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Image Sequence Stabilization 

in Real Time 

l1
is paper describes a method of stabilizing image sequences obtained by a camera carried by a 

ground vehicle. The motion of the vehicle can usually be regarded as consisting of a desired 
smooth motion combined with an undesired non-smooth motion that includes impulsive or high

frequency components. The goal of the stabilization process is to correct the images so that they are 
approximately the same as the images that would have been obtained if the motion of the vehicle had 
been smooth. 

We analyse the smooth and non-smooth motions of a ground vehicle and show that only the rota
tional components of the non-smooth motion have significant perturbing effects on the images. We 
show how to identify image points at which rotational image flow is dominant, and how to use such 
points to estimate the vehicle's rotation. Finally, we describe an algorithm that fits smooth (ideally, 
piecewise constant) rotational motions to these estimates; the residual rotational motion can then be 
used to correct the images. We have obtained good results for several image sequences obtained from a 
camera carried by a ground vehicle moving across bumpy terrain. 
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The Problem 

In this paper the problem of image stabilization is defined as 

follows: a camera mounted on a moving vehicle collects a 

sequence of images. The vehicle is trying to move along a 

smooth trajectory. In fact, however, the motion of the 

vehicle varies from the desired smooth motion; for a ground 

vehicle, this would primarily be due to roughness of the ter

rain. The goal of image stabilization is to correct the image 

sequence so that it corresponds, as closely as possible, to the 

sequence that would have been collected if the motion had 

actually been smooth, or at least piecewise smooth. 

The motion of a vehicle is described by the translational 

velocity of its center of mass and the rotational velocities of 

its principal axes; these quantities are funct! qq of time [5]. 

We consider a vehicle's motion to be nOfh;nooth when 

significant impulsive or high-frequency changes occur in 

(some of) these velocity functions. We will stabilize the 

image sequence by smoothing out the effects of these 

impulsive changes. 

The problem of image sequence stabilizati,m has been 

considered by a number of investigators [6,7.11,13,20]. 

They all agree that image stabilization deals with the 

removal of the effects of unwanted motion from an image 

sequence. In Burt and Anandan [6] and Hansen et al. [11], 

information from previous frames is used to create a 

mosaic image; subsequent images are then registered to the 

mosaic image and used to update it. Stabilization is then 
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based on computing total image motion as well as relating 

each new frame to the mosaic image. This allows new 

frames to have little or (in the extreme) no overlap with the 

preceding frame(s); this may happen when a narrow field of 

view camera is used (say 5°) or when the time between 

frames is large (much larger than the usually assumed 

1/30 s). Since most of the flow computation is done locally 

the affine flow model is used. In Irani et al. (13], motion and 

structure are computed from image flow for an assumed 

planar patch; the planar image flow is then extrapolated to 

the whole image and subtracted from the original image 

flow. The residual flow is rotationless, although it does not 

correspond to the true translational flow; the image 

sequence that contains only the residual flow is regarded as 

stabilized. In Vieville et al. [20], stabilization is achieved 

by aligning linear segments extracted from the images with 

the absolute vertical direction; this eliminates rotation 

around the viewing direction. In Davis et al. [7] several 

methods of computing rotational motion and de-rotating 

images are described, including a method of fitting an 

affine motion model to the far field and using the parame

ters of the model to transform the images. 

This paper analyses the problem of stabilizing image 

sequences obtained by a ground vehicle. In the next section 

we review the equations describing the image motion field 

in images of a static scene obtained by a rigidly moving 

observer. We then introduce a model for ground vehicle 

motion and discuss the sources of non-smoothness in this 

type of motion as well as the relative sizes of the smooth 

and non-smooth velocity components. Following this, we 

show that only the rotational components of the non

smooth motion have significant perturbing effects on image 

sequences collected by the vehicle. We show how to iden

tify image points at which rotational image flow is 

dominant, and how to use such points to estimate the 

vehicle's rotation. Finally, we describe an algorithm that fits 

smooth (ideally, piecewise constant) rotational motions to 

these estimates; the residual rotational motion can then be 

used to correct the images. We have obtained good results 

for several image sequences obtained from a camera carried 

by a ground vehicle moving across bumpy terrain. 

Preliminaries 

In this section, we summarize the equations of motion for a 

rigid body moving in a static environment, using both body

centered and static coordinate systems. We then derive 

projected motion equations for images obtained using the 

plane perspective imaging model, and we derive the relation

ship between the image velocities and the projected motion. 

Rigid Body Motion 

Let us associate a coordinate system with a body that 

moves rigidly in a static environment. Let Co and C be the 
t 

coordinate systems of the body at times 0 and t and let 0 be 

the center of the body (and the origin of the body coordi

nate system). We also take Co to be the static coordinate 

system i.e., the two systems coincide at time O. A static 

point E whose position in Co is re(O) has position r/t) in C
t 

given by 

(1) 

If we differentiate (1) with respect to time and use the fact 

that re(O) = R(t) r/t) + d(t), we obtain 

~ =IF(r(o)-J)-RTj =kT Rre - RTj == -0;" - i. (2) 

The skew matrix Q := - kTR = RTk is the rotational velocity 

matrix and f RT{j = (t ty ty is the translational velocity x 
vector. Multiplying a vector a by the matrix Q can be 

replaced by taking the cross product wX awhere w= (w
x 

Wy wzi is the rotational velocity vector. For a given r" :;:: 
(X Y Z)T we have 

. ( .. .)T r = X Y Z = -w x ~ - T (3) 

Later in this paper we will need some basic facts about 

first-order approximations to rotations and rotational velo

cities. A (signed) rotational axis is specified by its three 

direction cosines c ' c ' Ct' The rotation around this axis x y 

through an angle 0 is then given by the matrix 

Cx CxCy cxcz 

R = cos 0/ +(l-cos 0) CyC21x c; c<z 

[
CzCt CzCy Cz 

(4) 

where / is the identity matrix When 0 is small (0 < O.1rad) 

we have cos 0"" 1, sin 0 "" 0, and 

(5) 

where the skew matrix C is the matrix factor in the last 

term on the r.h.s. of (4) and D() means 'on the order of'. 

For a small rotational angle 0 the rotation given by (4) is 

approximately equal to three successive rotations (in any 
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order) around the x, y, and z axes through the angles c 8, 2x . -t f + xl. .xy l( x .\
ci, and c:8, respectively. x= x "+w --w, -+ f+w.v, (8)Z x / y / .) ~~ 

We obtain an analogous expression in terms of the rota . -tvl + yt: xy(l )
tional velocity matrix Q by expanding R(t) in a Taylor y= . z +W, j+ f Wvj-w:x. (9) 

series at t = to: 

R(t) = R(to) + tlt R(to)+V({8t)2) 

=R(to) [I + tlt RT(to)R(to)J+ V({8t)2) 

= R{to)[I + tlt Q(to)] + V({8t)2) 

where we have used Q(to) = RT(to) R(to)' tlt = t to' If we 

are interested only in the relative rotation between t and to' 
we can set R(to) = I and obtain 

(6) 

The Image Motion Field and the Optical Flow Field 

In this section we refer to the moving body as the camera 

and to the static environment as the scene. Let (X, Y, Z) 

denote the Cartesian coordinates of a scene point with 

respect to the camera frame (see Figure 1), and let (x, y,/) 

denote the corresponding coordinates in the image plane. 

/ is the focal length of the camera. The projection equations 

for the plane perspective projection are given by 

X Y 
x=- /,y=- f. (7)

z z 
The instantaneous velocity of the image point (x, y, /) 

resulting from the velocity of the corresponding scene point 

relative to the camera frame can be obtained by taking 

derivatives of (7) with respect to time and using (3): 

y 

E x 

Figure 1. The plane perspective projection image of (X, y, Z) is 
lfX/Z,jY/Z,f). 

Let T, J, and k be the unit vectors in the x, y, and z direc

tions, respectively; t = ,l:{ + yJ is the projected motion 

field at the point r = xi + yl + ft. 

If we choose a unit direction vector, Ii, at the image point 

r and call it the normal direction, then the normal motion 

field at r is 1" (1, n
T

) n
T

• n, can be chosen in various 

ways; the usual choice is the direction of the image inten

sity gradient. 

Let I (x, y, t) be the image intensity function. The time 

derivative of I can be written as 

dI JI dx JI J I (I -:- I -:) (. -:- .-:) I 
dt = at dt + ()y dt + dt = xl + yJ . Xl +Yl + t 

= VI·F +It 

where VI is the image gradient and the subscripts denote 

partial derivatives. 

If we assume dlldt =: 0, i.e. that the image intensity does 

not vary with time [12], then we have VI U. + If = O. The 

vector field it in this expression is called the optical flow. If 

we choose the normal direction n, to be the image gradient 

direction, i.e. n, == VIIIV ~I, we then have 

- (- - ) - -ltV! (10) 
un = U· nr nr = IIV/I12 

where itn is called the normal flow. 

It was shown by Verri and Poggio [19] that the magni

tude of the difference between it and the normal motion 
. n 

field, r, is inversely proportional to the magnitude of the 

image gradient. Hence, 1n '" un when IIVIII is large. Equation 
(10) thus provides an approximate relationship between the 

3-D motion of a scene point in the camera frame and the 

image derivatives at the corresponding image point. We 

will use this approximation later in this paper. 

The Vehicle Motion Model 

We have defined image stabilization as smoothing out the 

effects of impulsive motion, i.e. processing the image 

sequence to make it look like a sequence that could have 
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resulted from a smooth approximation to the motion. For a 

general motion model, the non-smoothness could involve 

the three parameters of the translational velocity of the 

vehicle's center of mass and the three parameters defining 

the rotational velocities of its principal axes, where each 

parameter is a function of time; thus in general, stabiliza

tion could involve smoothing in a six-dimensional space. 

The ideal motion of a ground vehicle does not have six 

degrees of freedom. If the motion is (approximately) smooth 

it can be described as motion along a smooth trajectory, r. 
lying on a smooth surface, 1:. Moreover, we shall assume 

that the axes of the vehicle (the fore/aft, crosswise, and 

up/down axes) are respectively parallel to the axes of the 

Darboux frame defined by r and 1:. These axes are defined 
by the tangent t to r (and 1:), the second tangent v to 1: 

(orthogonal to t), and the normal s to 1: (see Figure 2). Our 

assumption about the axes is reasonable for the ordinary 

motions of standard types of ground vehicles; in particular, 

we are assuming that the first two vehicle axes are parallel 

to the surface (this would not be the case, e.g., if the front 

wheels and the rear wheels were not the same size) and that 

the vehicle's motion is parallel to its first axis (this might 

not be the case, e.g., if the vehicle were skidding), In the 

next section we will present a mathematical description of 

motion that satisfies the Darboux frame assumption, and we 

will also introduce the coordinate frames that will be used to 

describe non-smooth vehicle motion. 

Non-smooth vehicle motion can involve impUlsive 

changes in any of the translational and/or rotational velo

city functions. In the case of a ground vehicle, however, 

some of these changes can be expected to have small 

amplitudes (and hence to be unimportant for stabilization). 

Thus, the smoothing problem becomes simpler since the 

Figure 2. The Darboux frame moves along the path r which lies 

on the surface 1:. 

smoothing can be done in a space of dimensionality lower 

than six. Knowledge about the motion obtained from other 

sensors (i.e., not from images) can also be used in the 

smoothing process; e.g., if the steering angle is known it 

can be used as 'ground truth' for the desired component of 

rotational velocity around the normal (= up/down) axis of 

the vehicle. 

Later we will compare the sizes of the smooth and non

smooth velocity components of a ground vehicle. 

Smooth Motion on a SUl1ace: The Darboux Frame 

Consider a point 0 moving along a curve r which lies on a 

smooth surface 1:. There is a natural coordinate system 

Otnb associated with r (even if it is a space curve), defined 

by the tangent t, normal ii, and binormal bof r. The triple 
(t, ii, b) is called the moving trihedron or Frenet-Serret co

ordinate frame. We have the Frenet-Serret formulas [16] 

t' K'n, ii' =-K't + rb, b' = -rn (11) 

where K is the curvature and T the torsion of r. 

When the curve r lies on a smooth surface 1:, it is more 

appropriate to use the Darbouxframe (t, v, s) [15,16]. We 

take the first unit vector of the frame to be the tangent t of 

r and the surface normal s to be the third frame vector; 

finally we obtain the second frame vector as v= sX t (see 

Figure 2). Note that t and vlie in the tangent plane of 1:. 

Since the vector t belongs to both the Otnb and Otvs 

frames they differ only by a rotation around t, say through 

an angle I/J == I/J (s). We thus have 

The derivatives of t, v, swith respect to arc length along 

r can be found from (11) and (12): 

t' = K'gV -K'nS, v' =-K'gt +rgs, S' = K'nl - rgv (13) 

where 

. dl/1
K'COS 1/1, K'n == K'sm l/1,rg == r+-;

ds 

K is called the geodesic curvature, Kn is called the normal 

c~rvature, and Tg is called the (geodesic) twist. 

The translational velocity Tof 0 is just t and the rota

tional velocity of the Otvs frame is given by the vector 
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Hence the derivative of any vector in the Otvs frame is 

given by the vector product of wd and that vector. It can be 

seen that the rate of rotation around f is just T g' the rate of 

rotation around vis just Kn' and the rate of rotation around 

sis just Kg. 

If, instead of using the arc length s as a parameter, the 

time t is l!,sed, the rotational velocity, Wd' and translational 

velocity, T, are scaled by the speed vet) ds/dt of 0 along 

r. This speed and the three components of the rotational 

velocity of the Darboux frame define a rigid motion model 

which we call smooth swface motion (SSM). 

Later, we will use two coordinate frames to describe 

vehicle motion. The 'real' vehicle frame C~I1Z; (which 

moves non-smoothly, in general) is defined by its origin C, 

which is the center of mass of the vehicle, and its axes: C~ 

(fore/aft), CI] (crosswise), and CZ; (up/down); and the ideal 

vehicle frame Otvs (the Darboux frame), which cor

responds to the smooth motion of the vehicle. 

The motion of the vehicle can be decomposed into the 

motion of the Otvs frame and the motion of the C~I1Z; frame 

relative to the Otvs frame. As we have just seen, the rota

tional velocity of the Otvs (Darboux) frame is vWd ::: (Tl 
+ K v+ K s') and its translational velocity is vt. We 

deno~ the robtional velocity of the C~I]Z; (vehicle) frame 

by Wv and its translational velocity by Ty' 

The position of the QI1z; frame relativ~ to the Otvs 

frame is given by the displacement vector dVld between C 

and 0, and the relative orientation of the frames is given by 

an orthogonal rotational matrix (matrix of direction 

cosines) which we denote by R
v1d

• The translational velocity 

of the vehicle (the velocity of C) is the sum of three terms: 

(i) the translational velocity of the Darboux frame vf, (ii) 

the translati0E-al velocity TYld == dvid' and (iii) the displace

ment vWd X d v/d due to rotation of C in the Otvs frame. The 

translational velocity o~ the vehicle ewressed in the Otvs 

frame is thus vWd X dvid + vi + dy/tP its translational 

velocity in the C~I1Z; frame is 

Similarly, the rotational velocity of C~I1Z; is the sum of 

two terms: (i) the rotational velocity vR~d Wd of the Otvs 

frame, and (ii) the rotational velocity i't which corre
Vld

' 

sponds to the skew matrix OVid = R~d R.ld' The rotational 

velocity of the C~I1Z; frame expressed in the Otvs frame is 

thus vwd + RvidWvld; the corresponding expression in the 

C~I]Z; frame is 

(15) 

Rotations around the fore/aft, sideways, and up/down axes 

of a vehicle are called roll, pitch, and yaw, respectively. In 

terms of our choice of the real vehicle coordinate system, 

these are rotations around the ~. 11, and Z; axes. 

Departures ofGround Vehicle Motionfrom Smoothness 

The motion of a ground vehicle depends on many factors: 

the type of intended motion; the speed of the vehicle; the 

skill of the driver; the size, height and weight of the vehicle; 

the type and size of the wheels (or tractor treads), and the 

nature of the suspension mechanism, if any; and the nature 

of the surface on which the vehicle is being driven. These 

factors tend to remain constant; they undergo abrupt 

changes only occasionally, e.g. if a tyre blows out. or the 

vehicle suddenly brakes or swerves to avoid an obstacle, or 

the type of surface changes. Such events may produce 

impUlsive changes in the vehicle's motion, which will often 

have longer-lasting effects (though these effects will even

tually be damped out). In addition, to these occasional 

events, 'steady-state' non-smoothness of a ground vehicle's 

motion may result from roughness of the surface. (For other 

types of vehicles, non-smoothness may also result from 

variations in the medium through which the vehicle 

moves.) 

A ground vehicle drives over roads or surfaces (for 

brevity: RSs) that have varying degrees of roughness. An 

RS may be a paved, gravel, or dirt road; grassy, muddy. 

sandy, or gravel-strewn ground; and so forth. The degree of 

roughness of an RS will be considered as piecewise station

ary, i.e. static in a statistical sense with parameters that 

remain constant over a finite time period. The roughness 

consists primarily of small irregularities in the RS (stones, 

litter, holes, etc.). The RS may also contain occasional 

roughness outliers such as rocks, bushes, potholes, speed 

bumps, etc., but we will ignore them in the discussion 

below, and will deal only with stationary roughness. 

We assume that we are dealing with a well-balanced four

wheeled vehicle moving on an approximately planar surface 

that is smooth except for occasional small bumps (protru

sions). The bumps are assumed to be 'small' relative to the 

size of the wheels, so that the effect of a wheel passing over 

a bump is impulsive. (We could also allow the surface to 
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have small depressions, but a large wheel cannot deeply 

penetrate a small depression. so the depressions have much 

smaller effects than the bumps.) We assume that the body of 

the vehicle is rigid and that the wheels are attached to it by 

suspension elements at the four corners of its base. 

Under these assumptions. using simple geometric argu

ments, it is not hard to show [10] that the effect of a single 

bump on a wheel is impUlsive; that the translational effects 

have small amplitude; and that the rotational effects are 

much smaller around the yaw axis of the vehicle than 

around the roll and pitch axes. 

As the vehicle moves over rough terrain, each wheel hits 

bumps repeatedly. The suspension integrates and damps the 

impulsive effects of the bumps. Each suspension element can 

be modeled by a spring with damping; its characteristic func

tion is a sine function multiplied by an exponential damping 

function (see [17]).We assume that the suspension elements 

associated with the four wheels are independent of each other 

and are parallel to the vertical axis of the vehicle. (A discus

sion of the dynamics of the suspension of a ground vehicle on 

rough terrain can be found in Yao and Chellappa [21].) 

On bumpy terrain the vehicle will usually hit new bumps 

while the effects of the previous bumps are still being felt. 

Each hit forces the suspension and adds to the accumulated 

energy in the spring; thus we can assume that the suspen

sion is constantly oscillating, which has the effect of 

moving the corners of the vehicle's base up and down. In 
real vehicles, the period of oscillation is typically on the 

order of 0.5 s and the maximum vertical displacement of 

the suspension elements is typically 0.025m. In general, it 

takes several periods to damp out the spring. The maximum 

velocity of the oscillation is typically in the order of O.Im/s. 

The suspension elements integrate and damp the short 

duration effects of the individual bumps, resulting in a set 

of out-of-phase oscillatory mot~ons. The translational 

effects of the bumps are proportional to the velocities (or 

displacements) of the suspension elements and the dimen

sions of the vehicle and are quite smalL It was found in 

Duric and Rosenfeld [10] that for a 'typical' vehicle, whose 

base has width of 1m and length of 2m, the translational 

bounce velocity is < 1m/s, the yaw velocity is (!) (0.01) 

rad/s, the roll velocity is < 0.2 rad/s, and the pitch velocity 

is < 0.1 rad/s. Also, the maximum roll angle of the base of 

the vehicle is < 0.05 rad and the maximum pitch angle is 

< 0.025 rad; the maximum yaw angle is negligible. 

We noW compare the sizes of the velocity components 

which are due to the ideal motion of the vehicle - Le., the 

velocity components of the Darboux frame - to the sizes of 

the velocity components which are due to departures of the 

vehicle frame from the Darboux frame. 

The translational velocity of the Darboux frame is just 

Vi; thus the magnitude of the translational velocity is just v. 

If v = 30mi/h (::: 13-41 m/s "" 48kmlh) this velocity is much 

larger than the velocities which are due to departures of the 

vehicle from the Darboux frame, which, as we have just 

seen, are in the order of O.lm/s or less. 

The rotational velocity of the Darboux frame is vwd == v 

(Ti. + KnV + Ki); thus the magnitude of the rotational 

velocity is v ~'f; +1(; +1(;. We can estimate bounds on 

T , Kn and K by examining the highway design recommen

ditions pubfished by the American Association of State 

Highway Officials [3]. An analysis of these recommenda

tions (see Duric and Rosenfeld [10] for details) leads to the 

following conclusions about the impulsive and smooth 

translational and rotational velocity components of the 

vehicle, for realistic vehicle speeds. The impulsive effects 

on the translational velocity are approximately two orders 

of magnitude smaller than the smooth velocity components 

themselves. Impulsive effects on the yaw angular velocity 

are somewhat smaller than the smooth yaw component aris

ing from worst-case turns of the RS; for moderate turns the 

impulsive effects are comparable in size to the smooth yaw 

velocity. Impulsive effects on the roll angular velocity are 

approximately an order of magnitude larger than the 

smooth roll component arising from worst-case twists (and 

turns) of the RS; for gentler twists the smooth roll velocity 

is even smaller. Similarly impulsive effects on the pitch 

angular velocity are approximately an order of magnitude 

larger than the smooth pitch velocity arising from worst

case changes of vertical slope (Le., vertical curves) of the 

RS; for gentler vertical curves the smooth pitch angular 

velocity is even smaller. (The impulsive effects are not sig

nificantly affected by turns, twists, or vertical slope.) We 

can thus conclude that impUlsive effects on the roll and 

pitch angular velocities are significant and larger than the 

corresponding smooth velocities, and that impulsive effects 

on the yaw angular velocity are smaller than (or com

parable to) the smooth yaw velocity. 

The highway recommendations [3] also have important 

implications about the nature of the smooth motion of a 

ground vehicle. Except during transitions, if a vehicle is 

being driven normally on a well-designed highway, its 

smooth rotational and translational components are 

approximately constant. (The translational components are 

constant in the vehicle coordinate frame even when the 
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vehicle is turning.) It is also observed that a driver on a 

poorly designed road attempts to drive as though the road 

were well designed, e.g. to make turns at constant angular 

velocities, and to follow spiral arcs in transitioning between 

turns, in order to reduce undesirable acceleration effects on 

the vehicle. We will assume in the next section that an off

road driver also attempts to drive in this way - i.e., that the 

ideal (smooth) motion of the vehicle has piecewise constant 

translational and rotational velocity components. 

Camera Motion and Image Sequence Smoothing 

In this section we analyse the properties of images and 
image motion fields obtained by a camera mounted rigidly 

on a moving ground vehicle. Based on our analysis, we 

design a smoothing algorithm which we use to smooth 

(,stabilize') several image sequences obtained by a camera 
mounted on a real moving vehicle. 

During the course of this section we derive the relative 
motion equations for a camera rigidly mounted on a mov
ing ground vehicle and show that we only need to smooth 
the rotational components of the motion. Evidently, the 

rotational components are dominant at image points whose 
corresponding scene points are distant. We present methods 

of classifying image points with respect to their distance, 
together with an algorithm for estimating the rotational 
motion of the camera based on such a classification of 

image points, and give examples of such estimates for 
several real image sequences; these examples confirm our 

analysis in the previous section. Finally, we describe an 

algorithm for the smoothing (stabilization) of image 
sequences which uses only the preceding and current 

images (so that it can operate in real time), and we present 
the results of applying this algorithm to an image sequence 

obtained by a vehicle moving over bumpy terrain. 

Camera Motion 

Assume that a camera is mounted on the vehicle; let Jc be 
the position vector of the nodal point of the camera relative 

to the mass center of the vehicle. The orientation of the 

camera relative to the vehicle coordinate system C~I1C; is 
given by an orthogonal rotational matrix (a matrix of the 

direction cosines) which we denote by Re' The columns of 

Rc are the unit vectors of the camera coordinate system 

expressed in the vehicle coordinate system. We will assume 

that the position and orientation of the camera relative to 

the vehicle coordinate system do not change as the vehicle 
moves. (The cases of a vehicle-mounted camera that is non-

rigidly mounted or that can move relative to the vehicle 

for example, a camera that is able to track ar ..)bject in the 

scene -~are left for future work.) Thus we Wid assume that 

Rc and de are constant and known. 

Given the position r: of a static scene point E in the 

camera coordinate system, its position Pe in the vehicle 

coordinate system C~I1C; is given by 

Since R and d are constant we have;; = Rc re so that ~ 
. c c e 

R~ P. The velocity of E is given by (2):
e 

re -wxre T. 

In this expression, the rotational velocity is W= R~wv' and 
the translational velocity is l' = RT (1' + w X d ), where 

.... c v v C 

w 
y 

and T 
v 

are the rotational and translational velocities of 

the vehicle coordinate system. Earlier, we saw (14-15) that 

these velocities can be expressed in terms of the rotational 
and translational velocities, vWd and vt, of the Darboux 
fram~ and the rotational and translational velocities, wv1d 
and t(ld of the vehicle frame relative to the Darboux frame. 

We thus have 

w =R[(vR;ldWd +WV/d)' (16) 

T=R[R;ld(vWd xdY , d +vt +dyld ) +W X(R[ de} (17) 

We shall now show that (up to a term of 0 (v<5llwdll» we 

can replace the matrix R~d in (16) by I. By (5) we have R~d 

= I .<5CYld + 0 (82), where <5 is the angle of r ".:_ltion ~d 
C

v1d 
is the skew matrix that corresponds to the dir;~ction cv1d 

of the rotational axis. From (IS) we thus have 

- RT - -
Wy =V vldwd +wv/d 

=vWd - OCvldwd + vO(02)Wd + wYld 

= vWd - OvCv/d X W d + wvl d +0(vo2 
11wdiD (18) 

where the last term on the r.h.s. is a vector whos" elements 
are 0 (v<521Iwjl). The significant terms on the r.h.s. of (18) 
are vWd' which is the smooth velocity of the veiude; wV1d' 

w

which is the non-smooth velocity of the vehicle; and the 

cross-product term Dvevld X Wd' which is al~o non-smooth 
because of the non-smoothness of D and C vld' However, 

since <5 = 0 (0.05) rad and lievlcJl = I, the cross product 
term is small compared to vWd; indeed, it is 0 (vDllwcJl). 
Therefore, wv is approximately the sum of the smooth rota

tional velocity, vWd' and the non-smooth rotational velocity, 

liid
• Finally, since Rc is constant the smooth part of w 
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is vR~wd and the non-smooth pan of w is approximately 
T->

Rcwvld' and we have 

We have seen that both IlvW ~I and IIWvlJIare (!) (0.1) rad/s. 

The fa:tors J?~ and R~d do not affect the magnitude of 

either w or T. Thus, the terms on the r.h.s. of (16) or (19) 

have comparable magnitudes. Since wd is the (smooth) 

rotational velocity of the Darboux frame, and wVld is the 

(impulsive) rotational velocity of the vehicle relative to this 

frame, it is clearly important to smooth the effects of the 

rotational components on the image sequence. 

As regards the translational components, note that for 

normal speeds of the vehicle (v > lOm/s "'" 22mi/h), typical 

suspension elements, and the camera mounted on the 

vehicle close t0 the center of mass we... have IIdviJI = 

(!) (0.025)m/s, IId
4 

v,dll :::= (!) (O.l)m/s, and !ldell = (!) (l)m/s. 

The magpitudes of the terms on the r.h.s of (17) are thus 

IIvwd X d viJl s; v IlwJilldvidll = (!) (O.0025)m/s; IIvi'li = v 

(!) (lO)m/s; and Ilw X (Rcdc)1I s; Ilwll Idell = (!) (O.l)m/s. 

Therefore, the dominant term in the expression for T is vi' 
since it is two order~ of magnitude larger then any of the 

other three terms of T. Smoothing the effects of the transla

tional components on the image sequence is thus 

unimportant, since vi' is already smooth. 

Identification ofDistant Image Points 

Typical images obtained by a camera mounted on a ground 

vehicle are not arbitrary. In general, the camera can be 

pointing in any direction relative to the vehicle, but its 

orientation relative to the vehicle (the matrix R) will be 

known. It is reasonable to assume that the camera axis is 

approximately parallel to the plane spanned by the fore/aft 

and crosswise axes of the vehicle. In other words, if the 

vehicle is on level ground, the camera is pointing approxi

mately horizontally. Thus, unless the vehicle is at the 

bottom of a deep hollow, or is screened by natural or ani

ficial objects, the camera can see objects which are very 

close to the vehicle as well as objects which are very dis

tant, as shown in ....Figure 3. When only nearby objects can 

be seen, and L(T, r) is significantly different from zero, 

translation dominates and thus the image sequence does not 

need smoothing. In general, however, we expect that this 

will not be the case, and distant parts of the scene will be 

visible; for these parts rotation will usually dominate. If 

distant points can be identified, their motions in the image 

can be used to estimate rotation. In the remainder of this 

section we will discuss methods of identifying image points 

that represent distant scene points. 

If a range sensor is available in addition to the video 

camera, and the video and range images can be registered, 

image points can be classified based on their ranges. A 

stereo rig is another possibility for range estimation; to do 

the estimation in real time, a fast multiple-camera dynamic 

programming based stereo algorithm could be used [14]. 

The task here is much simpler than in general stereo since it 

is necessary to identify only distant points. This can be eas

ily done since such points have near-zero disparities if the 

cameras are parallel. Ordinarily, however, multiple cameras 

mounted on a vehicle would not have overlapping FOVs, 

so that a stereo rig would ordinarily not be available. When 

only a single camera is available, motion stereo might be 

used to identify distant points. However, motion stereo 

works best when the motion is mostly translational, in 

which case the image sequence should not need to be 

smoothed. 

When the focus of expansion (FOE) is inside the image 

(which is certainly true if the camera axis is approximately 

parallel to the fore/aft vehicle axis), the rates of approach 

(ROA - the inverse of time to contact) to objects in the 

scene can be estimated using line integrals of normal flow 

along closed image contours [2,8]. The ROA has large 

(small) values for image patches which correspond to close 

(distant) objects, and can be used to classify the patches 

regardless of rotation. Unfortunately, ROA estimation is 

computationally expensive, and when the FOE is not inside 

the image (as in the case of sideways-pointing camera), it is 

not practical to compute the ROA. 

Horizon detection provides a potentially more useful 

method of identifying distant points. Typically, the horizon 

is the most distant pan of the scene (except for the sky), 

and unless the terrain is very steep (or the vehicle is driving 

alongside a wall), it is usually visible in the image and usu

ally quite distant. At points where the horizon is very close 

(e.g., there are tall objects directly in front of the camera) 

translation is dominant and the image sequence should be 

smooth. We therefore need only be concerned with points 

such that the horizon is at least at a medium distance and 

rotation is significant. In general, the horizon bounds the 

brightest pan of the image, which is almost always the sky, 

and the gradient along the horizon is usually high in magni

tude. Thus, the horizon can be detected by finding the 

bright panes) of the image (at its top, since the camera axis 

is approximately horizontal), and estimating the boundaries 

of these pans. The orientations, positions, and strengths of 
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(a) (b) 

I 
i 

(c) (d)  

Figure 3. Typical scenes obtained by a horizontally pointing camera carried by a ground vehicle.  

the edges along the horizon should change slowly with 

time, and the flow along the horizon should be smooth; 
these observations can be used to track the horizon from 
image to image. Figure 4 shows horizon detection results 
for the images in Figure 3. 

Horizon detection need not be repeated in every frame; 
it should be easy to track distant horizon points from 
frame to frame. More generally, if the set of distant points 

is known at time to' the task of identifying distant points 

in the next frame (at time to + ilt) is greatly simplified. 

Since ilt is small, the distant points remain distant. [When 

the speed v "" lOmls and frame time ilt = () (1/30)s the 
change in distance is () (0.3)m for a forward-looking cam-

era and  less  for  a  sidelooking  camera.]  Thus,  the  image 

motions  of the  distant points  in  at (between  the  frames) 

are  mostly  due  to  rotation  and  are  thus  small.  Also,  the 

magnitudes  and  the orientations of the  image gradients  at 

those points do not change much. Thus the images of dis-

tant  points  at  time  to and  time  to + ilt are  similar  in 

position  and  appearance  and  can  be easily  tracked  from 

frame to frame. 

Estimation ofRotation 

We  now  describe  an  algorithm  for  using  distant  points  to 

estimate  rotation.  We  shall  use  the  following  notation:  let 

nr = n/ + n j = VIAIVnl be  the  no~al dir~ction at r. 
The normal mbtion field at r is given by  rn = (r· iir)iir' so 

that from  (8, 9) we have 

rn' fir  ~ [nA-tx! +xtz )+ nA-tyf + ytz )] 

+.;+n,(; +fl 
-[nx(x; +f)+ny 7] Wy + (nxy-nyx)wz • (20) 

The  first  term  on the  r.h.s.  of (20)  is  the  translational nor-

mal  motion  and  the  other  three  terms  are  the  rotational 

normal motion at r. 

Consider a  set of image points on  the horizon  (or more 

generally,  a  set of image points  which  seem  to be  at  large 
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Figure 4. The results of horizon detection for the images in Figure 3.  

distances);  these points  are  in fact usually distant and rota-

tion is dominant. For such points, it will usually be the case 

that  the  rotational  normal  motion  dominates  the  transla-

tional  normal  motion.  The  last  three  terms  of (20)  can be 

written as a.»\where ais computable from images. From 

(20) we thus have 

(21) 

where  €t represents  the  translational normal motion and  is 

usually small relative to the rotational normal motion. 

From  (10),  the  normal  flow  at'r is  un ·iir = -lt/IlVnl· 
Also,  from Verri and Poggio  [19) we  know  that the differ-

ence  between  the  normal  flow  and  the  normal  motion  is 

inversely  proportional  to  the  gradient  magnitude;  we  can 

thus write 

From (21) and (22) we can write 

where €  =  €t + (!) (1IVnl- 1
) is  the error. 

For each horizon point r
i 

we have one equation (23). Let 

the number of horizon points be N ~ 3. We then have a sys-

tem 

Aw-y=E 

where  y is  an  Nelement  array  with  elements  -llr)1
IIVI(r,)", A is  an N X 3  matrix  with  rows  a, and  E is  an 

Nelement  array  with  elements  f i• We  seek wthat  mini-

mizes  1!El1 = lIy - Awll; the  solution  satisfies  the  system 

[18] 

(24) 

We  solve  this  system  using  the  Cholesky  decomposition 

(18).  (Since  the  matrix  ATA is  a  positive  definite  3  X 3 

matrix there exists a lower triangular matrix L such that LLT 
= ATA. We  solve  two  triangular  systems  Le = d and 

LTw = e for w = (w  w  w)T in the camera coordinate sys-
x y z 

tem.) 

(22)  The computed wmay  be  inaccurate due to various geo-

metrical  and  numerical  factors.  to  be  discussed  below. 
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However,  it is  possible  to  improve  on  the  computed  solu

tion of the system (24) iteratively. Given the estimate wfor 

a given frame, based on the flow between the frame and its 

predecessor(s) we create the skew rotational velocity 

matrix.Q that corresponds to W, and using (6) we define the 

rotational matrix R = I + I.:!J.Q (where !1t is the time inter

val between frames). We then apply the rotation R to the 

frame (de-rotation/warping); as a result the rotational velo

city of the image sequence at that frame will be reduced by 

W. After de-rotating the frame we compute the residual 

rotational velocity I1w from the de-rotated frame and the 

(uncorrected) predecessor frame. We then replace wby w 
+ !1w and proceed to again create .Q and R, and use R to 

de-rotate the original frame again. We repeat this process 

untillll1wll < E. At each step we do the de-rotation using the 

new w + !1w, and we apply it to the original image (rather 

than using the new I1won the already de-rotated image) to 

avoid an accumulation of errors. This method converges 

rapidly when the image motion is small, which is usually 

the case. (Typically, the magnitude of the error in wis 

"" 0.51Iwll- i.e., the error is halved after each iteration.) 

[Rotation by R transforms a scene point (X, Y, 2) into 

(X', Y', 2') such that (X', Y', 2'l = R(X, Y, 2)T. Let (x, y) 

and (x', y') be the images of (X, Y, 2) and (X'. Y', 2'), 

respectively. Let rij be the elements of R. Then using (7) we 
have 

x' == IX' == I 'ilX +r12Y +r132 . 1/2 

2' r3!X + r32Y + r332 1/2 

== I rllx+ r12 y+ rul 
(25) 

r31x+r32 y+r3d 

and similarly 

The direct application of the formulas for (x', y') yields 

non-integer pixel positions. To compute the transformed 

image, we apply the inverse transformation to (x', y') and 

determine the gray levels for the pixels of the transformed 

image by interpolating the gray levels of the original 

image.] 

As regards the reliability of the method two questions 

must be answered. The first question is geometrical and can 

be formulated as follows: Given the spatial distribution and 

the orientations of the feature points in the image, which 

components of wcan be computed? It is well known that 

the rotational image motion field (optical flow) can be zero 

only at the point where the direction of the axis of rotation 

(AOR) pierces the image plane [1,9]. The rotauonal normal 

motion field (normal flow), however, can be 2:ero when the 

normal (gradient) directio!1 is orthogonal to the direction of 

the motion field, i.e. ii . rw == O. However, this can cause 

problems only if the normal flow is (near) zero consistently 

at all (or the great majority of) the feature points. This can 

happen only if all normal (gradient) directions are orthogo

nal to the conic sections which are the intersections of the 

image plane with the circular cones centered at the focal 

point of the camera and having was their axis. More gener

ally, if all the normal directions are orthogonal to such a 

family of conic sections for which the unit vector r c is the 

cone axis, the rotational velocity component (rc . w)rc can

not be detected. We say in this situation that the normal 

flow resulting from the rotational velocity (r · w)r
e c 

belongs to the null space of the feature matrix A [18]. 

Fortunately, if such ws exist, the positive definite (semidefi

nite) matrix ATA must have a large condition number (the 

ratio of its largest to its smallest eigenvalue); thus the exis

tence of such situations is easy to detect by examining the 

eigenvalues of ATA. 

The second question is numerical and can be formulated 

as follows: given the spatial distribution and the orienta

tions of the feature points in the image, and the accuracy 

with which the normal flow can be computed, how accu

rately can wbe computed and what can he done to increase 

the numerical accuracy of the method? This question is also 

related to the condition number of ATA since the errors in 

the computed ware proportional to the errors in the normal 

flow, where the condition number of ATA is the approxi

mate proportionality coefficient. If the condition number is 

small we expect that the solution of (24) is reliable and that 

a few iterations of our algorithm will be enough to obtain a 

reliable estimate of w. In all the examples shown in 

Figure 3 the condition numbers are smaller than 50. 

As an example of the performance of our algorithm we 

show the results of applying it to the 30th frame of the 

sequence in Figure 3(a) Figure 5 shows the normal flow 

and Figures 6 and 7 respectively show the estimated rota

tional and the residual translational flow after four 

iterations. The condition number for the feature matrix ATA 

was'" 28; it remained close to this value through the entire 

sequence. The rotational velocity was estimated in four 

iterations. After the first iteration the estimated w= (w wyx 

w)T (in camera coordinates) was (0.00014 0.00019 
z 

- 0.00066)T rad/frame, and after four iterations it was 

(0.00026 0.00037 - 0.00125i rad/frame, so that 1111 wll = 

0.0001 rad/frame. 
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Figure  5.  Computed  nonnal  flow  in  the  30th  frame  of  the 
sequence containing Figure 3(a). 

Figure 6. Estimated rotational flow for the same frame. 

Figure  7.  The  residual  (translational)  flow  for  the  frame  after 
subtracting the rotational flow. 

Smoothing Algorithm 

We saw that we need only smooth the effects (on the image 

sequence)  of the  rotational  part of the  motion.  Earlier.  we 

showed how the  rotational velocity, W,  of the camera can be 

estimated  at  each  frame.  We  cannot  simply  'smooth'  tht 

image  sequence  by  using  these  estimates  to  derotate  the 

frames;  if we did this, we would eliminate the effects of al 

the  rotational  motion,  including  the  smooth  motion.  Bu 

since  the  camera is  not  always  pointing in  the  same direc-

tion  (e.g.,  the  vehicle  may make  turns,  go over hills,  etc.!. 

this would cause large parts of the images to be lost. 

We  saw  that  the nonsmooth part of the  rotational  velo 

city  of the  vehicle  has  larger  magnitude  than  the  smootl-

part.  However,  we  also  saw  that  the  cumulative effects  0 

the  nonsmooth  part on  the  orientation  of the  vehicle  (tht 

angles  between  the  vehicle  frame  and  the  Darboux  frame 

remain  relatively  small.  It follows  that  eliminating  tht 

effects of the  nonsmooth part (only) will not cause  loss 0 

large parts of the images. 

To  smooth  the  image  sequence,  we  will  first  estimal 

the  smooth  part  Wi of W. We  will  then  use  the  residu, 

rotational  velocity W wi' which corresponds  to  the non 

smooth  part  of W, to  construct  a  sequence  of  rotationa 

matrices; we  can then use these matrices to correct the cor 

responding  frames  as  in  (25,  26).  The  matrices  can  b, 

constructed  as  follows:  when  the  integral  of  the  residua 

velocity, wr  = ft{w - Wfd! is  small its components WI' W 

and  W3 (in  any  coordinate  frame)  are  approximately eqUl 
to  the angles  between the  axes of that frame  and  the dire, 

tions that the axes would have had if the rotational velocil 

of the camera were  wI' The first order approximation of th 

rotational matrix R [see (5)] defined by wr  is then 

(27  

To use  this matrix to  correct the  images  as  in (25,  26),  \\ 

need  only  transform  it  to  a  rotation  matrix  in  the  camel 

frame. For example, if the given frame is the vehicle fram, 

the  matrix  in  the  camera frame  is  R~ R Re' We will  in  fa 
use  the  components  in  the  vehicle  frame  (whose  axes  a: 

the roll, pitch, and yaw axes) in this section. 

A vehicle driven on  a well·designed road  (or a well·dr 

ven  vehicle on  any  terrain)  may  undergo  smooth  rotatio! 

when  it turns or goes over a hill. A smooth tum involves 

transition  from  a straight part of the  road  to  a circular  a 

part,  so that a zero yaw  velocity  is  followed  by  a constar 
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nonzero yaw velocity.  (The  transition is not abrupt but the 

transition  period  is  quite  brief.)  If the  turn  is  banked,  the 

transition  between  the  unbanked  and  banked  parts  of the 

road  results  in  a  brief  period  of  nonzero  roll  velocity. 

Finally, when the vehicle crests a hill (or passes through the 

bottom of a depression)  there  is  a  period of approximately 

constant, nonzero pitch velocity.  Thus, piecewise constant 

fits  are reasonable  approximations  to  the  smooth rotational 

components of a vehicle's velocity around its roll pitch. and 

yaw  axes.  Since our camera is fixed  relative  to  the vehicle 

the same is true about the components of the camera's rota

tional motion around these axes. We can therefore estimate 

the smooth part of wby 'fitting' piecewise constant func

tions to these components. At the same time, the rotational 

velocities about these axes are always small; hence in doing 

the fitting, we should also try to keep the magnitudes of the 

components as small as possible. 

Figure 8 shows the (unsmoothed) roll, pitch, and yaw 

components of wthat were estimated from 100 successive 

frames (a 3-s subsequence) of the image sequence that 

began with Figure 3(a). We see that all three components 

fluctuate strongly, with major periods of oscillation of the 

order of 20-30 frames (i.e. Is or less). The components also 

remain relatively small in amplitude, usually less than 2 X 

10-3 rad/frame; the fluctuations in the roll component have 

the highest amplitude, as predicted earlier. Note that the 

components seem to fluctuate around approximately con

stant values - in fact, around values that are close to zero, 

indicating that this subsequence does not include a turn or a 

hill crest. 

When we 'fit' piecewise constant functions, wI' of small 

magnitude to the rotational velocity components W, it is 
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Figure 8. Rotational velocity components for the sequence con
taining Figure 3(a). 

important that we (try to) keep the integrals of the residual 

velocities Wr fdw w
f 

dt small, so that our method of 

correcting the frames, described earlier in this section. can 

be used. In the next paragraph we will describe an 

algorithm for doing the ·fitting'. Our algorithm assumes 

that the smoothed component w is zero at t = 0, and 
f 

repeatedly 'corrects' its estimate of wf' based on the behav

ior of W ' in such a way as to keep it (almost always) 
r 

bounded. Thus the Wrs remain small, and so can be used to 

correct the frames. 

In the algorithm, initially we set w = O. We do not 
f 

change w
f 

as long as IWrl is smaller than some preassigned 

bound h. [Typical values of hare 0.006 (=:: (1/3n, 0.003, and 

0.002 rad for the roll, pitch, and yaw velocity components. 

respectively.J When IWrl reaches or exceeds h, say at time to' 
we add to w the amount 0.25 W,Ito (l/4 of the average slope 

f 
of Wr during the time interval [0, toJ; see Figure 9). This 

value of w
f 

is maintained unless IWrl further increases to 

3h/2, say at time t
1

; if so, we again add to w the amount 0.25 

[Wr (t l ) Wr (to)]/(t 
l 

- to) (again, 1/4 of 
f 
the average slope 

of Wr since the last change in Wf see Figure 9). This is 

repeated if IWrl again grows by h/2.If IWrl exceeds 2h, we 

multiply w by 1.1, repeatedly if necessary (at each new
f 

frame), until IWrl drops below 2h. Similarly. if IwrI drops 

below h, we multiply w by 0.9, repeatedly if necessary, as
f 

long as jWrl is decreasing. Finally, if IWrl drops below h/2, 

we reset w to zero. The approximations of the velocities in 
f 

Figure 8 by this algorithm are shown in Figure 10. [Note that 

they include intervals over which w is not constant; these are 
f 

the intervals during which the multiplicative adjustment 

process was operating.] 

We have successfully applied the algorithm to several 

image sequences obtained by a camera on a ground vehicle 

moving across bumpy terrain; individual frames from some 

of these sequences were shown in Figure 3. The stabiliza

tion results cannot be shown here, but digital video versions 

of the sequences before and after stabilization are available 

from the authors. 

o 

,,,,,, 
, , I 

"112, : 
~ ____ J_____L___ ~ __________ _ 

, , , 
: : I, , , 

: : : ro,, , ,, , 
'h/2 

t2 ta 

t 

Figure 9. Piecewise constant approx.imation of w by wI' 



284  Z.  DURie AND A.  ROSENFELD 

4 

r\Roll 
I \ 

t 
2  I 

I ,
I I....  ,I I , 

I ,X 
I 

qj' 0  -r-r--'-r--7;--'-'-' .-'- ~ 
e  h<0  : \_ .. 
~  2  : Yaw
<0  ,,~ ,
rtl ,,~   -4 -,,'u 
0  ,,,~ .....Q  I, 

I 

~--..j 

I I I Ia 
0  10  20  30  40  50  60  70  80  90  100 

Frames 

Figure 10. Estimates obtained by the algorithm from  the compo-
nents in Figure 8. 

Conclusions 

The motion of a vehicle can usually be regarded as  consist-

ing of a desired  smooth motion  that  includes  impulsive  or 

highfrequency  components.  If the  vehicle  is  carrying  a 

camera,  the  nonsmooth  motion  will  perturb  the  sequence 

of  images  obtained  by  the  camera.  The  goal  of  image 

sequence stabilization is  to  correct the  images  so that they 

are approximately  the  same  as  the  images  that would have 

been obtained if the motion of the vehicle had been smooth. 

We have analysed the smooth and nonsmooth motions of a 

ground  vehicle  and  have  shown  that  only  the  rotational 

components of the nonsmooth motion have significant per-

turbing  effects  on  the  images.  We  have  analysed  the 

relationship  between the  shape  of the  terrain  along  which 

the vehicle travels and the parameters of the smooth motion 

of the  vehicle.  We  have  used  this  analysis,  together  with 

highway design  recommendations  [3],  to  estimate the  rela-

tive sizes of the smooth and nonsmooth components of the 

motion.  We  have  shown  how. to  identify  image  points  at 

which  rotational  image  flow  is  dominant,  and  how  to  use 

such  points  to  estimate  the  vehicle's  rotation.  Finally,  we 

have described an algorithm that fits  smooth (ideally, piece-

wise constant) rotational motions to  these estimates and we 

have shown how  the  residual  rotational  motion (the differ-

ence  between  the  estimated  actual  motion  and  the  fitted 

smooth motion) can be used to correct the images. We have 

presented  results  for  an  image  sequence  obtained  from  a 

camera carried by  a ground vehicle  moving  across  bumpy 

terrain;  videos  of several  such  sequences,  before and  after 

stabilization,  which  are available  on  request,  demonstrate 

the effectiveness of our approach. 
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