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Image Segmentation with Boundary-to-Pixel
Direction and Magnitude Based on Watershed and
Attention Mechanism

Hongyang Xu1,2, Yuanxiu Xing1,2, Wenbo Wang1,2

Abstract

An improved image segmentation algorithm with boundary-to-pixel direction and magnitude (IS-BPDM) is pro-
posed to deal with small regions segmentation while keeping the accuracy of edge segmentation. First, we develop
a BPDM network embedded with watershed and attention module and use an adaptive loss function to achieve
each pixel’s robust and accurate BPDM which is defined as a two-dimensional vector, including direction and
magnitude, and pointing from its nearest boundary pixel to itself. Then, we use the leaned BPDMs to obtain the
refined initial segmented regions by considering the pixels near boundary have shorter magnitude and near root
pixels have longer magnitude, meanwhile adjacent pixels in different regions or nearby pixels on both sides of
root pixel in same region have opposite directions and nearby pixels in same region have similar directions. Last,
we utilize a fast grouping method according to direction similarity to combine these initial segmented regions
into final segmentation. The experimental results show that compared with the state-of-art methods in image
segmentation, the IS-BPDM approach proposed in this paper achieves better segmentation accuracy and high
computational efficiency, and outperforms in small regions segmentation on public datasets.

Keywords: Image segmentation · Deep learning · Boundary-to-pixel direction and magnitude · Watershed · Attention
mechanism

1 Introduction

Image segmentation aims to divide an image into non-
overlapping regions, and pixels in each region have
their own unique perceptual appearance, e.g., color,
texture, intensity. It is the basis of target detection
and image classification, and has become a key step in
artificial intelligence applications [1]. However, there
are still great challenges in small object segmentation,
accurate edge segmentation and efficiency.
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Many traditional image segmentation tasks are
unsupervised learning by using region [2], threshold
[3–5], boundary [6], graph theory [7], energy func-
tional [8] and so on. Though these methods have been
widely used in simple structure images segmentation,
often insufficient priori properties knowledge easily
lead to a dissatisfied performance in dealing with the
weak boundaries on natural images [9–11]. In addition,
thanks to have a large cost in converting the contour
into segmentation, the difficulty of implementing these
methods is analogous to building a single-span bridge
across a wide river.

With the development of artificial neural networks,
some state-of-the-art image segmentation techniques
[12–17] based on deep learning are mainly end-to-end
approaches and have a witnessed significant progress
in both accuracy and computational efficiency. The
milestone approach is the fully connected convolu-
tional neural network (FCN) [16] which adapts con-
temporary classification networks such as VGG and
uses skip connection architecture, followed by an up
sampled deconvolution network to accomplish seman-
tic segmentation. With further development, novel
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segmentation approaches, such as DeepLab [17] based
on altrous convolutions was proposed to handle the
problem of segmenting objects at multiple scales. In
order to make adequate use of the semantic context
information of image scene, [18, 19] proposed a condi-
tional generation adversarial network (cGAN) to solve
the general pixel-to-pixel mapping problem, and auto-
matically learned to segment the image accurately.
[20] trained the network end-to-end, pixel-to-pixel on
semantic segmentation to reduce parameter redun-
dancy and time cost. However, most of them failed to
identify weak boundary and some small objects, and
then some works considered integrating traditional
methods into deep network to solve the limitations.

One excellent way addressing the limitations of
traditional methods and aforementioned deep learn-
ing approaches is to use boundary-to-pixel direction
(BPD) [21–23] of each pixel to improve the segmen-
tation performance. BPD is learned and is used to
represent the relative position between each pixel and
its nearest boundary pixel. The better performing
method [21] combined the pixels with similar BPDs
according to the given thresholds to form super-BPDs,
so as to ensure that all pixels in the same super-BPD
have robust similar directional characteristics.

Although the super-BPD [21] usually achieves a
pleasant trade-off between the accuracy and efficiency
on image segmentation, there are still some challenges.
On the one hand, the learned BPDs are not accu-
rate enough for weak edges and small regions because
of dramatic changes of direction. On the other hand,
the BPD only considers the direction of the pixel and
ignores the important magnitude which represents the
distance from the pixel to boundary. These two draw-
backs lead to poor segmentation performance on small
regions segmentation and overlapping targets. In fact,
watershed has a good effect on processing overlap
regions and the weak boundaries, and the attention
module can make more attention to small and weak
edge characteristics. Therefore, we propose a BPDM
network embedded with watershed and attention mod-
ule and use an adaptive loss function to learn each
pixel’s robust and accurate BPDM. On this basis,
we use the direction similarity and magnitude of the
learned BPDMs to achieve the final segmentation.

To conclude, our contributions are in these
aspects:
•Proposing a novel BPDM network and loss func-

tion to obtain robust and accuracy BPDMs, which can
effectively improve the accuracy of BPDMs on small
regions and weak edges.
•Improving the segmentation algorithm by using

the priori properties of BPDMs to refine boundary pix-
els and root pixels, which can lead to a pleasant image
segmentation result.
•The experimental results evaluating on three

datasets demonstrate that the presented segmentation
approach achieves competitive performances against
some state-of-the-art methods.

The rest of the paper is organized as: The related
techniques are briefly described in Sect.2. Details of

our BPDM learning approach is proposed in Sect.3.
Image segmentation with BPDMs is introduced in
Sect.4. Datasets, implementation details and exper-
imental results are displayed in Sect.5. Then the
conclusion is indicated in Sect.6.

2 Related Work

We shortly review some works on image segmenta-
tion tasks leveraging watershed algorithm, attention
module and direction information.
Watershed algorithm.Watershed algorithm [24–26]
regards the image as a topological terrain which is
divided into catchment basin (i.e. catchment area) and
watershed (i.e. dam). They are boundary segmenta-
tion methods, which achieve image segmentation by
using the extracted object contour features. In many
segmentation scenes, the overlap between multiple
objects in an image leads to the wrong merging of
smaller objects and larger regions, which is a challenge
for image segmentation task. Watershed algorithm
has satisfactory performance for weak edges, over-
lap and small regions segmentation. But only using
watershed often leads to over-segmentation, and can-
not merge the result pieces into one component and
produce incorrect semantic segmentation when seg-
ment overlap objects. [24] used two-phase super-pixel
segmentation method based on the watershed trans-
formation with global and local boundary marching,
and produced superior accuracy and computing time.
Mutex watershed algorithm [25] learned local attrac-
tive and repulsive edges, followed by an improved
maximum spanning tree to achieve well image segmen-
tation. The marker watershed algorithm [26]combined
watershed and end-to-end CNNs to solve the problem
of complex processing steps in most examples, and
improved the segmentation performance. The Otsu
algorithm [27] used watershed transform to isolate
cluster nuclei from each other. In this paper, watershed
algorithm module is used to preprocess the original
image, so that the weak edge contour of the objects
can be emphasized to obtain the accurate BPDMs.
Attention module: The attention mechanism orig-
inates from imitating human visual perception and
plays a vital role in the sensory system [28, 29]. The
sensory system can use the focusing function to focus
on some local scenes, transfer limited visual attention
to the local areas of interest, and selectively cap-
ture more important visual structure information [29].
With the rise of CNNs, most of works have proved
that adding attention mechanism to the CNNs struc-
ture can improve the feature expression ability of the
network [30, 31]. Such as the SE module proposed in
[30] introduced the attention mechanism only on the
channel. CBAM proposed in [31] considered the atten-
tion mechanism from the two dimensions of channel
and space. CBAM and SE modules can be embedded
in mainstream network, which can not only improve
the ability of model feature extraction, but also con-
trol the amount of computation. Based on these, this
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paper adds the CBAM to the BPDM network to learn
robust BPDMs.
BPD Learning: Inspired by the algorithms of com-
puting component trees [22, 23], BPD [21] provided
direction information for each pixel and was effective
informative for super-pixels [5]. It was convenient for
the subsequent grouping and merging of pixels accord-
ing to direction similarity that nearby pixels from
different regions have opposite directions and adjacent
pixels in the same region have similar directions. In
[21], BPDs were learned based on FCN structure in
which added ASPP layer [17] to enlarges the receptive
field in down-sampling process, and then were parti-
tioned into super-BPDs by using the robust direction
similarity. Although super-BPD can separate nearby
regions with weak boundaries, the segmentation on
small regions is not very well due to the learned BPDs
around small regions are not very accurate.

For solving this issue, a novel BPDM network
is proposed, in which watershed module and CBAM
module are added into FCN to learn robust and accu-
rate BPDM of each pixel. Then, besides the direction
similarity, magnitude of learned BPDMs are also used
to effectively produce root pixels and initial segmen-
tations, followed by using region adjacency graphs
(RAG) partition algorithm to accomplish the final
image segmentation. The proposed approach can effec-
tively improve the segmentation accuracy of edge and
small regions.

3 BPDM Learning

3.1 BPDM Definition

For each pixel p in the image, we search its nearest
boundary pixel Bp, and BPDM of p is given by:

DMp =
−−→
Bpp (1)

where DMp is a two-dimensional direction vector
pointing from Bp to p.

The DMp provides cues about direction and mag-
nitude. The direction is used to calculate the similarity
between p and other pixels, and the magnitude is used
to determine whether p is a boundary pixel or root
pixel.

3.2 Architecture of BPDM Network

The quality of BPDMs directly affects the perfor-
mance of subsequent image segmentation. As shown in
Fig.1, the proposed BPDM network includes WA fea-
ture extraction module and multi-scale feature fusion
module, and learns accurate BPDM of each pixel.

3.2.1 WA Feature Extraction

Considering that many image segmentation tasks do
not have enough accuracy for small regions segmen-
tation, watershed module and attention mechanism
module are embedded into WA feature extraction
module to remedy this issue. As shown in Fig.1,

Fig. 1 BPDM network architecture

in the WA feature extraction module, mathemati-
cal morphological transformation is used to mark the
foreground and background of the image to obtain
the marked input image. Then watershed module is
used to extract contour features of objects to realize
rough image segmentation. Thanks to the complexity
of image information, the attention mechanism is also
added in the down-sampling network to assign differ-
ent weight information to pixel features, so that the
weak boundaries and boundaries of small regions can
be focused on.

In forward propagation, BPDM network uses five
group convolution layers and four maximum pool-
ing layers, and embeds attention mechanism module
behind the fourth pooling layer to extract the atten-
tion feature map which is used as the input of the
fifth convolution layer. The feature images output
by the last convolution layer are performed 2, 4, 8
and 16 times dilation respectively in ASPP layer and
concatenated as an output of WA feature extraction
module.

Fig.2 illustrates the details of the CBMA module
which extracts features from both channel and space
dimensions. This module can be integrated into any
CNNs architectures seamlessly with negligible over-
heads and is end-to-end trainable along with base
CNNs. The intermediate feature map output Fpool4
by the fourth pooling layer is used as the input of
the channel attention module, and the outputs fea-
ture map F1 of channel attention module is used as
the input feature map of the space attention module,
and the final feature map is F2. The whole process of
CBAM is as follows:

F1 = Ac(Fpool4)⊗ Fpool4 (2)

F2 = As(F1)⊗ F1 (3)

where ⊗ denotes element-wise multiplication. Ac(•)
and As(•) are operators of channel attention and space
attention respectively.

In short, the channel attention and the spatial
attention are computed respectively as:



Ac(Fpool4) = σ(MLP (AvgPool(Fpool4)) +MLP

(MaxPool(Fpool4)))

(4)

As(F1) = σ(f7×7([AvgPool(F1); MaxPool(F1)]))
(5)

where MLP denotes multi-layer perceptron with one
hidden layer, AvgPool is mean pooling layer and
MaxPool is maximum pooling layer. σ denotes the
sigmoid function. f7×7 is 7 × 7 convolution kernel is
used for feature fusion.

Fig. 2 CBMA: channel and space attention module

3.2.2 Multiscale Feature Fusion

As shown in Fig.1, in multi-scale feature fusion mod-
ule, 1 × 1 convolution and deconvolution are applied
into conv3, conv4, conv5 and the output of WA feature
extraction module, followed by a skip connection of
these output features. Finally, three consecutive 1× 1
deconvolutions are used on the fuse feature maps to
achieve the BPDMs prediction. The whole process of
multiscale feature fusion is as follows:

Mb =[Sconv3(ReLU [f1×1(Fconv3)]; ReLU [f1×1

(Fconv4)]; ReLU [f1×1(Fconv5)]; ReLU [f1×1

(FWA)])]b
(6)

where Mb denotes the four feature maps series, in
which the maps are resized to the size of conv3 and
are bilinear up sampled. [•]b is skip connection opera-

tor.ReLU is activation function. Sconv3 represents the
operation of resizing the feature map to the size of the
third convolution layer. f1×1 is defined as convolution
of 1×1. Fconv3, Fconv4, Fconv5 and FWA represent the
output feature map of conv3, conv4, conv5 and WA
feature extraction module.

Then perform the following operation to obtain
BPDMs of all pixels in the image:

DMs = f̃3×1×1(Mb) (7)

where f̃3×1×1 denotes three 1 × 1 deconvolution
operations.

3.3 Adaptive Loss Function

The magnitude loss and the direction loss are con-
sidered for BPDMs learning. The loss function for
BPDMs leaning is defined as following:

L =
∑

p∈Ω

w(p) (Lm + Ld)

Lm = β(p)∥DMp − ˆDMp∥
2

Ld = α∥cos−1 < DMp, ˆDMp >∥2

(8)

where w(p) = 1/|GTp|
n,n > 0 is the adaptive weight

of pixel p. |GTp| is the size of ground truth segment
containing p. The larger of n, the more importance
of the small regions. Lm and Ld are the loss of mag-

nitude and direction respectively. DMp and ˆDMp

represent the ground truth BPDM and learned BPDM
of p respectively. ∥•∥2 is L2 norm. β(p) = 1/|Dp| is
used to normalize the magnitude loss. α is the hyper-
parameter to trade off between the direction loss and
magnitude loss, and generally is set to 1.

Fig.3 demonstrates the heatmap visualization of
the learned results for L2 magnitude and direction
of each pixel. super-BPD [21], mainly focus on the
boundary-to-pixel direction of each pixel training, and
the learned magnitude of each pixel is around 1.
For super-BPD, small objects with coordinate near
100 on the x-axis are not recognized. After adding
watershed module and attention mechanism mod-
ule into super-BPD network respectively, the results
on small segmentation regions have been improved.
Based on these work, the proposed BPDM network
is constructed by combining watershed and attention
mechanism module, which retains the smoothness of
pixel direction, and the prediction effect on fine objects
has been improved to a certain extent. It can be
observed that the prediction results on L2 magnitude
and direction of IS-BPDM is more refine on small
regions.

(a) (b) (c) (d) (e)

Fig. 3 Intermediate details of prediction. (a) the
real intermediate images from label. (b) the intermediate
images from the prediction of super-BPD [21]. (c) The
intermediate images adding the watershed algorithm based
on super-BPD. (d) The intermediate images adding the
attention mechanism based on super-BPD. (e) The inter-
mediate images of the proposed method which combines
the watershed and the attention mechanism
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4 Image Segmentation Based
on BPDMs

Initial segmentation. Inspired by the algorithms of
computing parent image and root pixels of each region
[21], the parent image P and root pixels R are opti-
mized according to the directions and magnitudes of
learned BPDMs, as depicted in Algo.1. Initially, the
parent of each pixel p is set to itself and the root
pixel set R is empty. Then we calculate the direction
between the pixel p and the neighbor pixel np, and

compare their included angle cos−1⟨ ˆDMp, ˆDMnp⟩
with the threshold θα. If the included angle is larger
than θα, it means that the BPDMs of the two pixels
are dissimilar. In addition, if p is a root pixel, then
its magnitude should be in the interval (de1 , de2), and
then insert the root pixel p into the set R. Otherwise,
the parent of p is updated to np. Because the root
pixels in the same region are close to each other near
the region’s symmetry axis, parent P(r) should be
updated to the last root pixel within the bottom half
of 3× 3 window centered at r. The final parent image
P which represent initial segmentation is obtained via
above operation.

Algorithm 1 Generate optimized initial segmen-
tation from the learned BPDMs (Sec.4)

Input: Learned BPDMs( ˆDMs),Threshold(θα, de1 , de2)
Output: Parent image(P) and root pixel(R)

1: function Get Initial Seg( ˆDMs, θα, de1 , de2)
2: P ← p,R ← ∅

3: for each p ∈ Ω do

4: if cos−1⟨ ˆDMp, ˆDMnp⟩ > θα and de1 <

∥ ˆDMp∥ < de2 then
5: R ← p
6: else
7: P(p)← np

8: end if
9: end for

10: for each r ∈ R do
11: for each q ∈ Nb

3(r) do
12: if q ∈ R then
13: P(p)← q
14: R.pop(r)
15: end if
16: end for
17: end for
18: return P,R

The pixels in the image can be combined into a
forest of trees which are disjoint regions. As shown in
Fig.4(b-c), the tree forest composed of these trees is
the initial parent image, each tree has its correspond-
ing root pixels.
Final segmentation. Similar to [21], for each pixel
r ∈ R, Ar is represent the area of the initial segment.
Given the threshold αs and αt, the initial segments

(a) Image (b) Root Pixels(R) (c) Initial(P) (d) Final

Fig. 4 The process of image segmentation. (a) input
image, (b) root pixels, (c) initial segmentation, (d) final
segmentation from initial segmentation by regions merged

are divided into large, small and tiny regions and con-
struct a region adjacency graphs G(R, E) based on the
initial segmentation.

The direction similarity S(e) on each edge e =
(r1, r2) ∈ E which links two regions R and R is
computed. S(e) is defined as following:

S(e) = π −

|B(e)|∑
i=1

cos−1⟨ ˆDMPs(pi), ˆDMPs(qi)⟩

|B(e)|
(9)

where B(e) = {(pi, qi)}, pi ∈ R1, qi ∈ R2 is defined as
the pairs of boundary points between regions R, R,
|B(e)| is the numbers of the pairs. Ps(p) denotes the
s− th step starting from pixel.

If S(e) is larger than given threshold hθ which
value is assigned according to the areas of adjacent
regions, the two regions will be merged together.
Through the above merge operation, small crumb
regions in the initial segmentation can be cleaned up
to the final segment result, as shown in Fig.4(d).

5 Experiments

5.1 Datasets

The performance of the presented algorithm is eval-
uated on three datasets of PASCAL Context [32],
BSDS500 [33] and Cityscapes [34]. Pascal Context is
a pixel level semantic annotation of the whole image
and we re-labeled some obvious objects which are seg-
mented as background in the dataset. 7072 images are
used for training and 3031 images are used for testing.

BSDS500 includes 200 training sets, 100 verifica-
tion sets and 200 test sets. Each image has about
5-10 ground-truth segmentations, and we select the
finest ground-truth segmentation to train and test and
expand the training set by rotating and flipping.

Cityscapes is a dataset of high-resolution urban
image scenes, includes 2975 training images and 500
test images, in which every image has coarse label and
fine label. In our experiment, fine label is used for
supervised learning.

5.2 Training and Hyper-Parameters

In BPDM network, FCN adopts pretrained VGG16 on
ImageNet to extract basic feature maps. During train-
ing model, the learning rate of the network is the same
as [21] and optimizer uses ADAM [35]. The model is
trained for 10000 epochs on each dataset respectively.



During initial segmentation, the hyper-parameters
de1 , de2 are set to 2 and 23 respectively, and other
hyper-parameters are same to [21].

All algorithms are trained and tested on 2xIn-
tel Xeon Gold 6226R 16-core CPU (2.9GHz), 256GB
RAM, and 4x NVIDIA Tesla V100S-PCIE-32GB
GPU. The training of BPDM network is realized
with Pytorch environment, and the final merging and
segmentation is realized by using CUDA and C ++.

5.3 Qualitative and Quantitative
Evaluations

To evaluate the performances of our method, mean
Intersection over Union (mIoU) [16], F-measure for
boundaries (Fb) [33] and computing expense are
considered. mIoU is used to assess the correlation
between ground-truth and prediction, the higher the
value, the better the performance of segmentation.
Similarly, the higher Fb means the edge segmentation
effect is better. For computational consumption, the
values of time consuming are provided, and second is
the unit.

The proposed IS-BPMD is tested and compared
with some state-of-art segmentation methods such as
CascadePSP [14], MagNet [15] and super-BPD [21],
and colored the segmentation results of IS-BPDM and
super-BPD by referring to ground truth. Some qual-
itative comparison results on the three datasets are
shown in Fig.5. On Pascal Context and BSDS500
datasets, Our IS-BPDM can achieve better segmen-
tation than MagNet, CascadePSP and super-BPD. It
can segment overlapping objects (wall and painting)
and small objects (books and bed) on PASCAL Con-
text, and can clearly segment the dog and big stone on
BSDS500. On Cityscapes dataset, although IS-BPDM
does not obtain ideal result on both sides of the road
segmentation than MagNet, it can segment overlap-
ping people and cars, and also can segment small
objects more finely than three other methods.

Table 1 In-dataset evaluation results. Ranking the
top two indicators are bold.

Datasets Methods mIoU(%) Fb Time(s)

PASCAL Context

SILC[5] 48.45 0.419 0.027

Mean Shift[4] 55.34 0.416 1.896
Watershed[24] - 0.667 0.057
FCN-8s[16] 63.20 0.525 0.600
MagNet[15] 64.70 0.688 0.580
CascadePSP[14] 70.23 0.740 0.833
Super-BPD[21] 69.15 0.731 0.011

IS-BPDM(our) 71.21 0.775 0.039

BSDS500

SILC[5] 56.84 0.529 0.023

Mean Shift[4] 61.34 0.608 2.543
Watershed[24] - 0.641 0.047
FCN-8s[16] 66.75 0.647 0.632
MagNet[15] 70.40 0.703 0.520
CascadePSP[14] 70.20 0.698 0.712
Super-BPD[21] 69.34 0.695 0.010

IS-BPDM(our) 76.40 0.724 0.035

Cityscapes

SILC[5] 44.04 0.358 0.026

Mean Shift[4] 49.12 0.488 14.477
Watershed[24] - 0.435 0.919
FCN-8s[16] 55.41 0.518 0.700
MagNet[15] 67.57 0.688 0.570
CascadePSP[14] 65.34 0.644 1.795
Super-BPD[21] 66.10 0.652 0.023

IS-BPDM(our) 67.17 0.668 0.130

Input Image GT MagNet CascadePSP Super-BPD IS-BPDM

(a) The segmentation on PASCAL Context

Input Image GT MagNet CascadePSP Super-BPD IS-BPDM

(b) The segmentation on BSDS500

Input Image GT MagNet CascadePSP Super-BPD IS-BPDM

(c) The segmentation on Cityscapes

Fig. 5 Quantitative comparison between the proposed

IS-BPDM method and other advanced methods on (a)

PASCAL Context, (b) BSDS500, (c) Cityscapes dataset

Moreover, Table.1 illustrates the comparisons of
our IS-BPDM algorithm and some widely used image
segmentation methods on three datasets. On PASCAL
Context and BSDS500 datasets, our IS-BPDM can
learn the accurate BPDMs and make full use of the
priori properties, so it can achieve the highest mIoU
and Fb, and has a good trade-off between accuracy
and efficiency on segmenting images. On Cityscapes
dataset in which images are high- resolution and their
contents are complex, our IS-BPDM achieves the top
two segmentation accuracy in mIoU and Fb, it can
effectively segment the house, people, car and so on,
and also achieves a high efficiency.

It can be concluded that traditional segmentation
methods rely on human intervention, and neural net-
work approaches outperform traditional methods due
to a large number training samples and strong fit-
ting ability of the network. Our IS-BPDM approach
uses neural network to learn accurate and robust
BPDMs, and adopts traditional segmentation method
with BPDMs to finish the finial segmentation accord-
ing to the priori properties knowledge of BPDMs. The
combinational model has a respectable segmentation
and high efficiency.

5.4 Ablation Studies

Module. We study the impact of adding watershed
and attention mechanism modules to the network on
Pascal Context. As stated in Table 2, when only water-
shed or attention mechanism is added, the segmen-
tation performance is improved. Both watershed and
attention mechanism modules achieve better results.
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Table 2 The effects of watershed and attention
mechanism modules on the performance in Fb and mIoU

Datasets Watershed Attention Fb mIoU

0.732 69.41

PASCAL Context
√

0.733 69.54√
0.758 70.12√ √
0.775 71.21

Setting the n value of the adaptive weight.
The importance of small regions during network train-
ing can be improved through adaptive weight w(p)
in Eq.(8). As shown in Fig.6, with the increase of n
value, it is more sensitive to small regions, but this
does not mean that the greater the n value, the better
the segmentation. When n is less than 1, model pays
more attention to the segmentation of large regions,
so that the small regions cannot be segmented. When
n is greater than 1, it pays too much attention to
small regions, and results in over segmentation. When
setting n to 1, we can achieve better segmentation
performance.

(a)n=0 (b)n=0.5 (c)n=1 (d)n=1.5
Fig. 6 The influence of different n values on image seg-
mentation

Direction characters. The effects of direction and
magnitude characters on the initial segmentation
based on BPDMs are depicted in Table.3. It can be
seen that both direction and magnitude can achieve
better segmentation results in comparison.

Table 3 The effects of direction difference on the
performance in mIoU .

Datasets Derection Magnitude mIoU

PASCAL Context
√

70.13√ √
71.21

6 Conclusion and Future
Work

For image segmentation, higher accuracy of edge and
small regions and less time consuming are required.
The proposed algorithm considers the pixels nearby
boundary pixels in different regions should have oppo-
site directions and shorter magnitude, and nearby root
pixels in the same region have opposite directions and
longer magnitude. So BPDM network which embed
watershed and attention mechanism module is con-
structed and an adaptive loss function is used to train
the BPDM network, which can effectively improve the

accuracy and robustness of BPDMs on small areas and
weak edges. Then the initial segmented regions are
accomplished according to the pixel direction similar-
ity and magnitude of BPDMs, and finally merge them
into the final segmentation based on RAG. Experi-
ments performed on PASCAL Context, BSDS500 and
Cityscapes datasets show that the proposed IS-BPDM
achieves a reasonable and accuracy performance for
small object segmentation.

Though the proposed IS-BPDM is validated and
outperforms a pleasant segmentation accuracy and
efficiency, it still does not realize semantic segmenta-
tion. In the future work, we would like to consider the
end-to-end semantic segmentation guided by BPDMs.
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