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Abstract

Contextual information plays an important role in solv-
ing vision problems such as image segmentation. However,
extracting contextual information and using it in an effec-
tive way remains a difficult problem. To address this chal-
lenge, we propose a multi-resolution contextual framework,
called cascaded hierarchical model (CHM), which learns
contextual information in a hierarchical framework for im-
age segmentation. At each level of the hierarchy, a classifier
is trained based on downsampled input images and outputs
of previous levels. Our model then incorporates the result-
ing multi-resolution contextual information into a classifier
to segment the input image at original resolution. We repeat
this procedure by cascading the hierarchical framework to
improve the segmentation accuracy. Multiple classifiers are
learned in the CHM; therefore, a fast and accurate clas-
sifier is required to make the training tractable. The clas-
sifier also needs to be robust against overfitting due to the
large number of parameters learned during training. We
introduce a novel classification scheme, called logistic dis-
junctive normal networks (LDNN), which consists of one
adaptive layer of feature detectors implemented by logis-
tic sigmoid functions followed by two fixed layers of logical
units that compute conjunctions and disjunctions, respec-
tively. We demonstrate that LDNN outperforms state-of-the-
art classifiers and can be used in the CHM to improve object
segmentation performance.

1. Introduction
Contextual information has been widely used for solving

high-level vision problems in computer vision [28, 27, 14,
22]. Contextual information can refer to either inter-object
configuration, e.g. a segmented horse’s body may suggest
the position of its legs [28], or intra-object dependencies,
e.g. the existence of a keyboard in an image implies that
there is very likely a mouse near it [27]. From the Bayesian

point of view, contextual information can be interpreted as
the probability image map of an object, which caries prior
information in the maximum aposteriori (MAP) pixel clas-
sification problem.

There have been many methods that use contextual in-
formation for image segmentation and scene understanding.
He et al. [13] used the conditional random fields (CRF) to
capture contextual information at multiple scales for image
segmentation. Torralba et al. [27] proposed boosted ran-
dom field (BRF), which uses boosting to learn the graph
structure of CRFs, for object detection. Desai et al. [8] pro-
posed a discriminative model for multiclass object recog-
nition that can lean intra-class relationships between dif-
ferent categories. The cascaded classification model [14]
combines scene categorization, object detection, and mul-
ticlass image segmentation for scene understanding. Choi
et al. [6] also proposed a scene understanding framework,
which uses a tree-based graphical architecture to model ob-
ject dependencies, local features, and local detectors. In
a more related work, Tu and Bai [28] introduced the auto-
context algorithm, which integrates both image features and
contextual information to learn a series of classifiers, for im-
age segmentation. A filter bank is used to extract the image
features and the output of each classifier is used as the con-
textual information for the next classifier in the series.

We also introduce a segmentation framework that takes
advantage of both input image features and contextual in-
formation. Similar to the auto-context algorithm, we use a
filter bank to extract input image features. But we use a hi-
erarchical architecture to capture contextual information at
different resolutions. Moreover, this multi-resolution con-
textual information is learned in a supervised framework,
which makes it more discriminative compared to the above-
mentioned methods. To our knowledge, supervised multi-
resolution contextual information has not previously been
used in a segmentation framework. We use a cascade of
hierarchical models to improve the segmentation accuracy
gradually in the series architecture.

Our proposed model learns several classifiers with many



Figure 1. Illustration of the hierarchical model. The blue classi-
fiers are learned during the bottom-up step and the red classifier is
learned during the top-down step. The height of the hierarchy, L,
is three in this model but it can be extended to any arbitrary num-
ber. In the cascaded hierarchical model, the red classifier is used
as the first classifier of the bottom-up step of next stage.

free parameters, which can make it slow to train and prone
to overfitting. To address these problems, we propose a
new probabilistic classifier, logistic disjunctive normal net-
works (LDNN), that can be trained efficiently. Unlike tradi-
tional neural networks, it has only one adaptive layer, which
makes it easier and faster to train. In addition, it allows
a simple and intuitive initialization of the network weights
which avoids the herd-effect [10].

2. Cascaded Hierarchical Model

The hierarchical model is illustrated in Figure 1. First,
a multi-resolution representation of the input image is
obtained by applying downsampling sequentially (orange
ovals in Figure 1). Next, a series of classifiers are trained at
different resolutions from the finest resolution to the coars-
est resolution. At each resolution, the classifier is trained
based on the output of the previous classifier in the hier-
archy and the input image at that resolution. Finally, the
outputs of these classifiers are used to train a new classi-
fier at original resolution. This classifier exploits the rich
contextual information from multiple resolutions. The cas-
caded hierarchical model (CHM) is obtained by repeating
the same procedure consecutively. We describe different
steps of the model separately in the following subsections.

2.1. Bottom-up step
Let X = (x(m,n)) be the 2D input image with

a corresponding ground truth Y = (y(m,n)) where
y(m,n) ∈ {0, 1} is the class label for pixel (m,n).
For notational simplicity, we use 1D vectors X =
(x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) to denote the
input image and corresponding ground truth, respectively.
The training dataset then contains K input images, X =
{X1, X2, . . . , XK}, and corresponding ground truth im-
ages, Y = {Y1, Y2, . . . , YK}1. We also define the Φ(·, l)
operator which performs down-sampling l times by averag-
ing the pixels in each 2 × 2 window, the Ψ(·) operator that
extracts features, and the Γ(·, l) operator which performs
max-pooling l times by finding the maximum pixel value in
each 2×2 window. Each classifier in the hierarchy has some
internal parameters θl, which are learned during training

θ̂l = argmax
θl

P (Γ(Y, l− 1) | Ψ(Φ(X, l− 1)),Γ(Ŷl−1, 1); θl)

(1)
where Ŷl−1 is the output of classifier at the lower level of
hierarchy. The classifier output of each level is obtained
using inference

Ŷl = argmax
Y

P (Y | Ψ(Φ(X, l − 1)),Γ(Ŷl−1, 1); θ̂l). (2)

The classifier output of the l’th level, Ŷl, creates context,
i.e., prior information, for the l+1’st level classifier. For l =
1 no prior information is used and the classifier parameters,
θ1, are learned only based on the input image features. It is
worth mentioning that while our feature extraction operator,
Ψ, is fixed for all the levels, it captures information from
larger areas as we go up through the hierarchy because it
operates on downsampled images.

In practice, we use a cumulative version of the hierar-
chical model. In the cumulative framework, each classifier
in the l’th level of the hierarchy takes outputs of all lower
level classifiers, i.e., Ŷ1, . . . , Ŷl−1. The cumulative frame-
work provides multi-resolution contextual information for
each classifier in the hierarchy and thus can improve the
performance.

2.2. Top-down step
Unlike the bottom-up step where multiple classifiers are

learned, only one classifier is trained in the top-down step.
Once all the classifiers are learned in the bottom-up step, a
top-down path is used to feed coarser resolution contextual
information into a classifier, which is trained at the finest
resolution. We define Ω(·, l) operator that performs upsam-
pling l times by duplicating each pixel. For a hierarchical
model with L levels, the classifier is trained based on the

1Unless specified otherwise, upper case symbols, e.g. X , Y , denote a
particular vector, lower case symbols, e.g. x, y, denote the elements of a
vector, and bold-face symbols, e.g. X , Y, denote a set of vectors.



input image features and the outputs of stages 1 to L ob-
tained in the bottom-up step. The internal parameters of the
classifier, β, are learned using the following

β̂ = argmax
β

P (Y | Ψ(X), Ŷ1,Ω(Ŷ2, 1), . . . ,

Ω(ŶL, L− 1);β). (3)

The output of this classifier can be obtained using the fol-
lowing for inference

Ẑ = argmax
Y

P (Y | Ψ(X), Ŷ1,Ω(Ŷ2, 1), . . . ,

Ω(ŶL, L− 1); β̂). (4)

The top-down classifier takes advantage of prior informa-
tion from multiple resolutions. This multi-resolution prior
is an efficient mixture of both local and global information
since it is drawn from different scales. In a related work,
Seyedhosseini et al. [24] proposed multi-scale contextual
model that exploits contextual information from multiple
scales. The advantage of our model is that the context im-
ages are learned at different scales in a supervised frame-
work while the multi-scale contextual model uses simple
filtering to create context images at different scales.

2.3. Cascaded model
Our model is built by cascading multiple stages of

bottom-up and top-down steps, consecutively. Each stage
is composed of one bottom-up and one top-down step. The
top-down classifier of each stage is used as the first classifier
in the bottom-up step of the next stage. For the first stage, a
previous top-down step is not available, the first classifier of
the bottom-up step is learned only based on the input image
features. We use θ̂sl and Ŷsl to denote the parameters and
outputs of the l’th classifier in the bottom-up step of stage s.
We also use β̂s and Ẑs to denote the parameters and outputs
of the classifier in the top-down step of stage s. The over-
all learning algorithm for the cascaded hierarchical model
is described in Algorithm 1. During inference, the goal is
to infer the final output given the input image. Using the
learned parameters for the classifiers, we consecutively in-
fer the bottom-up and top-down classifiers. The inference
algorithm is given in Algorithm 2.

Even though our problem formulation is general and not
restricted to any specific type of classifier, in practice we
need a fast and accurate classifier that is robust against
overfitting. Among off-the-shelf classifiers, we consider
artificial neural networks (ANN), support vector machines
(SVM), and random forests (RF). ANNs are slow at train-
ing time due to the computational cost of backpropagation.
SVMs offer good generalization performance, but choosing
the kernel function and the kernel parameters can be time
consuming since they need to be adopted for each classi-
fier in the CHM. Furthermore, SVMs are not intrinsically

Algorithm 1 Learning algorithm for the CHM.
Input: A set of training images together with their binary

groundtruth images, T = {(Xi, Yi), i = 1, . . . ,K} and
the height of hierarchy, L.

Output: θsl, βs, Nstage.

• Learn the first classifier, θ11, using equation (1)
without any prior information and only based on the
input image features.

• Compute the output of first classifier, Ŷ11, using
equation (2).

• s ← 1.

repeat
for l = 2 to L do

• Learn the l’th classifier, θ̂sl, using equation (1).

• Compute output of the l’th classifier, Ŷsl, using
equation (2).

end for
• Learn the top-down classifier, β̂s, using equation 3.

• Compute output of the top-down classifier, Ẑs, us-
ing equation 4.

• s ← s+ 1, θ̂s1 ← β̂s−1, Ŷs1 ← Ẑs−1.

• Nstage ← s.

until convergence

Algorithm 2 Inference algorithm for the CHM.
Input: An input image X , θsl, βs, Nstage, L.
Output: Ŷ .

• Compute the output of first classifier, Ŷ11, using
equation (2).

for s = 1 to Nstage do
for l = 2 to L do

• Compute output of the l’th bottom-up classifier,
Ŷsl, using equation (2).

end for
• Compute output of the top-down classifier, Ẑsl,

using equation (4).

• Ŷ(s+1)1 ← Ẑs.

end for
• Ŷ ← Ẑs.

probabilistic and thus are not completely suitable for our
CHM model. Random forests provide an unbiased estimate
of testing error, but they are prone to overfitting in the pres-
ence of noise. In section 4.4 we show that overfitting can
disrupt learning in the CHM model. We introduce a fast and



yet powerful probabilistic classifier that can be employed in
the CHM model.

3. Logistic Disjunctive Normal Networks
Any Boolean function b : Bn → B where B = {0, 1}

can be written as a disjunction of conjunctions which is
also known as the disjunctive normal form [12]. Now con-
sider the binary classification problem f : Rn → B. Let
X+ = {X ∈ Rn : f(X) = 1} and X− = {X ∈ Rn :
f(X) = 0}. One possibility for expressing f in disjunc-
tive normal form is to approximate X+ as the union of axis
aligned hypercubes in Rk. We first define the box function

hL,U (x) =

�
1, L ≤ x ≤ U
0, otherwise

(5)

where L ∈ R, U ∈ R and L ≤ U . Then the disjunctive
normal form can be rewritten as

f̃(X) =
�

i




n�

j=1

hLij ,Uij (xj)



 (6)

where xj denotes the j’th element of the vector X . This
formulation is also known as a fuzzy min-max neural net-
work [26]. The most important drawback of this model is
its limitation to axis aligned decision boundaries which can
significantly increase the number of conjunctions necessary
for a good approximation. We propose to construct a sig-
nificantly more efficient approximation in disjunctive nor-
mal form by approximating X+ as the union of convex sets
which are defined as the intersection of arbitrary half-spaces
in Rn. By using hyperplanes to define the half-spaces, we
get the approximation

f̃(X) =
�

i




�

j

hij(X)





� �� �
qi(X)

(7)

where the half-spaces are defined as

hij(X) =

�
1,

�n
k=1 wijkxk + bij ≥ 0

0, otherwise
(8)

Our next step is to replace equation (7) with a differentiable
approximation. First, a conjunction of binary variables�

j hij(X) can be replaced by their product
�

j hij(X).
Then, using De Morgan’s laws we can replace the disjunc-
tion of binary variables

�
i qi(X) with ¬

�
i ¬qi(X) which

in turn can be replaced by the expression 1−
�

i(1−qi(X)).
Finally, we can approximate the half-spaces hij(X) with
the logistic sigmoid function

σij(X) =
1

1 + e−
�n

k=1 wijkxk+bij
. (9)

This gives in the differentiable disjunctive normal form ap-
proximation to f

f̃(X) = 1−
�

i

(1−
�

j

σij(X)

� �� �
gi(X)

). (10)

This formulation can be interpreted as a 3-layer network.
The input vector, i.e. X , is mapped to the first layer by sig-
moid functions in equation (9). The first layer consists of
N groups of nodes with M nodes each. The nodes in each
group are connected to a single node in the second layer.
Each node in the second layer implements the logical nega-
tions of the conjunctions gi(X) in equation (10). The output
layer is a single node which implements the disjunction us-
ing De Morgan’s law. We will refer to such a network as
a N × M LDNN. Notice that the only parameters of the
network are the weights, wijk, and biases, bij , of the con-
nections between the inputs and the first layer of sigmoid
functions. This is an advantage of using parameterless func-
tions, i.e. the products, for representing the conjunctions.

Given a set of training examples T of pairs (X, y) where
y denotes the desired binary class corresponding to X and
a classifier f(X), the quadratic error over the training set is

E(f,T) =
�

(X,y)∈T

(y − f(X))2 . (11)

The gradient of the error function with respect to the pa-
rameter wijk in the LDNN architecture, evaluated for the
training pair (X, y), is

∂E

∂wijk
= −2(y − f(X))

�

r �=i

(1− gr(X))

gi(X) (1− σij(X))xk.
(12)

Similarly the gradient of the error function with respect to
the bias term bij is

∂E

∂bij
= −2(y − f(X))

�

r �=i

(1− gr(X))

gi(X) (1− σij(X)) . (13)

The parameters of the LDNN can be learned by minimiz-
ing equation (11) using the gradient descent algorithm and
equations (12), (13).

Finally, the disjunctive normal form used in the the
LDNN permits a very simple and intuitive initialization of
the model parameters. Since each conjunction is a convex
set in Rn and X+ is approximated as the union of N such
conjunctions, we can view the convex sets generated by the
conjunctions as sub-clusters of X+. To initialize a model
with N conjunctions and M sigmoids per conjunction, we:



Table 1. Error rates for three binary datasets from UCI repository.

Method IJCNN Wis. breast cancer PIMA

Random Forest 2.00% 1.79% 20.81%

SVM 1.41% 1.59% 21.57%

ANN 2.34% 2.28% 22.11%

LDNN 1.28% 0.8% 17.97%

• Use the k-means algorithm to partition X+ and X−
into N and M clusters, respectively. Let C+,i and C−,i

be the centroid of the i’th clusters in each partition.
• Initialize the weight vectors Wij as the unit length vec-

tors from the j�th negative to the i�th positive centroid.
• Initialize the bias terms bij such that the sigmoid func-

tions σij(X) take the value 0.5 at the midpoints of the
lines connecting the positive and negative cluster cen-
troids.

It is noteworthy that our LDNN is fundamentally differ-
ent from disjunctive fuzzy nets [20]. The LDDN is a dif-
ferentiable model and hence enables us to minimize an ob-
jective function while disjunctive fuzzy nets are based on
prototypes and an adhoc training procedure.

4. Experimental Results
We perform experimental studies to evaluate the perfor-

mance of both LDNN and CHM. The LDNN was tested on
three binary and two multi-class datasets. We also tested
the CHM model on the Weizmann horse dataset [4], two
Electron Microscopy datasets, and the Corel dataset [13].

4.1. LDNN (Binary datasets)
We compared LDNN to random forests, artificial neu-

ral networks (ANN), and SVM on three binary datasets:
IJCNN [5], Wisconsin breast cancer, and PIMA dia-
betes [11]. For all the datasets 2/3 of the samples were
used for training. The testing error rates are given in Ta-
ble 1. All classifiers were optimized for accuracy by trying
various model settings. LDNN training times were couple
of orders of magnitudes faster than ANNs and generally be-
tween random forests and SVMs.

4.2. LDNN (MNIST dataset)
The MNIST dataset [19] contains 60000 training and

1000 testing images of handwritten digits. There are 10
classes in this dataset corresponding to digits 0 to 9. The
size of each image is 28 × 28. We used pixel intensities
without any preprocessing as input features. We trained ten
9×9 LDNN in the one-vs-all architecture. For comparison,
we also trained a random forest classifier with 500 trees,
40000 samples per tree, and 26 features per node. The error
rates are given in Table 2. The random forest classifier has

Table 2. Error rates for the MNIST and Landsat datasets.
MNIST Landsat

Method
Training

Error
Testing
Error

Training
Error

Testing
Error

Random Forest 0.005% 2.96% 0.22% 9.15%

SVM − 1.40% 1.98% 8.15%

LDNN 0.02% 1.23% 2.66% 7.98%

more overfitting compared to the LDNN. We tried to de-
crease the random forest overfitting by tweaking the param-
eters as much as possible. It is worth mentioning, while the
achieved error rate is not state-of-the-art, our simple clas-
sifier outperforms SVM [19] (1.4%), neural networks [15]
(1.6%), and many other methods for which the error rates
can be found in [19]. Moreover, the LDNN results can be
improved by applying preprocessing techniques [19] such
as deskewing, width normalization, etc.

4.3. LDNN (Landsat dataset)

The Landsat dataset [11] contains 4435 training and
2000 testing samples. Each sample is the multi-spectral val-
ues of pixels in the 3 × 3 neighborhood of the target pixel
in a satellite image. There are 6 classes in this dataset as-
sociated with the type of soil. We employed one-vs-all ar-
chitecture and trained six 9 × 9 LDNN classifiers. We also
trained a random forest classifier with 200 trees and a SVM
classifier [5] with RBF kernel. The parameters of the kernel
were found using the search code available in the LIBSVM
library [5]. The error rates are reported in Table 2. LDNN
outperforms both random forest and SVM.

4.4. CHM (Weizmann horse dataset)

The Weizmann dataset [4] contains 328 gray scale horse
images with corresponding foreground/background truth
maps. Similar to Tu et al. [28], we used half of the im-
ages for training and the remaining images were used for
testing. The task is to segment horses in each image. The
features that we extract from input images include Haar
features [29], histograms of oriented gradients (HOG) fea-
tures [7] and SIFT flow features [23]. In addition, we ap-
ply a set of Gabor filters and Canny edge detector to obtain
more features. We used a patch of size 21 × 21 to extract
the image features. Similar to Jurrus et al. [16], we used a
15×15 sparse stencil to sample context images, i.e. outputs
of classifiers. Note that, only direct samples of context im-
ages are used in CHM and no extra features are extracted
from context images.

We used a 24 × 24 LDNN as the classifier in a CHM
with three stages and 5 levels per stage. To improve the
generalization performance, we adopted the dropout idea
from the field of neural networks. Hinton et al. [15] showed



Table 3. Testing performance of different methods for the Weiz-
mann horse dataset.

Method F-value G-mean Pixel accuracy

KSSVM [3] − − 94.60%

TWM [17] − − 94.70%

Auto-context [28] 84% − −
Levin & Weiss [21] − − 95.2%

MSANN [24] 87.58% 92.76% 94.34%

CHM-RF 83.15% 90.20% 92.33%

CHM-LDNN 89.89% 94.39% 95.37%

that removing 50% of the hidden nodes in a neural network
during the training can improve the performance on the test
data. Using the same idea, we randomly removed half of the
nodes in the second layer and half of the nodes per group in
the first layer at each iteration during the training. At test
time, we used the LDNN that contains all of the nodes with
their outputs square rooted to compensate for the fact that
half of them were active during the training time.

For comparison, we trained a CHM with random for-
est as the classifier. To avoid overfitting, only 1

20 of sam-
ples were used to train 100 trees in the random forest. We
also trained a multi-scale series of artificial neural networks
(MSANN) as in [24]. Three metrics were used to evalu-
ate the segmentation accuracy: Pixel accuracy, F-value =
2×precision×recall
precision+recall , and G-mean=

√
recall × TNR where

TNR = true negative
true negative+false positive . Unlike F-value, G-

mean is symmetric with respect to positive and negative
classes.

In Table 3 we compare the performance of CHM with
some state-of-the-art methods. These results place CHM in
the context of state-of-the-art methods. It is worth noting
that CHM does not make use of fragments and it is based
purely on discriminative classifiers that use neighborhood
information. Hence it is applicable to a variety of problems
such as boundary detection and object segmentation.

The CHM-LDNN outperforms the state-of-the-art meth-
ods while the CHM-RF performs worse than the other meth-
ods. The training and testing F-value at different stages of
the CHM for both LDNN and random forest are shown in
Figure 2. It shows how overfitting propagates through the
stages of the CHM when the random forest is used as the
classifier. The overfitting disrupts the learning process be-
cause there are too few mistakes in the training set com-
pared to the testing set as we go through the stages. For
example, the overfitting in the first stage does not permit
the second stage to learn the typical mistakes from the first
stage that will be encountered at testing time. We tried ran-
dom forest with different parameters to overcome this prob-
lem but were unsuccessful. Figure 3 shows four examples
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Figure 2. F-value at different stages of the CHM with LDNN and
random forest. The overfitting in the random forest makes it use-
less in the CHM architecture.
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Figure 3. Test results of the Weizmann horse dataset. (a) Input im-
age, (b) MSANN [24], (c) CHM-RF, (d) CHM-LDNN, (e) ground
truth images. The CHM-LDNN is more successful in completing
the body of horses.

of our test images and their segmentation results using dif-
ferent methods. The CHM-LDNN outperforms the other
methods in filling the body of horses.

4.5. CHM (mouse neuropil dataset)

This dataset is a stack of 70 images from the mouse neu-
ropil acquired using serial block face scanning electron mi-
croscopy (SBFSEM). It has a resolution of 10 × 10 × 50
nm/pixel and each 2D image is 700 by 700 pixels. An ex-
pert anatomist annotated membranes, i.e. cell boundaries, in
these images. From those 70 images, 14 images were ran-
domly selected and used for training and the 56 remaining
images were used for testing. The task is to detect mem-
branes in each 2D section. We used the same set of features
as we used in the horse experiment. Additionally, we in-
cluded Radon-like features (RLF) [18], which proved to be
informative for membrane detection.



Table 4. Testing performance of different methods for the mouse
neuropil and Drosophila VNC datasets.

Mouse neuropil Drosophila VNC

Method F-value G-mean F-value G-mean
gPb-OWT
-UCM [1] 45.68% 64.75% 49.90% 69.57%

BEL [9] 71.68% 84.46% 70.21% 84.20%

MSANN [24] 81.99% 90.48% 78.89% 88.74%

CHM-RF 79.28% 88.42% 77.56% 87.82%

CHM-LDNN 86.00% 92.48% 80.72% 90.02%

We used a 24 × 24 LDNN with three stages and 5 lev-
els per stage. Since the task is detecting the boundary of
cells, we compared our method with two general bound-
ary detection methods, gPb-OWT-UCM (global probability
of boundary followed by the oriented watershed transform
and ultrametric contour maps) [1] and boosted edge learn-
ing (BEL) [9]. The testing results for different methods are
given in Table 4. The CHM-LDNN outperforms the other
methods with a notably large margin.

One example of the test images and corresponding mem-
brane detection results using different methods are shown in
Figure 4. As shown in our results, the CHM-LDNN outper-
forms CHM-RF and MSANN in removing undesired parts
from the background and closing some gaps.

4.6. CHM (Drosophila VNC dataset)
This dataset was released for the ISBI 2012 EM chal-

lenge [2] and contains 30 images from Drosophila first in-
star larva ventral nerve cord (VNC) acquired using serial-
section transmission electron microscopy (ssTEM). Each
image is 512 by 512 pixels and the resolution is 4× 4× 50
nm/pixel. The membranes are marked by a human expert in
each image. We used 15 images for training and 15 images
for testing. The task is to find the membranes in each im-
age. We used the same set of features and CHM parameters
as the previous experiment and the testing performance for
different methods are reported in Table 4. It can be seen that
the CHM-LDNN outperforms the other methods. One test
sample and membrane detection results for different meth-
ods are shown in Figure 4. We also trained the same model
on the whole 30 images and submitted the results for the
testing volume to the challenge server [2]. The achieved
pixel error was 6.33% which is better than the human error,
i.e., how much a second human labeling differed from the
first one.

Finally, the training time of different methods in different
experiments are reported in Table 5. We used the same re-
sources for all methods. The training times show that CHM-
LDNN is slower than BEL while it is faster than CHM-RF
and MSANN. Note that, gPb-OWT-UCM is unsupervised

Table 5. Training time for different datasets and different methods.

Mouse
neuropil

Drosophila
VNC

Weizmann
horse

BEL [9] 6 hours 4 hours −
MSANN [24] 25 days 15 days 30 days

CHM-RF 57 hours 27 hours 66 hours

CHM-LDNN 24 hours 15 hours 35 hours

and thus there is no training time for it.

4.7. CHM (Corel dataset)
We also tested the CHM on the Corel dataset [13]. It con-

tains 100 images which are manually labeled into 7 classes.
We used 60 of the images for training and the rest of them
were used for testing. We trained 7 CHMs for each of
the classes separately. At test time, each pixel was labeled
into the class with highest probability among all the trained
CHMs. We achieved 79.37% pixel accuracy which outper-
forms textonboost [25] with 74.6% accuracy.

5. Conclusion
We introduced a discriminative learning scheme for im-

age segmentation, called CHM, which uses contextual in-
formation at multiple resolutions. CHM trains several clas-
sifiers at multiple resolutions and leverages the obtained re-
sults for learning a classifier at the original resolution. The
same process is repeated in consecutive stages until the im-
provement becomes negligible.

We also showed that off-the-shelf classifiers are not suit-
able for CHM. They are either slow in training such as
ANN or prone to overfitting such as random forests. To ad-
dress these problems, we proposed a novel classifier, called
LDNN, which consists of one adaptive layer of feature de-
tectors implemented by logistic sigmoid functions followed
by two fixed layers of logical units that compute conjunc-
tions and disjunctions, respectively. We showed LDNN out-
performs RF and SVM in general learning tasks as well as
image segmentation and it also speeds up the learning pro-
cess in the CHM architecture.
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