}

Update δIx̃ for xk and xk+1

end while

return X̃

Fig. 2. Top-down bottleneck algorithm.

increased and, consequently, the marginal probabilities of R̃ and the conditional probabilities of R̃ known

B also change. For a BSP strategy, the gain of MI due to the partition of a region r̃ in two neighbor

regions r1 and r2, such that

p(r̃) = p(r1) + p(r2) (10)

and

p(b|r̃) =
p(r1)p(b|r1) + p(r2)p(b|r2)

p(r̃)
, (11)

is given by

δIr̃ = I(R, B) − I(R̃, B)

= p(r̃)JS (π1, π2; p(B|r1), p(B|r2)) , (12)

where π1 = p(r1)
p(r̃) and π2 = p(r2)

p(r̃) . The JS-divergence JS (πi, πj ; p(B|r1), p(B|r2)) between two regions

can be interpreted as a measure of dissimilarity between them respect to the intensity values. That is,

when a region is partitioned, the gain of MI is equal to the degree of dissimilarity between the resulting

regions times the size of the region. In our splitting algorithm, the optimal partition is determined by the

the maximum MI gain δIr̃.
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The BSP partitioning algorithm can be represented by an evolving binary tree [22] where each leaf

corresponds to a terminal region of the image. At each partitioning step, the tree gains information from

the original image such that each internal node k contains the information Ik gained with its corresponding

splitting. At a given moment, I(R, B) can be obtained adding up the information available at the internal

nodes of the tree weighted by p(k), where p(k) = n(k)
N

is the relative area of the region associated with

node k and n(k) is the number of pixels of this region. Thus, the MI of the channel is given by

I(R, B) =
T∑

k=1

p(k)Ik, (13)

where T is the number of internal nodes. It is important to stress that the best partition can be decided

locally. That is, the information gained Ik in a given node k is independent of the level of partitioning

of the other regions of the image.

From the Equation (3), the partitioning procedure can also be visualized as H(B) = I(R, B)+H(B|R),

where H(B) is the histogram entropy and I(B, R) and H(B|R) represent, respectively, the successive

values of MI and conditional entropy obtained after the successive partitions. The progressive acquisition

of information increases I(R, B) and decreases H(B|R). This reduction of conditional entropy is due

to the progressive homogenization of the resulting regions. Observe that the maximum MI that can

be achieved is the histogram entropy H(B), that remains constant along the process. The partitioning

algorithm can be stopped using a ratio MIRr = I(R,B)
H(B) of mutual information gain or a predefined

number of regions Nr.

Fig. 3.a and 3.b show two test images used in our experiments. The first corresponds to the well-

known Lena image and the second to a CT medical brain image with a hematoma lesion. In this paper,

the segmentation of colored images is obtained using the luminance channel. The two curves in Fig. 3.c

indicate the behavior of MIRr with respect to the number of partitions, which have been obtained using

a BSP strategy for both test images. These plots show the concavity of the MIRr function. It can be

clearly appreciated that a big gain of MI is obtained with a low number of partitions. Thus, for instance,

a 50% of MI is obtained with approximately 1% of the maximum number of partitions for the Hematoma

test image. Observe that in the Hematoma image less partitions are needed to extract the same MIRr

than in the Lena image, due to the higher heterogeneity of the latter image. Note also that MIRr = 1

is achieved with approximately 50% of the regions in the Hematoma image, since these are completely

homogeneous.

Fig. 4 presents the results of partitioning the Hematoma test image. We show the partitioned images

corresponding to two different MIRr for quadtree and BSP simplifications. Observe that, for the same
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(a) Lena (b) Hematoma
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Fig. 3. Test images: (a) Lena and (b) Hematoma. The two plots in (c) show the mutual information ratio (MIRr) with respect

to the number of regions for (a) and (b).

quantity of extracted information, the BSP partition fits better to the image structure, due to the higher

flexibility of this scheme. For instance, observe how the first BSP partitions of the Hematoma image

(Fig. 4.c) try to separate the brain structure from the background. Despite these interesting results, they

can not be used by themselves as a final segmentation and a merging process is needed to achieve a

correct image segmentation. This merging process is explained in the next section.

B. Merging

From the agglomerative information bottleneck method [25] applied to the channel R → B, we know

that any clustering over R will not increase I(R, B). Analogous to the MI gain (12) obtained in the

splitting phase, the loss of MI due to the clustering r̂ of two neighbor regions r1 and r2 is given by

δIr̂ = I(R, B) − I(R̂, B)

= p(r̂)JS (π1, π2; p(B|r1), p(B|r2)) , (14)
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(a) MIRr=0.2 (b) MIRr=0.4

(c) MIRr=0.2 (d) MIRr=0.4

Fig. 4. Partition of the Hematoma image (Fig. 3.b) with two different MIRr for (a-b) quadtree and (c-d) BSP simplifications.

where p(r̂) = p(r1) + p(r2), π1 = p(r1)
p(r̂) , π2 = p(r2)

p(r̂) , and p(b|r̂) = p(r1)p(b|r1)+p(r2)p(b|r2)
p(r̂) , and X̂ denotes

that the variable X has been clustered.

As we have seen in the splitting phase, the JS-divergence between two regions can be interpreted as

a measure of dissimilarity between them. The similarity will be maximum when the two regions have

the same histogram: if p(B|r1) = p(B|r2), then δIr̂ = 0. Thus, if two regions are very similar (i.e., the

JS-divergence between them is small) the channel could be simplified by substituting these two regions

by their merging, without a significant loss of information. This is the principle that leads to the following

merging algorithm.

From a given image partitioning, the algorithm merges successively the pairs (r1, r2) of neighbor

regions such that δIr̂ is minimum (see Fig. 5). Thus, the number of regions decreases progressively

together with the MI of the channel. Similarly to the splitting algorithm, the stopping criterion can be

determined by the ratio MIRr = I(R,B)
H(B) or a predefined number of regions.

Note that the clustering R̂ of all regions would give I(B, R̂) = 0. From (3), during the merging process

H(B) = I(B, R̂) + H(B|R̂), where I(B, R̂) and H(B|R̂) represent, respectively, the successive values

of MI and conditional entropy obtained after the successive mergings. Remember that H(B) remains
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Input

Joint probability distribution: p(x, y)

Number of clusters: m ∈ {1..|X|}

Output

A partition of X into m clusters

Computation

X̂ ← X

∀i ∈ {1..|X| − 1}.compute(δIx̂(i)) (see Eq.

(9))

while |X̂| > m do

k ← mini(δIx̂(i))

x̂ ← merge(xk, xk+1)

X̂ ← (X̂ − {xk, xk+1})
⋃
{x̂}

Update δIx̂ for the neighbors of x̂

end while

return X̂

Fig. 5. Bottom-up bottleneck algorithm.

constant. Note also that H(B|R̂) is the average entropy of the regions, given by

H(B|R̂) = −
∑

r∈R

p(r)
∑

b∈B

p(b|r) log p(b|r)

= −
∑

r∈R

p(r)H(B|r), (15)

where H(B|r) is the entropy of the normalized histogram of region r. If two regions are clustered:

δIr̂ = I(R,B) − I(R̂, B) = H(B|R̂) − H(B|R). (16)

Thus, H(B|R̂) never decreases at any iteration due to the mixing of the histogram regions.

In Fig. 6, we show the results of merging the regions of the images of Figs. 3.a and 3.b obtained

from the splitting phase with a MIRr = 0.8 in the BSP partition. For both images, the results with

6 and 10 different regions are shown. Observe that in this case the main structures of the image are

separated, specially for the Hematoma image, where the lesion, the skull, and internal brain structures, as

the ventricles, are correctly identified. In the Lena image the main structures of the images are identified,

but the illumination problem over the same object is not solved at all by the method. For instance,
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(a) R=6 (b) R=10

(c) R=6 (d) R=10

Fig. 6. Segmentation results of the split-and-merge algorithm for the Lena image (Fig. 3.a) and Hematoma image (Fig. 3.a),

where R represents the final number of regions of each image.

observe the uncorrect segmentation of the hat. This is due to the fact that the method only deals with

local intensities and not with other image features such as gradient or texture.

To evaluate our method, we compare it with a manual segmentation and the normalized cuts segmenta-

tion presented in [19]. For our experiments we use the 100 test images from the Berkeley database [19],

which have been manually segmented. To compare the different segmentation results, we apply the LCE

and the GCE error metrics proposed in [19]. These measures are defined as

LCE(S1, S2) =
1

n

∑

i

min{E(S1, S2, pi), (17)

E(S2, S1, pi)}

and

GCE(S1, S2) =
1

n
min{

∑

i

E(S1, S2, pi), (18)

∑

i

E(S2, S1, pi)},



14

LCE GCE

Same Different Same Different

Humans 0.053 0.283 0.083 0.357

Split-and-merge 0.203 0.341 0.272 0.397

NCuts (from [19]) 0.22 0.31 0.28 0.38

TABLE I

THE OVERALL SEGMENTATION ERROR FOR HUMANS, SPLIT-AND-MERGE ALGORITHM AND NCUTS FOR BOTH SAME-IMAGE

SEGMENTATION PAIRS AND DIFFERENT-IMAGE SEGMENTATION PAIRS. THE NCUTS RESULTS ARE OBTAINED FROM [19],

COMPUTED IN A SUBSET OF THE DATABASE.

where

E(S1, S2, pi) =
‖R(S1, pi)\R(S2, pi)‖

‖R(S1, pi)‖
. (19)

Here, the R(S, pi) represents the set of pixels corresponding to the region in segmentation S that contains

pixel pi, the symbol \ denotes the set difference, and ‖x‖ is the cardinality of the set x. These measures

are tolerant to refinements and therefore the importance of the level of detail of the segmentation has not

high relevance.

Since the computation of LCE and GCE requires a segmentation pair, we evaluate: (1) a pair of

manual segmentations, and (2) a manual segmentation versus our method segmentation. The obtained

results are shown in Table I, where each row corresponds to the mean distance value of each one of the

evaluated situations. We compute each measure considering different segmentations of the same image and

different segmentations of different images. In all the cases, the automated results have been obtained with

3 different segmentations with the same number of manual segmentation regions. In addition, we report

the results presented in [19] when applying the Normalized Cuts (NCuts) segmentation algorithm [24].

Note that the results of this algorithm have been obtained from an early stage of the database, with less

images and manual segmentations.

Observe that the similarity between the segmentation obtained with the split-and-merge method and

the manual segmentation of the same image are clearly higher than the one with these methods from

different images. Our method gives an overall error of 20% by LCE (compared to 5% for humans), and

27% by GCE (compared to 8% for humans). Observe also that the obtained results are better than the

ones provided by the NCuts segmentation algorithm.
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(a) R=2 (b) R=10

(c) R=12 (d) R=2

Fig. 7. Segmentation results of the split-and-merge algorithm for different images from the Berkeley database, where R

represents the final number of regions of each image.

In Fig. 7, we depict the results of applying the split-and-merge algorithm to four images of the Berkeley

database [19], where a given number of regions has been predetermined for each image. Note how our

split-and-merge algorithm detects very well the homogeneity of the textured regions (such as the field

in Fig. 7.a, the skin of the zebra in Fig. 7.b, the baboon hair in Fig. 7.c, and the sand in Fig. 7.d). This

good behavior is due to the fact that the decision of splitting (and merging) is based on the divergence

between the region histograms. In particular, two regions with the same texture have similar probability

density function and, therefore, the JS-divergence between them is very low. In the splitting phase, a

region with the same texture will not be partitioned because the gain of MI would be very low (see (12)).

On the other hand, in the merging phase, those regions will be merged because the loss of MI is very

low (see (14)). Thus, ideally, each region will display a unique texture and only unconnected regions

may have the same texture.

IV. HISTOGRAM CLUSTERING ALGORITHM

In this section we present a greedy histogram clustering algorithm which takes as input a partitioned

image and obtains a histogram clustering based on the minimization of the loss of MI. That is, we group

the bins of the histogram so that the MI is maximally preserved. From the perspective of the information

bottleneck method, the binning process is controlled by a given partition of the image. This histogram
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clustering algorithm has been previously presented in [21].

Our clustering algorithm is based on the channel B → R, which is a result of inverting the channel of

the previous section. This channel is defined by a conditional probability matrix p(R|B) which expresses

how the pixels corresponding to each histogram bin are distributed into the regions of the image. Bayes’

theorem, expressed by p(b)p(r|b) = p(r)p(b|r), establishes the relationship between the conditional

probabilities of both channels B → R and R → B.

The basic idea underlying our histogram clustering algorithm is to capture the maximum information

of the image with the minimum number of histogram bins. Analogous to the merging algorithm of the

previous section, the loss of MI due to the clustering b̂ of two neighbor bins b1 and b2 is given by

δI
b̂

= I(B, R) − I(B̂, R)

= p(̂b)JS (π1, π2; p(R|b1), p(R|b2)) , (20)

where p(̂b) = p(b1) + p(b2), π1 = p(b1)

p(̂b)
, π2 = p(b2)

p(̂b)
, and p(r|̂b) = p(b1)p(r|b1)+p(b2)p(r|b2)

p(̂b)
. Thus, when

two neighbor bins b1 and b2 are equally distributed in the regions of the image (p(R|b1) = p(R|b2)),

their clustering results in δI
b̂

= 0. In general, if two bins are very similar (δI
b̂
≈ 0), the channel can

be simplified by substituting these two bins by their clustering, without a significant loss of information.

Our algorithm proceeds by merging two neighbor bins so that the loss of MI is minimum (see Fig. 5).

The stopping criterion is given by the ratio MIRb = I(B̂,R)
I(B,R) or a predefined number of bins Nb.

Note that, during the clustering process H(R) = H(R|B̂) + I(B̂, R), where H(R) is the entropy of

p(R), and H(R|B̂) and I(B̂, R) represent, respectively, the successive values of conditional entropy and

MI obtained after the successive clusterings. Observe also that H(R|B̂) is the average entropy of the bins

(i.e. a measure of the degree of dispersion of the bins in the set of regions) and increases (or remains

constant) at each iteration.

In Fig. 8 we show the segmented images obtained from the partitions achieved with the split-and-merge

algorithm with MIRr = 0.8 as stopping criterion of the splitting process and 100 regions for the merging

one. For each image, the results obtained using 4 and 6 clusters are shown. For instance, observe how

the internal structures of the brain are approximately preserved using only 6 clusters.

In Fig. 9, we plot LCE and GCE measures for the histogram clustering algorithm applied to the slice

80 of the T2 Brainweb image (see Figure 11.ii.a) considering different levels of noise. The number of

clusters has been fixed to 6 and the experiment has been evaluated for different stopping criteria of the

split-and-merge algorithm: while the MIR of the splitting phase has been set to 0.7 for all the cases, the

number of regions of the merging phase takes the values 40, 60, 100, and 200. Observe that the best
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(a) C=4 (b) C=6

(c) C=4 (d) C=6

Fig. 8. Segmentation results of the histogram clustering algorithm for the Lena image (Fig.3.a) and Hematoma image (Fig.3.b),

where C represents the final number of intensity bins of each image.

results are achieved for 60 regions in most of the cases. This is due to the fact that with a too high

number of regions the spatial information is partially lost in the detail, while with a too low number of

regions the spatial distribution is not much informative, not being able to capture any detail.

V. REGISTRATION-BASED SEGMENTATION

In this section, two histogram clustering algorithms based on the channel established between two

registered images A and B are introduced. The main idea behind our algorithms is that the segmentation

of image A is obtained by extracting the structures that are most relevant for image B. In this case, any

previous segmentation is required. These histogram clustering algorithms have been introduced in [3].

A. One-sided Clustering Algorithm

We present a greedy hierarchical clustering algorithm that clusters the histogram bins of image A by

minimizing the loss of MI between A and B. First of all, in a preprocessing step, images A and B have

to be registered, establishing an information channel X → Y , where X and Y denote, respectively, the

histograms of A and B. From the data processing inequality (5) and the information bottleneck method
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Fig. 9. Two plots representing the LCE and GCE measures of the segmentation results of the slice 80 of the T2 Brainweb

image using 6 clusters for different levels of noise and from different level of image partition.

(see Section II-C), we know that any clustering over X (for instance, merging neighbor histogram bins

x1 and x2), denoted by X̂ , will reduce I(X, Y ).

At the initial stage of our algorithm (see Fig. 5), only one intensity value is assigned to each histogram

bin of X . Then, the algorithm proceeds greedily by merging two neighbor clusters so that the loss of

MI is minimum. This procedure merges the two clusters which are more similar from the perspective of

B. Note the constraint that only neighbor bins can be merged. The cardinality |X̂| goes from |X| to 1

in the extreme case.

The efficiency of this algorithm can be greatly improved if the reduction of MI due to the merging of

bins x1 and x2 is computed by

δIx̂ = p(x̂)JS(π1, π2; p(Y |x1), p(Y |x2)), (21)

where p(x̂) = p(x1) + p(x2), πi = p(x1)
p(x̂) , π2 = p(x2)

p(x̂) , and p(Y |x1) and p(Y |x2) denote, respectively, the

corresponding rows of the conditional probability matrix of the information channel [25]. The evaluation



19

Input

Joint probability distribution: p(x, y)

Number of clusters: m ∈ {1..|X| + |Y |}

Output

A partition of (X,Y ) into m clusters

Computation

(X̂, Ŷ ) ← (X, Y )

∀i ∈ {1..|X| − 1}.compute(δIx̂(i)) (see Eq.

(9))

∀j ∈ {1..|Y | − 1}.compute(δIŷ(j)) (see Eq.

(9))

while |X̂| + |Ŷ | > m do

k ← mini,j(δIx̂(i), δIŷ(j))

if k indexes X̂then

associate (Z, V ) to (X̂, Ŷ )

else

associate (Z, V ) to (Ŷ , X̂)

ẑ ← merge(zk, zk+1)

Ẑ ← (Z − {zk, zk+1})
⋃
{ẑ}

Update δIẑ for the neighbors of ẑ

Update all δIv

end while

return (X̂, Ŷ )

Fig. 10. Co-clustering algorithm.

of δIx̂ for each pair of clusters is done in O(|Y |) operations and, at each iteration of the algorithm, it

is only necessary to compute the δIx̂ of the new cluster with its two corresponding neighbors. All the

other precomputed δIx̂ values remain unchanged [25].

Similar to the algorithms of Sections III and IV, clustering can be stopped using several criteria: a

fixed number of clusters, a given ratio MIRb = I(X̂, Y )/I(X,Y ), or a variation δIx̂ greater than a

given ǫ. The MIRb ratio is considered as a quality measure of the clustering.
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B. Co-clustering Algorithm

Let us now consider a simultaneous clustering of images A and B. Unlike the algorithm presented

by Dhillon [9] for word-document clustering, which alternatively clusters the variables X̂ and Ŷ , our

algorithm (see Fig. 10) chooses at each step the best merging of one of the two images (i.e., the one

that entails a minimum reduction of MI). The similarity between the two images is being symmetrically

exploited. Thus, each clustering step benefits from the progressive simplification of the images. One of the

main advantages of this algorithm is the great reduction of sparseness and noise of the joint probability

matrix. As we will see with the experimental results, the simultaneous merging over the images A and

B obtain better results than with the one-sided algorithm.

From the data processing inequality (5), I(X̂, Ŷ ) is a decreasing function with respect to the reduction

of the total number of clusters |X̂| + |Ŷ |. Thus, I(X̂, Ŷ ) ≤ I(X, Y ). Like the one-sided algorithm, the

stopping criterion can be given by a predefined number of bins, a given ratio MIR = I(X̂, Ŷ )/I(X,Y )

or a variation δIx̂ (or δIŷ) greater than a given ǫ. Similarly to the above one-sided algorithm, the reduction

of MI can be computed from the JS-divergence (21). But in the co-clustering algorithm, for each clustering

of X̂ (or Ŷ ), it is necessary to recompute all the δIŷ (or δIx̂). Fig. 10 shows the co-clustering algorithm

where the stopping criterion is given by the total number of clusters.

C. Results

To evaluate the performance of the two registration-based segmentation algorithms, we have used both

synthetic and real images. The first test images are a set of synthetic magnetic resonance T1 (MR-

T1) and T2 (MR-T2) image modalities from the Brainweb database [7]. These images are obtained

synthetically from a phantom and they can be generated with different levels of image noise. These

two image modalities are acquired exactly in the same spatial position and therefore the pre-processing

registration step is not required. The second test images are real data from a patient from the Vanderbilt

database [20]. This dataset is composed of MR and CT image modalities. The resolution of the MR and

CT is 256× 256× 26 and 512× 512× 28, respectively. These MR and CT images have been registered

using the NMI measure [27].

Fig. 11 shows the results of the proposed one-sided and co-clustering algorithms for the MR-T1 and

MR-T2 Brainweb 3D images with a 3% of noise. These images are simulated from a synthetic atlas

and they are perfectly registered since the same process is applied to achieve both images. The original

MR-T2 and MR-T1 images are depicted in Fig. 11.ii.a and Fig. 11.iii.a, respectively. Columns (b-d)
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(i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

(iv.b) (iv.c) (iv.d)

Fig. 11. (a) Original images from the Brainweb database with 3% of noise. (b,c,d) Images segmented using 4, 5, and 6 bins,

respectively. (i,iv) Images obtained with the one-sided algorithm. (ii,iii) Images obtained with the co-clustering algorithm.

show the segmented images with 4, 5, and 6 clusters, respectively. The results obtained with the one-

sided algorithm applied on the MR-T1 and MR-T2 images are shown in Fig. 11.i.b-d and Fig. 11.iv.b-d,

respectively. The results obtained with the co-clustering algorithm are shown for the MR-T2 image in

Fig. 11.ii.b-d and for the MR-T1 in Fig. 11.iii.b-d.

Observe the good segmentation results achieved with both methods for the MR-T2 image. For both

methods, the images obtained with only 4 clusters distinguish between background (black), white matter
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Fig. 12. Two plots representing the LCE and GCE measures of the segmentation results of the T2 Brainweb image for different

levels of noise. The three curves represent the one-sided and co-clustering results with the T1 image with 3% of noise as a

control variable and the k-means algorithm results.

(dark gray), gray matter (light gray), and ventricles and cerebral fluids (white), which are the main

structures of brain anatomy. The results are similar for the MR-T1 image and the one-sided algorithm,

but they are not so satisfactory for the co-clustering one. In this case, the background is split into

two clusters while gray and white matter are considered in the same cluster. This might be due to the

higher background probability in comparison with any other region of the image. This undesired behavior

disappears when 5 or 6 clusters are considered.

In Figure 12, we plot LCE and GCE measures for the co-clustering (represented with squares), the

one-sided (represented with circles), and the k-means [15] (represented with stars) algorithms applied to

the T2 Brainweb image for different levels of noise. For each algorithm, we evaluate two different number

of clusters: 4 (represented as continuous lines) and 6 (represented as dotted lines). For the co-clustering

and the one-sided algorithms, the T1 image with 3% of noise has been used as a control variable. Since

the tested images have been obtained from a phantom, we use this phantom as a ground truth in order
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(a) (b)

(c) (d) (e)

Fig. 13. (a) Original control image MR-T1 with 1% of noise. (b) Original image MR-T2 with 7% of noise. (c,d,e) Results of

segmenting (b) using 4, 5, and 6 bins, respectively.

to compute the LCE and GCE measures.

Note that for 4 clusters the behaviour of the three algorithms is similar, even though the iterative

structure of the k-means leads to the optimal solution and the greedy structure of our algorithms does not.

Despite this, the results of the proposed algorithms are slightly better for the LCE measure. For 6 clusters,

the proposed methods achieve better results than the k-means, specially when the noise increases. In these

cases, the control variable, which is not influenced by this noise, helps to improve the segmentation.

With the next experiment we want to simulate the case where one image of low quality is segmented

considering a high quality image, similar than the preoperative and intraoperative images. In order to

study this situation, we have considered the MR-T1 Brainweb image with 1% of noise to be a high quality

image and a MR-T2 Brainweb image with 7% of noise to be a low quality image. In this situation only the

one-sided algorithm is considered, taking as a control variable the high quality image (MR-T1, Fig. 13.a)

and segmenting the low quality image (MR-T2, Fig. 13.b). The results of the one-sided algorithm with

4, 5 and 6 clusters are plotted in Figs. 13.c, 13.d, and 13.e, respectively.

As we can observe in these images, in spite of the low quality of the original one, the segmentation

results try to separate correctly the main parts of the brain image: background, ventricles, white matter

and gray matter. This is because the control variable of the segmentation method is very accurate and

tries to achieve the maximum relationship between the input image and the resulting segmentation.
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In Fig. 14, we show the results obtained with the one-sided and co-clustering algorithms applied on

the CT (Fig. 14.ii.a) and MR (Fig. 14.iii.a) original image of the Vanderbilt dataset. The composition

of Fig. 14 is similar to the one in Fig. 11. Columns b-d show the segmented images with 2, 4, and 6

clusters, respectively. The results obtained with the one-sided algorithm applied on the CT and MR images

are shown in Fig. 14.i.b-d and Fig. 14.iv.b-d, respectively. The results obtained with the co-clustering

algorithm are shown for the CT image in Fig. 14.ii.b-d and for the MR in Fig. 14.iii.b-d.

If we compare the original unsegmented images with the resulting segmented images, we can see that

the best results are obtained with the co-clustering algorithm (Fig. 14.ii-iii.b-d). There is clear evidence

that hidden structures of the image are more precisely recovered. Compare, for instance, the images for

an equal number of clusters of Fig. 14.i.c and Fig. 14.ii.c. This better behavior can be explained because

in the co-clustering case we make use of all bidirectional information obtained with the progressive

simplification of both images. For both algorithms, results appear much better when segmenting the CT

images than the MR ones. This is due to the fact that the segmentation of the CT images benefits a lot

from the precise information contained in the MR histogram.

VI. CONCLUSIONS

We have presented a general framework for image segmentation based on a hard version of the

information bottleneck method. Three different segmentation algorithms have been introduced: a split-

and-merge, a histogram clustering and a registration-based clustering. For the two first algorithms, an

information channel between the regions of the image and the histogram bins has been defined. Based

on the preservation of mutual information, the spatial distribution and the histogram bins are maximally

correlated. For the third algorithm, a channel between two multimodal images is defined, allowing to

segment one image preserving the maximum information given by the other one. The main advantages of

these methods are that do not assume any a priori information about the images (e.g. intensity probability

distribution) and that take into account the spatial distribution of the samples. Different experiments on

both natural and medical images and comparisons with standard methods have shown the good behavior

of the proposed algorithms.

Further investigation on stopping criteria is needed to determine the optimal number of both regions

and clusters. On the other hand, new segmentation channels could be tested, taking into account other

kind of information, such as color, texture, or gradient. We also plan to explore the application of these

methods to image fusion and level-of-detail applications.
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(i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

(iv.b) (iv.c) (iv.d)

Fig. 14. (a) Original dataset images. (b,c,d) Images segmented using 2, 4, and 6 bins, respectively. (i,iv) Images obtained with

the one-sided algorithm. (ii,iii) Images obtained with the co-clustering algorithm.
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