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Abstract. Recently, there has been increasing interests in applying as-
pect models (e.g., PLSA and LDA) in image segmentation. However,
these models ignore spatial relationships among local topic labels in an
image and suffers from information loss by representing image feature
using the index of its closest match in the codebook. In this paper,
we propose Topic Random Field (TRF) to tackle these two problems.
Specifically, TRF defines a Markov Random Field over hidden labels
of an image, to enforce the spatial coherence between topic labels for
neighboring regions. Moreover, TRF utilizes a noise channel to model
the generation of local image features, and avoids the off-line process of
building visual codebook. We provide details of variational inference and
parameter learning for TRF. Experimental evaluations on three image
data sets show that TRF achieves better segmentation performance.

1 Introduction

Image segmentation represents a fundamental problem in computer vision, which
aims to cluster pixels in an image into distinct, semantically coherent and salient
regions [1,2,3]. Solutions to image segmentation serves as the basis for a wide
range of applications including object recognition, content-based image retrieval,
video surveillance and object tracking [4].

Although geometry-based methods such as normalized cuts [1] remain an
effective approach to image segmentation, motivated by the success of proba-
bilistic aspect models, such as the probabilistic latent semantic analysis (PLSA)
[5] and the latent Dirichlet allocation (LDA) [6], in text analysis and informa-
tion retrieval, there has been a growing interest in applying such models for
semantically-driven segmentation of natural images [7,8,9,10,11,12]. Among var-
ious advantages offered by these approaches, is their affordances for unsupervised
training of representations of the latent aspects underlying a content-rich cor-
pora, often known as topics, which can help define a semantically meaningful
“content space” in which an image can lie. Thus the segmental results derived
from an aspect model (also known as topic model) can be more reliant on con-
tent coherence, rather than mere spatial contiguity as in the spectrum methods.
Other advantages include flexibility in capturing content granularity [7], and
computational efficiency based on efficient approximate inference.

To apply those aspect models originally proposed for text data, it is necessary
to first build a connection between an image and a text document. While text
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Fig. 1. (Best viewed in color) Comparison of the spatial latent Dirichlet allocation
(spatial LDA) model [13], one of the state-of-the-art aspect model for image analysis,
and our proposed model, topic random field (TRF). First column shows the input
images. Second column shows the input regions to spatial LDA and TRF provided by
an over-segmentation method (normalized cut in this paper). The last two columns
show the segmentation results of spatial LDA and TRF respectively. The first row
indicates that by defining MRF over latent topics, TRF enforces spatial coherency
over adjacent regions, while spatial LDA separates adjacent and semantically similar
regions into two segments. The second row shows that using noise channel instead
of codebook enables TRF to group two visually non-identical objects (black cow and
white cow) from the same semantic class into the same category, while the spatial LDA
model categorizes these two objects into different semantic classes.

documents are naturally composed from a vocabulary of distinctive words, an
image is made from a collection of pixels, and there is no such obvious word-
level representation for images. Conventionally, researchers extract various local
features, for example, interest points detected by scale invariant saliency detector
[14] as used in [13], and transform these local features to “visual words”, which
play the same role as textual words in text analysis. Typically, after extracting
local features from training images, a clustering is performed on the entire set of
local features. Then a dictionary is constructed, with “words” being the centroids
of the feature clusters. Based on this dictionary, each feature extracted from the
image is then represented by the index of the most similar item (i.e. a visual
word defined by the feature centroid) in the dictionary. Finally, analogous to
text data, an image is represented as a collection of visual words, obtained by
assigning every local feature an index in the visual dictionary.

Despite the success of modern low-level visual feature detectors, the aspect
model built upon those local features suffers from several weaknesses. First, most
existing aspect models regard an image as a bag of visual words, ignoring the
spatial relationship between them. Although the spatial relationship between
words in text documents might not severely affect content distillation, the spa-
tial relationship between visual words are crucial for image understanding. For
example, a scrambled collection of patches from a building image does not nec-
essarily evoke the recognition of a building [11]. Most current work on aspect
model of images ignores this important issue, hence might have compromised
the final accuracy of the segmentation and recognition tasks. This contrasts the
spectrum methods for which spatial contiguity is crucial in defining segmental



Image Segmentation with Topic Random Field 787

patterns. Second, representing each local image feature by the index of the item
that is closest to it in the dictionary can result in severe loss of information. Due
to the usual high dimensionality of local features extracted from images, it is im-
practical to build a large size dictionary that could enumerate all possible local
features. Therefore, it is highly possible that even the closest matching visual
word in the dictionary for a particular local feature instance can be quite dif-
ferent from the feature instance itself, and the matched visual word might even
represent a mismatching content, thereby causing ambiguity in feature-instance
versus visual-word matching. This phenomena has never been an issue in text
modeling, where a word-instantiation in a document can be always unambigu-
ously mapped to a word in the dictionary. We suspect that these two problems
could seriously hinder the application of aspect models on image data.

In this paper, we propose a Topic Random Field (TRF) model for image
segmentation, which improves over the basic LDA-style models, by defining a
Markov Random Field (MRF) over hidden topic assignment of super-pixels in
an image to enforce the spatial coherence between neighboring regions; and by
employing a noise channel between visual words in the dictionary and instanti-
ated super-pixels in the real image to better model the variance of local features.
Specifically, instead of assuming that the latent topic assignments of every super-
pixels in an image are generated independently according to a multinomial dis-
tribution, a TRF defines an MRF over the hidden super-pixels’ labels to model
their spatial relationship. Moreover, different from previous attempts, which first
build a codebook off-line and then generate each local feature instantiation ac-
cording to a multinomial distribution over word-index, a TRF generates each
local feature instantiation as a corrupted or transformed version of a matching
visual word in the codebook according to a noise-channel model, which allows
explicit modeling and inference of the ambiguity of the matching between feature
instantiation and feature prototypes (i.e., visual word). As a result, TRF avoids
the problem of information loss during topic learning without building a large
size codebook, and is significantly more robust to variability in the instantiations
of local features corresponding to the same objects or common visual words due
to variations in lighting, transformation, viewing angle, etc.

It should be noted that there has been some attempt in utilizing spatial rela-
tionships between topic labels to improve the performance of aspect models on
image segmentation [13,11,15,16,17]. Probably the most related work to this pa-
per is the spatial-LDA model [13], which also considers utilizing spatial consis-
tency, by defining latent topic variables on over-segmented regions and enforcing
all local patches within the region to share the same latent topic. In fact, we adopt
a similar way of defining latent topic variables on over-segmented regions to en-
force spatial consistency between local patches within the same region. However,
in spatial-LDA model, the authors only consider the spatial consistency between
adjacent local patches, while topic labels for over-segmented regions are assumed
to be generated independently. Empirical comparison between spatial-LDA and
TRF demonstrate the necessity of enforcing spatial consistency between adja-
cent over-segmented regions. Besides, in [11], the authors demonstrated that the
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performance of PLSA can be improved by introducing an image-specific MRF to
enforce the spatial coherence on the labels of the fine-grained local patches in an
image. However, in that model the number of parameters grows linearly with the
number of training images and the model is trained fully supervised. On the other
hand, the number of parameters in TRF does not grow with the size of the train-
ing data because we apply a universally-parameterized MRF within the TRF over
all images, which can be trained via a maximum likelihood principle in a fully
unsupervised fashion. Applying a universal MRF rather than an image-specific
one as in [11] is crucial to avoid overfitting and enable scalability. Moreover, [11]
builds an MRF on local patches. Since there might be several hundreds of patches
in one image, the resulting MRF is quite large; whereas our approach defines an
MRF on over-segmented regions usually with homogeneous object-level contents,
whose number in an image is around 50, and enforces the consistency among local
semantically similar and adjacent patches by enforcing them to share the same la-
tent topic. Therefore, the MRF in our model is much smaller than the one in [11],
yet enforces the same amount of spatial consistency. In our empirical studies, we
found that training TRF takes much less time than training the model in [11] on
the same data set, which makes TRF more practical for web-scale image analysis.

Unlike the attempt on utilizing spatial relationships between topic labels to im-
prove aspect model, as far as we are concerned, the noise channel presented in this
paper is the first attempt in modeling visual feature generation without building
a codebook in this topic-model based image analysis. Despite the fact that noise
model could tolerate variability in the instantiations of local features due to vari-
ations in lighting, transformation, viewing angle, etc, using a noise channel also
avoids the hassle of building a codebook off-line.

In summary, the main contributions of this paper can be highlighted as the fol-
lows: (1) The Topic Random Field provides a probabilistically sound framework
for modeling spatial coherency within an aspect model. (2) TRF offers a more
principled approach for addressing the ambiguity in feature-instance versus visual-
word matching, and for codebook construction via unsupervised maximum likeli-
hood learning during training the TRF (rather then via an off-line preprocessing).
(3) The conjoint effect of a spatial MRF on topic labels and a noise-chanel code-
book lead to a segmental algorithm that takes into consideration of both semantic
and spatial coherence, without any supervision. Figure 1 illustrates topic random
field’s novelty by comparing the segmentation results of spatial-LDA and TRF.

The rest of this paper is organized as follows. We briefly review the image rep-
resentation employed in aspect models for image segmentation problems, and de-
scribe the visual features we utilize in this paper. We introduce the topic random
field model in Section 3. Section 4 presents the details of variational inference and
parameter learning for this model. We give experimental results on three image
data sets in Section 5, followed by conclusions in Section 6.

2 Preliminary: Image Representation

Given an image, TRF starts with an initial over-segmentation of the image by par-
titioning it into multiple homogeneous regions. To ensure that pixels in a region
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belongs to the same object and avoid obtaining regions larger than the objects we
want to segment, we start with an over-segmentation of the images using spectral
clustering [1]. For each over-segmented region, we extract 4 types of region-level
features: shape, color, location and texture. specifically, the shape features include
the centered object mask in a canonical 32× 32 frame, the size of the region, and
the size of region’s bounding box, which results in a 1027 dimensional vector [18].
The color features include the mean RGB value, its standard deviation and a color
histogram. The location information extracted from each region is represented by
a coarse 8 × 8 absolute segmentation mask as well as the height of the top-most
and bottom-most pixel in the region [18]. Finally, the texture features are aver-
age responses of filter banks in each region. Besides region-level features, we also
extract pixel-level features within each segmented region. Specifically, we find a
number of scale invariant interest points and describe them by SIFT [19].

3 Topic Random Field

In this section, we will introduce the Topic Random Field and explain in detail the
generative process of this model. As discussed in the first section, TRF improves
the spatial LDA model [13], a specially designed topic model for image segmen-
tation, in two perspectives: the incorporation of an MRF over the hidden labels
in the image and the introduction of a noise model for generating image features.
To better understand the motivation of TRF, we first briefly describe the spatial
LDA model as depicted in figure 2(a).

Given an image Id (d ∈ {1, 2, . . . , D}) and its over-segmented regions n =
1, 2, . . . , Nd, the spatial LDA model defines a latent topic zd

n to represent the label
of region n. Topics in image data have similar meanings as they do in text data: a

(a) Spatial LDA (b) TRF

Fig. 2. Graphical model representation of Topic Random Field and comparison with
spatial LDA model
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topic represents category identity of an object, e.g., buildings, horses, cars, trees,
etc. Suppose there are totally K topics within the image collection, then for each
region n, zd

n ∈ {1, . . . , K}. Each topic zd
n then generates a region-level feature Rd

n,
for example the average filter responses in the region, and Md

n pixel-level features

{Xd
nm}

Md
n

m=1, such as the detected salient points described by SIFT. In order to do
image segmentation using topic model, we first need to infer the hidden topic label
for each over-segmented region and then group all the regions with the same topic
label to form an object.

We will take an example to explain the generative process of spatial LDA: sup-
pose we want to generate a “building” image Id. First, we will draw a probability
vector θd which determines what intermediate topics to select to generate each re-
gion of the image. For a building image, θd should privilege topics like “glasses”,
“walls”, etc. Then, to create each region in the image, we determine a group of

particular topics {zd
n}

Nd

n=1 out of the mixture of possible topics. For example, if a
“glass” topic is selected, this will in turn give preference on some codewords that

occur more frequently in glasses. Finally, we draw codewords Rd
n and {Xd

nm}
Md

n

m=1

to describe the appearance of region n. The process of drawing both the topic and
codewords will be repeated Nd times, eventually forming an entire bag of visual
words that would construct an image of buildings.

3.1 Spatial MRF over Topic Assignments

The basic model ignores the spatial structure of the image, modeling its regions
as independent draws from the topic mixing vector θd. However, the labels for ad-
jacent regions tend to be strongly correlated in real images. TRF extends spatial
LDA by enforcing spatial coherence among neighboring regions. Specifically, to
enforce spatial coherence over hidden topic labels in our image model, we move
from a multinomial distribution over hidden topics to a Markov Random Field.
The topic random field, depicted as a generative model in Figure 2(b), introduces
explicit couplings between the labels of adjacent regions in an image. This allows
the TRF model the ability to capture local correlations that would be missed
under the conditional independence assumption of spatial LDA. The transition
from spatial LDA to TRF is equivalent to placing an MRF prior on hidden topic
labels zd:

p(zd|θd, σ) = 1
A(θd,σ)

exp
[
∑

n

∑

k zd
nk log θd

k +
∑

n∼m σI(zd
n = zd

m)
]

(1)

where I is the indicator function, n runs through all over-segmented regions in the
image, k runs through all possible topics, n ∼ m means that zd

n and zd
m are con-

nected by an edge in the graphical model, and A(θd, σ) is the normalizing factor

A(θd, σ) =
∑

z
d exp

[
∑

n

∑

k zd
nk log θd

k +
∑

n∼m σI(zd
n = zd

m)
]

(2)

A positive value of σ awards configurations in which neighboring regions have the
same label. Moreover, if we set σ = 0, i.e., assume the hidden topic labels are
generated independently, A(θd, σ) = 1 and zd follows a multinomial distribution
parameterized by θd, and this gives us exactly the spatial LDA model.
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Throughout this paper, we assume the Markov Random Field structure is
known. Although structure learning over latent variables could be an interest-
ing problem, it is not our intention to tackle this problem in current paper. The
Markov Random Field is built by connecting a region with its nearest k neighbors.

3.2 Noise Channel over Codebook

Despite of the empirical success of aspect models on image data [12], one should be
careful with the distinction between text data and image data. Representing each
word by its index in the dictionary incurs no loss of information, and we could still
recover that exact word using the index and the dictionary. However, due to the
fact that there is no natural counterpart of words and dictionary in image data, we
have to manually build a dictionary. Different from text data, representing each
visual feature by the index of its most similar visual word in the dictionary will
lose information about that particular local feature, since it is highly possible that
there might not be an exact match in the dictionary we built. One would proba-
bly argue that we could alleviate this problem by building a large dictionary, to
make sure every possible local detector has exact or close enough match in the
dictionary. However, different from text word, visual words are usually high di-
mensional, to ensure each visual word has exact match in the dictionary would
render the dictionary so large that no practical inference algorithm could solve
the resulting model.

Therefore, the size of the codebook becomes crucial: a small codebook would
incur heavy information loss, while a large codebook could render the model too
difficult to solve. However, a closer look into the problem reveals that although
it is not possible to exactly match every visual feature to a visual word in the
dictionary, we could always find an entry in the dictionary such that the visual
feature could be represented by this entry plus some noise. For example, given
features extracted from a tree image, it is highly possible that we could extract
similar features from another tree image. This intuition tells us that we could find
several “prototype” visual features for an object, and model features extracted
from the same object by these prototype features plus some noise. Therefore, each
object is represented by a group of prototype features, and feature extracted from
each individual image is the combination of prototype feature and noise.

To ease the description of the model, in the rest of this paper, we use xd
n to

represent both region-level feature Rd
n and pixel-level features {Xd

nm}
Md

n

m=1. The
generative process for visual features could then be modeled as a two-step pro-
cess: first draw the prototype indicator cd

n according to a multinomial distribution
p(cd

n|z
d
n, β), then draw the visual feature xd

n using a noise model p(xd
n|c

d
n, zd

n, µ, δ),
where µ and δ are parameters. Specifically, in this paper, we employ a Gaussian
noise model, where µ is the mean vector and δ2 is the variance. Suppose the num-
ber of possible prototype features for each object is Lk, then cd

n ∈ {1, . . . , Lk}.
For simplicity, we assume the number of different prototypes for all objects are
the same, say L. Then the Gaussian noise model is

p(xd
n|c

d
n = l, zd

n = k, µ, δ) ∝ exp
{

−
(xd

n−µkl)
T (xd

n−µkl)

2δ2

kl

}

(3)
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Note that by introducing the noise model, we no longer need to build a codebook
off-line. The prototype features are learned during the training process, and are
stored in the mean vectors µ. This could also be understood as building a “code-
book” online, where L is the size of the codebook for each object. The optimal
value of L could be determined using Bayesian information criterion [20].

3.3 The Proposed Model

The generative process of Topic Random Field is as follows:

– For each image Id, draw the prior distribution of θd according to a Dirichlet
distribution parameterized by α;

– Draw hidden topic labels {zd
1 , . . . , zd

Nd} according to Markov random field pa-

rameterized by θd;
– For each over-segmented region n ∈ {1, . . . , Nd}:

• Draw a prototype appearance indicator cd
n|z

d
n ∼Mult(β);

• Draw region-level and pixel-level appearance features according to the
noise model p(xd

n|c
d
n, zd

n, µ, δ)

Putting the generative process together, the joint distribution of {θd, zd, cd,xd}
given an image Id can be written as

p(θd, zd, cd,xd|α, σ, β, µ, δ) (4)

= p(θd|α)p(zd|θd)
∏Nd

n=1 p(cd
n|z

d
n, β)p(xd

n|z
d
n, cd

n, µ, δ)

=
Γ (

∑ K
k=1

αk)
∏

K
k=1

Γ (αk)

∏K
k=1(θ

d
k)αk−1 1

A(θd,σ)

(

∏Nd

n=1

∏K
k=1(θ

d
k)zd

n,k

)

exp
[
∑

n∼m σ(zd
n)T zd

m

]

·
∏Nd

n=1

{

∏K
k=1

∏L
l=1

[

βklp(xd
n|µkl, δkl)

]zd
n,kcd

n,l

}

where we abuse the notation by defining zd
n,k = 1 if and only if zd

n = k, and cd
n,l = 1

if and only if cd
n = l. p(xd

n|µkl, δkl) is the noise model parameterizedwith (µkl, δkl).
After training the model, we label the region r with (zd

r )∗ such that

(zd
r )∗ = arg maxzd

r
p(xd

r |z
d
r ) (5)

The regions with the specific (zd
r )∗ constitute the interested object.

4 Variational Inference and Parameter Learning

The central challenge in using TRF is computing the posterior distribution of hid-
den variables given an image: p(θd, cd, zd|xd). In general, this distribution is in-
tractable to compute due to the dependence between θd, cd and zd, once condi-
tioned on some observations. Various variational inference algorithms have been
proposed in the machine learning literature to solve this problem. In this paper,
we employ mean field variational inference to efficiently obtain an approximation
to this distribution. Specifically, mean field variational inference algorithm forms
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a factorized distribution of the latent variables, parameterized by free variables
known as variational parameters [21].

q(θd, zd, cd|γd, ρd, ξd) = q(θd|γd)
∏Nd

n=1 q(zd
n|ρ

d
n)q(cd

n|ξ
d
n) (6)

where the Dirichlet parameters γd and the multinomial parameters (ρd
1, . . . ,ρ

d
N ),

(ξd
1, . . . , ξ

d
N ) are variational variables. These parameters are fit by minimizing

the Kullback-Leibler (KL) divergence between the approximated and true pos-
terior [21]. We begin with bounding the log likelihood of an image Id by Jensen’s
inequality. Specifically, we use variational EM algorithm to do inference and pa-
rameter learning for the TRF model. As shown in Algorithm 1, the E-step opti-
mizes the variational parameters {γd, ξd, ρd} as follows1

γd
k =αd

k +
∑Nd

n=1 ρd
nk, λd =e|E

d|σ (7)

ξd
nl∝

∏K
k=1

{

βkl

(

1
2πδ2

kl

)
m
2

exp[−
(xd

n−µkl)
T(xd

n−µkl)

2δ2

kl

]

}ρd
nk

(8)

ρd
nk∝exp[Ψ(γd

k)−Ψ(
∑K

k=1γ
d
k)+

∑

m∈N (n)σρd
mk]

·
∏L

l=1

{

βkl

(

1
2πδ2

kl

)
m
2

exp[−
(xd

n−µkl)
T(xd

n−µkl)

2δ2

kl

]

}ξd
nl

(9)

and the M-step optimizes model parameters {α, σ, β, µ, δ}

βkl ∝
∑D

d=1

∑Nd

n=1 ξd
nlρ

d
nk, µkl =

∑

D
d=1

∑

Nd

n=1
ξd

nlρ
d
nkx

d
n

∑

D
d=1

∑

Nd

n=1
ξd

nl
ρd

nk

(10)

δ2
kl =

∑

D
d=1

∑

Nd

n=1
ξd

nlρ
d
nk(xd

n−µkl)
T (xd

n−µkl)

m
∑

D
d=1

∑

Nd

n=1
ξd

nl
ρd

nk

(11)

σ = 1
|E| log

∑D
d=1

∑ K
k=1

∑

n∼mρd
nkρd

mk
∑

D
d=1

1

λd

(12)

5 Experiments

In this section, we show the empirical performance of topic random field for image
segmentation, both qualitatively and quantitatively.

5.1 Data Sets

We use three data sets in our experiments, which are selected to cover a wide range
of properties. Specifically, those data sets include

– Weizmann data set [22]. The data set contains 328 images of horses with
different poses, sizes, face directions, backgrounds and illumination condi-
tions. Each image has a ground truth segmentation that labels out the horse.
There is only one horse in each image, and there is a single object category in
the data set: horse.

1 Here we omit the details due to the space limit. The derivation of variational inference
and parameter learning for TRF is provided in the supplemental material.
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Algorithm 1. Variational EM for topic random field
repeat

E-step: For each image Id, update {γd, λd, ξd, ρd} using equations (7), (8), and
(9);
M-step: Update {σ, β, µ, δ} using equations (10), (11), (12), and update α using
the linear-time Newton-Raphson algorithm described in [6].

until The increase of log likelihood between two consecutive iterations is less than ǫ

– Microsoft object recognition data set [23]. This data set involves 182 im-
ages of cows, facing three different directions: left, right and front. Moreover,
some cow pictures also contain multiple instances and significant occlusions.
Similar to the Weizmann data set, there is a single object category in the data
set, but there might be multiple objects in one image.

– MSRC pixel-wise labeled image database 2. There are 240, 213 × 320
pixel images in this data set. Each pixel belongs to one of 13 semantic classes or
to the void class.There are multiple objects in one image, and multiple object
categories in the data set.

5.2 Experimental Setups and Comparisons

We have conducted comprehensiveperformance evaluations by testing ourmethod
under different circumstances. Specifically, to better understand the effect of in-
troducing MRF on latent topics to enforce spatial consistency and use of noise
model to better model image feature generation, we study the model adding only
MRF on latent topics and adding only noise model separately, and compare with
the TRF model. We use the spatial LDA model [13], which is state-of-the-art as-
pect model for image segmentation, as baseline and also compare with spectral
clustering. The algorithms that we evaluated are listed below.

– Spatial LDA [13]. The implementation is the same as in [13]. We use the
same region-level and pixel-level features as in our TRF model.

– LDA+MRF. This model is based on spatial LDA [13], with the only mod-
ification of introducing a Markov random field on the latent topics. Thus,
this model could be viewed as the TRF model without noise channel. For
each image Id, we set L = 20 and build a Markov random field on zd by
connecting each zd

n with its nearest 4 neighbors.
– LDA+noise Similar with LDA+MRF, this model adds a noise channel in

the spatial LDA model. Hence, this model could be regarded as the TRF
model without Markov random field on the latent topics.

– TRF. We build MRF for each image in the same way as LDA+MRF.
– Normalized cuts. (NCut) [1]. The implementation code is downloaded from

http://www.cis.upenn.edu/~jshi/software/.

2 http://research.microsoft.com/vision/cambridge/recognition

http://www.cis.upenn.edu/~jshi/software/
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5.3 Image Segmentation Results

Since the Weizman data set provides ground truth segmentations, we could assess
the segmentation result quantitatively. Regions sharing the same latent topics z

are grouped into the same segment, and the percentage of pixels in agreement
with the ground truth segmentation is used to measure the performance of seg-
mentation algorithms. We match the topic that resulted in highest segmentation
accuracy as the object, and other topics as background. The segmentation accu-
racy results are shown in figure 3, from which we could see that both LDA+MRF
and LDA+noise model result in higher accuracy than spatial LDA model, and
topic random field produces the highest segmentation accuracy. Also, the com-
parison between LDA+MRF and LDA+noise model shows that the Markov
random field defined over latent topic variables improves the accuracy more. It
should be noted that our result is not directly comparable to that of the state-of-
the-art image segmentation methods, as we did not engineer our image features
much. The message here is that spatial consistency and a better model of image
feature generation are crucial for the success of aspect models in image analysis.
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Fig. 3. Segmentation accuracy of normalized cut, spatial LDA, LDA+MRF,
LDA+noise, and TRF on the Weizmann horse data set

Fig. 4. (Best viewed in color). Segmentation results of horses. From left to right: orig-
inal image, segmentation result of spatial LDA and TRF. The regions in white are the
segmentations of the animals. The regions in black stand for background.
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Fig. 5. (Best viewed in color). Segmentation results of the MSRC database. From left
to right: original image, segmentation result of spatial LDA and TRF.

Fig. 6. (Best viewed in color). Segmentation results of cows. From left to right: original
image, segmentation result of spatial LDA and TRF.
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To better compare the performance of TRF with LDA, we show in figures
4,5,6 the segmentation results on the three data sets, where we have set the
number of topics to 4, 12, 4 respectively. From these segmentation results, we
could see that one major problem with spatial LDA is that it is more likely to
separate parts from the same object into different segments. For example, in the
Weizmann horse data, spatial LDA constantly separates the body and legs of a
horse into different groups. However, the segmentation results of TRF does not
show this phenomenon. Therefore, we argue that enforcing spatial coherence be-
tween adjacent regions via MRF avoids separating parts of the same object into
different groups. Moreover, from the results on cows data set, we see that spatial
LDA is more likely to segment cows with different colors or facing different di-
rections into separate groups. However, by introducing a simple Gaussian noise
model for generating image features, TRF is significantly more robust to vari-
ability in the instantiations of local features corresponding to the same objects
due to variations in lighting, transformation, viewing angle, etc.

6 Conclusions

We propose Topic Random Field (TRF) for image segmentation. The TRF
model improves over the LDA-style models by defining a Markov Random Field
(MRF) over hidden topic assignment of super-pixels in an image to enforce the
spatial coherence between neighboring regions, and by employing a noise channel
between visual words in the dictionary and instantiated super-pixels in the real
image to better model the variance of local features. Empirical studies on three
image data sets demonstrate the improvement of our model in image segmenta-
tion over the LDA-style model.
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