
Image Segmentation with A Bounding Box Prior

Victor Lempitsky, Pushmeet Kohli, Carsten Rother, Toby Sharp

Microsoft Research Cambridge

Abstract

User-provided object bounding box is a simple and

popular interaction paradigm considered by many exist-

ing interactive image segmentation frameworks. However,

these frameworks tend to exploit the provided bounding box

merely to exclude its exterior from consideration and some-

times to initialize the energy minimization. In this paper, we

discuss how the bounding box can be further used to impose

a powerful topological prior, which prevents the solution

from excessive shrinking and ensures that the user-provided

box bounds the segmentation in a sufficiently tight way.

The prior is expressed using hard constraints incorpo-

rated into the global energy minimization framework lead-

ing to an NP-hard integer program. We then investigate

the possible optimization strategies including linear relax-

ation as well as a new graph cut algorithm called pinpoint-

ing. The latter can be used either as a rounding method

for the fractional LP solution, which is provably better

than thresholding-based rounding, or as a fast standalone

heuristic. We evaluate the proposed algorithms on a pub-

licly available dataset, and demonstrate the practical bene-

fits of the new prior both qualitatively and quantitatively.

1. Introduction

Foreground/background segmentation of photographs is

an inherently ambiguous problem. Practical systems rely on

user interactions and provide a way to combine such inter-

actions with the low-level cues, such as color distributions

and contrast edges observed in the image. The objective is

then to build a system that can segment images as accurately

as possible with as little user intervention as possible.

Among several types of user interaction paradigms that

have been investigated and implemented, the bounding box

interaction is, arguably, the most natural and one of the

most economical in terms of the amount of user interaction.

Bounding box is a concept that is intuitive to users, and it

takes only two mouse clicks to specify it. But what infor-

mation does the user-specified bounding box provide about

the segmentation problem?

First, it restricts the attention of the segmentation process

without the prior with the prior
Figure 1. Our tightness prior. The segmentation on the left com-

puted with graph cut is consistent with the low level image cues,

yet inconsistent with the user input (in yellow) being too loose for

this bounding box. By minimizing the same graph cut energy un-

der a set of constraints, our method computes the segmentation

that fits the bounding box in a sufficiently tight way, obtaining a

better result (right).

to the interior of the bounding box. This property is easy to

incorporate into any algorithm, as one can simply assign

all exterior pixels to the ‘background’ class. The second

property is much harder to incorporate or even to formalize.

Informally, it can be expressed as: “users provide bound-

ing boxes that are not too loose, but are sufficiently tight”,

or in other words, the desired segmentation should have

parts that are sufficiently close to each of the sides of the

bounding box. Developing a new segmentation framework

that is capable of enforcing such tightness is the goal of this

paper. Figure 1 illustrates the importance of this property.

To some extent, this tightness property can be taken into

account by methods based on local curve evolution such as

geodesic active contours [5]. A method of this type can ini-

tialize the ’foreground’ region to contain the full bounding

box and then perform its energy-driven shrinking. Here, the

hope is that the local minimum found by the process would

likely to be tight in the above sense, as the shrinking process

would not go too far. Such an approach, however, suffers

from two significant drawbacks. First, this is just a hope

and there are no guarantees that the energy optimization

would not shrink the segmentation excessively. Secondly,

local optimization processes are notorious for getting stuck

277

2009 IEEE 12th International Conference on Computer Vision (ICCV)
978-1-4244-4419-9/09/$25.00 ©2009 IEEE

at poor local minima, which are suboptimal with respect to

the low-level cues.

Our framework takes a different approach and avoids the

pitfalls of local curve evolution. Instead, it employs global

optimization techniques, namely convex continuous opti-

mization and graph cuts, which we briefly review in Sec-

tion 2. In summary, the key aspects and contributions of the

paper are:

• It proposes a formalization of the notion of tightness.

As a result, the task of segmentation under the tightness

prior can be written down as an integer program (IP).

Within this program, the objective incorporates low-level

cues such as consistency with color distribution of seg-

ments and edges in the image, while the set of constraints

enforce the tightness of the segmentation with respect to

the provided bounding box (Section 3).

• The paper investigates techniques for the approximate

solution of the above-mentioned IP. We first consider a

continuous relaxation of the integer program, which can

be solved exactly by an iterative application of a linear

programming solver. We then present a new approximate

graph cut-based algorithm called pinpointing, which may

be used either as a rounding procedure for the relaxed so-

lution or as a fast standalone heuristic for the original IP

(Section 4).

• The paper evaluates the proposed algorithms on a

publicly-available dataset of segmentation problems with

ground truth [1]. The practical benefits of having the

tightness prior are demonstrated both qualitatively and

quantitatively (Section 5).

Apart from these contributions, we believe that the de-

veloped optimization techniques have broader applicability

than the task addressed in the paper. E.g. the pinpointing al-

gorithm can be applied to multiview reconstruction with sil-

houette constraints in a similar way to [9]. We comment on

this broader perspective within the discussion in section 6.

2. Related Work on Global Optimization

Energy minimization is used within most recently pro-

posed segmentation frameworks. Graph cut-based mini-

mization for image segmentation, first introduced by by

Boykov and Jolly [3], gained particular popularity because

it can handle energies that unify edge-contrast and image

appearance cues, while obtaining the global optimum of

such energies at interactive speed.

Let us consider an image B as a set of pixels p ∈ B, and

denote with cp the vector describing the appearance of a

pixel p (e.g. the RGB color). Assume that the segmentation

of the image is given by its 0−1 labeling x ∈ 2B, where in-

dividual pixel labels xp take the value 1 for foreground and

0 for background. Then, a typical graph cut segmentation

energy [6, 3] can be written as:

E(x) =
∑

p∈B

Up·xp+
∑

{p,q}∈E

V pq·|xp−xq|, xp ∈ {0, 1} ,

(1)

where E is a set of pairs of adjacent pixels. Here, Up are

the so-called unary potentials that encode the preference of

each pixel to be either foreground or the background, while

the pairwise potentials V pq ≥ 0 are used to enforce the

smoothness of the solution and to align its boundary with

image edges.

The global minima of (1) can be found in polynomial

time by reducing the problem to a st-mincut/maxflow on a

pixel graph [6]. The same global minima may be obtained

using convex continuous optimization by relaxing the inte-

grality constraint xp ∈ {0, 1} to xp ∈ [0, 1] and threshold-

ing the solution of the resulting linear problem at any value

between 0 and 1 [13]. Furthermore, tackling the optimiza-

tion problem (1) with the convex continuous optimization

allows to replace the pairwise terms with the total variation

terms [11]. These may have the same effect of aligning the

boundaries of the segmentation with contrast edges while

not suffering from the metrication artifacts. This improve-

ment is however orthogonal to the issues we address in this

paper, so we stick with the pairwise terms as in (1).

Optimization problems of the form (1) and their total-

variation counterparts defined on pixel/voxel grids have

been used not only for image segmentation, but also for sev-

eral other computer vision tasks including multiview recon-

struction. Thus, Kolev and Cremers [9] demonstrated how

non-local constraints (which in their case corresponded to

silhouette rays) can be incorporated into a global optimiza-

tion framework leading to an integer program that can be

relaxed to a convex continuous one. We took inspiration

from their framework and investigate a similar approach to

the image segmentation problem.

Finally, recently and independently, Nowozin and Lam-

pert [12] have presented a framework for segmentation un-

der connectivity constraint. Our framework shares a lot of

similarities with [12], in particular in the way it relaxes an

NP-hard integer problem and solves the resulting LP. At the

same time, the relatively easier prior that we handle, differ-

ent kind of LP relaxation we employ, and the new graph-cut

based pinpointing algorithm that we propose lead to consid-

erably smaller computational burden in our case. Thus, for

average-sized images our algorithms work with individual

pixels, while [12] have to perform super-pixelization.

3. Tackling Tightness

Given a user-specified bounding box, we can restrict our

attention to its interior, so that in the rest of the paper we

will assume that the image B corresponds to the subimage

inside the bounding box. While the minimization of (1)

278

a. Definitions b. Strongly tight c. Non-tight d. Weakly tight

Figure 2. Tightness of shapes: the outer rectangles are user-

provided, the transparent colour rectangles are the margins, the

shapes are in transparent black, red and blue dashed lines cor-

respond to long and short crossing paths. In (b,c,d) we show

examples of a strongly tight, a non-tight, and a weakly but not

strongly tight shapes. In (c,d) the non-intersecting crossing paths

are shown.

would make the segmentation consistent with foreground

and background appearance models and the contrast edges

in the image, it will not enforce any kind of tightness of

the bounding box, e.g. it may not prevent the foreground

region from excessive shrinking. In this subsection, we dis-

cuss how the bounding box tightness prior can be enforced.

To formalize this “sufficient tightness” we introduce the

notion of left, right, top, and bottom margins, which are

subboxes of B adjacent to its edges (Figure 2a). As will be-

come clear, the margin thickness (i.e. the height of top and

bottom margins and the width of left and right margins) re-

flects the degree of tightness that is expected from the user-

provided bounding box. We also consider the middle box

that is a part of the bounding box between the margins.

The tightness in our approach is introduced via the con-

cept of the crossing path, that we define in two ways:

Definition 1: A short crossing path is a curve inside the

middle box M, that has endpoints on the opposite sides of

M.

Definition 2: A long crossing path is a curve inside the

bounding box B, that either has endpoints on the left and

the right sides and goes between (does not intersect) the top

and the bottom margins, or has endpoints on the top and the

bottom sides of B and goes between the left and the right

margins.

We then introduce the two classes of tight shapes:

Definition 3: A shape x is strongly tight if it intersects

all short crossing paths.

Definition 4: A shape x is weakly tight if it intersects all

long crossing paths.

As each long crossing path is a superset of a short one,

it is clear that all strongly tight shapes are weakly tight as

well (but not vice versa – see Figure 2d).

For strongly tight shapes, the following important prop-

erty holds:

Corollary 1: A shape x is strongly tight if and only if

its intersection with the middle box has a connected com-

ponent touching all four sides of the middle box (see [10]

for the proof).

This property links tightness with connectivity and en-

sures that our notion of tightness makes sense, as, infor-

mally speaking, the strong tightness turns out to be equiva-

lent to having a connected chunk of foreground that comes

close to each of the sides of the bounding box. Note, that

the connectivity property is, in general, hard to incorporate

into global optimization frameworks [15, 12].

Weak tightness, on the other hand, has a nice monotonic-

ity property:

Corollary 2: when the thickness of all four margins is

increased (or kept the same), the new set of weakly tight

shapes is a superset of the old one (see [10] for the proof).

The rest of our derivations hold for both strong and weak

tightness, so we will in general simply use the terms tight-

ness and crossing path (which in each case should be un-

derstood either as strong tightness and short crossing path

or as weak tightness and long crossing path).

As we are interested in discrete shapes defined on pixel

grids, we consider the set Γ of all 4-connected crossing

paths on a raster. Then, by requiring that each 4-connected

path C ∈ Γ has at least one foreground pixel, we can add

the tightness prior into the graph cut framework arriving at

the following integer program (IP):
∑

p∈B

Up·xp +
∑

{p,q}∈E

V pq·|xp − xq| → min (2a)

s.t. ∀ p xp ∈ {0, 1} (2b)

∀C ∈ Γ
∑

p∈C

xp ≥ 1 (2c)

The constraints (2c) ensures that each of the paths C ∈ Γ
has at least one foreground pixel. Any feasible solution of

(2) is tight (for the case of strong tightness, a feasible so-

lution has an 8-connected component intersecting all four

sides of the middle box).

We now discuss different strategies for solving this IP.

4. Optimization

4.1. Convex Continuous Relaxation

Solving the IP (2) is an NP-hard problem. In fact, it is

equivalent to the minimization of a non-submodular func-

tion. Thus, approximations have to be derived. One natu-

ral idea is to relax the integrality constraints (2b), replacing

xp ∈ {0, 1} with xp ∈ [0, 1]. The resulting program may

be turned into a linear program (LP) in a standard way:

∑

p∈B

Up·xp +
∑

{p,q}∈E

V pq·ypq → min (3a)

s.t. ∀ p 0 ≤ xp ≤ 1 (3b)

∀C ∈ Γ
∑

p∈C

xp ≥ 1 (3c)

∀ {p, q} ∈ E ypq ≥ xp − xq , ypq ≥ xq − xp (3d)

279

This program still cannot be handled by a general-

purpose LP solver, as the number of constraints specified in

(3c) is combinatorial (exponential in the size of the bound-

ing box B). This is not however as hard a problem as it may

seem at the first glance, as these constraints can be tackled

iteratively.

To do that we solve a sequence of LP problems that have

the form (3), with the only modification that each time we

consider a subset Γ′ ⊂ Γ of all crossing paths in the con-

straint set (3c). The algorithm proceeds as follows:

1. In the first iteration, the subset of path constraints is

empty (Γ′ = ∅), i.e. all constraints (3c) are inactive.

2. After the LP from the previous iteration is solved, we

pick a group of crossing paths from Γ\Γ′ that have the

corresponding constraints (3c) violated by more than

some small tolerance ǫ and activate these constraints,

adding this group to Γ′ . This step is detailed below.

3. After this, the LP (3) with the new set Γ′ is solved and

the iterations proceed until constraints of all crossing

paths in the full set Γ are satisfied (within tolerance ǫ)

and no further constraints may be added in step 2.

On the termination of the algorithm, the solution of the LP

with the constraint set Γ′ is ǫ-feasible with respect to the full

constraint set Γ. We have observed that for tolerance ǫ = 0,

the process may run for a long time. However, even for

small ǫ > 0 (e.g. ǫ = 0.05), the process converged within

few iterations (typically less than five). The size of the set

of activated constraints Γ′ is typically linear in the largest

dimension of the bounding box B and hence exponentially

smaller than the full set Γ. Note that the effect of intro-

ducing a small finite tolerance ǫ is negligible in comparison

with the effect of approximating the original IP program (2)

with its linear relaxation (3).

We now explain our method for selecting the group of

crossing path constraints in step 2 of the algorithm above.

Let us denote with x
cur the solution of the LP in the previ-

ous iteration. We first pick the crossing path C1 ∈ Γ with

the smallest sum
∑

p∈C1
xcur

p . We then find the crossing

path C2 with the smallest sum
∑

p∈C2
xcur

p that does not

intersect with C1. In general, we continue picking the paths

Ci with the smallest sum
∑

p∈Ci
xcur

p that do not intersect

with the previous paths (Ci ∩
⊔i−1

j=1
Cj = ∅). Each time the

optimal path can be easily found with two runs of Dijkstra

algorithm (from top to bottom and from left to right). From

the non-intersection requirement, it can be seen that at most

n − 2d constraints may be picked at a time, where n is the

largest dimension of B and d is the margin thickness. As

discussed above, we stop picking constraints as far as the

sum
∑

p∈Ci
xcur

p exceeds 1 − ǫ. All the picked constraints

are then added to the set Γ′.

4.2. Pinpointing Algorithm

The output of the linear program (3) is a fractional so-

lution x
LP ∈ [0; 1]B, which needs to be rounded to the

integer solution x
IP ∈ {0, 1}B. The simplest and pop-

ular choice (see e.g. [9]) for the rounding procedure is

to threshold the fractional solution at some threshold τ :

x
IP
p =

{

1, if x
LP
p > τ,

0, otherwise
. The selected threshold τ needs

to be small enough to ensure that the rounded solution satis-

fies all crossing path constraints (2c) of the IP. Among this

set the largest possible τ should be selected to achieve the

lowest objective (2a).

Thresholding-based rounding strategy is completely ag-

nostic about the objective function (2a) of the IP. By tak-

ing the objective into account better rounding strategies

may be developed. Below, we present a new rounding al-

gorithm called pinpointing that is provably better than the

thresholding-based rounding.

Pinpointing (Figure 3) is based on graph cut minimiza-

tion and approximates the IP (2) with another integer pro-

gram:

∑

p∈B

Up·xp +
∑

{p,q}∈E

V pq·|xp − xq| → min (4a)

s.t. ∀ p xp ∈ {0, 1} (4b)

∀ p ∈ Π xp = 1 (4c)

Here, the pinpoint set Π contains pixels that are hard-

assigned to the foreground. Note, that unlike the original

NP-hard integer program (2) the new program (4) corre-

sponds to the traditional graph cut energy that can be min-

imized exactly and efficiently in polynomial time using st-

mincut/maxflow [6, 3].

The pinpointing procedure capitalizes on this efficiency

by constructing the pinpoint set Π in a way that the optimal

solution of the new program (4) is a feasible solution for the

original program (2). The intuition is that since the two pro-

grams share the same objective and integrality constraints,

the optimal solution of (4) will be a reasonable approxima-

tion to the optimal solution of (2).

To construct the pinpointing set Π, the pinpointing al-

gorithm assumes that it is given a real-valued priority map

P (p) → R, which may be e.g. the fractional solution

computed using linear programming. Then, during the first

stage, the pinpointing set is greedily expanded according to

the priority map until the optimal solution of (4) satisfies

all path constraints (2c) of the original IP. During the sec-

ond stage, the pixels are greedily removed from Π until the

obtained pinpointing set Π is minimal in a sense that exclu-

sion of any of its members makes the optimal solution of

(4) infeasible with respect to the path constraints (2c) of the

original IP.

280

a) Solution with Π = ∅ b) After the 1st pixel is added to Π c) After expansion stage d) After shrinking stage
Figure 3. The pinpointing algorithm adjusts the set Π (pixels denoted with yellow crosses) to make the optimal solution of the graph cut

program (4) satisfy all crossing path constraints. The set Π is first greedily expanded (a-c), then greedily shrunk (d). See text for further

details of the algorithm.

In more detail, the first stage starts with an empty set

Π (Figure 3a). At each step i, the current pinpointing set

Πi is considered and the optimal solution x
i of the pro-

gram (4) is computed via graph cut. Then, the algorithm

checks whether the crossing paths that do not intersect the

foreground pixels exist. If there are no such paths, then

the expansion stage is terminated as the optimal solution

of (4) is the feasible solution of the original IP (2). Oth-

erwise, the active set Ai that contains pixels belonging to

any of this paths is considered (Figure 3a - red). We then

chose the pixel ri ∈ Ai with the highest value of the pri-

ority map P (ri) and add this pixel to the pinpointing set

Πi+1 = Πi ∪ {ri}, after which the iterations proceed (Fig-

ure 3b) until xi satisfies all path constraints (2c) (Figure 3c).

During the second stage, the algorithm goes through the

pinpointing set Π in the order the pixels were added into it.

It then tries to remove each of the pixels p in Π out of the set

and compute the optimal solution of the program (4) with

the set Π \ p. If the resulting solution remains feasible with

respect to the original IP (2), then the change is accepted

and the pixel is removed from the pinpointing set. As a

result, the minimal set Π is obtained (Figure 3d). Note, that

the energy of the solution goes down or stays the same with

each exclusion step, since the optimization domain in (4)

becomes larger.

Two computational tricks ensure the fast performance of

pinpointing. First, the st-mincut/maxflow problems corre-

sponding to the integer programs (4) that are solved dur-

ing subsequent steps of the algorithm are highly corre-

lated (in fact, they differ by the weight of a single edge).

Therefore, the dynamic reuse of the search trees and flow

[8] in the maxflow algorithm [4] makes the individual st-

mincut/maxflow computations extremely cheap, so that the

time spent on all graph cut computations is only few times

larger than the time required to solve a single graph cut from

scratch. Secondly, the problems of checking the feasibility

of the integer solution with respect to the original IP (2)

and determining the active set A can be solved extremely

cheaply using the connected component analysis (floodfill

operations).

Pinpointing as rounding procedure. The pinpointing

algorithm can be used to round the fractional solution of the

IP. To do this, one can simply use this fractional solution as

a priority map. Importantly, the following theoretical guar-

antee about such rounding scheme can be given:

Corollary 3 (pinpointing gives lower energy than

thresholding): Let xf be any fractional solution of (2). Let

x
τ be a feasible integer solution of (2) obtained by thresh-

olding x
f with some threshold τ . Let x

PP be a solution

obtained by pinpointing with the priopity map x
f . Then,

E(xPP) ≤ E(xτ). (The proof is given in [10].)

Pinpointing with other Priority Maps. Importantly,

pinpointing does not require its priority map to be computed

by solving the LP or any other approximation to the integer

program. Simpler and/or cheaper to compute priority maps

can be used instead. Perhaps the simplest choice for the pri-

ority map P (p) that was surprisingly efficient in our experi-

ments, are the unary terms: P (p) = −U(p). Another possi-

ble choice that has awareness about both the unary and the

pairwise terms in the objective are the min-marginals [8] (or

more precisely minus 1-min-marginals). While of heuristic

nature, resulting algorithms are often as efficient in terms

of the energy of the obtained solution as pinpointing based

on the LP solution, and are very often more efficient than

thresholding the LP solution.

5. Experiments

We have evaluated our methods on the GrabCut dataset

of 50 natural images with ground truth segmentations [1].

In the dataset, each image comes with a bounding box that

has been automatically computed from the ground truth1.

To the best of our knowledge, our work is the first to report

the performance of any algorithms on this dataset with the

bounding box inputs. Note that the error rates reported here

are not comparable with those reported in previous works

for the same dataset with the trimap input.

Unary and pairwise terms. We used the 8-connected

edge set E and standard ways to compute the unary and pair-

1We have also modified the bounding boxes on few images, wherever

the bounding box touched the boundary, while the object did not. This

modification benefited all algorithms equally, and without it the baseline

GrabCut algorithm [14] was not applicable to one of the images. New

bounding boxes are available at [1].

281

Input Unary terms Ground truth GraphCut LP-Threshold LP-Pinpoint Unary-PP. MinMarg.-PP.

E = −0.042 E = −0.055 E = −0.039 E = −0.039
Figure 4. Results of the methods on the relatively easy (top) and one of the hardest (bottom) images from the GrabCut dataset. Note

how adding the tightness prior improves the results and also enforces connectedness in the bottom row. For the second problem, we give

the energy values obtained with the last 4 methods.

wise terms. Pairwise terms were computed as:

V pq =
1

||p − q||
· exp (−α − β||Cp − Cq||) , (5)

where Cp and Cq are the pixel RGB color vectors, || · ||
is a Euclidean norm, and the constants were set as α = 8,

β = 80/ max{p,q}∈E ||Cp − Cq||.
Following [2, 14] we used Gaussian mixtures to com-

pute the unary terms. To do this, we first fit the Gaussian

mixture model (with 5 components) to the color vectors of

the strip of 10 pixels around the bounding box. We then

evaluated the probability of pixels inside the bounding box

under this initial background GMM. Finally, we fit the fore-

ground Gaussian mixture model GMMf to the 33% pixels

with the smallest probability and the final background mix-

ture model GMMb to the 33% of the pixels with the largest

probability joined together with the strip pixels. The unary

terms were then defined as:

Up = λ
(

log P (Cp|GMMb) − log P (Cp|GMMf)
)

,
(6)

where the λ parameter was set to 10−6. Finally, we modi-

fied the unary values for the pixels adjacent to the boundary

of the bounding box in the following way. Wherever the

side of the bounding box did not touch the image boundary,

the unary terms of all pixels along these side were set to

+∞, ensuring that the foreground segment does not touch

that side of the bounding box.

Unless specified otherwise, we worked with the weak

definition of tightness and we set the thickness of all four

margins to d=0.06 of the largest bounding box dimension.

With this choice of thickness, all ground truth segmenta-

tions were tight.

Experiment 1. Relative performance. The following

algorithms were run on the dataset:

• Unary-Threshold: Thresholding of the unary terms (xp

were set to 1 wherever Up were negative). This was in-

cluded in the evaluation to give a rough idea about the

quality of the unary terms.

• GraphCut: Solving (1) using standard graph cut without

taking the tightness prior into account.

• LP-Threshold: Solving the IP (2) by solving the linear

program (3) and rounding using thresholding.

• LP-Pinpoint: Solving the IP (2) by solving the linear pro-

gram (3) and rounding using pinpointing.

• Unary-Pinpoint: Solving the IP (2) by pinpointing with

the priority map based on unary terms (P (p) = −Up).

• MinMarginal-Pinpoint: Solving the IP (2) by pinpoint-

282

Method Error-50 Error-22 Optim.Rank

Unary-Threshold 12.7 15.0 –

GraphCut 6.7 8.9 –

LP-Threshold 5.4 5.9 2.82

LP-Pinpoint 5.0 5.1 1.32

Unary-Pinpoint 5.2 5.6 2.77

MinMarginal-Pinpoint 5.4 6.0 3.09

Table 1. Experiment 1 results. Error rates (in %) and the op-

timization performance on the GrabCut dataset demonstrating an

improvement gained by the enforcement of the tightness prior. See

text for further discussion.

ing with minus 1-MinMarginals [7] as the priority map.

After running the algorithms on the dataset, we have

computed the error rates as the percentage of mislabeled

pixels inside the bounding box. We then averaged these

numbers over all images in the dataset (’Error-50’ column

on Table 1). We have also observed that on 28 images the

graph cut solution was already tight, so that all methods ex-

cept Unary-Threshold returned identical result. Therefore,

we have also computed the error rates over the other 22 im-

ages, where the methods performed differently (’Error-22’

column on Table 1). A considerable decrease in error rates

in both columns suggested the usefulness of the tightness

prior.

Finally, we compared the energies of segmentations pro-

duced by the last 4 methods, which solve the same inte-

ger program (2). Qualitatively, we have observed that the

differences were typically small, with Unary-Pinpoint and

LP-Pinpoint methods typically obtaining the lowest ener-

gies and all 4 algorithms obtaining visually very similar re-

sults on the majority of examples (such as the top row on

Figure 4). On the few hardest images (such as the bottom

row on Figure 4) the LP-Pinpoint algorithm typically per-

formed the best, while other pinpointing algorithms were

pinpointing points too greedily.

To get the quantitative summary of these observations,

we ranked the algorithms according to the energy of ob-

tained solutions from 1 = lowest energy (good) to 4 = high-

est energy (bad). When methods produced identical solu-

tions they were ranked with the same rank. We then aver-

aged the ranks over the 22 images, and gave the result in the

3rd column of Table 1. Interestingly, these numeric ranks

based on obtained energies are in accordance with the rela-

tive performance of methods in terms of error rates, which

serves as an evidence that the integer program (2) is a good

model for the segmentation task.

Experiment 2. Iterative process. In [14], Rother et al.

suggested the GrabCut framework, which interleaved the

segmentation graph cut steps with the unary terms reesti-

mation: each time the segmentation is computed, the fore-

ground and the background Gaussian mixtures are refitted

to the new foreground and background segments, and the

Method Initialization Error Error

λ=10
−6 λ=2·10

−6

GrabCut-GC InitFullBox 8.9 7.2

GrabCut-GC InitFullBox 5.9 5.1

GrabCut-Pinpoint InitFullBox 8.2 7.3

GrabCut-Pinpoint InitThirds 3.7 4.5

Table 2. Experiment 2 results. The error rates of the results

obtained by our method on the GrabCut dataset demonstrate the

power of the sufficient tightness prior in the iterative GrabCut

framework. We show the average error rates on the entire dataset

for different algorithms (GrabCut with and without prior), differ-

ent initializations, and different smoothness parameter λ. The top

row thus corresponds to the algorithm in [14], and the bottom row

to our best algorithm.

Figure 6. Error rates (in %) as the function of the margin thick-

ness (as a multiple of the largest bounding box dimension) on

the GrabCut dataset for GrabCut-GC and GrabCut-Pinpoint (with

’InitThirds’ initialization). A graceful degradation of GrabCut-

Pinpoint for overly large thickness can be seen.

iterations continue. We have experimented with this proce-

dure running it for 5 iterations. The two algorithms were

compared here:

• GrabCut-GC, a conventional GrabCut algorithm [14]

that uses standard graph cut minimization (1) for all seg-

mentation steps.

• GrabCut-Pinpoint, a new algorithm that enforces the

tightness prior on each segmentation step. For the sake

of speed, the Unary-Pinpoint algorithm was used to solve

the IP (2).

We have also compared the two ways to initialize mixture

models: as was used in the Experiment 1 (InitThirds) and as

suggested in [14], where the foreground mixture is initially

fitted to the whole interior of the user-provided bounding

box and the background mixture is fitted to the strip outside

it (InitFullBox).

The results, which demonstrate the advantage of having

the tightness prior, are given in Table 2 and Figure 5. As

the accuracy of the conventional GrabCut (GrabCut-GC)

peaked at the value of λ about twice as large as we were us-

ing for the experiments, Table 2 reports the results for dou-

ble smoothness as well. As an aside, note that the new ini-

tialization heuristics (“InitThirds”) works better, no matter

whether GrabCut-GC or GrabCut-Pinpoint was used. We

would also like to note that the primitive error measure that

283

Figure 5. Results of iterated GrabCut with (right/bottom) and without (left/top) the tightness prior on the images from the GrabCut

dataset, where the prior had the largest effect (more results are given in [10]). The prior improves the segmentation accuracy and pre-

dictability. Each image represents the interior of the provided bounding box with the superimposed segmentation boundary.

we used might not convey the actual improvement from our

prior, e.g. it does not reflect the improvements in topology

of segmentations.

Finally, Figure 6 demonstrates the degree of sensitivity

of our method to the choice of the thickness d of the mar-

gins. While excessively small margins result in high rates,

choosing excessively large margins result in graceful degra-

dation of the performance.

Strong vs. weak tightness. In our experiments, the

strong tightness led to error rates very similar to those ob-

tained with the weak tightness. The error rate for GrabCut-

Pinpoint, “InitThirds” was the same (3.7%).

Computation speed. In our current implementation, the

use of a general purpose linear solver for the program (3)

makes our LP-based algorithms slow (minutes per image).

However, the GPU implementation of a specially designed

interior point method may bring a significant speed-up. The

Unary-Pinpoint algorithm is already quite fast being only

1 to 15 (typically 1–4) times slower than a conventional

GraphCut algorithm for the same image.

6. Discussion

We have introduced a new bounding-box based prior for

interactive image segmentation and demonstrated how seg-

mentation tasks under this prior can be formulated as in-

teger programs. We have also developed new optimiza-

tion approaches for approximate solution of these NP-hard

problems. We believe that the developed optimization tech-

niques can find application within a broader spectrum of

computer vision applications (e.g. other global constraints

for image segmentation or silhouette constraints in multi-

view stereo).

References

[1] Grabcut dataset: http://tinyurl.com/grabcut.

[2] A. Blake, C. Rother, M. Brown, P. Pérez, and P. H. S. Torr. Interactive
image segmentation using an adaptive gmmrf model. In ECCV (1),
pages 428–441, 2004.

[3] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal bound-
ary and region segmentation of objects in n-d images. In ICCV, pages
105–112, 2001.

[4] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE

Trans. Pattern Anal. Mach. Intell., 26(9):1124–1137, 2004.

[5] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In
ICCV, pages 694–699, 1995.

[6] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a
posteriori estimation for binary images. Journal of the Royal Statis-

tical Society, 51(2), 1989.

[7] P. Kohli and P. H. S. Torr. Effciently solving dynamic markov random
fields using graph cuts. In ICCV, pages 922–929, 2005.

[8] P. Kohli and P. H. S. Torr. Measuring uncertainty in graph cut so-
lutions - efficiently computing min-marginal energies using dynamic
graph cuts. In ECCV (2), 2006.

[9] K. Kolev and D. Cremers. Integration of multiview stereo and sil-
houettes via convex functionals on convex domains. In ECCV (1),
pages 752–765, 2008.

[10] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image segmentation
with a bounding box prior. In MSR-TR-2009-85.

[11] M. Nikolova, S. Esedoglu, and T. F. Chan. Algorithms for find-
ing global minimizers of image segmentation and denoising models.
SIAM Journal of Applied Mathematics, 66(5):1632–1648, 2006.

[12] S. Nowozin and C. Lampert. Global connectivity potentials for ran-
dom field models. In CVPR, 2008.

[13] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:

Algorithms and Complexity. Prentice-Hall.

[14] C. Rother, V. Kolmogorov, and A. Blake. ”GrabCut”: interactive
foreground extraction using iterated graph cuts. ACM Trans. Graph.,
23(3):309–314, 2004.

[15] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image
segmentation with connectivity priors. In CVPR, 2008.

284

