
Image Selection For Improved Multi-View Stereo

Alexander Hornung Boyi Zeng Leif Kobbelt

RWTH Aachen University

http://www.graphics.rwth-aachen.de

Abstract

The Middlebury Multi-View Stereo evaluation [18]

clearly shows that the quality and speed of most multi-view

stereo algorithms depends significantly on the number and

selection of input images. In general, not all input images

contribute equally to the quality of the output model, since

several images may often contain similar and hence overly

redundant visual information. This leads to unnecessarily

increased processing times. On the other hand, a certain

degree of redundancy can help to improve the reconstruc-

tion in more “difficult” regions of a model.

In this paper we propose an image selection scheme

for multi-view stereo which results in improved reconstruc-

tion quality compared to uniformly distributed views. Our

method is tuned towards the typical requirements of cur-

rent multi-view stereo algorithms, and is based on the idea

of incrementally selecting images so that the overall cov-

erage of a simultaneously generated proxy is guaranteed

without adding too much redundant information. Critical

regions such as cavities are detected by an estimate of the

local photo-consistency and are improved by adding ad-

ditional views. Our method is highly efficient, since most

computations can be out-sourced to the GPU. We evaluate

our method with four different methods participating in the

Middlebury benchmark and show that in each case recon-

structions based on our selected images yield an improved

output quality while at the same time reducing the process-

ing time considerably.

1. Introduction

Recent evaluations by Seitz et al. [18, 25] of several

methods for multi-view stereo (MVS) reconstruction have

shown that this field is developing into a promising alterna-

tive to other methods for object digitization such as range

imaging. However, for all types of image-based methods,

the performance in terms of quality and efficiency generally

depends significantly on the input data. On the one hand one

needs enough measurements for a faithful reconstruction of

the 3D object. On the other hand, however, it is as well

desirable to minimize the amount of data, since processing

overly redundant input increases the overall computing time

without improving (or even decreasing) the reconstruction

quality. Moreover, special care has to be taken to resolve

difficulties inherent to image-based reconstruction methods

such as occlusions, or complex surface materials.

These requirements pose a difficult challenge in the 3D

reconstruction pipeline, often making a manual intervention

by a human operator inevitable. Hence, especially in the

field of active range imaging, there has been a lot of ef-

fort to automate this process, generally known by the term

“Next Best View Planning” (NBV). But although there have

been many advances in this field, a lot of practically relevant

problems are still considered unsolved (Scott et al. [23]).

For MVS the dependency of the reconstruction on the

input data is probably even more critical, and many of the

involved problems are inherently different to previous work

on NBV. For instance, we cannot assume that one measure-

ment, i.e., one input image, already generates a sufficiently

good partial reconstruction. Instead, a fundamental require-

ment is that we need at least two input images already for

one single reconstruction step. In order to improve the ro-

bustness of the reconstruction process with respect to prob-

lems such as calibration errors, illumination changes, or

image noise and blur, it is often necessary to increase the

number of images. Finally, a particular challenge is to suffi-

ciently capture details and features like deep concavities or

fine, topologically relevant structures such as holes.

In practice there are two common ways for acquiring in-

put images for MVS reconstruction. The first possibility is

to manually control the image acquisition by a human ex-

pert, who can identify problematic regions of the object and

hence choose the camera positions accordingly. Current au-

tomatic acquisition setups are generally using a turn-table or

a robot based system, and simply acquire several images of

an object on regularly spaced camera positions. Neither of

these approaches can guarantee that all relevant parts of the

object’s surface are captured in a sufficient quality. Hence

one often captures an unnecessarily redundant set of input

images (up to several hundred). However, while the acqui-

sition of large amounts of images is easy, many recent al-
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gorithms cannot process such a high number of images ef-

ficiently. At the time of writing of this paper, only 9 out

of 25 methods participating in the Middlebury Multi-view

Stereo Evaluation [18] provide results for the dense image

data sets. Most of them need several hours to compute, or

even show a decreasing reconstruction quality. The impact

of a proper view selection in terms of quality and speed for

MVS from large community photo collections has been re-

cently shown by Goesele et al. [5]. This indicates that the

question of image selection is a so far mostly untapped re-

source for optimization of MVS.

The contribution of our work is an analysis of the typical

requirements of MVS algorithms and the efficient, GPU-

based implementation of a corresponding image selection

scheme for improved reconstruction quality and speed. Our

particular aims are a guaranteed visibility or coverage of

each surface region and an adaptive focus on problematic

surface regions. We present an algorithm based on an it-

erative process which evaluates certain quality criteria on

the surface of an incrementally updated object proxy. New

views are selected such that each image maximizes the qual-

ity gain with respect to attributes like surface visibility or

standard photo-consistency measures. We employ a stereo-

based proxy generation which does not require segmented

input images and which ensures a reliable convergence to a

faithful geometric approximation of the true object already

from a small number of images, since the proxy generation

and image selection are tightly coupled into a single opti-

mization process. This leads to a qualitatively superior and

more efficient proxy generation than, e.g., computing the

visual hull from a larger set of segmented images. The pro-

posed method supports a stand-alone implementation as an

image pre-selection procedure prior to the actual MVS re-

construction as well as an online next best view estimation

integrated into the MVS reconstruction pipeline. Our quan-

titative results show that our image selection scheme con-

sistently improves the reconstruction quality and processing

time for different classes of MVS techniques based on fea-

ture matching and patch expansion [4], surface growing [6],

deformable models [7], and volumetric graph-cuts [10].

Related Work Related to our work are methods for next

best view planning for active range imaging. In this field,

many early methods, e.g., Maver and Bajcsy [17], primar-

ily focus on identifying occluded surface regions. Pito [19]

describes a method for automatically reconstructing an un-

known object. Banta et al. [2] incorporate a-priori model

knowledge. Klein and Sequeira [12] present ideas for range

image quality evaluation on the GPU. For an in-depth sur-

vey please refer to Scott et al. [23]. However, as argued

above, the requirements for NBV in range imaging differ

significantly from our problem setting. Furthermore, an un-

solved problem emphasized by Scott et al. is the lacking ef-

ficiency of many methods, which significantly reduces their

applicability in practice.

In the context of passive image based reconstruction and

MVS, most techniques follow relatively simple image se-

lection heuristics, e.g., using k-nearest images. However,

a number of authors have developed dedicated selection

schemes. Farid et al. [3] presented a first set of view

selection strategies for multi-view stereo. Kutulakos and

Dyer [14] describe a scheme for view point selection based

on contours. Marchand and Chaumette [16] present per-

ceptual strategies for scene reconstruction based on struc-

ture from motion. A recent example for optimal view point

selection based on Kalman filtering has been presented by

Wenhardt et al. [28]. View planning for a combination of

shape from silhouette and shape from structured light has

been presented by Sablatnig et al. [22]. Rusinkiewicz et

al. [21] circumvent the necessity for computing views by

transferring this task to the user. Vázquez et al. [26] con-

sider the problem of automatic view selection for image

based rendering. Lensch et al. [15] present a GPU accel-

erated approach for sampling spatially varying BRDFs.

Recently, Goesele et al. [5] showed that view selec-

tion schemes are almost inevitable when dealing with large

image databases. Their method efficiently selects subsets

of compatible views by evaluating shared image features.

They also point out that view selection combined with

widely applied standard metrics is a very effective tool for

dealing with a variety of input modalities.

All these above methods solve important problems oc-

curring in image based reconstruction. However, the diverse

foci of each of these methods reflect also the inherent prob-

lem of selecting optimal input data with respect to the re-

quirements of a specific technique. Our work is motivated

by the recent evaluations of numerous MVS methods, such

as [4, 5, 6, 7, 20, 27] just to mention a few. Please refer to

[18] for a more complete list. To our knowledge, this is the

first work on automatic and efficient input optimization ad-

dressing the specific requirements of such MVS techniques.

2. Conceptual Overview

In the following we describe the motivation and main

concepts behind our approach. Given a (possibly very large)

set of calibrated input images of an object, we aim at select-

ing a subset of images, which sufficiently capture all rele-

vant features without adding too much redundancy.

Finding an optimal image subset is a complex combina-

torial optimization problem. Hence, a common approach in

the field of NBV planning for range imaging is to use iter-

ative greedy procedures, which are generally based on the

following generic work cycle. First the algorithm takes one

or more initial measurements (scans), and generates a cor-

responding geometric proxy. This proxy is then iteratively

refined by the optimization procedure. At the beginning



of each iteration, different quality measures are computed

over the current surface approximation. These measures de-

scribe, for example, the current coverage or measurement

certainty. Based on this information the algorithm selects

new views for which one expects a maximal quality gain,

and updates the surface proxy with this new information.

These steps are repeated until a termination criterion with

respect to the quality measures is met.

Since we aim at an algorithm supporting MVS, we have

to identify the corresponding specific requirements. For re-

cent algorithms we find that the reconstruction accuracy and

efficiency depends largely on the following three criteria:

Initial Surface Proxy: Most algorithms either require

or iteratively generate an initial proxy of the object as an

initialization, e.g., for a proper topology and visibility esti-

mation. Furthermore, a faithful proxy minimizes the com-

putation time, since methods based on deformable models

evolve the initial proxy to the actual object surface [7]. Vol-

umetric approaches on the other hand perform better, the

more voxels are carved away, which are not part of the

true surface [10]. With a few exceptions [8], this geomet-

ric prior is generally based on segmented input images, i.e.,

the visual hull, since efficiently computing a more accurate

stereo-based proxy, in particular from a large set of input

images, is a non-trivial problem in practice. Hence, the first

important goal of our method is the selection of a small sub-

set of input images, which allow for an efficient generation

of a stereo-based proxy that is a good approximation of the

unknown object surface, and which is sufficiently covered

by the selected images.

Surface Visibility: For MVS reconstruction, every sur-

face point has to be visible in at least two images. In gen-

eral, however, the reconstruction quality is strongly affected

by texture, image noise and blur, calibration errors, as well

as illumination effects which are not handled by the em-

ployed photo-consistency metric. These problems can be al-

leviated by capturing redundant data. On the other hand, un-

necessary redundancy increases the processing time. Hence

an algorithm for image selection should ensure that each

surface point is visible for a certain number of cameras with

a guaranteed minimum viewing angle, without including

unnecessary images. Although this criterion seems similar

to the above, the essential difference is that a visibility op-

timization without a proper initial proxy would potentially

lead to a suboptimal selection of images, which focus on

incorrectly approximated or even nonexistent surface parts.

Adaptivity: While the above steps guarantee a mini-

mum viewing quality for every surface point on the proxy,

they do not ensure a good reconstruction performance in

particularly difficult surface regions, where the proxy is

only a suboptimal approximation to the real object surface.

Typically, this can happen for deep concavities or thin holes

through the object, which are difficult to detect and cap-

ture properly. As a consequence, methods requiring an ini-

tially correct topology of the proxy fail. However, because

of the distance of these proxy regions to the true object sur-

face, they can often be characterized by having bad photo-

consistency values in the input images. Hence, our algo-

rithm should adapt to the surface reliability by selecting ad-

ditional images focusing on photo-inconsistent regions.

These criteria exhibit a natural successive order, since

each of them relies on the respective previous criterion. So

instead of simultaneously optimizing all criteria, these de-

pendencies allow for an efficient iterative optimization pro-

cedure consisting of three corresponding phases.

3. Image Selection and Proxy Generation

According to the above criteria, the three main phases of

our algorithm are the following: Phase 1 aims at choosing

views that support a fast convergence towards an initial ge-

ometric proxy. Phase 2 then ensures a sufficient coverage

of each point on the proxy surface in at least 2 images, and

phase 3 adds additional images focusing on proxy regions

with locally bad photo-consistency values.

In each phase, a corresponding quality criterion has to be

evaluated on every point of the current surface approxima-

tion. Based on this evaluation, the algorithm selects a new

image, which is expected to maximally improve this quality

criterion. To simplify the problem setting, we use a voxel

grid V as a discrete volumetric geometry representation for

the proxy. A voxel v ∈ V can be either full or empty. Ini-

tially, we start with all voxels full. In phase 1, we classify all

voxels as empty, which can be identified as not being part of

the object. The remaining full voxels Si ⊂ · · · ⊂ S0 = V
represent the iteratively improved object proxy. Full voxels

with empty neighbors lie on the current proxy surface and

are denoted by ∂Si. For these voxels we evaluate the quality

criteria corresponding to each phase.

In our experiments we found that a medium grid resolu-

tion of 1283 provides the best tradeoff in terms of accuracy

and efficiency. Furthermore, we do not store the complete

voxel grid, but we rather build an adaptive octree which

allows us to prune large empty or full regions. Surface

voxels are always enforced to be from the finest resolution

level. For these voxels we can then easily compute an es-

timated normal vector by fitting a regression plane to the

local neighborhood of surface voxels.

Depending on the image acquisition setup, the available

images can be distributed in the whole embedding space

or in some arbitrary sub-region, e.g., with viewpoints con-

strained to lie on a sphere around the object. Our method

is not limited to any specific configuration, but can handle

arbitrary viewpoints and -directions. The set of camera po-

sitions corresponding to the set of images is denoted as C.



Figure 1. Illustration of phase 1. (1) For each image a) the algorithm computes a depth map b) using a small-baseline stereo method, and

carves away all voxels lying in front of the depth map c). For the remaining voxels it then estimates a quality value depending, e.g., on

their visibility in the images selected so far d). The color coding visualizes the current state of the proxy (shown from a different viewpoint

in e) for illustration purposes). Visible voxels are marked blue, while voxels currently not visible in any image are marked red. (2) With

each iteration, the algorithm selects a new image, which maximizes the number of visible voxels, and then iterates steps b)-d).

3.1. Selection Procedure

In the ith step of our algorithm, we have constructed a

proxy ∂Si−1 from the views I1, . . . , Ii−1 seen from view-

points c1, . . . , ci−1 ∈ C. Our goal is to pick a new view-

point ci such that adding the corresponding view Ii leads to

a maximally improved proxy ∂Si with respect to the quality

criterion of the current phase.

The major problem with this approach is that we cannot

predict ∂Si without actually knowing the new view Ii and

integrating it into the current reconstruction. However, for

a large number of views, such a tentative integration and

evaluation of all possible images Ii is computationally in-

feasible. Hence, the best we can do is to rate the improve-

ment that the new view would have on the old proxy ∂Si−1.

With this approach, all quality criteria can be formulated

in terms of the viewpoints ci only. This allows us to es-

timate the quality gain for a given image Ii efficiently by

rendering the current proxy ∂Si−1 as seen from the respec-

tive viewpoint ci, without having to recompute and evaluate

the proxy for every image. The next best view is the image

which maximizes the number of visible low quality voxels.

Each phase continues as long as the quality gain per iter-

ation stays above a certain threshold. Otherwise we switch

to the next phase by changing the quality criterion. The fol-

lowing describes the phases and criteria in detail. Sect. 4

then shows how these criteria can be evaluated efficiently.

Phase 1: Initial Surface Proxy This initial phase aims
at guaranteeing that every voxel v ∈ ∂Si−1 of the current
proxy is visible in at least one image Ij from an acute view-
ing angle ≤ φ (Fig. 1) in order to reliably classify it as being
inside or outside of the object’s photo-hull. The viewing an-
gle is the angle between the surface normal n of a voxel v
and the vector dj = (cj − v)/‖cj − v‖ pointing from v to
a camera center cj . This requirement can be formalized as

∀v ∈ ∂Si−1 ∃j ∈ [1, i] : Pφ(v, cj) with

Pφ(v, cj) : visible(v, cj) ∧ dj · n ≥ cosφ . (1)

The sets of low quality voxels f∂Si−1, f∂S
′

i−1 ⊆ ∂Si−1,
which violate this condition before and after the integration
of view ci are defined as

f∂Si−1 = {v ∈ ∂Si−1 : ∀j ∈ [1, i− 1] : ¬Pφ(v, cj)} and (2)

f∂S
′

i−1 = {v ∈ ∂Si−1 : ∀j ∈ [1, i] : ¬Pφ(v, cj)} . (3)

The quality gain gi in the ith iteration can then be defined
as the relative improvement of low quality voxels, i.e.,

gi(ci) = (#f∂Si−1 − #f∂S
′

i−1)/#f∂Si−1 , (4)

The free parameter to maximize gi(ci) (i.e., to minimize

#f∂S
′

i−1) is the next view ci among all the candidates c ∈ C.
Maximizing this expression directly would correspond

to counting the number of improved voxels, without tak-
ing the actual degree of improvement for each voxel into
account. Hence we use the weighted improvement of
the viewing direction with respect to all previous views
(di · n − maxj≤i−1(dj · n)) in order to increase the robust-
ness and sensitivity of the algorithm. This allows the image
selection to focus on proxy regions with the lowest qual-
ity first. Furthermore, by taking the minimum of di · n

and cosφ, this weighted approach does not reward improve-
ments beyond the angle threshold φ, which implicitly pro-
motes a sufficient parallax between the input images. The
complete functional g′i(ci) for the quality gain then is

g′i(ci) =
X

v∈ f∂Si−1

g′i(v, ci), with (5)

g′i(v, ci) =

8

<

:

min(di · n, cosφ) − max
j≤i−1

(dj · n) if Pφ(v, ci)

0 else
.

(6)

If the viewpoint maximizing g′i(ci) actually leads to an ef-

fective improvement gi(ci), which is above a prescribed

threshold δ, the algorithm adds Ii to the set of images.

We then have to update the proxy Si−1 → Si by identi-

fying all voxels, which are outside of the photo-hull as seen

from this new view. We achieve this by computing a depth

map for image Ii with a variant of the method by Yang and



Pollefeys [29] for real-time, small baseline stereo. As com-

parison images, our algorithm simply selects 2 images from

the whole set of available images, which are closest to Ii
and which have the most similar viewing direction. The

proxy is then updated by carving away all voxels lying in

front of the depth map. Instead of simple carving one could

of course apply more sophisticated voting schemes, but in

our experiments this approach worked sufficiently well. Sil-

houettes can optionally be exploited.

Phase 1 terminates if either the percentage of low quality

voxels drops under a threshold #f∂Si−1/#∂Si−1< ǫ, or if

the improvement of low quality voxels measured by gi(ci)
is less than δ. Otherwise, the algorithm continues with iter-

ation i + 1. In all our experiments the parameters ǫ and δ
were fixed to ǫ = 0.05 and δ = 0.02 for all 3 phases.

Please note that there might be low quality surface vox-

els left in ∂̃Si at the end of phase 1 which have never been

visible in any of the images, e.g., the bottom of the Mid-

dlebury Dino model. These voxels are excluded from fur-

ther processing. The result of this phase is a sequence of

images, which supports a fast convergence towards a suffi-

ciently covered, faithful approximation of the unknown ob-

ject. The resulting proxy can optionally serve as an input

for subsequent MVS based on, e.g., deformable models.

Phase 2: Surface Visibility After the initial proxy gener-
ation in phase 1 is accomplished, we change our quality cri-
terion and add additional images such that each voxel now
becomes visible in a user specified number κ ≥ 2 of images
with a guaranteed maximal viewing angle ≤ φ. The pos-
sibility of enforcing visibility of each voxel in more than
2 images generally helps to increase the robustness of the
subsequent MVS reconstruction process. The correspond-
ing requirement can be expressed similar to Eq. (1) as

∀v ∈ ∂Si−1 : Q(v), with

Q(v) : #{j ∈ [1, i] : Pφ(v, cj)} ≥ κ , (7)

with the low quality voxels ∂̃Si−1 analogously defined as

f∂Si−1 = {v ∈ ∂Si−1 : ¬Q(v)} . (8)

The computation of the quality gain gi(ci) and the termi-

nation criterion is identical to phase 1. To promote a more

uniform distribution of viewpoints, we start phase 2 with a

variable κ′ = 2. Each time the termination criterion is met,

κ′ is increased by one until κ′ = κ.
For the selection of the next view ci, we again adopt a

weighted approach similar to phase 1, which takes the visi-
bility improvement for each surface voxel into account, i.e.,
a voxel which is visible in only one other view I1, . . . , Ii−1

counts more than a voxel which is already visible in sev-
eral other views. The corresponding functional is defined
analogous to Eq. (5), with a different quality gain g′i(v, ci)

g′i(v, ci) =

(

1 − m(v)
κ

if Pφ(v, ci)

0 else
, (9)

where m(v) = #{j ∈ [1, i− 1] : Pφ(v, cj)} is the number of

views among I1, . . . , Ii−1 in which v is sufficiently visible.

Phase 3: Adaptivity The final phase supports the recon-

struction of problematic or topologically important surface

regions such as concavities or holes. These regions can of-

ten be identified by their bad photo-consistency because of

a significant deviation from the true surface, or because of

deficiencies of the consistency metric. We found that the

reconstruction quality can be considerably improved by in-

tegrating additional images focusing on these regions.
Hence, we compute for each voxel v ∈ ∂Si−1 a consis-

tency value ρ(v) using a standard metric based on, e.g., nor-
malized cross-correlation or color variances. These metrics
are widely used among recent MVS methods and therefore
are a reasonable choice for addressing consistency prob-
lems [5]. In our implementation we employ the robust con-
sistency estimation based on voxel supersampling proposed
in [11]. Large values of ρ(v) correspond to a high color
variance and hence represent a bad photo-consistency. So
for each voxel having a value ρ(v) larger than a consistency
threshold ψ, the algorithm should guarantee τ additional
views from a viewing angle θ < φ:

∀v ∈ ∂Si−1 : R(v), with

R(v) : ρ(v) < ψ ∨ #{j ∈ [1, i] : Pθ(v, cj)} ≥ τ . (10)

Please note that the number of additional views τ and the
angle θ have an equivalent meaning to κ and φ in phase 2.
However, our experiments showed that τ can be chosen
smaller than κ since one generally needs only a few ex-
tra images to improve the reconstruction in problematic re-
gions. ψ obviously depends on the method for measur-
ing photo-consistency. In our implementation we found
these parameters to work quite stable for different data
sets, so that we could simply keep them constantly set to

τ = 2, θ = 30, and ψ = 0.7. Low quality voxels ∂̃Si−1 are
defined as before

f∂Si−1 = {v ∈ ∂Si−1 : ¬R(v)} , (11)

and the quality gain gi(ci) and termination criteria are again
analogous to phase 1. As in the previous phases, we com-
pute a weighted estimate, based on the photo-consistency
values, for selecting the image

g′i(v, ci) =

(

ρ(v) if Pθ(v, ci)

0 else
. (12)

4. GPU-based Implementation

Efficient GPU-based implementations for small baseline

stereo or photo-consistency estimation have already been

presented in previous work [29, 11]. The remaining, most

time consuming part of our algorithm is the evaluation of

the quality criteria in all 3 phases. Practically useful com-

putation times can only be achieved if we manage to evalu-

ate each input image in just a few milliseconds. Remember



that a quality estimate for each single image requires the

following steps: (1) check every surface voxel for visibility,

(2) estimate the quality gain per voxel (based on the viewing

angle or photo-consistency), and (3) accumulate the quality

gain over all voxels to estimate the total gain. In order to

achieve the required efficiency, we transfer the computation

of these steps to the GPU.

Our GPU implementation consists of two main passes.

First, we have to determine the visibility of all surface vox-

els for a given image Ii. This is an operation which can be

performed most efficiently on a modern GPU by exploiting

the z-buffer. The idea is to simply render all surface voxels

as seen from the corresponding viewpoint. This can be eas-

ily achieved by setting the projection of the rendering sys-

tem according to the calibration data of Ii. The GPU takes

care that only the nearest (and hence visible) ones will be

stored in the frame buffer. For maximum performance we

use a splat-based rendering approach [13] by replacing each

voxel with a screen-aligned quad located at the center of

the voxel. This is achieved by sending one point primitive

per voxel to the GPU. In order to render a closed surface,

the projected screen-size of each rendered primitive is com-

puted in a vertex shader [24], conforming to the size of its

corresponding voxel in the volumetric grid .

Next, we transfer the local quality gain estimation to

the GPU by evaluating the corresponding equations (e.g.,

Eq. (6)) in a fragment shader [24], and encoding the result

of the computation in the rendered splat color. There are

efficient techniques well-known in the point-based render-

ing community that allow us to render more than 30 million

splats per second including visibility and additional calcu-

lations [13], and with the support of recent graphics proces-

sors for floating point output buffers we achieve the same

computational accuracy as in a CPU based implementation.

Unfortunately, summing up frame buffer pixels for ac-

cumulating color-encoded quality gain values and counting

the number of improved voxels is not an efficient operation

on today’s GPUs. We can, however, exploit the color blend-

ing functionality to perform the quality gain accumulation.

Instead of rendering each voxel to its projected 2D position

in the input image as above, we define a frame buffer of

size 1 × 1, and render the required values of each visible

voxel into this single pixel. By configuring the rendering

pipeline to perform additive blending of the output colors,

we achieve the desired accumulation over the proxy surface.

5. Results

In this section we show that our technique for image se-

lection can significantly improve the quality and efficiency

for four different classes of MVS techniques.

Table 1 shows results for several experiments on syn-

thetic and real input data with the MVS approach described

in [10], into which we integrated our technique as an online

Model φ Images Error UNI Error SEL Rel. Improv.

Mouse 45 27 0.35 (4.46) 0.24 (2.82) 30% (37%)

30 44 0.33 (4.58) 0.24 (2.72) 27% (41%)

CAD 60 23 0.99 (4.81) 0.44 (3.77) 55% (22%)

Scarecrow 45 24 0.62 (5.93) 0.35 (3.84) 44% (35%)

Bahkauv 45 19 1.65 (7.52) 0.75 (5.89) 55% (22%)

30 26 0.92 (6.33) 0.67 (5.95) 27% (6%)

Temple 60 21 0.60 (3.55) 0.52 (3.20) 13% (10%)

45 50 0.50 (4.28) 0.42 (2.58) 16% (40%)

Dino 45 41 0.56 (4.37) 0.47 (3.73) 16% (15%)

30 50 0.53 (4.52) 0.45 (3.28) 15% (27%)

Table 1. Evaluation with the reconstruction technique in [10] for

several data sets and parameter settings, showing the RMS &

(MAX) Hausdorff distance to the respective reference model.

Thresholds Matching [4] Growing [6] Deformable [7] Graph-Cuts [10]

80% (mm) 0.43 / 0.41 0.52 / 0.49 0.36 / 0.33 0.64 / 0.59

90% (mm) 0.60 / 0.56 0.90 / 0.66 0.50 / 0.45 1.00 / 0.88

99% (mm) 1.36 / 1.31 1.38 / 1.27 1.11 / 0.83 2.86 / 2.08

0.75 mm (%) 92.1 / 93.2 81.5 / 85.2 95.5 / 97.4 79.5 / 82.9

1.25 mm (%) 97.8 / 97.8 92.3 / 94.2 99.0 / 99.4 90.2 / 93.0

1.75 mm (%) 99.2 / 99.3 95.8 / 97.3 99.8 / 99.6 94.3 / 96.9

Table 2. Middlebury evaluation [18] for four different MVS ap-

proaches with 41 uniform / selected (φ = 45) images of the Dino.

procedure for image selection and proxy generation. For

each data set we created a reference model from all avail-

able images, and then compared reconstructions with dif-

ferent parameter settings from images selected by our algo-

rithm (SEL) vs. uniformly distributed images (UNI).

In the synthetic experiments (Mouse, CAD) we investi-

gated the performance of the algorithm for different types

of features, such as concavities or thin holes. We generated

800 images uniformly distributed around a laser scanned 3D

mesh. Since the photo-consistency metric (Phase 3) is based

on color variances, we simulated a non-trivial consistency

estimation by rendering each model with a white, texture-

less surface illuminated by a few light sources (Fig. 2), and

set parameter κ = 2 due to the perfect image calibration

and noiseless images.

Our experiments with real data were performed with the

Middlebury Temple and Dino [25] data set (>300 images

each), with 150 images of a Scarecrow model captured us-

ing a turntable, and with 290 images of the Bahkauv statue

captured with a hand-held camera. Again, the reference re-

constructions were generated using all available images. To

compensate for calibration errors and other problems like

image noise we set κ = 3 for these experiments.

We then measured the RMS and maximal symmetric

Hausdorff distance of the SEL and UNI models to the re-

spective reference model using [1]. Table 1 shows that the

reconstruction error is consistently lower for the selected

images. Although the numerical improvement sometimes

seems relatively small, the visual improvement of the over-

all shape is often significant (Fig. 2). Especially in cases

with a relatively small number of images for complex sur-

faces, the results are significantly better, e.g., the Scarecrow,



Figure 2. Visual comparison of reconstructed meshes from uniform (UNI) and selected (SEL) input. The color codings show the approx-

imation error to the reference model. In the Mouse experiment, only the selected image set consistently reproduces the deep concavities

in the cheese. For the CAD model, the uniform images as well as phases 1&2 (SEL a) fail to capture the thin holes. Phase 3 reveals

inconsistent voxels in these proxy regions and selects corresponding images with a significantly improved result (SEL b). Our experiments

with real data show consistent visual improvements as well. For instance, our algorithm selects mainly side views and only a small number

of top views for the Dino model, and hence captures the head region and the concavities between the legs much better. Also the quite

complex Scarecrow and the Bahkauv statue show significant improvements, in particular for difficult features like the Scarecrow’s hat.

the Bahkauv, or the CAD model. Reconstructions using

selected images even perform better than the uniform data

with considerably more images, e.g., UNI Dino, 50 images:

0.53 RMS / 4.52 MAX vs. SEL Dino, 41 images: 0.47 RMS

/ 3.73 MAX (see also Mouse, Temple, or Bahkauv).

Table 2 presents the Middlebury results for four MVS

approaches participating in this evaluation, each represent-

ing a fundamentally different class of techniques: feature

matching and patch expansion [4], surface growing [6], de-

formable models [7], and volumetric graph-cuts [10]. We

used the 41 selected (φ = 45) and uniform images of the

Dino as input images for each method, since this model

is generally considered a difficult example because of the

missing texture. Please note that the parameter settings used

by the corresponding authors were not identical to the ones

used in their own Middlebury submission, so that the re-

construction quality might differ a bit [18]. However, the

parameter settings used for each technique were identical

for the selected and uniform images. The first three rows

of Table 2 show the quantitative results of uniform vs. se-

lected views (UNI / SEL) for different accuracy thresholds.

The last three rows show the results in terms of complete-

ness. Please see [25] for an in-depth explanation of these

thresholds. Again, our selected images consistently produce

better results for all methods and thresholds.

The processing time of our algorithm depends on the

number of input images and iterations, the proxy resolu-

tion, and the number of low quality voxels. However, even

for relatively high numbers of images as in the experiments

with synthetic data (800), the algorithm needs only 1 to 15

seconds (4 seconds on average) for a single iteration. The

quality gain for a single input image is evaluated in about

3 to 20 ms. For all experiments the overall processing time

never took more than 1 to 4 minutes, which is negligible

compared to the total runtime of most MVS reconstruction

algorithms [18]. For instance, using our algorithm in com-

bination with [10], the UNI Temple with 50 images took 15

min. to compute, while the SEL result with 21 images took

only 7 min. (including the image selection), with similar

reconstruction errors. All presented experiments and mea-

surements were performed on a P4 2.8 GHz with a GeForce

6800 Ultra GPU. Our results (e.g., Table 1) show that re-

constructions based on images selected by our algorithm

usually have an even higher quality than reconstructions

from non-optimized input with up to twice as many im-

ages. Considering the fact that the running-time of MVS

algorithms is generally dominated by the number of input

images, this property helps to considerably reduce process-

ing times, while achieving the same or better output quality.

6. Conclusions

We presented a new image selection technique for MVS

reconstruction. Our algorithm specifically addresses the re-

quirements of recent MVS methods, and consistently shows

improved performance for four different classes of MVS

techniques. The central idea of our method is the defini-

tion of three subsequent phases, each of which optimizes

specific aspects such as a fast convergence towards a full

visual coverage of the unknown object for a fast generation

of an initial proxy, guaranteed visibility of the surface with a

sufficient quality, and an adaptive focus on uncertain or oth-

erwise critical regions. Due to the integrated stereo based

proxy generation, our algorithm does not require any pre-

processing of the input images such as segmentation. More-

over, all computationally intensive steps can be executed ef-



ficiently on the GPU.

The numerical and visual evaluation shows that proper

image selection is an important, yet currently insufficiently

considered resource of optimization in MVS reconstruction.

Similar observations have been made in [5]. Our automatic

image selection is a step into this direction, and provides

ideas for increasing the flexibility and automation of MVS,

while at the same time improving the reconstruction quality

and performance.

In future work we would like to investigate extensions to

our method such as an explicit evaluation and handling of

calibration errors, additional entropy based image quality

measures, or view selection based on robust statistics [27].

Moreover, techniques based on photometric stereo [9] ob-

viously have requirements different from the standard MVS

setting. We believe that investigating image selection for

a wider range of techniques is an interesting direction for

future work as well.
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