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Image Segmentation
with a Unified Graphical Model

Lei Zhang, Member, IEEE, and Qiang Ji, Senior Member, IEEE

Abstract—We propose a unified graphical model that can represent both the causal and noncausal relationships among random
variables and apply it to the image segmentation problem. Specifically, we first propose to employ Conditional Random Field (CRF) to
model the spatial relationships among image superpixel regions and their measurements. We then introduce a multilayer Bayesian
Network (BN) to model the causal dependencies that naturally exist among different image entities, including image regions, edges, and
vertices. The CRF model and the BN model are then systematically and seamlessly combined through the theories of Factor Graph to
form a unified probabilistic graphical model that captures the complex relationships among different image entities. Using the unified
graphical model, image segmentation can be performed through a principled probabilistic inference. Experimental results on the
Weizmann horse data set, on the VOC2006 cow data set, and on the MSRC2 multiclass data set demonstrate that our approach
achieves favorable results compared to state-of-the-art approaches as well as those that use either the BN model or CRF model alone.

Index Terms—Image segmentation, probabilistic graphical model, Conditional Random Field, Bayesian Network, factor graph.

1 INTRODUCTION

MAGE segmentation has been an active area of research in

computer vision for more than 30 years. Many approaches
have been proposed to solve this problem. They can be
roughly divided into two groups: the deterministic approach
and the probabilistic approach. The former formulates the
segmentation problem as a deterministic optimization
problem. This approach includes the clustering method [1],
“snakes” or active contours [2], the graph partitioning
method [3], the level set-based method [4], etc. The
probabilistic approach, on the other hand, formulates the
segmentation problem as a stochastic optimization problem.
It can be further divided into two groups. One group uses
various graphical models (such as Markov Random Fields
and Bayesian Network) to model the joint probability
distribution of the related image entities [5], [6], [7], [8], [9],
[10], [11],[12], [13], [14], [15]. The other group directly models
the probability distribution of the image entities either
parametrically or nonparametrically, without using graphi-
cal models. It includes the discriminative approach [16], [17],
[18], [19], the generative approach [20], [21], [22], [23], and the
hybrid approach, combining the discriminative model and
the generative model [24], [25]. Our work belongs to the
category of using graphical models for image segmentation.
Specifically, we develop a unified graphical model that can
incorporate various types of probabilistic relationships and
apply it to the image segmentation problem. However, this
framework is general enough to be applied to other computer
vision problems.

Much progress has been made in the image segmenta-
tion field so far. As a result of the progress, computer vision
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is able to segment increasingly more complex images.
Image segmentation, however, is still far from being
resolved. One factor that prevents this from happening is
the lack of ability by the existing methods to incorporate
information/knowledge other than image data itself. Many
existing image segmentation methods are data driven.
These methods tend to fail when image contrast is low or
in the presence of occlusion, the clutter of other objects. The
fact of the matter is that the image itself may not contain
enough information for an effective segmentation, no
matter what algorithms we use and how sophisticated the
algorithms are.

If we study human segmentation, we will quickly realize
that humans tend to exploit additional knowledge besides
the image data to perform this task. Humans segment an
image not only based on the image itself, but also based on
their plentiful knowledge, such as the contour smoothness,
connectivity, local homogeneity, the object shape, the
contextual information, etc. A human’s capability to
combine image data with additional knowledge plays an
important role for effective and robust image segmentation.
Many researchers have realized this aspect and have
proposed different model-based approaches for image
segmentation. The model is used to capture certain prior
knowledge and to guide the image segmentation.

Despite these efforts, what is lacking is an image
segmentation model that can systematically integrate differ-
ent types of prior knowledge and the image data. Many
existing approaches can only exploit very limited informa-
tion, such as the image data and the local homogeneity of
image labels. One of the reasons is due to the lack of a
systematic way to incorporate various types of knowledge
into a single framework.

A desirable image segmentation framework may be the
one that is able to flexibly incorporate various types of
information and constraints, and solve image segmentation
in a probabilistic way. We notice that Probabilistic Graphical
Models (PGMs) [26], [27], [28], [29], [30] in the Machine
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Learning community are very powerful statistical models
that are potentially able to satisfy all of these requirements.
They provide an effective way to model various types of
image entities, their uncertainties, and the related prior
knowledge.

There are two basic types of graphical models: the
undirected graphical model and the directed acyclic
graphical model. The undirected graphical model can
represent noncausal relationships among the random
variables. The Markov Random Field (MRF) [5], [26] is a
type of well-studied undirected graphical model. MRF
models have been widely used for image segmentation.
They incorporate the spatial relationships among neighbor-
ing labels as a Markovian prior. This prior can encourage
(or discourage) the adjacent pixels to be classified into the
same group. As an extension to MRFs, the Conditional
Random Field (CRF) [27] is another type of undirected
graphical model that has become increasingly popular. The
differences between MRF models and CRF models will be
elaborated in Section 2.

While both MRF and CRF models can effectively capture
noncausal relationships among the random variables (i.e.,
the nodes in a graphical model), such as the spatial
homogeneity, they cannot model some directed relation-
ships (e.g., the causalities) that extensively exist and are also
important [31]. Fortunately, this problem can be comple-
mentarily solved by another type of graphical model, i.e., the
directed acyclic graphical model such as Bayesian Network
(BN) [29] [30]. BN can conveniently model the causal
relationships between random variables using directed links
and conditional probabilities. It has been successfully
applied to medical diagnosis systems, expert systems,
decision-making systems, etc. For image segmentation, there
are some relationships that can be naturally modeled as
causal relationships. For example, two adjacent regions with
significantly different characteristics can lead to a high-
contrast edge between them. In another example, the mutual
exclusion, co-occurrence, or intercompetition relationships
among the intersecting edges can also be modeled as causal
relationships. These relationships are useful when one wants
to impose some constraints on the edges. For example, two
adjacent edges initially might have no relationships with
each other when deciding which edge is part of the object
boundary. However, knowing one edge is part of the object
boundary and that the object boundary should be smooth,
the probability of the other edge on the object boundary will
reduce if the angle between the two edges is small. In this
case, two edges become dependent on each other now. Such
a relationship can be modeled by BN as the “explaining-
away” relationship, but is hard to model by the undirected
graphical models.

The existing graphical models for image segmentation
tend to be either directed or undirected models alone. While
they can effectively capture one type of image relationship,
they often fail to capture the complex image relationships of
different types. To overcome this limitation, we propose a
probabilistic framework that unifies an undirected graphical
model (i.e., the CRF model) with a directed graphical model
(i.e.,, the BN model). It can flexibly incorporate image
measurements, both noncausal relationships and causal
relationships, and various types (both quantitative and
qualitative) of human prior knowledge. In addition, the
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unified model systematically integrates the region-based
image segmentation with the edge-based image segmenta-
tion. With this framework, image segmentation is performed
through a principled probabilistic inference. The proposed
framework is powerful, flexible, and also extendable to
other computer vision problems.

Our main contributions lie in the introduction of a
unified probabilistic framework for effective and robust
image segmentation by incorporating various types of
contextual/prior knowledge and image measurements
under uncertainties. Our model captures the natural causal
relationships among three entities in image segmentation:
the regions, edges, and vertices (i.e., the junctions) as well as
the noncausal spatial relationships among image labels and
their measurements. Besides, various constraints are also
modeled as either directed relationships or undirected
relationships in the model.

The remainder of this paper is organized as follows: In
Section 2, we review the related works that use graphical
models for image segmentation. In Section 3, we give an
overview of the proposed unified graphical model. In
Section 4, we describe the region-based CRF image
segmentation model. In Section 5, we describe the edge-
based BN image segmentation model. In Section 6, we
explain how we combine the CRF model with the BN model
into a unified graphical model. In Section 7, we introduce
the experiments on the Weizmann horse data set [32], on
the Microsoft multiclass segmentation data set (MSRC2)
[33], and the comparisons with the state-of-the-art techni-
ques. In addition, we also introduce the experiments on the
cow images from the VOC2006 database [34]. This paper
concludes in Section 8.

2 RELATED WORK

Various graphical models have been used for image
segmentation. In particular, the Markov Random Field has
been used for a long time [5], [6], [7], [8], [9]. In the simplest
case, the MRF model formulates the joint probability
distribution of the image observation and the label random
variables on the 2D regular lattice. It is therefore a
generative model. According to the Bayes’ rule, the joint
probability can be decomposed into the product of the
likelihood of the image observation and the prior distribu-
tion of the label random variables. An apriori Markovian
field is normally assumed as the prior distribution, which
normally encourages the adjacent labels to be the same (i.e.,
locally homogeneous). In order to reduce the computational
complexity, the MRF model often assumes the observations
to be conditionally independent given the label of each site.

The simple MRF model has been extended to more
complex structures. In [6], the authors propose a multiscale
hierarchical model. The label random variables at two
adjacent layers form a Markov chain. The links between
them enforce the consistency of the labels at adjacent layers.
This model can partially model the long-range relationships
between spatially faraway nodes. One problem of this
model is due to its model structure. The commonly used
quadtree model leads to the problem that spatially adjacent
nodes may be far from each other in the quadtree structure.
Another problem is that there are no direct interactions
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among adjacent labels at the same layer. These issues can
lead to imprecise segmentation at the boundary [35].
Several works extend the idea of multiscale random
fields to make it more powerful. Cheng and Bouman [36]
extend it by introducing a more complex transition
conditional probability using a class probability tree. The
advantage of using such an approach is that it can use a
relatively larger size (e.g., 5 x 5) of the neighborhood at the
next coarser layer. By considering more parents, complex
context information can be taken into account in the
multiscale random fields. Wilson and Li [37] also try to
improve the interactions of the label fields at two adjacent
layers. The neighborhood of a site is extended to include
two types of sites: the parent sites at the next coarser layer
and the adjacent sites at the same layer. In [38], Irving et al.
alleviate the drawback of the quadtree model due to its
fixed structure. Instead of assuming the nodes at one layer
to be nonoverlapped, they propose an overlapping tree
model where the sites at each layer correspond to over-
lapping parts in the image. This approach is also demon-
strated to reduce the problem of imprecise segmentation.
The conditional independence assumption of the image
observations in a MRF model is normally invalid for texture
image segmentation. A double Markov Random Fields
(DMRF) model is exploited [7] in order to overcome this
limitation. In this model, one MREF is used to represent the
labeling process and another MRF is used to model the
textured regions. With the DMRF model, the textured image
segmentation can be performed by simultaneously estimat-
ing the MRF texture models and the MREF label fields. In [8],
the authors propose a pairwise Markov Random Fields
(PMF) to overcome the strong conditional independence
assumption. They relax this assumption by directly assum-
ing the joint random fields of the labels and the observations
follow the Markovian property. Although the PMF model
has weaker assumptions than the traditional MRF model,
the authors shift the problem to directly model the joint
probability, which is generally a difficult problem.
Differently from the MRF model, the CRF [27] directly
models the posteriori probability distribution of the label
random variables, given the image observation. This
posteriori probability is assumed to follow the Markovian
property. The CRF is therefore a discriminative model that
focuses on discriminating image observations at different
sites. Since the CRF model does not try to describe the
probability distribution of the observation, it may require
fewer resources for training, as pointed out by [27], [39].
Compared to the traditional MRF model, the CRF model
relaxes the conditional independence assumption of the
observations. The CRF model allows arbitrary relationships
among the observations, which is obviously more natural in
reality. The CRF model also makes the Markovian assump-
tion of the labels conditioned on the observation. As a
result, the CRF model can relax the apriori homogeneity
constraint based on the observation. For example, this
constraint may not be enforced where there is a strong edge.
This characteristic makes the CRF model able to handle the
discontinuity of the image data and labels in a natural way.
Several previous works have demonstrated the success of
CRF models in image segmentation. He et al. [10] have used
CRF for segmenting static images. By introducing the
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hidden random variables, they can incorporate additional
contextual knowledge (i.e., the scene context) to facilitate
image segmentation. In [11], Ren et al. have used CRF for
figure/ground labeling. They first oversegment the image
into a set of triangles using the constrained Delaunay
triangulation (CDT). A CRF model is then constructed based
on these triangles. Their CRF model integrates various cues
(e.g., similarity, continuity, and familiarity) for image
segmentation by adding additional energy functions. This
model, however, treats all hidden random variables as in the
same layer and ignores the fact that they may come from
different levels of abstraction. Our model is different from
Ren et al.’s model because we model different image entities
at the hierarchical layers and capture their natural causal
relationships within this hierarchical framework.

Besides the simple CRF model, more complex CRF
models have also been proposed. A hierarchical CRF model
was proposed by Kumar and Hebert to exploit different
levels of contextual information for object detection [40].
This model can capture both pixelwise spatial interactions
and relative configurations between objects. Another hier-
archical tree-structured CRF model was developed in [12].
These models are in spirit similar to the Multiscale Random
Field model in [35]. The main difference is that all links are
now represented by the undirected links and the pairwise
relationships are modeled by the potential functions
conditioned on the image observation. In [41], the authors
developed a complex CRF model for object detection. They
introduced additional hidden layers to represent the
locations of the detected object parts. The object parts are
constrained by their relative locations with respect to the
object center. Based on a model similar to [41], Winn and
Shotton further introduced the layout consistency relation-
ships among parts for recognizing and segmenting partially
occluded objects in both 2D [42] and 3D [43] cases.

Although not as popular as those undirected graphical
models (MRF or CRF), directed graphical models such as
the Bayesian Network (BN) have also been exploited in
solving computer vision problems [44], [45], [13], [14], [15].
BN provides a systematic way to model the causal relation-
ships among the random variables. It simplifies the
modeling of a possibly complex joint probability distribu-
tion by explicitly exploiting the conditional independence
relationships (known as prior knowledge) encoded in the
BN structure. Based on the BN structure, the joint
probability is decomposed into the product of a set of local
conditional probabilities, which is much easier to specify
because of their semantic meanings.

For image segmentation, the BN model can be used to
represent the prior knowledge of the statistical relationships
among different entities, such as the regions, edges, and their
measurements. Several previous works have exploited BN
for image segmentation. Feng et al. [13] combine BN with
Neural Networks (NN) for scene segmentation. They train
neural networks as the classifiers that can produce the
“scaled-likelihood” of the data. The BN models the prior
distribution of the label fields. The local predictions of
pixelwise labels generated from NN are fused with the prior
to form a hybrid segmentation approach. Since Feng’s BN
model has the quadtree structure, it inherits the drawback of
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the quadtree model due to its fixed structure. In order to
overcome such a problem, Todorovic and Nechyba [46]
develop a dynamic multiscale tree model that simulta-
neously infers the optimal structure as well as the random
variable states. Although they show some successful experi-
ments, their model is very complex and there are many
random variables to be inferred. Good initialization is
required for their variational inference approach. In [14],
Mortensen and Jia proposed a semiautomatic segmentation
technique based on a two-layer BN. Given a user-input seed
path, they use the minimum-path spanning tree graph search
to find the most likely object boundaries. In [15], Alvarado
et al. use a BN model to capture all available knowledge
about the real composition of a scene for segmenting a
handheld object. Their BN model combines high-level cues
such as the possible locations of the hand in the image to infer
the probability of a region belonging to the object.

Besides those segmentation approaches based on either an
undirected graphical model or a directed graphical model,
several hybrid approaches have been previously proposed to
combine different types of segmentation techniques. Huang
et al. [47] couple an MRF with a deformable model for image
segmentation. To make the inference tractable, they require
decoupling the model into two separate parts and using
different techniques to perform inference in each part. The
inference in the MRF part is performed using belief
propagation, while the estimation of the deformable contour
is based on the variational approaches. In contrast, our model
unifies two types of graphical models (i.e., CRF and BN) and
belief propagation can be applied to both models. Therefore,
we can use a consistent inference approach in our model. Lee
et al. [48] combine Discriminative Random Field (DRF) [39]
with Support Vector Machines (SVMs) to segment brain
tumors. They use the SVM to train a classifier that predicts a
label based on the local feature. The local prediction is then
combined with a prior distribution modeled by a DRF model
for image labeling. In this approach, the two model parts (i.e.,
SVM and DREF) are not functioning at the same level. The DRF
serves as the backbone of the whole model, while the SVM
serves as the local classifier to collect image features for
labeling. Moreover, the two parts are operated under
different principles and cannotbe unified in a consistent way.

As discussed before, the undirected graphical model
(e.g., MRF and CRF) and the directed graphical model (e.g.,
BN) are suitable for representing different types of
statistical relationships among the random variables. Their
combination can create a more powerful and flexible
probabilistic graphical model that can easily model various
apriori knowledge to facilitate image segmentation. This is
the basic motivation of our work in this paper.

Little previous work focuses on modeling image seg-
mentation by unifying different types of graphical models.
Liu et al. [49] combine a BN with a MRF for image
segmentation. A naive BN is used to transform the image
features into a probability map in the image domain. The
MREF enforces the spatial relationships of the labels. The use
of a naive BN greatly limits the capability of this method
because it is hard to model the complex relationships
between the label random variables and the image
measurements using a naive BN. In contrast, we use a
hierarchical BN to capture the complex causalities among
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multiple image entities and their measurements, as well as
the local constraints. Murino et al. [50] formulate a Bayesian
Network of Markov Random Field model for image
processing. A BN is used to represent the apriori constraints
between different abstraction levels. A coupled MRF is used
to solve the coupled restoration and segmentation problem
at each level. This approach only uses the BN to model the
set of apriori constraints between the same entities at
different levels. The image information is only exploited in
the MRF model for inferring the hidden random variables,
while, in our unified model, we exploit image measure-
ments both in the CRF part and in the BN part to perform
image segmentation based on two complementary princi-
ples: the region-based segmentation and the edge-based
segmentation. In [51], Kumar et al. combined an MRF with a
layered pictorial structures (LPS) model for object detection
and segmentation. The LPS model represents the global
shape of the object and restrains the relative location of
different parts of the object. They formulate the LPS model
using a fully connected MRF. The whole model is therefore
an extended MRF model, which is different from our
unified model which combines different types of graphical
models. Hinton et al. [52] studied the learning issue for a
hybrid model. Their hybrid model differs from ours in
several aspects. First, Hinton et al.’s model is constructed by
connecting several MRFs at different layers using directed
links. The configuration of a top-level MRF provides the
biases that influence the configuration of the next level MRF
through the directed links, while, in our model, the directed
links capture the causalities among multiple image entities
and the undirected links capture the spatial correlation
conditioned on the observation. Second and most impor-
tant, Hinton et al. exploit an approximation of the true
posterior probability distribution of the hidden nodes by
implicitly assuming the posterior of each hidden node is
independent of each other. In contrast, we derive the
factored joint probability distribution using the global
Markov property based on the graphical model structure,
and therefore, do not have such an assumption as Hinton
et al.’s. Third, based on their approximation, Hinton et al.
apply variational approach to approximately perform
inference and parameter learning. In contrast, we convert
our model into a factor graph to perform inference as well
as learning through principled factor graph inference.

Compared to the aforementioned works, our unified
model differs from them in several aspects. First, our model
can capture both the causal and noncausal relationships
that extensively and naturally exist among different image
entities. Second, our unified model consists of two parts: a
CRF part and a BN part. It can therefore systematically
combine the region-based image segmentation (i.e., the CRF
part) with the edge-based image segmentation (i.e., the BN
part). Finally, via the factor graph, we can perform image
segmentation under the unified framework through a
consistent probabilistic inference.

3 OVERVIEW OF THE APPROACH

The structure of the proposed graphical model is illustrated
in Fig. 1. It consists of two parts: the CRF part and the BN
part. The CRF part in Fig. 1a performs region-based image
segmentation, while the BN part performs edge-based
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Fig. 1. (a) The graphical structure of the unified image segmentation model. It combines the Conditional Random Field with the Bayesian Network to
unify the region-based image segmentation and the edge-based image segmentation. This example includes four superpixel region nodes {yz‘}?:u
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three edge nodes {ej}fil and their measurement {M,}._,,

one vertex node v; and its measurement M, . (b) The process to construct the CRF

model and the BN model from the oversegmentation of the original image.

segmentation. The two parts are connected through the
region nodes {y;}.

Given an image, it is first oversegmented to produce an
edge map. We can use any suitable segmenter to produce
this oversegmentation. Specifically, we use the Edgeflow-
based anisotropic diffusion method [53] for this purpose.
The region node y; correspond to each oversegmented
region (referred to as superpixel thereafter) in the edge
map. We assume that the superpixel region nodes y = {y;}
and the image observation x form a CRF. They are used to
construct the CRF part of the model. Conditioned on the
image observation x, the region nodes y follow the
Markovian property, ie., P(yil{y;}4:,%) = P(uilN (3:).%),
where N (y;) represents the spatial neighborhood of y;.

The CRF image segmentation can be thought of as a
labeling problem, i.e., to assign a label to the ith superpixel. In
the figure/ground image segmentation problem, the node y;
has two possible labels, i.e., +1 (the foreground) and —1 (the
background). Let {y;}!; be the label random variables
corresponding to all superpixels, where 7 is the total number
of superpixels in an image. {z;}; , are the corresponding
image measurements. x; is represented as a local feature
vector extracted from the image. Different types of cues such
as intensity, color, and textures can be included in this feature
vector for image segmentation. Using the CRF model, we can
infer the label for each superpixel from image measurements.

While the CRF model can effectively capture the spatial
relationships among image entities, they cannot capture
other causal relationships that naturally exist among
different image entities. Due to this reason, a multilayer
BN is constructed to capture the causalities among the
regions, edges, vertices (or junctions), and their measure-
ments. In Fig. 1a, the e nodes represent all the edge nodes in
the constructed BN model. These edge nodes correspond to
the edge segments in the edge map. The v nodes represent
all the vertex nodes. They are automatically detected from
the edge map (see more details in Section 5). The nodes M,
and M, represent the measurements of edges and vertices,
respectively. Given the BN model, the goal is to infer the
edge labels from various image measurements.

Combining the CRF model with the BN model yields a
unified probabilistic graphical model that captures both the
causal and noncausal relationships, as shown in Fig. 1a. The
unified graphical model is further converted into a Factor
Graph representation for performing the joint inference of
image labels. Based on the Factor Graph theory, principled
algorithms such as the sum-product algorithm and the max-
product algorithm can be used to perform consistent
inference in the unified model. We therefore formulate a
unified graphical model that can exploit both the region-
based information and the edge-based information, and
more importantly, the causal and noncausal relationships
among random variables for image segmentation. Specifi-
cally, in Fig. 1a, the region nodes {y;} act as the parents of
an edge node. The parents of the edge node correspond to
the two regions that intersect to form this edge. The links
between the parents and the child represent their causal
relationships. If the parent region nodes have different
labels, it is more likely that there is an object boundary (i.e.,
e; = 1) between them. In this way, the proposed model
systematically combines the CRF model and the BN model
in a unified probabilistic framework.

4 REGION-BASED IMAGE SEGMENTATION USING
CoNDITIONAL RANDOM FIELD

Our CRF model is a superpixel-based model. We choose the
superpixel-based model because the relationship between
two regions naturally provides the clue for inferring the
state of the edge between them. In addition, the superpixel
CRF model reduces the computational problem that is a
common issue in the undirected graphical model. Using the
CRF model, we want to decide if the superpixels represent-
ing the oversegmented regions should be merged.

As shown in Fig. 2, the image is first oversegmented into
superpixel regions. Each superpixel region is a relatively
homogenous region and it corresponds to one region node
in the CRF model. Based on the oversegmentation, we
automatically detect the topological relationships among
these region nodes. The CRF model is then constructed
based on these topological relationships.
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Fig. 2. lllustration of a part of the CRF model built on the superpixel
regions. The oversegmentation is superimposed on the original image
for an easy view. Each small region in the oversegmented image
corresponds to a region node in the CRF model. The correspondence
between the region nodes and the superpixel regions are indicated by
the white dotted links. The black nodes are the region nodes. The gray
node represents the whole image observation.

For the computational concern, we only consider the
pairwise relationships among the region nodes. If two
superpixel regions are adjacent to each other in the
oversegmentation, an undirected link will be added
between their corresponding nodes in the CRF model. This
link means that there is an interaction between them, which
is represented by the pairwise potential. From the example
in Fig. 2, it is obvious that different region nodes may have
a different number of neighbors, which means their
interactions with other nodes can be stronger or weaker.

4.1 CRF Model

Our CRF model directly models the posteriori probability
distribution of the region nodes y as

PGle) = [Totw w)[ [T emptuuXTase), (1)

eV i€V jeN;

where V is the set of all superpixel region nodes and y is the
joint labeling of all region nodes. N; denotes the neighbor-
hood of the ith region, which is automatically detected from
the topological relationships. A is the parameter vector.
gij(-) represents the feature vector for a pair of nodes i and
Jj. The symbol Z denotes the normalization term (i.e., the
partition function).

There are two parts in (1). The first part, ¢(y;, x;), is the
unary potential, which tries to label the ith node according to
its local features. It indicates how likely it is that the ith node
will be assigned the label y; given the local features ;. For
this purpose, we use a discriminative classifier based on a
multilayer perceptron (MLP). We actually use a three-layer
perceptron classifier in this work. Let net(z;) denotes the
output of the perceptron when the feature vector x; is the
input. The output is further converted into a probabilistic
interpretation using a logistic function,

1
— 3 2
1+ea:p(—y,;m) @

where 7 is a constant that can adjust the curve of the logistic
function. Similar definitions of the unary potentials were
first proposed in [54] and have been used in [10], [39]. The
three-layer perceptron is automatically trained with a set of
training data.

The second part exp(y;y;A\" g;;(x)) in (1) is the pairwise
potential. It can be seen as a measure of how the adjacent

¢(yi, xi)
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region nodes y; and y; should interact with each other,
given the measurements x. We use a log-linear model to
define this pairwise potential, which depends on the inner
product of the weight vector A and the pairwise feature
vector g;j(z). The weight vector A will be learned during a
training process (see more details in Section 4.2). The
pairwise feature vector g;;(z) can be defined based on the
whole image measurements to consider the arbitrary
relationships among the observations. For simplicity, it is
currently defined based on the difference of the feature
vectors z; and z;. An additional bias term (fixed as 1) is also
added into the feature vector g;;j(x). The feature vector g;;(x)
is defined as g;;(z) = [1, |z; — wj\]T, where T is the transpose
of a vector. The operator | - | represents the absolute value of
each component in the difference between z; and z;. Similar
pairwise potentials have been used in [39].

The pairwise potential exp(y;y;A’ g;j(z)) will have differ-
ent values when the labels y; and y; are same or different.
Moreover, when the measurements of the ith and jth nodes
are same, the pairwise potential will only depend on the
bias term. The bias term determines how the model prefers
the neighboring nodes to have same or different labels. If
the measurements at nodes ¢ and j are significantly
different, the pairwise potential will depend on the
difference of measurements and the corresponding weights.
This definition has incorporated the data adaptive cap-
ability, which is important for segmenting regions with
discontinuity (e.g., the regions near strong edges).

The partition function Z in (1) can be calculated by
summing out all the possible configurations of y, i.e.,

Z:Zexp
y

Direct calculation of the partition function in (3) is compu-
tationally difficult. However, the Bethe free energy [55] can
be used to approximate the logarithm of the partition
function and to alleviate this computational problem.

> llogd(yi, i) + Y wiyiN gi(@) | - (3)

ieV JEN,

4.2 Parameter Estimation

The three-layer perceptron classifier and the parameter
vector A of the pairwise potential are automatically
learned from the training data. Assuming that we have
2 2?20 training images and their ground truth
labeling y,y@ .y where K is the number of training
images, the aim of parameter estimation is to automatically
learn the three-layer preceptron classifier and the parameter
vector A from these data.

First, we train the three-layer perceptron classifier. The
structure of our three-layer perceptron depends on the
dimension of the input feature vector and the number of
available training data. In the training stage, the target
output of the three-layer perceptron is +1 (the foreground)
or —1 (the background). Given the input and the desired
output, the three-layer perceptron is trained using the
standard BFGS quasi-Newton backpropagation method.

Next, we fix the three-layer perceptron classifier and use
the conditional Maximum Likelihood Estimation (MLE)
method to learn the parameter vector A. Assuming all of the
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training data are identically independently sampled, the
log-likelihood of the parameter X is calculated as

LX)
—Zzlomyl L) 4 3 Py AT g (@) | - 20
k=1 |icV JEN;
(4)
where 2% is the log-partition function, i.e., 2¥) = logZ¥). As

mentioned before, this log-partition function can be
approximated by the Bethe free energy.

The optimal parameters \* are estimated according to the
MLE estimation, i.e.,

A' = arg max L(\) = arg mgn —L(N). (5)
We use the stochastic gradient descent method [55] to

find the optimal parameters A\* in (5). The gradient of the
log-likelihood L(\) is calculated as follows:

—:i {Zny“y] g (=)

k=1 i jeN;

Pylah:A (Z Z yivigii (x

i jeN;

(6)

)

where Ep[| denotes the expectation with respect to the
distribution P. For example,

Ep gm0z (Z Z YiYiij (w<k>)>

i jeN;

=Y Pyla™0) >0 viigi («
Y

i jeN;
The summation in (7) is performed over all possible
configurations of the region nodes y.

(7)

4.3 Labeling Inference

When all of the parameters are known, the CRF model can
be used to infer the region labels corresponding to the
superpixel regions. The optimal labeling can be found by
the Maximum Posterior Marginal (MPM) criterion [56].
Each node i is assigned a label that maximizes its marginal
posteriori probability, i.e.,

yi =arg max P(y;|z; \). (8)
yie{l.-1}

The marginal probability P(y;|z;A) is calculated by the

sum-product loopy belief propagation (LBP) [30], [57].

5 EDGE-BASED IMAGE SEGMENTATION USING
BAYESIAN NETWORK

The CRF naturally models the region-based image segmen-
tation. For the edge-based image segmentation, we use a
multilayer BN to model it. Bayesian Network [29], [30] is a
directed acyclic graph (DAG) that consists of a set of random
variables and a set of directed links between these random
variables. Each variable (node) has a set of mutually
exclusive states. The directed links represent the causal
dependence between the random variables. The probability
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distribution of a node is defined by its conditional
probability distribution, given the states of its parents. With
a BN, the joint probability of a set of random variables can be
factored into the product of a set of local conditional
probabilities that are easier to compute/estimate.

We use the BN to explicitly capture the causal relation-
ships that naturally exist among image entities such as
regions, edges, vertices, and their image measurements. For
example, intersections of regions naturally produce edges,
while interactions of edges yield vertices. The BN provides
a probabilistic framework that can systematically combine
the image observations and various causal relationships so
that image segmentation can be performed through a
principled probabilistic inference. Besides, the BN provides
a direct analogy to the human reasoning process. It can
straightforwardly represent the causalities that have been
extensively exploited by human. This advantage is unique
for the BN compared to those undirected graphical models
(e.g., CRF and MRE).

The whole structure of our BN model consists of
multiple layers. Each layer will be described in the
following sections.

5.1 Region, Edge, and Vertex Nodes

We build the BN model based on an oversegmented edge
map that is also used to construct the superpixel CRF model
in Section 4. The edge map consists of edge segments
{e;}L, and vertices {v;},_,, where m is the number of edges
and l is the number of vertices. In this work, a vertex is the
place where three or more edges intersect, i.e., a junction.

The BN model represents the relationships among the
superpixel region nodes {y;}, the edge segments {¢;}, and
the vertices {v;}. We use a synthetic edge map in Fig. 3a to
explain how to construct the BN model. The basic BN
model consists of three layers as shown in Fig. 3b.
Specifically, the region node layer contains all of the
superpixel region nodes. The edge node layer contains all
the edge segments. The vertex node layer contains all
vertices that are the intersections of edges.

The parents of an edge node are the two regions that
intersect to form this edge. If the parents of an edge e; have
different labels, it is more likely that there is a true object
boundary between them, i.e., e; =1. The relationship
between the edge node e; and its parent region nodes
pa(e;) is defined by the conditional probability P(e;|pa(e;)).
The conditional probability P(e;|pa(e;)) is defined as follows:

P(ej = 1lpa(e;))

0.8,

B { 0.2,

This definition basically means that the edge segment e; has

a high probability of being a true boundary when the two
adjacent regions are assigned different region labels.

The edge nodes and the vertex nodes are causally linked,
too. The parents of a vertex node are those edges that
intersect to form this vertex. Each edge node is a binary
node. Its true state represents that this edge segment
belongs to the object boundary. The vertex node also

assumes binary values (true or false) and it is true if the
vertex is actually a corner on the object boundary.

if the parent region labels are different; (9)

otherwise.
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Fig. 3. A synthetic edge map and the BN that models the statistical relationships among superpixel regions, edge segments, vertices, and their

measurements: (a) The synthetic edge map. There are six superpixel regions { J7}f 1, seven edge segments {e]}
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<— region nodes

| «—edge nodes

<«— vertex nodes

(b)

T_,, and two vertices {v};_,.

(b) The corresponding basic BN structure. The shaded circles represent the measurement nodes.

Both the edge nodes and the vertex nodes have image
measurements (i.e., the shaded nodes in Fig. 3b). We can use
complex edge features (e.g., edgelet) or the edge probability
estimated by other approaches as the edge measurements.
For simplicity, we use the average gradient magnitude as the
edge measurement in this work. We denote the measure-
ment of the edge node ¢; as M.,. The measurement nodes
{M,,} are continuous nodes. The conditional probability
P(M,|e;) is parameterized using Gaussian distributions
defined with mean p and variance o2, which are learned
from the training data.

Similarly, each vertex node is also associated with an
image measurement. The A/, node in Fig. 3b is the
measurement of a vertex node v;. We use the Harris corner
detector [58] to calculate the measurement. Let I(r,c)
denote the corresponding gray-scale image. The Harris
matrix A is given by

% 2

A or
oro1
Jr Oc

oror
or Oc

ony? |
dc

where r and ¢ denote the row and column coordinates,
respectively. Given the Harris matrix A, the strength of a
corner is determined by a corner response function
R =det(A) — k- trace(A)®, where k is set as the suggested

value 0.04 [58].

el
CRORCROND
© 66 66

(10)

\
/

=7
(=)
)

The vertex measurement A, is currently discretized
according to the corner response R. If the corner response R is
above a threshold (fixed as 1,000) and it is a local maximum, a
corner is detected and the measurement node 1/, becomes
true. If no corner is detected at the location of the vertex vy,
the measurement node }/,, becomes false. The conditional
probability P(M,,|v;) quantifies the statistical relationship
between the vertex node v; and its measurement M,,. It
describes the uncertainty between the state of a vertex and
its measurement. This conditional probability is defined
based on the empirical distribution of the measurements.

5.2 Local Smoothness Constraint

In the real world, the boundary of a natural object is locally
smooth. We enforce the local smoothness constraint in our
BN model by penalizing sharp corners between the
intersecting edges. A sharp corner is defined as an angle
between two intersecting edges that is less than §. In order
to impose this constraint, the angular node wjs is
introduced to model the relationship between two adjacent
edges e; and e,. The parent nodes (e; and e,) of the angular
node wj, correspond to the edge segments that intersect to
form this angle. The angular node w; , is a binary node, with
its true state meaning that the local smoothness constraint is
violated by these two edges. Fig. 4 illustrates how the
angular nodes are added into the BN model. The measure-
ment M, of an angle node is currently discretized
according to a small angle. If the angle w;; is smaller than

9 () (=
(%) (@) (39 (=) ()
) () (1) () (o

N2
()
o)

Fig. 4. The BN model with angular nodes to impose the local smoothness constraint on the edge nodes. There is an angular node corresponding to
the angle between two intersecting edge segments. The parent edge nodes of an angular node correspond to those intersecting edge segments.
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Fig. 5. The complete Bayesian Network model for the example in Fig. 3a. It consists of six region nodes {y,;}?zl, seven edge nodes {e;}

7
j=1

12 angular nodes, two vertex nodes {vt}le, and the measurements of edge nodes, angular nodes, and vertex nodes.

%, the measurement node becomes 1 (true). The conditional
probability table (CPT) between an angular node and its
measurement can be set according to the empirical
distribution of angle measurements.

To enforce the smoothness constraint, a CPT is defined to
specify the relationship between the angular node w;, and

the edges ¢; and e, that intersect to form this angle, i.e.,

0.2,

if both e; and e, are 1;
P(wjs = 1lej, e5) = {0_5 / ’

otherwise.

(11)

This conditional probability definition effectively reduces
the probability that both e; and e, are true boundary edges
if the angle between them is too small (i.e., w;, = 1). In other
words, it penalizes the existence of a sharp corner in the
object boundary.

5.3 Connectivity Constraint

In general, the boundary of an object should be simply
connected, i.e., an edge segment should connect with at
most one edge segment at its end points. This constraint is
imposed by defining a CPT between the edge nodes and the
related vertex node as follows:

P(v; = 1|pa(v))

1, if exactly two parent edge nodes are true; (12)
=< 0.3, if none of the parent edge nodes is true;
0, otherwise,

where pa(v;) denotes all of the parent edge nodes of the
vertex node .

If a corner is detected, the measurement M,, becomes true.
The vertex node v; will have a high probability of being true.
In such a case, it is most likely that exactly two parent edge
nodes are true (i.e., on the boundary), which corresponds to
the first case of the CPT definition in (12). This implies the
simple connectivity of edges at this vertex. In the second case

of the CPT definition in (12), we set the entry 0.3 to account for
the case when corners are detected in the background. In
such a case, it is possible that none of the parent edge
segments is the true object boundary. However, the condi-
tional probability for this case shall be smaller than the case
that exactly two parent edge nodes are true.

Given the CPT definition in (12), the connectivity
constraint is imposed into the BN model because it favors
the case that exactly two intersecting edges are the true
object boundaries.

5.4 Bayesian-Network-Based Image Segmentation
The complete BN model for the synthetic example in Fig. 3a
is shown in Fig. 5. Based on the BN model, the goal of image
segmentation is to infer the states of the edge nodes {e;}7.,,
given various measurements and constraints.

Let e represent all the edge nodes {¢;}", and y represent
all the region nodes {y;};_,. Similarly, w represents all the
angular nodes {w; s} and v represents all the vertex nodes
{fut}i:l. Let M, represent all of the measurements for the
edge nodes. M, represents all of the measurements for the
vertex nodes and M,, represents all the measurements for
the angular nodes. Image segmentation can be performed
by searching for the most probable explanation (MPE) of all
hidden nodes in the BN model given various measure-
ments, i.e.,

e*,y*,w, v = arg max P(e,y,w, v|M., M, M,)

ot (13)
= arg g}iﬁP(e, Y, w, v, Mo, M, M,).

In the MPE results, the edge nodes with true states form the

object boundary that we are looking for.
We can calculate the joint probability of all nodes in the

BN model as follows:
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Fig. 6. The unified graphical model corresponding to the example in Fig. 3a. It combines the CRF model with the BN model through the region nodes.

P(€7y7wvva MeaM;va) = Hp(yi)HP(ej‘pa(ej))P(MF{/‘ej)
m l

H P(wjslej, es) P(My, |wiis) HP vilpa(vy)) P(My, |ve),
j=1,5€0; =1

(14)

where pa(e;) denotes the parent nodes of e;. pa(v;) denotes
the parent nodes of v;. ; denotes the set of edges that
intersect with the edge e;. The factorization of this joint
probability is based on the conditional independence
relationships among all nodes, which are implied by the
constructed BN model.

Among the factored probabilities, P(y;) is the prior
probability of the region nodes. Without additional prior
information, it is modeled as a uniform distribution. Other
terms in (14) are already defined in Sections 5.1, 5.2, and 5.3.
Given all of these terms, the joint probability in (14) can be
calculated. The most probable states of the edge nodes can
be found using a probabilistic inference approach to find
the MPE solution. Specifically, the Junction Tree method
[29] is used to find the exact MPE solution in the BN model.

5.5 Parameter Estimation

Since each node in a BN is conditionally independent of
other nodes that are not within its Markov blanket [29], we
can locally learn the conditional probability distributions
(CPDs) of each node. For example, we can learn the
Gaussian distributions of the edge measurements, i.e., the
likelihood model P(M,,|e;). Given the training images and
their manual labeling, we classify the edge segments in the
manually labeled images into two sets: the boundary edges
and the nonboundary edges. We fit Gaussian distributions

for the edge measurements in each set to learn P(M, |e;). In
a similar way, we also learned the likelihood models of
other measurements (i.e., P(M,|v;) and P(M,, |wjs)). The
learned conditional probabilities are then used in (14) to
calculate the joint probability.

It is possible to learn the remaining CPDs in a similar
way. However, the training on a specific data set tends to
skew the BN model only for that specific set of training
data. Such a trained BN model cannot generalize well to
other unseen data. As a result, we opt for a soft BN
parameterization instead of a hard BN parameterization.
We empirically set the fixed values for some conditional
probability parameters (as shown in previous equations)
due to several considerations. First, we can directly define
those CPDs according to the semantic meaning of their
conditional probabilities. Second, some previous work [59]
shows the performance of BNs for diagnosis is not very
sensitive to the accurate parameter setting. Third, we have
changed the CPDs (e.g., P(ejlpa(e;))) for all edge nodes
within a range of +£10 to 20 percent relative to the preset
values. The segmentation results did not change very much,
which agrees with the observations in [59]. In Section 7.1,
we will show a set of experiments to demonstrate this
phenomenon. Fourth, we applied the model using this
parameterization strategy on different data sets and found
it generally performed well.

6 A UNIFIED GRAPHICAL MODEL COMBINING THE
CRF MobpEL witTH THE BN MODEL
The complete segmentation model unifies the CRF part and

the BN part through the causal relationships between the
region nodes y and the edge nodes e, as shown in Fig. 6.
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Fig. 7. Examples of different types of graphical models and their corresponding factor graph representations: (a) Bayesian Network and (b) its
corresponding factor graph representation; (c) Markov Random Field and (d) its corresponding factor graph representation.

The CRF part collects region-based information to infer the
states of the region nodes. The BN part collects edge-based
information and the imposed local constraints to infer the
states of the edge segments. The unified model therefore
integrates two kinds of complementary image segmentation
principles in a single framework. More importantly, it
exploits both the spatial homogeneity of the region labels
and the hierarchical causal relationships among regions,
edges, and vertices for image segmentation.

The unified graphical model in Fig. 6 consists of both
directed links and undirected links. To perform a consistent
inference, it is necessary to convert the unified model into a
Factor Graph (FG) representation [60], [61] since it is very
difficult to directly perform inference in such a graphical
model. A factor graph is a bipartite graph that expresses the
structure of the factorization of a global function over a set of
variables. The FG consists of two types of nodes: the variable
nodes and the factor nodes. The variable node corresponds
to a random variable, while the factor node represents the
factored local function. There is an edge connecting a
variable node to a factor node if and only if the variable is an
argument of the factored function. Following the conven-
tion, each variable node will be represented as a circle and
each factor node will be represented as a filled square in the
factor graph.

Since both the undirected graphical model (e.g., MRF) and
the directed graphical model (e.g., BN) represent the factored
joint probability distribution of a set of variables, they can be
easily converted into a factor graph representation [60], [61],
[31]. Fig. 7a is a BN that represents a joint probability
distribution P(a:l, o, .1’3) = P(J)l)P(.T2|.T1)P(QZ’3|J}1, l’g). Based
on this factorization, a factor graph can be constructed to
model the same distribution, as shown in Fig. 7b. The
variables in the FG correspond to those variables in the BN.
Factor nodes are added to correspond to the factored
probabilities in the joint probability. Edges are added to link
a factor node and a variable node if and only if the factor is a
function of this variable. We can convert an undirected
graphical model into a factor graph in a similar way. Fig. 7cis
a simple MRF that represents a joint distribution
P(x1,x9, 3, 24) = P21, 22) (1, 23)d(x3, x4)P(x2, T4), Where
the normalization constant can be merged into one factor
such as ¢(x1, x2). Based on this factorization, a factor graph is
constructed in a similar way to model the same distribution,
as shown in Fig. 7d. Each factor node corresponds to the
factored potential function.

Based on the graphical structure of the unified model in
Fig. 6, we can factorize the joint probability distribution of
all the variables according to the global Markov property in

the graphical model (cf. [28, Chapter 3]). According to the
graphical structure, x are conditionally independent of
other random variables given y. Hence, we have

P(y,e,w,v,M, M,,, My, x)
= P(e w,v,M¢, M,,, M|y, x)P(y, x)
P(e,w,v,Me, ML, My |y) P(y[x) P(x)
P(MevaM le,w, v, y)P(e,w, v|y)P(y|x)P(x)
= P(Mle) P(M,,|w) P(My|v) P(w, vle,y)P(ely) P(y|x) P(x)
=P(
(

Mele) P(ML,|w) P(My|v) P(wle) P(v]e) P(ely)
P(ylx)P(x)
1m m l
ZHP Mle)) I PO, |w;s) [T P (M l0r)
j=1 J=1,5€9; =1
m l m
H P(wjslej, es HP ve|pa(vy) HP ejlpa(e;))
j=1,5€9 t=1 j=1
H¢(yi7$i)H H exp(yiyiA gij(x)),
i€V i€V jeN;

(15)

where Z is the normalization constant. Note that P(x) is a
constant since x are observed. It can therefore be merged
into the normalization constant Z. Among these factored
functions, P(M,le;), P(M,, |wjs) and P(M,|v;) are the
likelihood models of the measurements of edges, angles,
and vertices, respectively. P(wj;lej,e5), P(v|pa(vy)), and
P(ejlpa(e;)) are the conditional probabilities of angular
nodes, vertex nodes, and edge nodes, respectively. All of
these conditional probabilities are defined in the BN part of
the unified model (Section 5). The remaining factored
functions ¢(y;,z;) and exp(y;y;\Tg;;(x)) are the potential
functions defined in the CRF part of the unified model
(Section 4). Based on the factored joint probability distribu-
tion in (15), we convert the unified model into a factor
graph representation in order to perform joint inference.
The converted FG is shown in Fig. 8, where each factor node
corresponds to one factored function in the above equation.

Given the factor graph representation, there are different
principled ways to perform probabilistic inference. First, the
sum-product algorithm can be used to efficiently calculate
various marginal probabilities for either a single variable or
a subset of variables [60], [31]. The sum-product algorithm
operates via a local “message passing” scheme. It can
perform exact inference of the marginal probabilities for
singly connected graphs. Let R denotes all the variables in
the above factor graph and r; € R is one of the variable. We



ZHANG AND JI: IMAGE SEGMENTATION WITH A UNIFIED GRAPHICAL MODEL

ol e e
QL) CreX

<~

L
|\

#

‘\1 o
( 5 Gl @ .
'TXXXT

1417

® ® @
OO0

Fig. 8. The factor graph representation of the unified graphical model in Fig. 6. The circles represent the variables, while the filled squares represent
the factors. The shaded circles are observed variables. For clarity, not all factors are drawn. The symbol “...” represents the undrawn factors.

can use the sum-product algorithm to calculate the margin-
al probability of 7, i.e.,

R\

where the summation is over all variables excluding 7.
P(R) is the joint probability in (15). Given the marginal
probability of each variable, the optimal state of the variable
can be found by the MPM criterion [56], i.e.,
r; = argmax P(r;).

Second, the max-product algorithm [31] can be used to
find a setting of all of the variables that corresponds to the
largest joint probability, i.e.,

R" = arg max PR).

This optimal solution has the same meaning as the MPE
solution mentioned in the Bayesian Network inference
(Section 5.4). The max-product algorithm works identically
to the sum-product algorithm except that the summation in
the sum-product algorithm is replaced by the maximization
when we calculate the messages.

Third, besides the max-product algorithm, there are other
algorithms that can also find the MPE solution given the
evidence. The stochastic local search (SLS) [62] is one such
algorithm. In [63], Hutter et al. improve Park’s algorithm [62]
to achieve a more efficient algorithm for MPE solving. They
also extend this algorithm and provide a public available
software to deal with various types of graphical models,
including the factor graph. Given the FG model in Fig. 8, we

use the inference package provided by Hutter et al. to
perform MPE inference in the factor graph, i.e.,

* % Kk
Yy ef,wh " = arg max P(y, e, w, v, M, M, My, X),

Y,€,w,v

(16)

where the joint probability is calculated by (15). In the MPE
solution, the region nodes with the foreground labels form
the final segmentation.

7 EXPERIMENTS

7.1 Figure/Ground Image Segmentation

We first tested the proposed model for figure/ground
image segmentation using the Weizmann horse data set
[32]. This data set includes the side views of many horses
that have different appearances and poses, which makes it
challenging to segment these images. On the other hand,
several related works [32], [23], [64], [65], [20], [16], [66], [11]
also did experiments on this data set. We can compare our
results with these state-of-the-art works.

Our approach requires a learning process to train the
model. For this purpose, we used 60 horse images as the
training data. The test images include 120 images from the
Weizmann horse data set. Compared to the training images,
the foreground horses and the background scenes in the test
images are more complex. The appearances of the horses
have a much larger range of variations. The background
includes more different kinds of scenes, many of which
have never been seen in the training set. Due to these
reasons, the segmentation is a challenging problem.

We have performed the experiments using both color
images and gray-scale images of the same training set and
the testing set. It demonstrates that our approach is flexible
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Fig. 9. Examples of the color image segmentation results arranged in two groups of two rows. In each group, the first row includes the color horse
images. The second row includes the segmentation masks produced by the proposed approach.

enough to segment different types of images. Different
features have been used in the region-based CRF part for
segmenting the color images and the gray-scale images. For
the color images, we use the average CIELAB color and
their standard deviations as the local features z; for each
superpixel region. In this case, the length of the feature
vector is 6. The three-layer perceptron has a structure with
6 nodes in the input layer, 35 nodes in the hidden layer, and
1 node in the output layer.

For the gray-scale images, we use the average intensity
and 12 Gabor textures as the features for each superpixel
region. The Gabor textures are calculated by filtering the
gray-scale image with a set of Gabor filter banks. The
average magnitude of the filtered image in each superpixel
region is used as the Gabor feature. We use the Gabor filter
banks with three scales and four orientations. In this case,
the length of the feature vector z; is 13. The three-layer
perceptron has a structure with 13 nodes in the input layer,
25 nodes in the hidden layer, and 1 node in the output layer.
We are using fewer hidden nodes because the number of
nodes in the input layer is increased but the total number of
training data remains the same.

All of the training images and the test images are first
oversegmented using the Edgeflow-based anisotropic diffu-
sion method. Given the training images and their ground
truth labeling, we automatically train the unified graphical
model using the process described in the Sections 4.2 and 5.5.

After learning the model, we perform image segmenta-
tion on the test images using the inference process
described in Section 6. Fig. 9 shows some examples of the
color horse images and their segmentation masks. Fig. 10
shows examples of the gray-scale horse images and their
segmentation masks. We achieved encouraging results on
these images. Most small errors happen on the horse’s feet,
where the appearances of these parts are different from the

horse’s body. Another kind of error is caused by the clutter.
When the background (e.g., the shadow) has a similar
appearance as the foreground, the proposed model may not
be able to completely separate them.

We first qualitatively compare our segmentation results
with some results produced by other state-of-the-art ap-
proaches. Cour and Shi [64] segment an image by finding the
optimal combination of the superpixel regions in an over-
segmentation produced by the Normalized Cuts [3]. The
optimal segmentation in their approach shall have a similar
shape as the shape template that is generated from the
manually labeled training data. Borenstein et al. [32], [23]
combine the top-down and bottom-up process to perform
image segmentation. Levin and Weiss [65] propose a
learning-based approach for image segmentation. They
perform image segmentation based on matching patch
templates with the images. Winn and Jojic [20] learn the
object class model from the unlabeled images. Their
approach combines the bottom-up cues of color and edge
with top-down cues of shape and pose. Zhu et al. [66]
propose an unsupervised structure learning method to learn
the hierarchical compositional model for deformable objects
and apply it to segment articulated objects. All of these works
have been tested on (a subset of) the Weizmann horse data
set. Fig. 11 shows several example segmentation results of
these approaches on color images. Our results can compete
with these results according to the visual inspection.

In order to quantitatively evaluate our segmentation
results and compare with the aforementioned approaches,
we calculate the average percentage of correctly labeled
pixels (i.e., segmentation consistency [67]) in all test images.
The quantitative results are summarized in Table 1. In this
table, we also list the segmentation consistency achieved by
other related works.

From the quantitative results in Table 1, we conclude that
our results are comparable to (or better than) the results
produced by other state-of-the-art approaches. Note that we
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Fig. 10. Examples of the gray-scale image segmentation results arranged in two groups of two rows. In each group, the first row includes the gray-
scale test images. The second row includes the segmentation masks produced by the proposed approach.

() P) (@)

Fig. 11. Qualitative comparison of our segmentation results with the results produced by other state-of-the-art approaches [23], [65], [64], [20].
(a)-(g) The test images. (h)-(n) The screen copies of some results from the related works: (h) and (i) are the results from [23]. (j) and (k) are the
results from [65]. The segmentation is superimposed as red contours. (I) and (m) are the results from [64]. (n) is the result from [20]. The
segmentation is superimposed as blue contours. (0)-(u) The corresponding results produced by our approach. This figure should be viewed in

color.

only use very simple image features (e.g., the color) for
segmentation and have not performed any feature selection.
Besides, we have not utilized the additional object shape
information as some works have done [64], [23]. We notice
that the work [65] has performed the feature selection from
a pool of 2,000 features, which may be crucial to increasing
its performance. In addition, they only show segmentation
results on eight testing images in their paper. They have not
mentioned how many images they have actually used for
testing. Therefore, the performance of their approach on a
relatively large data set is unknown. It is also difficult to
directly compare our results with the results reported in
[32], [16] because they did not give the segmentation
consistency measurement.

In Table 1, we also list the performance using a CRF
model alone and using a BN model alone. The CRF model is
exactly the same as what is described in Section 4. The BN
model is basically the same as what is described in Section 5.
We further incorporate the CIELAB color as the measure-
ments of the region nodes. The likelihood of the region
measurements given the region label is simply modeled as
Mixture of Gaussians, which are learned from the training
data. Compared with the performance of the unified model,
itis apparent that the unified model combining both the CRF
part and the BN part performs much better than either using
the CRF model alone or using the BN model alone. These
results demonstrate the usefulness of both parts in our
unified model.
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TABLE 1
The Quantitative Comparison of Our Approach with Several Related Works for Segmenting the Weizmann Horse Images

method image type | train | test | segmentation consistency

Cour et al. [64] color 20 308 94.2%
Levin et al. [65] color N/A | N/A 95.0%
Winn et al. [20] color 20 200 93.1%
Zhu et al. [66] color 12 | 316 93.3%
Ren et al. [11] color 172 | 172 91.0%
Borenstein et al. [23] | grey scale 64 | 328 93.0%
Winn et al. [20] grey scale 20 | 200 93.0%
our unified model grey scale | 60 | 120 94.0%
our unified model color 60 120 95.4%
our CRF model alone color 60 120 92.5%
our BN model alone color 60 120 93.7%

The average percentage of correctly labeled pixels (i.e., segmentation consistency) is used as the quantitative measurement.

Fig. 12. Examples of the segmentation results of the VOC2006 cow images arranged in two groups of two rows. In each group, the first row includes
the color test images. The second row includes the segmentation masks produced by the proposed approach.

For the figure/ground image segmentation, we have also
performed the experiments on a set of cow images from the
VOC2006 database [34]. This database is primarily used for
object categorization. In this work, we use it to test our image
segmentation approach. Since there are no original ground
truth segmentations, we manually segment a set of cow
images from this database. We use about a half set of the cow
images (57 images) for training our unified model and use the
rest half set of images (51 images) for testing. Some examples
of the image segmentation results are shown in Fig. 12. We
have achieved reasonable segmentation results. Although
those cows have different appearances and sizes and there
might be multiple cows in the image, our approach success-
fully segments them out. Besides the qualitative evaluation of
these results, we manually segment the test images and use
the manual segmentation as the ground truth to calculate the
segmentation consistency. We achieve a good segmentation
consistency of 96 percent on these cow images. We also

use the CRF part in our unified model to segment these
images. The CRF model alone achieved a segmentation
consistency of 93.9 percent, which is apparently inferior to
the unified model. This also demonstrates the benefits of
unifying two parts for improved performance. Specifically,
we observed that the CRF model alone tended to
oversmooth the labeling without the help of the BN part.

Besides providing the segmentation consistency on the
two sets of figure/ground segmentation experiments, we
also summarize the quantitative results using the two-class
confusion matrices in Table 2. Each row is normalized w.r.t.
the total number of pixels in the foreground or in the
background, respectively. Therefore, the summation of each
row will be equal to 1. These confusion matrices show that
most of the foreground and background are correctly labeled.

In Section 5.5, we have mentioned that the performance
of the model is not very sensitive to the accurate parameter
setting in the Bayesian Network part. We perform a set of
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TABLE 2
Two-Class Confusion Matrices of the Figure/Ground Segmentation on
(a) the Weizmann Data Set and (b) the VOC2006 Cow Data Set

ground truth\segmentation | foreground background ground truth\segmentation | foreground background
foreground 91.8% 8. 2% foreground 93.1% 6.9%
background 3. 4% 96. 6% background 2. 9% 97. 1%
(a) (b)
TABLE 3
The Segmentation Consistencies When the Conditional Probability Table P(e;;|y;,y;) in the Model Changes
Pley; = 1y # y;) 0.7 0.75 0.8 0.85 0.9 0.95
Weizmann dataset | 94.5% | 94.9% | 95.4% | 95.5% | 94.7% | 94.4%
VOC2006 dataset | 96.4% | 96.4% | 96% 96% | 95.5% | 95.3%

Note that P(e;; = 1|y; # y;) shall be larger than 0.5 because there is more likely a boundary (e;; = 1) when the adjacent regions have different labels.

TABLE 4
The Segmentation Consistency on the VOC2006 Data Set When Different Methods Are Used for the Initial Oversegmentation

| oversegmentation method | anisotropic

diffusion [53] | Normalized Cuts [3] |

| segmentation consistency

96%

95.7% |

experiments to validate this. We change the conditional
probability P(e|pa(e)) for all edge nodes and redo the
segmentation of color images in the Weizmann data set and
VOC2006 cow data set. Specifically, we change P(e; =
1ly; # y;) (and the related CPT entries) to six different
values but retain all other configurations. The segmentation
consistencies of this set of experiments are summarized in
Table 3. We observe that the overall performance only
changes about one percent, which shows the performance is
not very sensitive to the accurate parameter setting in the
BN part. However, we also notice that extremely inap-
propriate parameter setting may decrease the performance.

In addition, although we use the anisotropic segmenta-
tion software to produce the initial oversegmentation, we
can also use other approaches to produce the oversegmen-
tation. For example, we use the public available Normalized
Cuts software to oversegment the image into 50 segments.
We then redid the segmentation on the VOC2006 cow data
set and found that the segmentation consistency just
slightly changed, as shown in Table 4. It demonstrates that
our approach does not depend on a specific method for the
initial oversegmentation.

Finally, since an oversegmentation is required to
produce the input edge map for constructing the proposed
model, we did a set of experiments to study the influence of
the initial oversegmentation on the overall segmentation
performance. We use Normalized Cuts software to produce
the oversegmentation of the VOC2006 cow images with 50,
60, 80, 100, and 120 number of oversegmentations. Then, we
use the same model with the same parameters to segment
these images. The quantitative results of these experiments
are summarized in Fig. 13. We observed that the initial
oversegmentation with different numbers only has margin-
al influence on the overall segmentation performance.
However, if the initial oversegmentation is too coarse, there
will be segments crossing the object boundary and leading

to incorrect segmentation. In practice, we observed that the
anisotropic segmentation software can produce overseg-
mentation where the edges align with the true object
boundary well. On the other hand, if the oversegmentation
is too fine grained, the number of neighbors of a superpixel
will significantly increase. This might influence the spatial
interaction between adjacent superpixels and slightly
change the segmentation performance.

7.2 Multiclass Segmentation

To further test the capability of the proposed model, we
apply it to a difficult multiclass segmentation problem on the
Microsoft data set (MSRC2) [33]. This data set includes
591 images with 21 object classes, 1 nonsense class, and 2 not-
considered classes. There are significant overlaps between
the appearances of different object classes (e.g., building and
road). In addition, the within-class appearances also have
significant variations. These reasons make the multiclass

- Overall labeling accuracy
96 7 95,8 64 95, 7 95.8
95
(3]
b
£ 94
g
5 93
o
92
91
90 : : . L
50 60 80 100 120
Number of oversegmentation using Normalized Cuts

Fig. 13. The influence of the initial oversegmentation on the overall
segmentation performance on the VOC2006 cow data set. Normalized
Cuts software is used to produce the initial oversegmentation with
different number of segments.
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Fig. 14. Examples of the segmentation results of MSRC2 images arranged in three rows. (a) The color test images. (b) The multiclass labeling
results produced by the proposed approach. Each color represents a different object class. (c) The ground truth labeling, where the black color

indicates the nonsense class. This figure should be viewed in color.

segmentation very challenging. Even the state-of-the-art
approach [68] can only achieve a 75.1 percent overall
pixelwise labeling accuracy.

Although our unified model is designed as a figure/
ground segmentation model, it can still be applied to
multiclass segmentation. We first train 21 figure/ground
segmentation models for all the object classes. We roughly
divided the whole data set into two halves and use one
half for training (296 images) and the other half for testing
(295 images). Since some object classes rarely exist in the
whole data set, we use more positive samples to train the
corresponding model but ensure no overlap between the
training and testing images. After the model training, we
sequentially apply these models to each testing image to
achieve multiclass segmentation.

In addition, since there is significant between-class
overlap of object appearances and within-class variation of
object appearances, we use more local features for the
multiclass segmentation. Specifically, we use the color
features together with 38 features calculated from Maximum
Response (MR) filter sets [69]. Fig. 14 shows a few examples
of the multiclass segmentation results, where different color
corresponds to different object classes. We successfully
segmented the multiple object classes in these images.

To quantitatively evaluate the performance, we calculate
the confusion matrix of the multiclass segmentation results
and the overall labeling accuracy. We achieve an overall
pixelwise labeling accuracy of 75.4 percent. There are some
state-of-the-art approaches that have also been tested on this
data set [33], [68], [70]. We summarize the overall labeling
accuracy of these approaches in Table 5. Our overall
performance is slightly better than these approaches. We

TABLE 5
The Quantitative Comparison of Our Approach with Several
Related Works for Segmenting the MSRC2 Data Set

algorithm overall accuracy
TextonBoost [33] 72.2%
Yang et al. [68] 75.1%
Auto-Context [70] 74.5%
Our approach 75.4%

The average percentage of correctly labeled pixels is used as the
quantitative measurement.

notice that [68] uses some implicit shape information and
[70] exploits a feature selection process. These additional
processes are important to achieve their performance. In
contrast, we have not exploited these optional processes yet.

The confusion matrix of our multiclass segmentation
results is shown in Fig. 15. Each number is the percentage of
labeling normalized w.r.t. the total pixels in each class. We
summarize the diagonal elements of the confusion matrix in
Table 6 and compare them with those from the state-of-the-
art approach [68]. The bold numbers highlight those object
classes where our approach performs better. Compared to
[68], our approach achieves better performance on 11 classes
and ties on 1 class (i.e., water). We notice that our approach
performs better in some difficult classes, such as chair, sign,
etc. This may be due to the fact that our model is
(potentially) capable of capturing very complex relation-
ships between multiple image entities.

7.3 Computational Time

We implement the whole model using Matlab software. The
segmentation speed mainly depends on the complexity of
the constructed graphical model. The constructed factor
graph usually consists of 700 to 1,500 nodes. It may take
several seconds to half a minute to segment an image using
the efficient factor graph inference [63] in a Pentium M 1.7
GHz laptop. We summarize the typical segmentation time
required by other related works in Table 7. Compared to
these works, our approach is relatively more efficient on
segmenting a normal size image. This can be attributed to
using superpixels as the basic units in an image and the fast
MPE inference using factor graph.

8 CONCLUSIONS

To summarize, we present a new image segmentation
framework based on a unified probabilistic graphical model.
The proposed unified model can systematically capture the
complex and heterogenous relationships among different
image entities and combine the captured relationships with
various image measurements to perform effective image
segmentation. An image is first oversegmented to produce
an edge map, from which a superpixel-based CRF and a
multilayer BN are automatically constructed. The superpixel
CRF model performs region-based image segmentation
based on the local features and the conditioned Markovian
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building | grass | tree | cow | sheep | sky | plane | water | face | car | bike | flower | sien | bird | book | chair | road | cat | dog | body | boat

building 77 1 4 ] ] - 1 1 1] 2 2 1 0 1] 1 1 2 1 1] 2 2
grass 1 93 4 a a 1] 1] a 1] i] 1] a 1] 1] i] 1 a a a a i]
tree 8 9 0 1] 0 & 0 3 1] 1 0 0 0 0 0 0 0 i 0 0 0
cow 17 17 5 38 1 1] 1] 1] 1] 1] 2 0 1] 1] 1 1 0 0 1] 1] 1]
sheep 22 10 3 ] G 1 1] a a a a a 1] 1] ] 0 a a a a i]
sky 4 1] 0 1] 0 92 1 2 0 0 0 0 1 0 0 1 0 il 0 0 0
plane 15 7 10 1] 1] 10 57 1] 1] 1] 1] 0 1] 1] 1 1 2 0 1] 1] 1]
wrater: 10 1] 11 ] a 4 1] 70 1] a i] a 1] 3 i 0 a a a a i]
face 14 1] 2 a il 1] 1] 0 61 1] 0 1 0 1] g a0 a 0 0 12 0
car 16 1] 4 ] 0 1 1] 1] 1] 69 1 1 1] 1] 1 1 T 1] 1] 1 1]
bike 25 1 2 a a i] 1] a 1] 1 a7 a 1] 1] ] 0 4 a a a i]
flower 9 4 9 a a 1] 1] i] 0 1 0 T4 0 1] 3 a i] I i 1] 0
sign 22 1] 2 1] 1] 1 1] 1] 1] 1 1 3 70 1] 0 1 i 1] 1] 1] 1]
bird 16 7 9 a a 5 1] 10 1] a 1] a 1] 47 1] 0 4 a a a i]
hook 10 1 4 a a 1] 1] i] 0 0 0 2 0 1] 80 1] a I i 3 0
chair 25 7 4] 1 1] ] 1] 1 1] 1] 1] 3 0 1] 1 53 4 1 1] 0 1]
road 15 1] 1 a a 1 1] i] a 4 3 a 1] 1] 1] 4 73 a 1] a i]
cat 27 1] 2 a a 4 1] i] 0 0 0 1 0 1] é a0 7 3 |0 a 0
dog 24 4 3 1] 1] 1 1] 1] 1] 1] 1] 0 0 1] i 0 11 0 |36 1] 1]
body 16 4 3 a a 1 1] i] P 2 i] 3 1] 1] 1 a 1 a 1 47 i]
boat 11 1] 7 a i] 3 o 34 a i] i] 1 1] 1] 2 1] i] a i 1] 40

Fig. 15. The confusion matrix of our multiclass segmentation results on the MSRC2 data set. The rows correspond to the ground truth classes, while
the columns correspond to the labeled classes by the proposed approach. The overall pixelwise labeling accuracy is 75.4 percent.

TABLE 6
The Comparison of the Diagonal Elements in the Confusion Matrices between Our Approach and the State-of-the-Art Approach [68]

algorithm building | grass | tree | cow | sheep | sky | plane | water | face | car | bike

Yang et al. [68] 63.1 979 | 89.5 | 65.7 | 54.1 | 86.2 | 627 | 709 | 832 | 70.5 | 79.6

ours 76.7 933 | 69.8 | 578 | 64.2 | 919 | 568 | 70.5 | 61.0 | 68.7 | 67.1
algorithm flower | sign | bird | book | chair | road | cat dog | body | boat
Yang et al. [68] 71.3 379 | 232 | 879 | 232 | 88.2 | 33.1 | 341 | 432 | 324
ours 74.2 704 | 46.7 | 80.0 | 52.7 | 726 | 533 | 56.6 | 47.2 | 39.8

The bold numbers indicate where our approach performs better than the compared approach.

property. The BN model performs edge-based image
segmentation based on the measurements of edges, vertices,
angles, and local constraints such as the smoothness and
connectivity constraints. The CRF model and the BN model
are then integrated through factor graph theories to produce
a unified graphical model. Image segmentation under the
unified graphical model is solved through an efficient MPE
inference given various image measurements.

The unified graphical model systematically combines the
CRF model with the BN model. These models represent
different types of graphical models. The proposed unified
model can therefore flexibly model both causal and
noncausal relationships among different entities in the
image segmentation problem. By using the unified graphi-
cal model, both region-based information and edge-based
information are also seamlessly integrated into the segmen-
tation process. The proposed approach represents a new
direction for developing image segmentation methods. The
experimental results on the Weizmann horse data set, the
VOC2006 cow data set, and the MSRC2 mutliclass segmen-
tation data set show that our approach achieves the
segmentation performance that can rival the competing
state-of-the-art approaches. It demonstrates the promising
capability of the proposed unified framework.

In this work, we use a combination of supervised
parameter learning and manual parameter setting for the
model parameterization. Although this method works
generally well in our experiments, in the long run, it may
be more desirable to directly perform joint parameter
learning in the unified model, i.e., to simultaneously learn
the BN and CRF parameters automatically from the training
data. This is not a trivial task and requires further theoretical
derivations and in-depth study of the unified graphical
model. We will study this issue as part of future work.

Finally, we want to point out that the application of the
unified graphical model is not limited to image or video
segmentation. It can find applications in many different
computer vision problems including object tracking, object
recognition, activity modeling and recognition, etc.

TABLE 7
The Typical Time Required for
Segmenting a Normal Size Image

algorithm normal image size | segmentation time
TextonBoost [33] 320 x 213 3 minutes
Yang et al. [68] 320 x 213 less than 1 minute
Auto-Context [70] 300 x 200 30s to 70s
Our approach 320 x 213 less than 30s
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