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ABSTRACT

The recent theoretical advances on compact data structures
(also called “sketches”) have raised the question of whether
they can effectively be applied to content-based image re-
trieval systems. The main challenge is to derive an algo-
rithm that achieves high-quality similarity searches while
using compact metadata. This paper proposes a new sim-
ilarity search method consisting of three parts. The first
is a new region feature representation with weighted L1 dis-
tance function, and EMD* match, an improved EMD match,
to compute image similarity. The second is a threshold-
ing and transformation algorithm to convert feature vectors
into very compact data structures. The third is an EMD
embedding based filtering method to speed up the query
process. We have implemented a prototype system with the
proposed method and performed experiments with a 10,000
image database. Our results show that the proposed method
can achieve more effective similarity searches than previous
approaches with metadata 3 to 72 times more compact than
previous systems. The experiments also show that our EMD
embedding based filtering technique can speed up the query
process by a factor of 5 or more with little loss in query
effectiveness.

Categories and Subject Descriptors:
H.3.3 [Information Storage and Retrieval]:
[Information Search and Retrieval]

General Terms: Algorithms, Design, Performance

Keywords:
image similarity, search, compact data structures

1. INTRODUCTION
During the past two decades, storage density has been

doubling about every 18 months, improving at the rate of
Moore’s law. If this trend continues, the capacity of a sin-
gle disk will reach 1 terabyte in 2007 and 1 petabyte in
2022 [16]. Such storage capacity will allow users to store
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hundreds of millions of images on a single disk. In order to
manage such large-scale image collections efficiently, it is be-
coming increasingly important that image retrieval systems
use highly compact data structures.

The main challenge of using compact data structures in
image retrieval is to devise methods to create and use highly
compact data structures while achieving high image retrieval
quality. The recent progress of theoretical studies on sketches
has motivated us to investigate how to achieve high-quality
and efficient similarity searches of image data with highly
compact data structures.

In this paper, we propose a new image similarity search
method with three components, addressing effectiveness, com-
pactness, and efficiency issues for whole-image search in
large-scale image collections:

• EMD* Match: a more effective region-based image
similarity measure that uses distance thresholding and
adjusted region weights when computing Earth Mover’s
Distance(EMD).

• Compact Data Structures: a thresholding and trans-
formation algorithm is designed to convert real-valued
feature vectors into very compact data structures. The
weighted L1 distance (with thresholding) of feature
vectors can be computed very efficiently using the com-
pact data structures.

• Filtering: an approximate EMD embedding algorithm
is proposed to embed the EMD of region vectors into
sketches for images. The sketches can be used to filter
out different images effectively and efficiently, reducing
query time substantially.

We have implemented the proposed method in a prototype
system and evaluated the method with an image database
with predefined sets of similar images. Our experimental
results show that the proposed method is quite effective.
The EMD* match is 17% - 76% more effective than other
region-based image similarity measures. The thresholding
and transformation algorithm can compact feature vectors
into metadata 3 to 72 times smaller than the region repre-
sentations of previous systems while achieving high-quality
similarity searches. Finally, we show that our filtering algo-
rithm based on approximate EMD embedding can speed up
the search time by a factor of 5 or more with little loss in
effectiveness.

The rest of the paper is organized as follows: We investi-
gate related work in Section 2. An overview of our method
is given in Section 3. We then explain our region represen-
tation and image similarity measure in Section 4. Section 5
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explains in details our thresholding and transformation al-
gorithm that generates very compact data structures. The
filtering algorithm based on approximate EMD embedding
is described in Section 6. Experimental results are presented
in Section 7. Finally, Section 8 concludes the paper.

2. RELATED WORK

2.1 Compact Data Structures
Much work has been done on compact data representa-

tions. The recent theoretical focus is to represent data com-
pactly via a sketch such that the sketch can be used to es-
timate some function on the original data. For example, a
distance function on pairs of data items could be estimated
by only examining the sketches of the data items. The ex-
istence of such a sketch depends crucially on the function
we wish to estimate. If such a sketching technique exists, it
gives a significant saving in storage space (since the sketches
are much smaller than the original data items) as well as
running time. Sketch constructions have been developed for
a number of purposes, including estimating set membership
[5], estimating similarity of sets [6], estimating distinct ele-
ments and vector norms [1, 12], as well as estimating string
edit distance [4]. It is shown in [8] how sketch constructions
can be derived from rounding techniques used in approxi-
mation algorithms. Many of these sketch constructions for
estimating similarity and distances can be viewed as em-
beddings (approximate distance preserving mappings) from
the data points to points in a normed space (usually L1 or
L2). Once such a mapping is obtained, known sketching
techniques for L1 or L2 can be applied.

We are interested in constructing mappings of images to
bit vectors with the Hamming distance as the distance mea-
sure (since Hamming distance of bit vectors can be com-
puted very efficiently). The Earth Mover’s Distance (EMD)
[22] has been proposed before as a useful metric for image
retrieval. It has been shown in [8, 14] how EMD on sets
of points in d-dimensional Euclidean space can be mapped
to L1 with some approximation. However the quality of
approximation deteriorates significantly with the number of
points and the dimension d of the point set. The work of
Indyk and Thaper [14] is related to our compact represen-
tation scheme for images. We note however, two crucial
differences: 1) Their technique applies to EMD on points in
Euclidean space. As we discuss later, we will need to use
EMD on a thresholded version of normed distance for which
new techniques are needed. 2) Their methods are designed
for low dimensional point sets since the performance dete-
riorates with dimension d; in contrast, we need to compute
EMD on sets of high dimensional bit vectors. Nevertheless,
we will use some of the ideas of [14] in devising our final
embedding of images into Hamming space. We elaborate on
this in Section 6.

2.2 Image Similarity Search
Many techniques have been proposed for image similar-

ity search, as surveyed in [10, 23, 24, 27]. A comprehensive
survey of existing work is outside the scope of this paper.
Instead, we examine region-based image retrieval (RBIR)
methods that are most related to our work, focusing on re-
gion representation and region-based image similarity mea-
sures.

2.2.1 Region Representation

Most RBIR systems use a combination of color, texture,
shape, and spatial information to represent a region. Blob-
world [7] represents each region by a 218-bin color histogram,
mean texture contrast and anisotropy, centroid, area, eccen-
tricity and orientation, which is a very complicated represen-
tation. NETRA [18] also uses a complicated region represen-
tation. It quantizes the RGB color space into 256 colors, and
each region’s color is represented by {(c1, p1), . . . , (cn, pn)},
where ci is the color code and pi is the fraction of that color
in the region. Texture is represented by normalized mean
and standard deviation of a set of Gabor wavelet transforma-
tions with different scales and directions. VisualSEEk [25]
extracts salient color regions using a back-projection tech-
nique and supports joint color-spatial queries. A selection of
166 colors in the HSV color space are used. Each region is
represented by a color set, region centroid, area, width and
height of the minimum bounding rectangle. WALRUS [21]
segments each image by computing wavelet-based signatures
for sliding windows of various sizes and then clusters them
based on the proximity of their signatures. Each region is
then represented by the average signature. Windsurf [2, 3]
performs 3-level Haar wavelet transformation in the HSV
color space and the wavelet coefficients of the 3rd level LL
subband are used for clustering. Each region is represented
by its size, centroid and corresponding covariance matrices.
SIMPLIcity [28] partitions an image into 4x4 blocks and
computes average color and wavelet coefficients in high fre-
quency bands.

Table 1 compares the region representation (with esti-
mated sizes) and region distance function used in some RBIR
systems. As we can see, most of these systems use compli-
cated region representations and some of them also use dis-
tance functions that are expensive to compute. Our method
uses much more compact data structures to represent each
region and region distance can be calculated very efficiently
by XORing operations.

2.2.2 RegionBased Image Similarity Measure

Current region-based image similarity measures can be
roughly divided into three categories:

• Independent best match: Systems such as Blobworld
and NETRA find the best matched region for each
query region and calculate the overall similarity score
using fuzzy-logic operations or weighted sum. Since
each query region is matched independently, multiple
regions in the query image might be matched to the
same region in a target image, which is undesirable
in many cases. As an extreme example, consider an
image A full of red balloons and a very different image
B with a red ball in it. Since each red balloon in A
matches the red ball in B very well, these two images
will be considered very similar by independent best
match.

• One-to-one match: Systems like Windsurf and WAL-
RUS consider matching one set of regions to another
set of regions and require that each region can only be
matched once. For example, Windsurf uses the Hun-
garian Algorithm to assign regions based on region dis-
tance. Region size is then used to adjust two match-
ing regions’ similarity. Image similarity is defined as
the sum of the adjusted region similarity. One-to-One
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System Region Representation Distance Function Estimated Size
per region

218-bin color histogram quadratic
Blobworld contrast, anisotropy Euclidean 900 bytes

centroid, area, eccentricity, orientation Euclidean
{(c1, p1), . . . , (cn, pn)} O(n2)×Euclidean (n = 7)

NETRA {µ0,0, σ0,0, . . . , µs−1,k−1, σs−1,k−1} Euclidean (s = 4, k = 6)
fK(32-D), fR(32-D), fZ(64-D) Euclidean ⇒ 739 bytes

166-bit color vector quadratic (modified for bit vector)
VisualSEEk centroid, area Euclidean, L1 41 bytes

width, height of bounding box L2

area
Windsurf 12-D centroid (4 subbands, 3-D color space) Bhattacharyya metric 148 bytes

24-D covariance matrices

average color (L, U, V )
�

i wi(fi − f
′

i )
2

SIMPLIcity sqrt of 2nd-order moments, in 3 subbands
�

j wj(fj − f
′

J )2 36 bytes

normalized inertia of order 1 to 3
�

k wk(fk − f
′

k)2, then quantized

Table 1: Comparison of different RBIR systems’ region representation, distance function and estimated size.
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Figure 1: Method overview: main components and steps when inserting an image or querying an image.

match assumes good image segmentation so there is
good correspondence between two similar images’ re-
gions. But current segmentation techniques [9, 20] are
not perfect and regions do not always correspond to
objects. Moreover, it is hard to define an optimal seg-
mentation, as one image may need different segmenta-
tions when comparing to different images [11].

• EMD match1: Some systems[11, 15] use similarity mea-
sures based on the Earth Mover’s Distance (EMD).
Although EMD is a good measure for region match-
ing, its effectiveness is closely linked to the underlying
distance function used for pairs of regions as well as
the weight given to each region. Since these systems
directly use the region distance function as the ground
distance for EMD and use normalized region size as
the region weight, this creates problems such as regions
being weighted inappropriately. (We will elaborate on
this in Sections 3 and 6). As a result, these systems
do not use EMD very well.

1The Integrated Region Matching (IRM) proposed in SIM-
PLIcity is similar to EMD match.

To overcome the issues with the previous approaches, we
have developed a compact data representation, an improved
EMD, called EMD*, and an EMD embedding based filtering
method.

3. OVERVIEW OF OUR METHOD
Figure 1 shows the main components of our image simi-

larity search method and illustrates the steps an image goes
through when it is inserted into the system, or is submitted
as a query image.

When an image is inserted into the system, we first seg-
ment it into several homogeneous regions. For each region,
we extract a 14-dimensional feature vector, and then convert
it into a bit vector using the thresholding and transforma-
tion algorithm. This results in very compact representation
of each region, and the distance between two regions can
be calculated efficiently by XORing their region bit vectors.
Next, all the n region bit vectors along with their weights
are embedded into a single image feature vector, such that
the L1 distance on two images’ embedded feature vectors
approximates the EMD* between these two images. For
compactness and efficiency in distance calculation, the im-
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age feature vector is also converted into a bit vector. Both
the image bit vector and the individual region bit vectors
(with region weights) are stored into a database for future
image retrieval.

A query image goes through the same process of segmen-
tation, feature extraction, bit vector conversion, embedding,
and bit vector conversion. Then the image bit vector is used
to do filtering in the image database and obtain the top K
images that are closest to the query image’s bit vector. We
calculate exact EMD* match between the query image and
each of the K images using their region bit vectors. Finally
the top k images with smallest EMD* match to the query
image are returned.

4. REGION REPRESENTATION AND IM

AGE SIMILARITY MEASURE

4.1 Region Feature Vector Representation
We represent each region with a simple feature vector that

includes two kinds of information about a region: color mo-
ments and bounding box information.

Color moments The idea of using color moments to rep-
resent a color distribution was originally proposed in
[26]. It is a compact representation and it has been
shown in [19] that the performance of color moments
is only slightly worse than high-dimensional color his-
tograms. We extract the first three moments from
each channel in the HSV color space, resulting in a
9-dimensional color vector.

Bounding box is the minimum rectangle covering a re-
gion. For each region, we calculate its bounding box
and obtain the following information:

x bounding box width
y bounding box height
p #pixels in a region

r = x /y aspect ratio
s = x · y bounding box size
a = p /s area ratio
(cx, cy) region centroid

We use a 5-dimensional vector to represent a region’s
bounding box information: (ln(r ), ln(s ), a , cx, cy).

Weighted L1 distance is used for both the color vectors and
the bounding box vectors. We can easily concatenate a re-
gion’s 9-D color vector and 5-D bounding box vector into
a 14-D vector and the distance between two regions is the
weighted L1 distance between their 14-D vector representa-
tions.

4.2 Image Similarity Measure: EMD* Match
We design an image similarity measure based on Earth

Mover’s Distance(EMD), which is a flexible similarity mea-
sure between multidimensional distributions. Given two dis-
tributions represented by sets of weighted features and a dis-
tance function between pairs of features, EMD reflects the
minimal amount of work needed to transform one distribu-
tion into another by moving distribution “mass” (weights)

around. Consider distributions Q = {(q1, w
Q
1

), . . . , (qm, wQ
m)}

and R = {(r1, w
Q
1

), . . . , (rn, wR
n )}, where the pair (qi, w

Q
i )

denotes that distribution Q has weight wQ
i for feature qi.

We will assume that the weights are normalized, i.e. they
sum up to 1. Thus,

�
i wQ

i =
�

j wR
j = 1. The EMD be-

tween distributions Q and R is computed as follows:

EMD(Q, R) = min �
i

�
j

fij · d(qi, rj)

where fij are non-negative and satisfy the conditions:

∀i �
j

fij = wQ
i ; ∀j �

i

fij = wR
j

Note that EMD can be computed via (weighted) bipartite
matching, but this is a relatively expensive operation.

As mentioned in related work, a couple of RBIR systems
have used “EMD match”-based image similarity measures
where the region distance function is used as the ground
distance of EMD and normalized region size is used as re-
gion weight. However, as we explain below, current “EMD
match”-based image similarity measures do not use EMD
appropriately. In particular, the distance function and re-
gion weight information that are inputs to EMD are inap-
propriate.

The first observation is that a region’s importance in an
image is not proportional to that region’s size. For exam-
ple, a large region (e.g. front door) usually should not be
considered much more important than a small region (e.g. a
baby). After considering various region weighting schemes,
we decide to use the normalized square root of region size as
each region’s weight, which reduces the difference between
small and large regions, and assigns suitable weights in most
segmentation scenarios. We pick weights wi for regions Qi

such that

wi ∝ sqrt(area(Qi))

�
i

wi = 1

A second observation is that similar images may still have
very different regions (e.g. the same baby with a different
toy). If we simply use the region distance function, two sim-
ilar images may be considered different only because they
have two very different regions. To address this problem,
distance thresholding is used after we calculate the distance
between two regions. Roughly speaking, if the distance be-
tween two regions is larger than a threshold δ, we use δ as
the region distance. By setting an upper bound on region
distance, we reduce the effect that an individual region can
have on the whole image, making our image similarity mea-
sure more robust.2

Based on the two observations, we define image dissim-
ilarity as the EMD using square root region size as region
weight, and thresholded region distance as the ground dis-
tance function. We call this measure “EMD* match”-based
image similarity measure.

5. COMPACT DATA STRUCTURES
In this section, we propose a thresholding and transfor-

mation algorithm that approximates weighted (and thresh-
olded) L1 distance of real-valued feature vectors with Ham-
ming distance of bit vectors. As we can see, the bit vector

2Note that this technique is designed for whole image match-
ing instead of partial matching, where the user only wants
to match one or more particular regions.
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representation is much more compact than the real-valued
feature vector representation; and it is also much faster to
calculate Hamming distance of bit vectors (XORing bits)
than weighted (and thresholded) L1 distance of feature vec-
tors (floating point operations).

Algorithm 1 Generate N × K Random (i, t) Pairs

input: N, K, d, l[d], u[d], w[d]
output: p[d], rnd i[N ][K], rnd t[N ][K]

pi = wi × (ui − li); for i = 0, . . . , d − 1
normalize pi s.t. Σd−1

i=0
pi = 1.0

for (n = 0; n < N ; n + +) do
for (k = 0; k < K; k + +) do

pick random number r ∈ [0, 1)
find i s.t. Σi−1

j=0
pi <= r < Σi

j=0 pi

rnd i[n][k] = i
pick random number t ∈ [li, ui]
rnd t[n][k] = t

end for
end for

We first describe how to generate bit vectors from d-
dimensional vectors such that the expected Hamming dis-
tance between two bit vectors produced is proportional to
the weighted L1 distance between the corresponding vectors.
In order to do this, we describe how to generate a single bit
from each d-dimensional vector such that the probability
that the bit produced is different for two vectors is pro-
portional to their weighted L1 distance. We produce the
required bit vectors by repeating this process to produce
several bits and concatenating them together. Suppose we
want to compute weighted L1 distance for d-dimensional
vectors, where the ith coordinate is in the range [li, hi]
and has weight wi. Let T = Σiwi × (hi − li), and pi =
wi × (hi − li)/T . Note that Σipi = 1. To generate a sin-
gle bit, pick i ∈ [0, d− 1] with probability pi, pick a uniform
random number t ∈ [li, hi]. For each vector v = (v1, . . . , vd),

bit = � 0 if vi < t
1 if vi >= t

Algorithm 2 Convert Feature Vector to N-Bit Vector

input: v[d], N, K, rnd i[N ][K], rnd t[N ][K]
output: b[N ]

for (n = 0; n < N ; n + +) do
x = 0
for (k = 0; k < K; k + +) do

i = rnd i[n][k]
t = rnd t[n][k]
y = (vi < t ? 0 : 1)
x = x ✁ y

end for
bn = x

end for

Note that an (i, t) pair determines the value of one bit for
each vector. To make the transformation consistent across
all vectors, for each bit we generate, we must apply the
same (i, t) pair to each vector. The process of generating

(i, t) pairs is described in Algorithm 1. Here, we generate
NK such pairs where N is the size of the final bit vector we
desire (after thresholding) and K is a parameter which will
be determined later.

Next we transform the distance function so the distance
is thresholded at a given threshold δ. Algorithm 1 generates
NK (i, t) pairs which give rise to N groups of K bits each.
We produce a single bit from each group of K bits by ap-
plying a hash function to them. The hash function could be
XOR, or some other random hash function. We later show
that this achieves the thresholding we wanted.

An implementation of the algorithm is shown here. Al-
gorithm 1 is the initializing process, where N × K random
(i, t) pairs are generated. Then for each feature vector, Al-
gorithm 2 is called to convert the feature vector to a N-bit
vector.

We now show that in the first step, the expected distance
between bit vectors produced is the weighted L1 distance of
the original vectors. This follows from the following lemma
and linearity of expectation.

Lemma 1. If the weighted L1 distance between two vec-
tors u and v is x, then the probability that the two vectors
generate different bits given the same (i, t) pair is p = x/T .

Proof. Let ri = hi − li. Given two vectors u and v,
let bit(u) and bit(v) be the bits generated for u and v re-
spectively. Let Ci denote the event that coordinate i is
picked in the bit generation process. Note that Pr[Ci] =
pi = wi × ri/T . Given that coordinate i is picked, the
threshold value t is chosen uniformly in the interval [li, hi].
Also the only values of t for which bit(u) 6= bit(v) are t ∈
[min(ui, vi), max(ui, vi)]. Hence,

Pr[bit(u) 6= bit(v)|Ci] = |ui − vi|/ri

Pr[bit[u] 6= bit(v)] =
d−1

�
i=0

Pr[bit(u) 6= bit(v)|Ci] × Pr[Ci]

=

d−1

�
i=0

wi × |ui − vi|/T = x/T

We now analyze the thresholding process we described. For
two vectors u and v, we express the probability that the bit
produced (after hashing a group of K bits) is different for u
and v in terms of the weighted L1 distance between u and
v.

Lemma 2. If the weighted L1 distance between two vec-
tors u and v is x, and if XOR is used as the hashing function,
then the probability that the bit generated after hashing the
K bits is different for u and v is q = 0.5(1 − (1− 2x/T )K).

Proof. Let p = x/T be the probability that the jth bit
generated for vectors u and v is different. Note that the XOR
of the K bits generated is different iff an odd number of the
K bits generated are different. Hence, the probability q that
the XOR of the K bits generated is different for vectors u
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and v is given by the expression

�
odd j � K

j ✁ pj(1 − p)K−j

=
1

2
�

j � K

j ✁ pj(1 − p)K−j

−
1

2
�

j

(−1)j � K

j ✁ pj(1 − p)K−j

=
1

2
(1 − (1 − 2p)K) = 0.5(1 − (1 − 2x/T )K)

Figure 2 shows the fraction of different bits q as a function
of the weighted L1 distance x for different K values. The T
value here is 18. When K = 1, q increases linearly with x.
When K > 1, we can see that the function is approximately
linear initially and then flattens out. The larger the K value,
the earlier it starts to “bend”. If we want the flattening to
happen at around δ, then we should pick K to be about
T/2δ.

6. FILTERING
In order to perform similarity searches on a large image

database, we propose a filtering method via approximate
EMD embedding. The goal is to find a small candidate im-
age set for the EMD* match by filtering out most of the
images which are very different from the query image. The
challenge is to quickly find a candidate image set that con-
tains most of the similar images.

Previous filtering methods do not work well. The first
kind of filtering is to index individual regions and combine
the filtering results of all the regions to form the candidate
image set. This approach is not effective, because it loses
the information of image-level similarity. The second kind
is to use a technique to embed EMD into L1 distance and
then use Locality Sensitive Hashing (LSH) to find the near-
est neighbor(s) in the latter space [14]. This method has
interesting provable properties, but it does not work well
with compact data structures nor does it consider distance
thresholding on real-valued vectors.

We have designed a new EMD embedding technique that
converts a set of region bit vectors into a single image fea-
ture vector, and the L1 distance on the embedded image

feature vector approximates the EMD on the original region
bit vectors.

The basic step involves picking several random positions
(p1, . . . , pn) and checking for a particular bit pattern
(b1, . . . , bn) at these positions. Given an image

I = {(r1, w1), . . . , (rk, wk)}

where ri is the bit vector for the ith region and wi is its
weight, and a random pattern

P = {(p1, b1), . . . , (ph, bh)}

where pj ∈ 0, N − 1 and bj ∈ 0, 1, we say region ri fits
pattern P if

ri,pj
= bj for j = 1, 2, . . . , h

Here ri,pj
denotes the pjth bit of vector ri. We define the

matched weight of image I wrt. pattern P as the sum of the
weights of the regions in image I that fit pattern P :

MW (I, P ) = �
i

wi ∀i st. ri fits pattern P

In the example below, if we pick random positions 3, 5 and
7, and random bit pattern “011”, both r1 and r3 fit the
pattern (shown in bold numbers), so the matched weight is
0.1 + 0.3 = 0.4.

1 2 3 4 5 6 7 8 wi

r1 1 0 0 1 1 0 1 0 0.1
r2 0 0 1 1 0 1 1 0 0.6
r3 0 1 0 0 1 0 1 1 0.3

MW 0.4

Intuitively, if two region vectors are similar, they have more
bits in common than other regions. So there is a higher
chance that two similar regions both fit (or not fit) a ran-
dom pattern. Given two similar images, each random pat-
tern picks out the regions in the two images that are similar,
in effect matching similar regions to each other. If two im-
ages are similar, we expect their matched weight wrt. a
random pattern to be close to each other. We will obtain
a vector for every image by listing the matched weights for
a number of randomly chosen patterns, and distances be-
tween images will be computed by L1 distances between
these image vectors. When sufficiently many random pat-
terns are used to generate the image vectors, we expect the
L1 distance between image vectors to be able to distinguish
between similar and dissimilar images.

Algorithm 3 Generate M H-bit Random Patterns

input: M, H,N(region bit vector length)
output: P [M ][H ], B[M ][H ]

for (i = 0; i < M ; i + +) do
for (j = 0; j < H ; j + +) do

pick a random position p ∈ [0, N − 1]
pick a random bit b ∈ {0, 1}
P [i][j] = p
B[i][j] = b

end for
end for

We comment on the relationship of our techniques to
the EMD embedding proposed by [14]. Our techniques are
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designed for distributions on high dimensional bit vectors,
while their method is described for distributions of points
in Rd, where d is small. Roughly, they decompose the space
into collections of disjoint d-dimensional cubes. In fact they
have a hierarchy of decompositions for different granulari-
ties. For each cube in this decomposition, they calculate
the weight of the distribution that falls into this cube and
build a vector by listing these counts (suitably weighted).
Since we are working with high dimensional bit vectors,
there is no decomposition into cubes that we can use. In
our technique, the idea of computing the matched weight
for a random pattern is analogous to computing the weight
that falls into a cube. The embedding in [14] uses differ-
ent levels of granularity and the weights assigned to them
are exponentially decreasing. This creates problems when
sampling coordinates to estimate weighted L1 distance by
hamming distance of compact bit vectors; the problem is
that the random variables involved have high variance. Our
scheme can be thought of as using only one level of granu-
larity and this is designed to get around this problem with
using many different levels.

The implementation of the embedding algorithm is di-
vided into two pieces. The first is Algorithm 3 which gen-
erates M sets of random positions and picks a random bit
pattern for each set.

The second piece is Algorithm 4 which, given an image
represented by a list of region bit vectors and their corre-
sponding weights, computes its EMD embedding using the
random patterns generated by Algorithm 3,

After the embedding, each image is represented by a M -
dimensional real-valued vector. We further convert it to a
bit vector using the same algorithm we proposed for con-
verting region feature vectors to region bit vectors (see Sec-
tion 4). As a result, each image is now represented by a
compact bit vector and the Hamming distance between two
images can be efficiently computed by XORing their bit vec-
tors. Our filtering algorithm ranks images based on the
Hamming distance of their embedded image bit vectors to
the query image’s bit vector and return the top K images
for exact EMD computation.

7. EXPERIMENTAL RESULTS
We are interested in answering the following questions:

• How effective is our EMD* match compared to other
region-based image similarity measures?

• How compact can the data structure be in order to
achieve high-quality similarity searches?

• How effective and efficient is our embedding and filter-
ing algorithm?

This section first describes our evaluation methodology
and then presents our experimental results to answer each
of the questions above.

7.1 Evaluation Methodology

Image Collection

We have chosen an image collection3 consisting about 10,000
general-purpose images. The main reason for choosing this

3http://wang.ist.psu.edu/docs/related/.

Algorithm 4 Image EMD Embedding

input: k, r[k][N ], w[k], M, H,P [M ][H ], B[M ][H ]
output: MW [M ]

for (i = 0; i < M ; i + +) do
mw = 0.0
for (j = 0; j < k; j + +) do

h = 0
while (h < H) && (r[j][P [i][h]] == B[i][h]) do

h + +
end while
if h == H then

mw = mw + w[j]
end if

end for
MW [i] = mw

end for

image database is that a group of researchers defined 32
sets of similar images for this image collection 4. These sets
represent different categories and have different number of
similar images in each set. Our experiments use these 32
sets of similar images as the ground truth in our evaluation.

We have excluded black and white images because our
implementation is designed for color image retrieval. The
result image database has 9877 images. The image segmen-
tation tool we use is JSEG [9], and the tool’s default param-
eter setting is used. In total, 70702 regions are generated
from these images. The average number of regions per im-
age is 7.16, with the minimum being 1 and the maximum
being 57. Figure 3 shows the cumulative distribution (CDF)
of the number of regions, where the x axis (in log scale) is
the number of regions, and the y axis is the percentage of
images with at most x regions.
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Figure 3: Cumulative distribution function (CDF)
of #Regions in the segmented images.

Effectiveness Measure

The goal is to measure how effective a retrieval system is
in finding similar images. We have chosen an effectiveness
measure called average precision. Given a query q with k
relevant items while query q is excluded from the relevant

4http://dbvis.inf.uni-konstanz.de/research/projects/
SimSearch/effpics.html
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set, let ranki be the rank of the ith retrieved relevant item
(1 ≤ i ≤ k), then average precision is defined as follows:

avg. precision =
1

k

k

�
i=1

i

ranki

This measure incorporates information about the rankings
of items in the returned results, which is more suitable for
image retrieval. Also, it is a single-valued measure, mak-
ing it much easier to compare the effectiveness of different
systems.

This measure is more suitable than Precision and recall
which are widely used as effectiveness measures in informa-
tion retrieval. Precision and recall are defined as:

precision = |A ∩ R| / |A|

recall = |A ∩ R| / |R|

where A is the set of items retrieved by the system (the ac-
tual answer), and R is the set of items relevant to this query
(the ideal answer). The problem with precision vs. recall
curve is that it does not directly consider the ranking of each
relevant item in the returned results. In addition, the Preci-
sion vs. recall curve is not a single-valued measure, making
it difficult to compare system effectiveness when we perform
multiple queries with various relevant set sizes. The average
precision measure we use can be interpreted as follows: we
consider the smallest prefix of the returned ranked order-
ing that contains exactly i relevant results and compute the
precision at this point. The average precision is the average
of the precision values obtained thus for i = 1, . . . , k.

Experimental Setup

All our experiments are done on a PC with a 933MHz Pen-
tium III Coppermine CPU, 1GBytes of memory and two
60GB Maxtor IDE disks. For each experiment, we perform
32 queries and results are averaged over the 32 queries. Since
our bit vector transformation algorithm and embedding al-
gorithm is randomized, each experiment involving these two
random algorithms is repeated 5-10 times.

7.2 Effectiveness of EMD* Match
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Figure 4: Effectiveness comparison of different re-
gion match techniques, using 14-D region feature
vectors.

Figure 4 compares the effectiveness of different region
matching techniques. All of the matching techniques use

the same 14-D region feature vectors proposed in Section 4.
When region distance thresholding is used, color moments
distance is thresholded at 2.4 and bounding box distance is
thresholded at 1.5.

The figure shows that the average precision of the inde-
pendent best match (“Ind. match”) is 0.527. With our pro-
posed thresholding scheme, its average precision increases
to 0.558.

To compare with the one-to-one match (“1-1 match”), we
tested the image similarity measure proposed by Windsurf,
and region matching is done using the Hungarian algorithm.
Its average precision is only 0.350 when original region size
is used as region weight, and the number goes up to 0.436
when square root of region size is used as region weight.
Since Windsurf converts region distance d to region similar-
ity e−d/δd , in effect thresholds region distance, it does not
benefit from our distance thresholding scheme.

With the original EMD match 5 , the average precision is
0.496. This number improves to 0.548 when we use square
root region size as region weight. When region distance
thresholding is added, we further increase the number to
0.615. As we can see, the EMD* match technique we pro-
posed is 17% - 76% more effective than other region match-
ing techniques. Both region distance thresholding and square
root region size greatly improve the average precision, and
other matching techniques also benefit a lot from these two
schemes.

We also compare our EMD* match with SIMPLIcity[28].
We obtained the SIMPLIcity code and tested it on the same
set of image databases. Since SIMPLIcity did not work for
two of the query images, only 30 queries are used when com-
paring to SIMPLIcity. SIMPLIcity achieves an average pre-
cision of 0.331, as compared to EMD* match’s 0.629 average
precision.

System Size Ratio

Blobworld 900 bytes 72
NETRA 739 bytes 59.1

VisualSEEk 41 bytes 3.3
Windsurf 148 bytes 11.8

SIMPLIcity 36 bytes 2.9
Our System 100-bit 1

Table 2: Compactness of region representation: A
comparison.

7.3 Compactness of Region Representation
Figure 5 shows the average precision using different sized

region bit vectors, as compared to the original 14-D region
feature vector. All of them use EMD* match. Compared
with the 14-D (448-bit) region feature vector, a factor of
more than 4 reduction in region representation size can be
achieved without much loss in effectiveness. As shown in
Table 2, our 100-bit region representation is 3 - 72 times
more compact than the region representation used by other
RBIR systems.

7.4 Effectiveness and Efficiency of Filtering
We test our approximate EMD embedding algorithm on

various sized region bit vectors, using different M (number
5http://robotics.stanford.edu/∼rubner/emd/default.htm
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Figure 5: Effectiveness comparison of different re-
gion representations, using EMD* match.
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Figure 6: Effectiveness comparison of approximate
EMD embedding using different number of random
patterns. The region bit vectors used are 100-bit
vectors. Each random pattern looks at H = 3 posi-
tions.

of random patterns) and different H (number of positions
in each pattern) values. Figure 6 shows the effectiveness of
our embedding algorithm using different number of random
patterns (and H = 3) to embed images represented by 100-
bit region vectors. For each set of embedded image vectors,
effectiveness is calculated by ranking images based on the
L1 distance between two images’ embedded feature vectors.
¿From the numbers, we can see that although the embedding
introduces distortion to the original EMD, it still has fairly
good average precision.

We pick the embedded vectors generated using 500 ran-
dom patterns and convert the 500-dimensional embedded
image feature vectors into 500-bit, 800-bit and 1000-bit vec-
tors respectively, to test our filtering algorithm. Figure 7
and Figure 8 show the effectiveness and average query time
using different sized bit vectors, different number of filtered
images, and with or without exact EMD* calculation and
reranking. We can see that filtering plus exact EMD* rerank-
ing works very well. Its effectiveness is almost as good as
exact EMD* match, while greatly reducing query time.

As shown in Table 3, without embedding and filtering,
EMD* match takes 0.698 seconds on average to finish a
query; with embedding and filtering, only 0.130 seconds is
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EMD* on the returned images. E.g. “b500 emd”
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Figure 8: Comparison of average query time using
different image bit vector sizes and different number
of images returned after filtering, with and without
exact EMD* on the returned images.

needed, a factor of more than 5 improvement in query speed.
Table 3 also lists the speed of feature vector to bit vector
transformation and EMD embeddings. The total amount
of time spend on these operations is only 271 µs, which is
negligible compared to the overall query time.

8. CONCLUSION
This paper reports our investigation on using compact

data structures for content-based image retrieval. We have
shown that our proposed method can achieve high-quality
similarity searches with highly compact data structures.

We have evaluated the effectiveness of each component
of our proposed method with our prototype system on an
image database. Our results show that the proposed EMD*
match is an effective measure, 17% - 76% more effective than
previously proposed region-based image similarity measures.

The experimental results show that our proposed thresh-
olding and transformation algorithm is an effective way to
create compact metadata for similarity searches. Even when
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query method speed

SIMPLIcity 0.449 s/query
exact EMD* match 0.698 s/query

EMD* match 0.130 s/query
w/ embedding and filtering

operation speed

region vector transformation 16 µs
14-D ⇒ 100-bit
EMD embedding 157 µs

100-bit rgn vec ⇒ 500-D img vec
image vector transformation 98 µs

500-D ⇒ 1000-bit
subtotal 271 µs

Table 3: Comparison of average query time and op-
eration speed.

such metadata for each region is 3 to 72 times smaller than
the representations used by previous systems, the image re-
trieval system can achieve higher quality similarity searches.

Finally, our results show that approximate EMD embed-
ding is an effective way to build sketches for filtering im-
ages for similarity searches. In our experiments, the filtering
method can speed up the search time by about a factor of 5
with little loss in similarity search effectiveness.

In the near future, we plan to further evaluate our method
with other image databases. SIMPLIcity uses wavelet trans-
formation which does not work well with low resolution im-
ages. We plan to compare our method with SIMPLIcity
using higher resolution images. Some theoretical analysis
would be helpful to better understand the square-root re-
gion weighting function and region distance thresholding.
We also plan to devise an index data structure for images
which would enable fast query answering without examining
the sketches of all images in the system. Since we produce
sketches for images which are bit vectors, in principle, it
should be possible to use known nearest neighbor search
data structures for L1 distance [13, 17, 8] in order to index
these sketches.
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