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Abstract

The accuracy of nonrigid image registrations is commonly approximated using surrogate measures

such as tissue label overlap scores, image similarity, image difference, or transformation inverse

consistency error. This paper provides experimental evidence that these measures, even when used

in combination, cannot distinguish accurate from inaccurate registrations. To this end, we

introduce a “registration” algorithm that generates highly inaccurate image transformations, yet

performs extremely well in terms of the surrogate measures. Of the tested criteria, only overlap

scores of localized anatomical regions reliably distinguish reasonable from inaccurate

registrations, whereas image similarity and tissue overlap do not. We conclude that tissue overlap

and image similarity, whether used alone or together, do not provide valid evidence for accurate

registrations and should thus not be reported or accepted as such.

Index Terms

nonrigid image registration; validation; registration accuracy; unreliable surrogates

I. Introduction

Quantifying the accuracy of nonrigid image registration is inherently difficult. Whereas a

satisfactory gold standard database for evaluating the accuracy of rigid inter-modality

registration of head images has been available for over a decade [1], no such gold standard

yet exists for nonrigid registration (see Murphy et al. [2] for an overview of the current state-

of-the-art of validating nonrigid registration). Rigid registration accuracy is comparatively

easy to quantify because the rigid registration error at any given point is completely

determined by errors at three non-collinear landmarks [3].

By contrast, nonrigid registration error can be quantified with certainty only at the available

landmarks and with increasing uncertainty as distance from these landmarks increases. A

very dense set of landmarks, which is generally not available, would thus be required to gain

a complete, global understanding of registration accuracy. For inter-subject registration in

particular, not all landmarks identifiable in one subject, such as branching points of cortical

sulci, may even exist in another subject, even when both are normal controls.

Surrogate measures of registration accuracy are, therefore, commonly used when comparing

different registration algorithms. A selection of such surrogates have recently been made

available in a software package, the Nonrigid Image Registration Evaluation Program

(NIREP), which evaluates inter-subject, single-modality nonrigid registrations of magnetic

resonance (MR) brain images using region-of-interest overlap, intensity variance, inverse

consistency error, and transitivity error [4].
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The purpose of this paper is to demonstrate experimentally that several popular surrogate

measures, including a subset of the measures provided by NIREP, are only weakly related to

registration accuracy. We achieve this by designing a completely inaccurate “registration”

algorithm, which nonetheless appears to “outperform” state-of-the-art nonrigid registration

techniques when evaluated in terms of tissue overlap, image similarity, and inverse

consistency error. Of the tested criteria, only overlap of sufficiently small and localized

labeled regions survives as a reliable discriminator between good and bad registrations.

The timeliness and relevance of our study is underscored by 19 papers published in the last

ten years in premier peer-reviewed international journals (Table I) or presented at major

peer-reviewed international conferences (Table II). Each of these publications quantifies or

compares accuracy of image registration based exclusively on image similarities or brain

tissues overlaps, both surrogate measures that we demonstrate herein to be unreliable and

thus insufficient.

Our work shows in particular the ease with which one can disguise a misconceived

registration algorithm as a valuable contribution by selective reporting of unsuitable

evaluation criteria. Specifically, we demonstrate that overlap of tissue classes and image

similarity cannot be used in isolation for determining the feasibility of a registration

strategy. We therefore establish, once and for all, that these must be supplemented with

measures more reliably related to misregistration to form a valid set of evaluation criteria.

II. Methods

A. Test Data

Our experiments used 18 modified T1-weighted MR images publicly available from the

Internet Brain Segmentation Repository (IBSR) [5]. These images are provided with manual

expert segmentations of gray matter (GM), white matter (WM), and some cerebrospinal

fluid (CSF), as well as labelings of 43 anatomical structures. For our study, we modified

these data as follows (examples of original vs. modified images are shown in Fig. 1).

First, non-brain regions were removed from all structural images, which were provided

without faces but not fully skull stripped. Removing non-brain tissue prior to registration is

generally accepted as a means of simplifying the inter-subject registration problem and thus

increasing the quality of the computed registrations [6, 7].

Second, all pixels within the identified brain mask that were not assigned to one of the three

“tissue” types were assigned to CSF, because the provided segmentations are complete only

for GM and WM but leave most CSF pixels unlabeled. Filling in missing CSF pixels allows

us to perform a more complete and consistent evaluation of tissue overlaps after registration.

B. A Deceptive Registration Algorithm

We describe in this section an algorithm that computes a coordinate transformation between

two images, which “pretends” to be a co-registration and is designed to perform well on

certain surrogate measures of registration performance, but completely disregards any actual

mapping of corresponding anatomical points. We have implemented this algorithm in the

aptly named “Completely Useless Registration Tool” (CURT), which is publicly available in

source code as part of the Computational Morphometry Toolkit (CMTK) [8].

The algorithm is simple: to compute the transformation from a fixed image to a moving

image, the Nf pixels in the fixed image and the Nm pixels in the moving image are

independently sorted by increasing intensity values. The nf-th pixel (as counted by
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increasing intensity) in the fixed image then maps to the nm-th pixel in the moving image,

which is computed as follows:

(1)

This is also illustrated in Fig. 2. One way to interpret the algorithm is as a geometrically

unconstrained, closed-form optimization of the rank correlation criterion recently proposed

by Birkfellner et al. [9] to perform rigid 2D/3D image registration.

C. Comparison Methods: SyN and FFD Registration

For comparison, two established nonrigid registration algorithms are used. Both are readily

available in source code, which should allow interested readers to replicate our experiments

and confirm our results. The algorithms are:

1. the symmetric diffeomorphic normalization method (“SyN”) by Avants et al. [10]

as implemented in Release 1.9.1 of the ANTs software package [11], and

2. our own implementation [12] (available as part of CMTK [8]) of Rueckert’s free-

form deformation (FFD) registration algorithm [13] based on a cubic B-spline

transformation model.

Besides being freely available, the two comparison algorithms were chosen because both the

SyN algorithm and Rueckert’s own implementation of the FFD registration (IRTK) [14]

were consistently among the top performers (with SyN considered one of the two overall

“winners”) in a comprehensive recent comparison study [7]. They can, therefore, be

considered the current state of the art in nonrigid registration. For each algorithm we used

generic parameter settings recommended by the software authors for inter-subject MR brain

image registration, i.e., the parameters were not specifically optimized for the particular set

of images to be registered.

It is common practice to perform an affine pre-registration stage before nonrigid registration

to eliminate differences in image pose, orientation, and scale. For SyN, we used the built-in

affine registration, which is based on multi-resolution optimization of mutual information

[15, 16]. For the FFD algorithm, we used CMTK’s affine registration tool based on multi-

resolution optimization [17] of normalized mutual information [18]. For the CMTK affine

registrations in particular, we report below the same overlap and similarity measures as for

the other three methods to serve as a reference baseline.

D. Experimental Setup

We performed a round-robin, leave-one-out evaluation protocol, in which the anatomical

MR image of each of the 18 IBSR cases is registered to the anatomical image of each of the

remaining 17 cases (registrations are directed, i.e., registration of A to B is different from

registration of B to A). This is repeated for each registration algorithm, resulting in 306

registrations per algorithm, each aligning a different pair of images from two different

subjects.

For every computed registration, the moving anatomical image was reformatted into the

space of the fixed image, as were the moving tissue segmentation and region label images.

Each reformatted anatomical moving image was then compared with the fixed anatomical

image using three different similarity measures (see Section III-A). The reformatted tissue

and region label images were also compared to their respective fixed images, which serve as

the gold standard for the respective labelings, using a volume overlap measure (see Sections

III-B and III-C). Finally, for each image pair and each registration algorithm the inverse
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consistency error in millimeters between forward and backward transformations was also

computed (see Sections III-D).

III. Results

Examples of co-registered and reformatted images are shown in Fig. 3. Three observations

are visually obvious:

1. The anatomical image reformatted using the CURT transformation is virtually

indistinguishable from the the fixed image. This observation is particularly relevant

because it suggests that even expert visual inspection of reformatted or subtraction

images would not be able to detect CURT’s entirely inappropriate transformations.

2. The tissue image reformatted using CURT shows readily discernible errors

throughout the brain, but note that for the other registration algorithms errors are

localized along tissue boundaries, where they are hard to detect visually.

3. The region label image reformatted using CURT is essentially random and shows

no resemblance to the gold standard label map of the fixed image.

The following subsections put each of these observations into a quantitative context.

A. Image Similarity Measures

Shown in Table III are the post-registration values of three image-based similarity measures

that are also commonly used to evaluate image registrations: Root of Mean Squares (RMS),

Normalized Cross Correlation (NCC), and Normalized Mutual Information (NMI). These

values quantify the residual image difference (RMS) or final image similarity (NCC; NMI),

respectively, between the fixed and the reformatted moving anatomical images. CURT

scored significantly better on all three similarity measures, which confirms the qualitative

observation in Fig. 3 that it produced a reformatted image that is nearly identical to the

reference image.

These observations apply equally when an entire group of co-registered images is

considered, rather than just a single image pair. To this end, Fig. 4 shows the pixel-wise

average and standard deviation images of reformatted images IBSR_02 through IBSR_18,

all registered to IBSR_01. The “sharpness” of the average image and the magnitude of the

standard deviation image are somewhat popular measures for the performance of groupwise

registration algorithms (e.g., [19]). Again, CURT seemingly outperforms the other

registration algorithms in that it produces a more crisp average and appreciably lower

across-image standard deviation.

B. Tissue Overlap Measures

We report overlap scores of tissue labels (and, below, region labels) expressed as the Jaccard

index, which for two sets of pixels, A and B, is defined as

(2)

Perfect overlap of A and B scores JA,B = 1, no overlap at all scores JA,B = 0.

Table IV summarizes the overlap scores of three tissue types (GM, WM, CSF) for the four

registration algorithms. CURT scored significantly higher than all other algorithms on all

tissue types except SyN on GM (no significant difference, p > 0.73; two-sided paired t-test).
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It is worth noting that between the two “real” nonrigid registration algorithms, SyN

performed better than FFD in terms of tissue overlap scores (Table IV), whereas FFD

performed better than SyN in terms of image similarity (Table III). See the Section IV-C for

discussion of a possible explanation of this inconsistency and its implications for registration

evaluation criteria.

The Dice coefficient [20] of volume overlap, which is also frequently reported [21], can be

readily obtained from the Jaccard index via D = 2J/(1 + J) (see[22]); thus the relative

comparison between the different methods remains unaffected when representing these

results as Dice coefficients.

C. Region Overlap Measures

The overlap scores for labeled anatomical regions achieved by the four different

registrations are summarized in Table V. Only labels are listed that appear in all 18 IBSR

images, and these labels are listed in their entirety, because only a complete list of regions

can provide assurance that the results are not subject to selection bias towards a particular

desired outcome. Analogous to tissue labels, overlaps are reported as Jaccard index values.

For all individual regions, the SyN algorithm achieved better overlap than the FFD

registration, which in turn achieved better overlap than affine-only registration. CURT

achieved virtually no overlap, with the exception of the four spatially unspecific regions of

cerebral white matter and cerebral cortex (i.e., GM) for the left and right side separately.

Even for these four regions, which are essentially maps of hemispheric white matter and

gray matter without further subdivision, CURT’s overlap scores are substantially below

those of even the affine registration.

Due to the quasi-random nature of correspondences computed by CURT, it is reasonable to

expect that it would perform better for larger regions than for smaller ones. This is

confirmed by Fig. 5, which shows the Jaccard overlap scores for FFD, SyN, and CURT

plotted against gold standard region size in pixels.

In particular the overlap scores for the previously identified, unspecific cortical regions,

“Cerebral White Matter” and “Cerebral Cortex”, show that CURT performed better than

would be expected based the region sizes. By comparison, FFD and SyN appear to perform

less well on these regions than would be expected, perhaps due to their complex shapes and

large inter-individual variability. This difference further confirms the findings of the

previous section that overlap scores of spatially unspecific regions are less sensitive for

revealing CURT as a biologically implausible registration algorithm.

D. Inverse Consistency Error

For each pair of fixed and moving images, A and B, and for each registration algorithm, the

inverse consistency error [23] between the forward transformation, TAB, and the backward

transformation, TBA, is computed as follows:

(3)

It should be noted that the SyN algorithm simultaneously computes the forward and inverse

(i.e., backward) transformation consistent with one another, up to discretization effects.

However, this algorithm still uses a non-symmetric initial affine alignment. Therefore, when

the algorithm is run a second time with fixed and moving image switched, two

independently computed initial affine transformations are used, which are not in general
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inverses of each other. Thus, the two resulting forward deformations are also not guaranteed

to be perfectly inverse consistent.

In mathematical terms, SyN applied once to register image A to B produces TAB and TAB
−1,

but running it in the opposite direction produces TBA. Whereas the simultaneously computed

TAB and TAB
−1 are almost perfectly consistent (mean EIC=0.03 mm over all registrations),

the separately computed TAB andTBA are not (mean EIC=26.2 mm).

Comparing the different registration algorithms, the results in Table VI show that CURT

produces transformations that have, on average, lower inverse consistency errors than FFD

registration and also lower than SyN when the latter is run separately to compute forward

and backward mapping. This is explained by the fact that CURT is almost symmetric by

construction: when mapping from image A to B and back to A, most pixels will end up in

their original location, resulting in zero inverse consistency error. Only pixels for which

(4)

map elsewhere and will incur a very large inverse consistency error because their final

location is essentially random. However, because the number of these pixels is relatively

small when Nf ≈ Nm, the mean inverse consistency error over all pixels is also small. (If Nf

= Nm then the mapping is indeed perfectly inverse-consistent.)

It may also be of general interest to observe that the inverse consistency error after FFD

registration is essentially the same as after affine registration. This may suggest that FFD

registration itself does not add much inconsistency on top of what is already present in its

input transformation.

E. Results Summary

Selective interpretation of the quantitative results presented here could suggest that the

CURT “registration” algorithm significantly outperformed the other two nonrigid

registration algorithms as it achieved significantly better tissue overlap scores and image

similarity measures (Figs. 6 and 7). It furthermore produced lower inverse consistency errors

than FFD registration and two-pass forward/backward SyN (Table VI).

Also in terms of other commonly used measures of registration performance, such as

computational complexity or need for fine-tuning of parameters, CURT seemingly

outperformed the other methods: it requires no affine pre-registration, has no tunable

parameters (which makes it easy to apply) and is very fast (less than 1 s on a single CPU,

compared with tens of minutes for SyN and one to two hours for the FFD algorithm).

IV. Discussion

A. Implications of This Study

The aim of this paper was to demonstrate that tissue overlap, image similarity, and inverse

consistency error are not reliable surrogates for registration accuracy, whether they are used

in isolation or combined. Even expert visual inspection of reformatted, subtraction, or

variance images cannot always reliably distinguish accurate from inaccurate registrations.

This is true for both pairwise (Fig. 3) and groupwise (Fig. 4) presentation of registration

results.
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While it could be argued that our findings are obvious and well-known, the real importance

of our work is further highlighted by the fact that peer-reviewed literature continues to rely

on evaluation criteria that we have now proven to be inadequate beyond any doubt. The

papers listed as examples in Tables I and II all appeared in respected, peer-reviewed

international journals and conference proceedings between 2003 and 2011. Using image

similarity and tissue overlap to evaluate registration accuracy appears to be still considered

acceptable for many authors and reviewers.

It is important to note that we are not claiming that registration algorithms “validated” using

the criteria discounted herein, such as the ones listed in Tables I and II, are necessarily

inaccurate. What our results demonstrate, however, is that these evaluations of registrations

do not provide sufficient positive evidence to establish accurate registrations. This is true

even though low scores of tissue overlap, for example, might still be useful to establish

negative evidence by detecting inaccurate registrations. Already published studies aside, the

obvious consequence going forward is to insist on the use of more valid measures in the

consideration of future publications.

Of the criteria tested in our study, only overlap of sufficiently local labeled ROIs could

distinguish reasonable from poor registrations. One reason for this is that smaller, more

localized ROIs approximate point landmarks, and their overlap thus approximates point-

based registration error. This effect can be seen in Fig. 5, which illustrates that CURT’s

apparent performance, while still substantially below that of the other algorithms, increases

with region size and is better than expected for large, spatially unspecific regions.

Tissue overlap, then, fails as a surrogate for registration accuracy because brain tissues are

distributed throughout the brain, i.e., tissue does not “encode” spatial location, and also

because there is a strong relationship between tissue type and MR image intensity. The latter

relationship is of course exactly what CURT exploits to perform well on this criterion.

The simplicity and ridiculously implausible mapping of the CURT algorithm do not

diminish the importance of our conclusions. Rather, by being unquestionably inaccurate,

CURT allows us to test accuracy measures without ground truth or gold standard. Equally

important, its simplicity underscores how easily the validity of these measures is

undermined. At the same time, the method could be obfuscated by complicated description,

hidden in a closed-source implementation, and published as a superior registration

algorithm.

A possible Abstract to this effect might read as follows: “We introduce a new nonrigid

registration algorithm based on a closed-form solution to maximizing the Rank Correlation

criterion. The new algorithm produces more accurate registrations than two state-of-the-art

methods as judged by image similarity and tissue overlap scores. It is also two to three

orders of magnitude faster, requires no affine preregistration, and has no tunable

parameters.”

While this Abstract would be factually correct and fully supported by the experimental data

presented herein, the underlying algorithm is inadequate and certainly does not produce

accurate registrations. More reliable performance measures should, therefore, be expected to

support claims of superior registration accuracy. Our results have identified overlap of

localized anatomical ROIs as one suitable, immediately available alternative.

At least for inter-subject registration of MR brain images the necessary labeled data have

been provided to the community for years from several sources such as the IBSR [5] and

LPBA40 data sets [24, 25]. More recently, NIREP [4] has provided data as well as software

tools for registration performance evaluation. An even more comprehensive evaluation data
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set for longitudinal (within-subject) thoracic CT registration has recently become available

from the EMPIRE10 Challenge [26, 27], which uses as evaluation criteria the alignment of

lung boundaries, major fissures, and up to 100 landmark pairs, as well as singularities in the

deformation fields.

B. Limitations of This Study

We have not considered herein some other common evaluation strategies for nonrigid image

registration. One of the most frequently used techniques is to apply a known deformation to

an image, and then attempt to recover it by registration. Such evaluations do quantify actual

registration errors (and thus accuracy), but are limited by different weaknesses, such as their

inability to quantify the accuracy of registrations between two actual, independent images.

Another strategy is to compare the deformation field obtained by registration to one

computed using a bio-mechanical (e.g., finite element [28]) simulation, but this method

cannot be applied to inter-subject registration problems, and the accuracy of the bio-

mechanical model prediction itself is unknown and variable [29].

Due to these limitations, and because studies that quantify accuracy without application of

known deformations are plentiful, exclusion of these techniques from consideration does not

reduce the relevance of our results. Indeed, we note that some studies listed in Tables I and

II actually apply known deformations, yet proceed to ignore these in the evaluation and use

only image similarity or tissue overlap to support claims of accuracy.

The algorithm used by us to purposely break accuracy surrogate measures, CURT, is clearly

limited to same-modality registration, but the vast majority of “real” nonrigid registration

algorithms in the literature have been evaluated on this exact type of problem. Whether or

not these published algorithms would also perform well on multi-modality data is purely

speculative. Thus, limiting CURT’s evaluation to single-modality registration problems does

not reduce the relevance of our findings at all.

The most fundamental difference between CURT and “real” registration algorithms is its

complete lack of regularization (Tikhonov or otherwise) of the inherently ill-posed

registration problem, as well as the entirely unconstrained transformation model. CURT’s

seemingly “superior” performance on the tested evaluation criteria can thus be readily

explained as the result of data overfitting. On the other hand, many regularized algorithms

adjust the degree of regularization using a parameter such as a constraint weight factor (e.g.,

[30]) or the width of a smoothing kernel (e.g., [31, 32]). There is no a priori correct value for

either type of parameter, and if they are adjusted to optimize the registration outcome in

terms of achieved image similarity, this can defeat the very purpose of regularization to

prevent overfitting.

C. Recommendations and Caveats

The first step towards reporting valid and reliable evaluations of registration performance is

to use correct terminology. The magnitude of registration error is fundamentally a quantity

that represents a distance in space. Thus, only quantities measured in meters can be

registration errors to begin with, and only actual errors should be labeled as such. All other

quantities, including differences in transformation parameters (e.g., rotation angles, kernel

function coefficients) are at best surrogate measures, they should be clearly labeled as such,

and their predictions be carefully interpreted.

Ideally, actual registration errors measured at a large number of densely distributed

landmarks (i.e., identifiable anatomical locations) should become the standard for reporting

registration errors. Although this type of analysis has long been impeded by the inefficiency
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of manual landmark localization, recent work such as that by Murphy et al. [2] on semi-

automatic gold standard construction, including a dense set of corresponding anatomical

landmarks, may help make direct quantification of nonrigid registration accuracy more

common.

In addition to point landmarks, other features such as surfaces or lines (e.g., cortical sulci

[33]) can also be used to quantify registration accuracy directly using appropriate distance

measures. It is worth mentioning, however, that registration error can be measured only in

the direction perpendicular to surface and line features, which leads to residual uncertainty

of the error estimate tangential to the landmark structure.

The final and perhaps most important recommendation is to make the evaluation of

registration performance as independent as possible from the registration itself. Some

obvious dependencies exist between images used for registration and features derived from

them for evaluation. For example, the validity of evaluation using tissue overlap scores is

compromised by the near-monotonic relationship between image intensities and tissue

labels. Similarly, when registration algorithms use different data representations (e.g.,

diffusion tensor images vs. scalar maps derived from these) or channels (e.g., different

channels of a multi-echo MRI), then features used for evaluation of the transformations

should not be obtained from either representation (or channel).

In other cases, dependencies may be more subtle and harder to safeguard against. In our

work, the difference between global metric computation used in FFD registration and local

computation used in SyN registration may not appear to be of much importance to the

comparison methodology. Nonetheless, it is one possible explanation for our inconsistent

findings by which FFD outperformed SyN in terms of (globally computed) image similarity

(Table III), whereas SyN outperformed FFD in terms of tissue overlap scores (Table IV).

V. Conclusion

Tissue label overlap scores and image similarity measures are not reliable criteria to

establish registration accuracy. Because test data sets and reference standards are publicly

available for more valid evaluation of registration accuracy using landmarks and labeled

anatomical structures, these should be used instead. With any test data set, registration

evaluation results should always be reported in their entirety (i.e., for all image pairs and all

available performance measures) to avoid selection bias.
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Fig. 1.
Original (top row) and modified (bottom row) image data of the IBSR_01 subject. In the

modified data, non-brain tissue was removed from the structural images to facilitate inter-

subject registration, and missing CSF labels (note, for example, the third ventricle) were

added to previously unlabeled regions inside the brain masks.
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Fig. 2.
Schematic illustration of rank order-based mapping of a pixel from the fixed image (left) to

the moving image (right) via correspondence of pixels sorted by increasing intensities. See

text for details and notation.
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Fig. 3.
Reformatted images after registration of one image pair (IBSR_01 to IBSR_02) using

different registration algorithms. Columns from left to right: Fixed image (IBSR_01), and

moving image (IBSR_02) after affine, FFD, SyN, and CURT registration. Rows from top to

bottom: structural MR image, difference images (all with identical window/level settings),

three-compartment tissue segmentation, and region labels provided by the IBSR.
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Fig. 4.
Groupwise average (top row) and standard deviation (bottom row) images of IBSR_02

through IBSR_18 after registration to IBSR_01 using each of the four registration

algorithms. To obtain consistent intensity ranges, the pixel intensity values in each

reformatted image were globally rescaled to match mean and standard deviation of the

reference image intensities. All average images, as well as all standard deviation images, are

shown using identical gray scales.
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Fig. 5.
Plots of Jaccard overlap scores, J (larger values are better), after registration vs. gold

standard region size in pixels. (a) FFD, (b) SyN, (c) CURT. All plots use the same axis

scales. Correspondence between plot symbols and ROIs is shown in (c). For bilateral

regions, both left and right region values are plotted separately but using the same symbol.
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Fig. 6.
Summary graphs over all 306 image pairs comparing the post-registration image similarities

after affine, FFD, SyN, and CURT registrations. (a) RMS image difference, (b) NCC image

correlation, and (c) NMI image similarity. Stars mark results for which CURT differs

significantly from the other algorithms (the remaining algorithms were not tested against

one another).
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Fig. 7.
Summary graph over all 306 image pairs comparing the tissue overlap scores of affine, FFD,

SyN, and CURT registrations. Stars mark results for which CURT differs significantly from

the other algorithms (the remaining algorithms were not tested against one another).
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TABLE I

Peer-reviewed journal articles depending on unreliable surrogates

No. Publication Summary of Problematic Methodology

1 R. W. So, T. W. Tang, and A. C. Chung, “Non-rigid image registration of brain
magnetic resonance images using graph-cuts,” Pattern Recognition, vol. 44, no.
10–11, pp. 2081–2092, 2011.

Claims “consistently higher registration accuracy”
of proposed method based on tissue overlap scores,
despite recovering known deformations.

2 S. Liao and A.C.S. Chung, “Feature based nonrigid brain MR image registration
with symmetric alpha stable filters,” IEEE Transactions on Medical Imaging, vol.
29, no. 1, pp. 106–119, 2010.

Uses tissue overlap scores to compare new vs.
existing registration algorithms.

3 A.M. Siddiqui, A. Masood, and M. Saleem, “A locally constrained radial basis
function for registration and warping of images,” Pattern Recognition Letters, vol.
30, no. 4, pp. 377–390, 2009.

Compares transformation models using post-
registration values of CC, MSD, and MI similarity
measures.

4 H. Nam, R.A. Renaut, K. Chen, H. Guo, and G.E. Farin, “Improved inter-modality
image registration using normalized mutual information with coarse-binned
histograms,” Communications in Numerical Methods in Engineering, vol. 25, no.
6, pp. 583–595, 2009.

Applies known deformations, but then only uses
intensity L2 error for comparison of registration

results.

5 J. Larrey-Ruiz, R. Verdú-Monedero, and J. Morales-Sánchez, “A fourier domain
framework for variational image registration,” Journal of Mathematical Imaging
and Vision, vol. 32, no. 1, pp. 57–72, 2008.

Applies known deformations, but then only uses
intensity PSNR, MI, and CR for comparison of
registration results.

6 P. Zhilkin, M.E. Alexander, and J. Sun, “Nonlinear registration using variational
principle for mutual information,” Pattern Recognition, vol. 41, no. 8, pp. 2493–
2502, 2008.

Uses MSD and MI and measures of registration
accuracy.

7 C. Frohn-Schauf, S. Henn, and K. Witsch, “Multigrid based total variation image
registration,” Computing and Visualization in Science, vol. 11, no. 2, pp. 101–113,
2008.

Compares registration methods based on post-
registration L2 image differences.

8 D.C. Paquin, D. Levy, and L. Xing, “Multiscale deformable registration of noisy
medical images,” Mathematical Biosciences and Engineering, vol. 5, no. 1, pp.
125–144, 2008.

Uses post-registration correlation coefficient to
“demonstrate the accuracy” of the proposed
registration method.

9 D.C. Paquin, D. Levy, and L. Xing, “Hybrid landmark and multiscale deformable
registration,” Mathematical Biosciences and Engineering, vol. 4, no. 4, pp. 711–
737, 2007.

Uses difference images, CC and MSD to
demonstrate registration “accuracy,” even though
in one example 20 landmarks are used to drive the
registration.

10 S. Tang and T. Jiang, “Nonrigid registration of medical image by linear singular
blending techniques,” Pattern Recognition Letters, vol. 25, no. 4, pp. 399–405,
2004.

Uses post-registration SSD and MI to “evaluate
[…] accuracy” of proposed registration method
against others.

11 B.C. Vemuri, J. Ye, Y. Chen, and C.M. Leonard, “Image registration via level-set
motion: Applications to atlas-based segmentation,” Medical Image Analysis, vol.
7, no. 1, pp. 1–20, 2003.

Shows “difference image between evolved/
transformed source image and the target image as a
qualitative measure of the accuracy of the
registration algorithm”; also uses CC to compare
with other registration methods.

PSNR = Peak Signal to Noise Ratio; CR = Correlation Ratio; CC = Correlation Coefficient; SSD = Sum of Squared Differences; MI = Mutual

Information
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TABLE II

Peer-reviewed conference articles depending on unreliable surrogates

No. Publication Summary of Problematic Methodology

1 S. Liao and A.C.S. Chung, “Non-rigid image registration with uniform gradient spherical
patterns,” in Medical Image Computing and Computer-Assisted Intervention, 12th
International Conference, MICCAI 2009, vol. 5761 of Lecture Notes in Computer Science,
pp. 696–704, Springer-Verlag, Berlin/Heidelberg.

Claims “proposed method gives the highest
registration accuracy” based on tissue
overlap scores.

2 M.R. Sabuncu, B.T.T. Yeo, K. Van Leemput, T. Vercauteren, and P. Golland,
“Asymmetric image-template registration,” in Medical Image Computing and Computer-
Assisted Intervention, 12th International Conference, MICCAI 2009, Proceedings, Part I,
vol. 5761 of Lecture Notes in Computer Science, pp. 565–573, Springer-Verlag, Berlin/
Heidelberg.

Compares registration algorithms to
“quantify the quality of alignment” based on
image MSD and tissue Dice overlap scores.

3 T. Rohlfing, E.V. Sullivan, and A. Pfefferbaum, “Subject-matched templates for spatial
normalization,” in Medical Image Computing and Computer-Assisted Intervention, 12th
International Conference, MICCAI 2009, Proceedings, Part II, 2009, vol. 5762 of Lecture
Notes in Computer Science, pp. 224–231, Springer-Verlag, Berlin/Heidelberg.

Uses tissue overlap scores to show more
accurate spatial normalization to different
atlases.

4 S. Liao and A.C.S. Chung, “Non-rigid image registration with uniform spherical structure
patterns,” in Information Processing in Medical Imaging, 21st International Conference,
IPMI 2009, Proceedings, vol. 5636 of Lecture Notes in Computer Science, pp. 163–175,
Springer-Verlag, Berlin/Heidelberg.

Claims “proposed method achieves the
highest registration accuracy” based on
brain tissue overlap scores.

5 H. Li, Y. Lin, and A. Wang, “An medical image registration approach using improved
Hausdorff distance combined with particle swarm optimization,” in Proceedings, IEEE
Computer Society Fourth International Conference on Natural Computation, IEEE ICNC
2008, pp. 428–432.

Claims that “proposed algorithm produces
more accurate results” by comparing post-
registration CC, MSD, and PSNR.

6 T.W.H. Tang and A.C.S. Chung, “Non-rigid image registration using graph-cuts,” in
Medical Image Computing and Computer-Assisted Intervention, MICCAI 2007,
Proceedings, Part I, vol. 4791 of Lecture Notes in Computer Science, pp. 916–924,
Springer-Verlag, Berlin/Heidelberg.

Claims “accuracy of our approach
significantly better than other methods” base
on absolute image difference and brain
tissue overlap scores.

7 T. Chen, T.S. Huang, W. Yin, and X.S. Zhou, “A new coarse-to-fine framework for 3D
brain MR image registration,” in Proceedings, First International Workshop on Computer
Vision for Biomedical Image Applications, CVBIA 2005, vol. 3765 of Lecture Notes in
Computer Science, pp. 114–124, Springer-Verlag, Berlin/Heidelberg.

Claims that “a method can be affirmed as
relatively more accurate than others if it
consistently obtains higher similarity
values” and uses image CC and CR to this
effect.

8 Z.-Y. Long, L. Yao, and D.-L. Peng, “Fast non-linear elastic registration in 2d medical
image,” in Medical Image Computing and Computer-Assisted Intervention - MICCAI
2004. Proceedings, Part I, vol. 3216 of Lecture Notes in Computer Science, pp. 647–654,
Springer-Verlag, Berlin/Heidelberg.

Compares “performance” of different filters
for elastic registration via image MSD.

PSNR = Peak Signal to Noise Ratio; CR = Correlation Ratio; CC = Correlation Coefficient; SSD = Sum of Squared Differences
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TABLE III

Image-based similarity measures after registration

Similarity Measure Affine FFD SyN CURT

RMS* 24.9 ± 27.9† 12.7 ± 13.9† 15.4 ± 18.8† 3.8 ± 5.1

NCC 0.59 ± 0.05† 0.87 ± 0.04† 0.82 ± 0.04† 0.99 ± 0.01

NMI 1.03 ± 0.01† 1.10 ± 0.02† 1.08 ± 0.01† 1.78 ± 0.02

Values are mean ± standard deviation for Root of Mean Squares (RMS), Normalized Cross Correlation (NCC), and Normalized Mutual

Information (NMI) after registration over all 306 pairwise, directed registrations of the 18 IBSR images to one another. Smaller values are better

for RMS, larger values are better for NCC and NMI.

†
marks results significantly different from those obtained by CURT (p < 10−7 or smaller; two-sided paired t-tests).

*
Due to different intensity ranges among the original IBSR images, RMS values were computed from images that were globally normalized to

identical intensity means and standard deviations.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 February 01.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Rohlfing Page 22

TABLE IV

Tissue class overlaps after registration

Tissue Affine FFD SyN CURT

CSF 0.145 ± 0.023† 0.320 ± 0.061† 0.329 ± 0.042† 0.435 ± 0.043

GM 0.559 ± 0.036† 0.705 ± 0.044† 0.722 ± 0.034 0.721 ± 0.023

WM 0.482 ± 0.027† 0.653 ± 0.060† 0.670 ± 0.033† 0.678 ± 0.031

Values are mean ± standard deviation of Jaccard index, J, for each tissue between reference and co-registered moving images over all 306 pairwise,

directed registrations of the 18 IBSR images to one another.

†
marks results significantly different from those obtained by CURT (p < 10−6; two-sided paired t-tests).
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TABLE V

Region label overlaps after registration

Region Affine FFD SyN CURT

leftCerebralWhiteMatter 0.47 ± 0.03 0.65 ± 0.06 0.66 ± 0.04 0.23 ± 0.01

leftCerebralCortex 0.52 ± 0.04 0.68 ± 0.05 0.69 ± 0.04 0.22 ± 0.01

leftLateralVentricle 0.38 ± 0.11 0.68 ± 0.13 0.70 ± 0.10 0.02 ± 0.01

leftInferiorLateralVentricle 0.06 ± 0.05 0.15 ± 0.08 0.19 ± 0.01 0.00 ± 0.00

leftCerebellumWhiteMatter 0.48 ± 0.05 0.57 ± 0.12 0.67 ± 0.04 0.01 ± 0.01

leftCerebellumCortex 0.60 ± 0.06 0.75 ± 0.06 0.79 ± 0.04 0.03 ± 0.01

leftThalamus 0.66 ± 0.07 0.73 ± 0.05 0.76 ± 0.04 0.01 ± 0.00

leftCaudate 0.48 ± 0.10 0.62 ± 0.09 0.65 ± 0.09 0.00 ± 0.00

leftPutamen 0.57 ± 0.09 0.69 ± 0.06 0.74 ± 0.03 0.01 ± 0.00

leftPallidum 0.47 ± 0.10 0.53 ± 0.10 0.61 ± 0.05 0.00 ± 0.00

leftHippocampus 0.40 ± 0.09 0.55 ± 0.07 0.58 ± 0.06 0.00 ± 0.00

leftAmygdala 0.37 ± 0.12 0.46 ± 0.10 0.50 ± 0.08 0.00 ± 0.00

leftAccumbens 0.31 ± 0.13 0.42 ± 0.13 0.49 ± 0.08 0.00 ± 0.00

leftVentralDC 0.53 ± 0.08 0.61 ± 0.06 0.64 ± 0.05 0.00 ± 0.00

rightCerebralWhiteMatter 0.47 ± 0.03 0.65 ± 0.06 0.66 ± 0.04 0.23 ± 0.01

rightCerebralCortex 0.52 ± 0.04 0.67 ± 0.05 0.69 ± 0.04 0.22 ± 0.01

rightLateralVentricle 0.36 ± 0.11 0.66 ± 0.12 0.68 ± 0.10 0.01 ± 0.01

rightInferiorLateralVentricle 0.07 ± 0.05 0.14 ± 0.08 0.19 ± 0.09 0.00 ± 0.00

rightCerebellumWhiteMatter 0.47 ± 0.06 0.57 ± 0.11 0.66 ± 0.04 0.01 ± 0.01

rightCerebellumCortex 0.59 ± 0.07 0.75 ± 0.06 0.79 ± 0.03 0.03 ± 0.01

rightThalamus 0.67 ± 0.07 0.72 ± 0.06 0.76 ± 0.05 0.01 ± 0.00

rightCaudate 0.49 ± 0.10 0.60 ± 0.10 0.63 ± 0.10 0.00 ± 0.00

rightPutamen 0.59 ± 0.07 0.67 ± 0.07 0.75 ± 0.03 0.01 ± 0.00

rightPallidum 0.49 ± 0.09 0.51 ± 0.11 0.62 ± 0.04 0.00 ± 0.00

rightHippocampus 0.40 ± 0.10 0.56 ± 0.07 0.60 ± 0.06 0.00 ± 0.00

rightAmygdala 0.38 ± 0.12 0.43 ± 0.12 0.49 ± 0.09 0.00 ± 0.00

rightAccumbens 0.27 ± 0.14 0.40 ± 0.13 0.48 ± 0.08 0.00 ± 0.00

rightVentralDC 0.53 ± 0.08 0.61 ± 0.07 0.64 ± 0.05 0.00 ± 0.00

thirdVentricle 0.34 ± 0.11 0.48 ± 0.10 0.52 ± 0.09 0.00 ± 0.00

fourthVentricle 0.29 ± 0.14 0.54 ± 0.08 0.59 ± 0.07 0.00 ± 0.00

brainStem 0.63 ± 0.08 0.80 ± 0.04 0.81 ± 0.03 0.01 ± 0.00

Values are mean ± standard deviation of Jaccard index, J, for each region label between reference and co-registered moving images over all 306

pairwise, directed registrations of the 18 IBSR images to one another. Only labels are listed here that appear in all 18 IBSR images, i.e., labels such

as “lesion” and “vessel” have been excluded.
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TABLE VI

Inverse consistency errors

Affine FFD SyN CURT

Inverse Consistency Error [mm] 25.8 ±16.3 26.2 ± 15.1 26.2 ± 16.2* 6.4 ± 9.0

Values are mean ± standard deviation of inverse consistency errors in mm over 306 registrations per algorithm.

*
For simultaneously computed forward and backward transformations per image pair, the consistency error for SyN is 0.03 ± 0.04mm. The larger

value in the table is due to inconsistent initial affine transformations when the algorithm is run separately for the forward and backward direction.

See text for details.
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