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Image Smoothing via L0 Gradient Minimization

Li Xu∗ Cewu Lu∗ Yi Xu Jiaya Jia

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Figure 1: L0 smoothing accomplished by global small-magnitude gradient removal. Our method suppresses low-amplitude details. Mean-
while it globally retains and sharpens salient edges. Even the high-contrast thin edges on the tower are preserved.

Abstract

We present a new image editing method, particularly effective for
sharpening major edges by increasing the steepness of transition
while eliminating a manageable degree of low-amplitude structures.
The seemingly contradictive effect is achieved in an optimization
framework making use of L0 gradient minimization, which can
globally control how many non-zero gradients are resulted in to
approximate prominent structure in a sparsity-control manner. Un-
like other edge-preserving smoothing approaches, our method does
not depend on local features, but instead globally locates impor-
tant edges. It, as a fundamental tool, finds many applications and
is particularly beneficial to edge extraction, clip-art JPEG artifact
removal, and non-photorealistic effect generation.
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1 Introduction

Photos comprise rich and well-structured visual information. In
human visual perception, edges are effective and expressive stimu-
lation, vital for neural interpretation to make the best sense of the
scene. In manipulating and understanding pictures, high-level in-
ference with regard to salient structures was intensively attended
to. Research following this line embodies generality and useful-
ness in a wide range of applications, including image recognition,
segmentation, object classification, and many other photo editing
and non-photorealistic rendering tasks.

∗Both authors contributed equally to this work.

(a) Abstraction (b) Pencil Sketch Rendering

Figure 2: Our L0 smoothing results avail non-photorealistic effect
generation.

We in this paper present a new editing tool, greatly helpful
for characterizing and enhancing fundamental image constituents,
i.e., salient edges, and in the meantime for diminishing insignif-
icant details. Our method relates in spirit to edge-preserving
smoothing [Tomasi and Manduchi 1998; Durand and Dorsey 2002;
Paris and Durand 2006; Farbman et al. 2008; Subr et al. 2009;
Kass and Solomon 2010] that aims to retain primary color change,
and yet differs from them in essence in focus and in mechanism.
Our objective is to globally maintain and possibly enhance the most
prominent set of edges by increasing steepness of transition while
not affecting the overall acutance. It enables faithful principal-
structure representation.

Algorithmically, we propose a sparse gradient counting scheme in
an optimization framework. The main contribution is a new strategy
to confine the discrete number of intensity changes among neigh-
boring pixels, which links mathematically to the L0 norm for in-
formation sparsity pursuit. This idea also leads to an unconven-
tional global optimization procedure involving a discrete metric,
whose solution enables diversified edge manipulation according to
saliency. The qualitative effect of our method is to thin salient
edges, which makes them easier to be detected and more visually
distinct. Different from color quantization and segmentation, our
enhanced edges are generally in line with the original ones. Even
small-resolution objects and thin edges can be faithfully maintained
if they are structurally conspicuous, as shown in Fig. 1.

The framework is general and finds several applications. We apply
it to compression-artifact degraded clip-art recovery. High quality
results can be obtained in our extensive experiments. Our method
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(a) BLF [1998] (b) LCIS [1999] (c) WLS [2008] (d) Total Variation (TV) [1992] (e) Ours

Figure 3: Signal obtained from an image scanline, containing both details and sharp edges. (a) Result of bilateral filtering. (b) Result of
anisotropic diffusion used in the LCIS system. (c) Result of WLS optimization. (d) Result of TV smoothing. (e) Our L0 smoothing result.

can also profit edge extraction, a fundamentally important opera-
tor, by effectively removing part of noise, unimportant details, and
even of slight blurriness, making the results immediately usable in
image abstraction and pencil sketch production, as shown in Fig.
2. In traditional layer decomposition, with an additional step to
avoid structure over-enhancement, our method is applicable to de-
tail enhancement based on separating layers, and possibly to HDR
tone mapping after parameter tuning. We show several examples
along with discussion of limitations that our method might cause
over-sharpening for large illumination variation spanning dozens
of pixels when strong smoothing is applied.

2 Background and Motivation

Edge-preserving smoothing can be achieved by local filter-
ing, including bilateral filtering [Tomasi and Manduchi 1998],
its accelerated versions [Paris and Durand 2006; Weiss 2006;
Chen et al. 2007] and relatives [Choudhury and Tumblin 2003;
Fattal 2009; Baek and Jacobs 2010; Kass and Solomon 2010]. Ro-
bust optimization-based approaches have also been advo-
cated, represented by the weighted least square optimization
[Farbman et al. 2008] and envelope extraction [Subr et al. 2009].
We discuss their properties using the 1D signal example (a scan-
line of a natural image) shown in Fig. 3.

Bilateral filtering is widely used for its simplicity and effective-
ness in removing noise-like structures. This method trades off be-
tween details flattening and sharp edge preservation, as discussed in
[Farbman et al. 2008]. Its result is shown in Fig. 3(a). Anisotropic
diffusion [Perona and Malik 1990; Black et al. 1998] is also de-
signed for suppressing noise while preserving important structures,
which involves an edge-stopping function to prevent smoothing
from crossing strong edges. The change of structures accumulates
and the output would converge to a constant-value image unless
being stopped halfway. One result is shown in Fig. 3(b).

Farbman et al. [2008] proposed a robust method with the weighted
least square (WLS) measure. The optimization framework with
edge preserving regularization is more flexible compared with lo-
cal filtering. Its result is shown in Fig. 3(c). Another type of edge
preserving regularization is total variation (TV) [Rudin et al. 1992],
which is widely used to remove noise from images. It however also
penalizes large gradient magnitudes, possibly influencing contrast
during smoothing. One example is shown in Fig. 3(d).

Subr et al. [2009] considered local signal extremes and used
edge-aware interpolation [Levin et al. 2004; Lischinski et al. 2006]
to compute envelopes. A smoothed mean layer is extracted by aver-
aging the envelopes, originated from a 1D Hilbert-Huang transform
(HHT). The method aims to remove small scale oscillations. Con-
trarily, our method targets globally preserving salient structures,
even if they are small in resolution.

Kass and Soloman [2010] used smoothed histogram to accelerate
local filtering and proposed the mode-based filters. Most recently,
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Figure 4: Correspondence between k and 1/λ in Eqs. (2) and (3).
The plot is obtained by trying different λ values in Eq. (3) and by
finding the corresponding k in the results after our optimization.

Paris et al. [2011] demonstrated that multi-scale detail manipula-
tion can be achieved using a modified Laplacian pyramid with co-
efficient classification. Our method differs from them on the overall
estimation process, and on the edge enhancement behavior as ex-
emplified in Fig. 3(e). We regard our method as complementary to
prior smoothing approaches.

Finally, interactive image editing needs to select regions of
interest with accurate boundaries. Graph-cut based meth-
ods [Rother et al. 2004; Li et al. 2004; Liu et al. 2009] and
segmentation [Maji et al. 2011; Arbelaez et al. 2011] were em-
ployed. To efficiently propagate scribbles, geodesic distance
[Criminisi et al. 2010] and diffusion distance [Farbman et al. 2010]
were used, by replacing the traditional color difference, to deal
with textured surfaces or those with complicated shapes. Intrigu-
ingly, user interaction can be performed more efficiently on our
edge-enhanced images after removing low-amplitude structures.

2.1 1D Smoothing

We enhance highest-contrast edges by confining the number of non-
zero gradients, while smoothing is achieved in a global manner.
To begin with, we denote the input discrete signal by g and its
smoothed result by f . Our method counts amplitude changes dis-
cretely, written as

c( f ) = #{p | | fp − fp+1| �= 0}, (1)

where p and p + 1 index neighboring samples (or pixels). | fp −
fp+1| is a gradient w.r.t. p in the form of forward difference. #{}
is the counting operator, outputting the number of p that satisfies
| fp− fp+1| �= 0, that is, the L0 norm of gradient. c( f ) does not count
on gradient magnitude, and thus would not be affected if an edge
only alters its contrast. This discrete counting function is central to
our method.

Note that the measure c( f ) alone is not functional. It is combined
in our method with a general constraint – that is, the result f should
be structurally similar to the input signal g – to fully exhibit the
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(a) BLF [Tomasi and Manduchi 1998] (b) BLF [Tomasi and Manduchi 1998] (c) WLS [Farbman et al. 2008] (d) WLS [Farbman et al. 2008]

(e) [Subr et al. 2009] (f) TV [Rudin et al. 1992] (g) Our result (λ = 2E −2) (h) Our result (λ = 2E−1)

Figure 5: 1D signal with spike-edges in different scales. (a)-(b) Results of Bilateral filtering with small- and large-range filters. (c)-(d)
Results of WLS optimization [Farbman et al. 2008] using weak and strong smooth parameters. (e) Result of Subr et al. [2009]. (f) Result of
TV smoothing [Rudin et al. 1992]. (g)-(h) Our results. The most significant one or more spikes can be retained with different λ in Eq. (3).

competence. We express the specific objective function as

min
f

∑
p

( fp −gp)2 s.t. c( f ) = k. (2)

c( f ) = k indicates that k non-zero gradients exist in the result. Eq.
(2) is very powerful to abstract structural information. Fig. 3(e)
shows the result with k = 6 by minimizing Eq. (2) through exhaus-
tive search. The resulted signal flattens details and sharpens main
edges. The overall shape is also in line with the original one be-
cause intensity change must arise along significant edges to reduce
as much as possible the total energy. It is observed that putting
edges elsewhere only raises the cost. This smoothing effect is ob-
viously dissimilar to those of prior edge-preserving methods. A
larger k yields a finer approximation, still characterizing the most
prominent contrast.

As the cost in Eq. (2) stems from the quadratic intensity differ-
ence term ( fp −gp)

2, it is not allowed that many pixels drastically
change their color. Low-amplitude structures thus can be primar-
ily removed in a controllable and statistical manner. Diminishing
salient edges is automatically prevented. A noteworthy feature of
this framework is that no matter how k is set, no edge blurriness will
be caused due to the avoidance of local filtering and of averaging
operation.

In practice, k in Eq. (2) may range from tens to thousands, espe-
cially in 2D images with different resolutions. To control it, we
employ a general form to seek a balance between structure flatten-
ing and result similarity with the input, and write it as

min
f

∑
p

( fp −gp)
2 +λ · c( f ), (3)

where λ is a weight directly controlling the significance of c( f ),
which is in fact a smoothing parameter. A large λ makes the result
have very few edges. To relate k and 1/λ presented respectively
in Eqs. (2) and (3), we plot in Fig. 4 their correspondence for the
example in Fig. 3. The number of non-zero gradients is monotone
with respect to 1/λ . We describe our 2D solver in Section 3.

Fig. 5 shows an example where three needle-like structures are
small in resolution but significant in amplitude. Our results are
shown in Fig. 5(g)-(h), containing complete one or more spikes
by varying λ , faithfully preserving scales. Other methods also pro-
duce excellent results. They, however, attenuate the spikes in differ-
ent degrees, as shown in (a)-(f). We regard our method as parallel

to these approaches. As shown later, our method can be used along
with bilateral filtering to produce new smoothing effects thanks to
the complementary behaviors.

2.2 2D Formulation

In 2D image representation, we denote by I the input image and by
S the computed result. The gradient ∇Sp = (∂xSp,∂ySp)

T for each
pixel p is calculated as color difference between neighboring pixels
along the x and y directions. Our gradient measure is expressed as

C (S) = #
{

p
∣

∣ |∂xSp|+ |∂ySp| �= 0
}

. (4)

It counts p whose magnitude |∂xSp|+ |∂ySp| is not zero. With this
definition, S is estimated by solving

min
S

{

∑
p

(Sp − Ip)
2 +λ ·C (S)

}

. (5)

In practice, for color images, the gradient magnitude |∂Sp| is de-

fined as the sum of gradient magnitudes in rgb. The term ∑(S− I)2

constrains image structure similarity.

Before describing our solver, we use a 2D example, created by
Farbman et al. [2008], to evaluate and compare smoothing per-
formance. The color visualized input in Fig. 6(a) is a piece-wise
constant image contaminated with intensive noise. (b)-(d) show re-
sults of three representative methods. Our method can globally find
dominant high contrast and generate the clean result shown in (e).

3 Solver

Eq. (5) involves a discrete counting metric. It is difficult to solve
because the two terms model respectively the pixel-wise difference
and global discontinuity statistically. Traditional gradient decent or
other discrete optimization methods are not usable.

We adopt a special alternating optimization strategy with half-
quadratic splitting, based on the idea of introducing auxiliary vari-
ables to expand the original terms and update them iteratively.
Wang et al. [2008] used the splitting scheme to solve a different
convex problem. Our algorithm, due to the discrete nature, contains
new subproblems. Both of them find their closed-form solutions. It
is notable that the original L0-norm regularized optimization prob-
lem is known as computationally intractable. Our solver is thus
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(a) Visualized input [2008] (b) [Subr et al. 2009] (c) BLF (d) WLS (e) Our result

Figure 6: Noisy image created by Farbman et al. [2008]. (a) Color visualized noisy input. (b) Result of Subr et al. [2009]. (c) Bi-
lateral filtering (BLF) result (σs = 12, σr = 0.45) [Tomasi and Manduchi 1998]. (d) Result of WLS optimization (α = 1.8, λ = 0.35)
[Farbman et al. 2008]. (e) Our result.

only an approximation, making the problem easier to tackle and
upholding the property to maintain and enhance salient structures.

We introduce auxiliary variables hp and vp, corresponding to ∂xSp

and ∂ySp respectively, and rewrite the objective function as

min
S,h,v

{

∑
p

(Sp − Ip)
2 +λC(h,v)+β ((∂xSp −hp)2 +(∂yS

p
−vp)

2)

}

,

(6)
where C(h,v) = #

{

p
∣

∣ |hp|+ |vp| �= 0
}

and β is an automatically
adapting parameter to control the similarity between variables (h,v)
and their corresponding gradients. Eq. (6) approaches (5) when β
is large enough. Eq. (6) is solved through alternatively minimizing
(h,v) and S. In each pass, one set of the variables are fixed with
values obtained from the previous iteration.

Subproblem 1: computing S The S estimation subproblem cor-
responds to minimizing

{

∑
p

(Sp − Ip)
2 +β ((∂xSp −hp)

2 +(∂ySp −vp)
2)

}

(7)

by omitting the terms not involving S in Eq. (6). The function is
quadratic and thus has a global minimum even by gradient decent.
Alternatively, we diagonalize derivative operators after Fast Fourier
Transform (FFT) for speedup. This yields solution

S = F
−1

(

F (I)+β (F (∂x)
∗F (h)+F (∂y)

∗F (v))

F (1)+β (F (∂x)∗F (∂x)+F (∂y)∗F (∂y))

)

, (8)

where F is the FFT operator and F ()∗ denotes the complex con-
jugate. F (1) is the Fourier Transform of the delta function. The
plus, multiplication, and division are all component-wise operators.
Compared to minimizing Eq. (7) directly in the image space, which
involves very-large-matrix inversion, computation in the Fourier
domain is much faster due to the simple component-wise division.

Subproblem 2: computing (h,v) The objective function for
(h,v) is

min
h,v

{

∑
p

(∂xSp −hp)
2 +(∂ySp −vp)

2)+
λ

β
C(h,v)

}

, (9)

where C(h,v) returns the number of non-zero elements in |h|+ |v|.
This apparently sophisticated subproblem can actually be solved
quickly because the energy (9) can be spatially decomposed where
each element hp and vp is estimated individually. This is the main
benefit of our splitting scheme, which makes the altered problem
empirically solvable. Eq. (9) is accordingly decomposed to

∑
p

min
hp,vp

{

(hp −∂xSp)
2 +(vp −∂ySp)

2 +
λ

β
H(|hp|+ |vp|)

}

, (10)

Algorithm 1 L0 Gradient Minimization

Input: image I, smoothing weight λ , parameters β0, βmax, and
rate κ
Initialization: S ← I, β ← β0, i ← 0
repeat

With S(i), solve for h
(i)
p and v

(i)
p in Eq. (12).

With h(i) and v(i), solver for S(i+1) with Eq. (8).
β ← κβ , i++.

until β ≥ βmax

Output: result image S

where H(|hp|+ |vp|) is a binary function returning 1 if |hp|+ |vp| �=
0 and 0 otherwise. Each single term w.r.t. pixel p in Eq. (10) is

Ep =

{

(hp −∂xSp)
2 +(vp −∂ySp)

2 +
λ

β
H(|hp|+ |vp|)

}

, (11)

which reaches its minimum E∗
p under the condition

(hp,vp) =

{

(0,0) (∂xSp)
2 +(∂ySp)

2 ≤ λ/β
(∂xSp,∂ySp) otherwise

(12)

Proof.

1) When λ/β ≥ (∂xSp)
2 +(∂ySp)

2, non-zero (hp,vp) yields

Ep((hp,vp) �= (0,0)) = (hp −∂xSp)
2 +(vp −∂ySp)

2 +λ/β ,

≥ λ/β ,

≥ (∂xSp)
2 +(∂ySp)

2. (13)

Note that (hp,vp) = (0,0) leads to

Ep((hp,vp) = (0,0)) = (∂xSp)
2 +(∂ySp)

2. (14)

Comparing Eqs. (13) and (14), the minimum energy E∗
p =

(∂xSp)
2 +(∂ySp)

2 is produced when (hp,vp) = (0,0).

2) When (∂xSp)
2 +(∂ySp)

2 > λ/β and (hp,vp) = (0,0), Eq. (14)
still holds. But Ep((hp,vp) �= (0,0)) has its minimum value
λ/β when (hp,vp) = (∂xSp,∂ySp). Comparing these two val-
ues, the minimum energy E∗

p = λ/β is produced when (hp,vp) =

(∂xSp,∂ySp). �

With the above derivation, in this step, we compute for each pixel
p the minimum energy E∗

p. Summing all of them, i.e., calculating

∑p E∗
p, yields the global optimum for Eq. (10).

Our alternating minimization algorithm is sketched in Alg. 1. Pa-
rameter β is automatically adapted in iterations starting from a
small value β0, it is multiplied by κ each time. This scheme is ef-
fective to speed up convergence [Wang et al. 2008]. In our method,
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(a) Input (b) BLF (σs = 4, σr = 0.2) (c) WLS (α = 2, λ = 0.6) (d) TV (λ = 7E−3) (e) Ours (λ = 0.015)

Figure 7: Smoothing results and comparison (best viewed in their original resolution).

(a) BLF (b) WLS (c) TV (d) Ours

Figure 8: Close-ups of the results with smoothing strength grad-
ually increasing from top to bottom. (a) Bilateral filtering (BLF)
results. (b) Results of the WLS method. (c) Results of total varia-
tion smoothing. (d) Our results.

β0 and βmax have fixed values 2λ and 1E5 respectively. κ that is set
to 2 is a good balance between efficiency and performance. We use
this value to generate most of our results. Only in Figs. 6 and 11,
we set it to 1.05 to allow more iterations in optimization, leading
to higher-quality results. The critical parameter λ is allowed to be
adjusted to effectively control the level of structure coarseness.

20-30 iterations are generally performed in our algorithm. Most
computation is spent on FFT in Eq. (8) and on pixel-wise al-
gebraic operations in Eq. (10). Overall, it takes 3 seconds to
process a single-channel 600× 400 image on an Intel Core2 Duo
CPU@2.13G with our Matlab implementation. The code is pub-
licly available in the project website.

3.1 More Analysis

Relationship to compressed sensing In our results, only salient
edges are preserved. The discrete counting idea conceptually re-
lates to sparsity measure in compressed sensing [Donoho 2006]. To
extract sparse descriptors from natural images, L0 norm was also
studied in sparse coding [Mairal et al. 2009]. In our work, the way
to exercise the idea is new with the counting gradient mechanism.
Note that trivially introducing the L0 norm metric cannot produce
reasonable results. Our approximation and development of the ef-

(a) Input (b) Quantization (c) MS filtering

(d) MS Segmentation (e) Ours (λ = 0.02) (f) Ours (λ = 0.04)

Figure 9: Result comparison with quantization and segmentation.
Edges in (b)-(d) are not well maintained owing to the lack of robust
boundary preservation.

(a) Input (b) Our result (λ = 8E−3)

(c) Closet mode filter (d) Dominant mode filter

Figure 10: Comparison with mode filters [Kass and Solomon
2010].

Image Smoothing via L0 Gradient Minimization        •        174:5
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(a) Input (b) Ours (λ = 0.0015, κ = 1.05)

(c) Gradient map of (a) (d) Gradient map of (b)

(e) Edge map of (a) (f) Edge map of (b)

Figure 11: Edge enhancement and extraction. Our method sup-
presses low-amplitude details and enhances high contrast edges.
The combined effect is to remove textures and sharpen main edges
even if their gradient magnitudes are not significant locally.

fective algorithm to achieve sub-problem global optimization are
central to the high practicality.

Difference with total variation and other regularizers Con-
tinuous Lp norm with p = 1 was enforced in total variation (TV)
smoothing to suppress noise. In this framework, strong smoothing
inevitably curtails originally salient edges to penalize their magni-
tudes. In our method, large gradient magnitudes are allowed by
nature with our discrete counting measure.

Lp norm regularization with 0.5 ≤ p ≤ 1 was also employed in
[Levin et al. 2007] to model the sparsity of natural image gradients.
The success of the WLS optimization attributes in part to the Lp

norm in the Iterative Reweighed Least Square (IRLS) framework.
Mathematically, Lp norm satisfies positive scalability constraint

‖ax‖
p
p = |a|p · ‖x‖

p
p , where a is a scalar. It yields ‖ax‖

p
p > ‖x‖

p
p

if |a| > 1, which implies that these norms still impose large penal-
ties on salient gradients. On the contrary, the L0 norm in Eq. (1)
satisfies #{|x|> 0}= #{|ax| > 0} for any non-zero a, and thus does
not comply with the positive scalability constraint. This major dif-
ference leads to new smoothing behavior.

Selectively penalizing image gradients is also related to the Weak
Membrane model of Blake and Zisserman [1987], which explicitly
represents discontinuity and adjusts gradients only in continuous
regions. Our method is dissimilar in formulation and in solver.

A natural image example is shown in Fig. 7 with comparison with
other state-of-the-art approaches. More are put in our project web-
site, produced with different parameters. Close-ups in Fig. 8 are
obtained by varying smoothing strength. Our results contain glob-
ally the most salient structures in different degrees.

(a) Input (b) Gradients of (a) (c) Edges of (a)

(d) Ours (λ = 0.03) (e) Gradients of (d) (f) Edges of (d)

Figure 12: Smoothing for edge detection. The input image (a) con-
tains complex structures, making edge extraction error-prone. On
our smoothed image (d), primary edges can be faithfully detected
using the same edge detector.

Comparison to quantization and segmentation To clarify the
difference, we use the example shown in Fig. 9, where the natu-
ral image contains a very small amount of noise, common in pho-
tos. Color quantization can neither suppress noise nor accurately re-
move details, yielding incorrect boundaries, as shown in Fig. 9(b).
Image segmentation seeks proper spatial partitioning. This set of
methods are widely known as difficult to maintain fine edges, in
particular for images with textures or details. Fig. 9(c) and (d) show
the results of mean-shift filtering [Comaniciu and Meer 2002] and
of its segmentation – formed by fusing – after trying a variety of
parameters. The boundaries are not aligned with the latent edges.
Our results produced with two λ values are shown in Fig. 9(e) and
(f). Edges are better preserved.

Comparison to local histogram-mode filtering The method of
Kass and Solomon [2010] is not based on smoothing neighboring
pixels, and thus can sharpen edges while reducing details. We show
in Fig. 10 a close-up comparison. The edges in our result (b) are in
line with the originally salient ones due to the global optimization.

4 Applications

Our method avails several applications due to its fundamentality
and the special properties in processing natural images. We apply it
to edge enhancement and extraction, non-photorealistic rendering,
clip-art restoration, and layer decomposition based manipulation.

4.1 Edge Enhancement and Extraction

Edge extraction from natural images is a basic manipulation
tool. Structured edges can be used for natural image editing
[Bae and Durand 2007] and high-level structure inference. High
quality results that are continuous, accurate, and thin are generally
very difficult to produce due to high susceptibility of edge detec-
tors to complex structures and inevitable noise. Our method is able
to suppress low-amplitude details, which remarkably stabilizes the
extraction process.

In the example shown in Fig. 11(a), the original ramp is visu-
ally distinct due to its high contrast. But the boundaries are not
very sharp with overall small-magnitude gradients, making them
indistinguishable from low-contrast details around. The gradient
magnitude image is shown in (c), linearly enhanced for visualiza-
tion. Applying the Canny edge detector to the original image pro-
duces a problematic result (e). Our method can remove statisti-
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(a) (b)

Figure 13: Image abstraction and pencil sketching results. Our
method removes the least important structures.

cally insignificant details by global optimization. The remaining
main structures in (d) are in the meantime slightly sharpened with
notably amplified gradients. With these two main advantages, the
detected edges in our result using the same operator can be much
more reliable, as shown in (f).

Fig. 12(a) shows another picture containing characters together
with background textures. Directly computing gradients on the in-
put image acquires many unwanted small-amplitude structures, as
shown in (b). They greatly affect binary Canny edge detector, as
shown in (c). Character boundaries are broken; some are even in-
correctly connected. Our smoothing result (d) has a cleaner gradi-
ent map (e). The edges in (f) computed by the same detector are
much better, in accordiance with human perception.

4.2 Image Abstraction and Pencil Sketching

Our smoothed image representation fits non-photorealistic abstrac-
tion with simultaneous detail flattening and edge emphasizing. Two
main steps are involved in traditional methods – that is, image
smoothing by mean-shift filtering [DeCarlo and Santella 2002] or
bilateral filtering [Winnemöller et al. 2006], and line extraction by
difference-of-Gaussian (DoG) filtering. The extracted lines are en-
hanced and are composed back to augment the visual distinctive-
ness of different regions. Our method can simultaneously achieve
the two goals. After smoothing images with a large λ weight, edge
detection can be directly applied.

In [2002], DeCarlo and Santella found that segmentation can-
not faithfully preserve edges, and therefore employed a means to
smooth them. This is unnecessary for our approach since it glob-
ally maintains edge position and magnitudes. Fig. 13 shows two
abstraction results.

We create pencil sketching also based on the extracted edge maps.
Two results are shown in Fig. 13. They are produced by randomly
adding small sketchy lines to the extracted edges, along the tan-

Figure 14: Quantitative evaluation of clip-art JPEG artifact re-
moval. X-axis: JPEG quality. Left Y-axis: PSNR. Right Y-axis:
SSIM values.

gent direction. The sketchy lines are with constant length and with
gray levels proportional to edge magnitudes. This simple approach
enhances significant edges, making structures visually pleasing.

4.3 Clip-Art Compression Artifact Removal

Our smoothing method is also advantageous for cartoon/clip-art
compression artifact removal thanks to its special ability to enhance
edges. We have experimented with many cartoon/clip-art images
with severe compression artifacts. To cope with them, prior knowl-
edge and a training process are required in [Wang et al. 2006]. Our
smoothing method in contrast can reliably restore these degraded
clip-arts without any learning procedure. The regularization weight
λ in this case is set within [0.02,0.1]. Note that general denoising
approaches do not suit this application as the compression artifacts
are strongly correlated with edges.

We evaluate a set of methods, including edge-preserving smooth-
ing, denoising [Rudin et al. 1992; Dabov et al. 2007], segmenta-
tion, and image analogue-based method [Wang et al. 2006] for re-
moving block-based discrete cosine transform (BDCT) artifacts on
clip-art images, and show one comparison in Fig. 16.

(a) Input (b) [Wang et al. 2006] (c) MS (d) Our result

Figure 15: Cartoon restoration results of Wang et al. [2006],
mean-shift (MS) segmentation, and of our method.

For quantitative comparison, we compressed 100 clip-art images by
standard JPEG with quality values ranging from 10 to 90, and cal-
culated the peak signal-noise ratio (PSNR) and structural similar-
ity (SSIM) [Wang et al. 2004] values after applying different meth-
ods to restoration. The statistics are plotted in Fig. 14. Both the
PSNR and SSIM scores indicate that our method performs well in
removing the JPEG artifacts. Note that the compression artifacts
locally shift color, which inherently reduce PSNR. The SSIM plots
show that some clip-art images compressed with quality 40, after
our restoration, can be structurally comparable to those with com-
pression quality 90+. Fig. 15 shows another comparison.

4.4 Layer-Based Contrast Manipulation

Contrast expansion or compression enables detail magnifica-
tion [Bae et al. 2006; Fattal et al. 2007] and HDR compression
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(a) Input image (b) Our result (c) Input (e) BLF(d) Wang et al. (h) MS (i) Ours(g) BM3D(f) TV

Figure 16: Cartoon JPEG artifact removal. (a) A JPEG compressed image with low quality 10. (b) Our restoration result. (c)-(g) Close-ups

of the input and of results of Wang et al. [2006], BLF, TV, BM3D denoising, mean-shift segmentation (MS) and of our method.

[Durand and Dorsey 2002]. These applications can be based on
layer decomposition, which separates main structures from details,
so that contrast editing in one layer would not affect the others.

In this process, blurring or sharpening edges risks producing visual
artifacts. If sharp edges in the base layer are blurred, “overshoot”
or “undershoot” may be caused after detail magnification or atten-
uation. It is very difficult to roll blurred edges back to their original
shapes afterwards in the base layer; so prior smoothing methods
endeavored to avoid seriously blurring salient edges.

Sharpening edges, on the contrary, may cause gradient reversal.
It is a less serious problem, because either gradient-domain
operation followed by image reconstruction [Bae et al. 2006]
or by directly modifying color [Durand and Dorsey 2002;
Kass and Solomon 2010] can be employed. Since our result may
contain enhanced edges, we filter images with different Gaussian
kernels and selectively fuse them. We propose an optimization
framework to automatically determine proper sizes of the Gaussian
kernels.

Edge Adjustment Our color-adjustment objective function is

min
σ

{

∑
p

(

(G(σp)∗S)− Ip

)2
+ γ

(

(∂xσp)
2 +(∂yσp)

2
)

}

, (15)

where G(σp) is a zero-mean Gaussian with standard deviation σp.
It is convolved with S, which is our edge-enhanced image, to re-
blur edges. ∗ is the convolution operator. In color images, Eq. (15)
measures the sum of all costs in the three channels.

The first term
(

(G(σp)∗S)− Ip

)2
enforces the similarity between

the re-blurred and original images. Its benefit is twofold. 1) For
flat regions in S with details removed, Gaussian blurring S would
not bring details back. 2) Sharpened edges in S will get blurred to
approximate the latent ones in I. Our goal is to find a suitable Gaus-
sian scale σ for each pixel. The second term (∂xσp)

2 + (∂yσp)
2

constrains scale map σ smoothness, avoiding occasional noise. γ is
set to 1E−3.

To solve (15) practically, we assign discrete values to σp, i.e.,
σ ∈ {0,1/3,2/3, · · · ,3}. Because we set Gaussian filter size to
6σ + 1, these σ values yield a set of Gaussian filters with differ-
ent integer sizes. Determining σ for each pixel thus becomes a
discrete labeling problem, which can be solved using graph cuts
[Boykov et al. 2001]. The similarity costs for each pixel are treated
as potentials for each node in the graph. The partial derivatives
are pairwise costs. More details about energy minimization can be

(a) Input I (b) Image S (c) Edge adjusted S′

(d) Input (e) Result on (b) (f) Result on (c)

Figure 17: Edge adjustment. Our smoothing result (b) contains
edges that are more steeply sloped than those in (a). Our adjust-
ment reduces the sharpness, shown in (c). Detail magnification
(2.5×) result in (f) with the base layer (c) is visually more com-
pelling than that in (e).

found in [Boykov et al. 2001]. After the σ map is computed, we
construct the base layer as S′ = G(σp)∗S for each pixel p.

Fig. 17 shows an example. The out-of-focus background are sharp-
ened (Fig. 17(b)). Taking it as the base layer and performing detail
magnification produce the result shown in (e). We automatically
adjust edges using the above method, and show the result S′ in (c).
Original edge appearance is well approximated without taking low-
amplitude details back, yielding a better detail-enhancement result
(f). Our edge adjustment takes less than 1 min to process a 600x800
image. It is less efficient than some other methods, e.g., bilateral fil-
tering, when handling blurred edges.

Detail Magnification Given the input image shown in Fig. 18(a),
we compute the detail magnification results by only enhancing gra-
dients in the detail layer. Our method can satisfyingly remove low-
amplitude structures from the base layer in controllable degrees, as
shown in Fig. 18(b)-(c). Fig. 18(d)-(e) show the magnification
results. Fig. 19 gives a comparison with other layer decomposi-
tion methods. The petals have rich textures, which are hard to be
completely moved to the detail layer by previous approaches. Our
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(a) Input (b) Base layer (λ = 7E−3) (c) Base layer (λ = 2E−2) (d) Boosted from (b) (e) Boosted from (c)

Figure 18: Base-detail separation and manipulation. (a) Input image. (b)-(c) Two base layers generated by our method. (d)-(e) Detail
magnification results with (b) and (c) being the base layers respectively.

(a) LCIS (b) BLF (c) WLS (d) TV (e) Ours

Figure 19: Base-detail separation and manipulation. From top to bottom: the base layers, the detail enhanced results (2.5×), and close-
ups. Parameters: LCIS (n = 1000, k = 0.25 for diffuse Kval, t = 1 for diffuse Tstep), BLF (σs = 4, σr=0.2), WLS (α = 1.2, λ = 0.8), TV
(λ = 2E−2), and ours (λ = 3E−2).

(a) BLF [Durand and Dorsey 2002] (b) WLS [Farbman et al. 2008] (c) [Subr et al. 2009] (d) Ours

Figure 20: Tone mapping results.
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(a) Tone mapping (λ = 0.4) (b) Tone mapping (λ = 0.07)

Figure 21: An excessively large λ causes unnatural reflection in (a)
in tone mapping. Result (b) is produced with a more appropriate λ .

(a) Input (b) Ours

(c) BLF (d) BLF + Ours

Figure 22: Novel smoothing effect to remove small-resolution

structures that are with large amplitudes. We propose applying bi-
lateral filtering and our method consecutively to accomplish it.

result contains nearly no low-amplitude edges, and no blurriness is
caused. More results are in the project website.

Tone Mapping HDR tone mapping is another popular ap-
plication that can be achieved by decomposing an HDR
image into a piece-wise smooth base layer conveying most
of the energy and a detail layer [Tumblin and Turk 1999;
Durand and Dorsey 2002; Choudhury and Tumblin 2003;
Li et al. 2005; Farbman et al. 2008]. The base layer is then
nonlinearly mapped to a low dynamic range and is re-combined
with the detail layer. The base layer is required to preserve sharp
discontinuities to avoid halos [Tumblin and Turk 1999] and be
smooth enough for reasonable contrast maintenance in range
compression, as discussed in [Choudhury and Tumblin 2003].

In the tone mapping framework of Durand and Dorsey [2002], we
use our smoothing method for layer decomposition, which is ap-
plied to the logarithmic HDR images. One result is shown in Fig.
20. Structures are preserved or enhanced in the tone mapped image.

It is notable that the quality of tone mapping results can be affected
by parameter tuning in our layer decomposition. It is possible for

(a) Input (b) Smoothing result

(c) Edge adjusted (d) Detail magnification

Figure 23: Wide illumination transition. Using a large λ in our
method makes textures be removed; the result is shown in (b). Based
on it, layer-based detail enhancement is achieved, shown in (d).

some results to present visual artifacts when the smoothing weight
λ is not appropriately set. One example is shown in Fig. 21(a),
where the floor is with a blocky reflection. It is caused by apply-
ing strong smoothing, which sends structures excessively to the de-
tail layer, making smooth gradients be flattened. Using a smaller
weight can dampen the problem, as illustrated in the result (b).

5 Discussion and Limitations

We have presented a well-principled and powerful smoothing
method based on the mechanism of discretely counting spatial
changes, which can remove low-amplitude structures and globally
preserve and enhance salient edges, even if they are boundaries of
very narrow objects.

As our system does not use spatial filtering or averaging, it can
be regarded as complementary to previous local approaches. In-
terestingly, when combined with local filtering, our method can
produce novel effects. For the example shown in Fig. 22, apply-
ing our method alone remains part of the fluff texture because it is
with high amplitude. Only bilaterally filtering the image contrarily
blurs main boundaries under strong smoothing. We propose first
applying bilateral filtering, which lowers the amplitudes of noise-
like structures more than those of long coherent edges, followed by
our method to globally sharpen prominent edges. Result in (d) only
contains large-scale salient edges, profiting main structure extrac-
tion and understanding.

Limitations Over-sharpening is sometimes unavoidable in chal-
lenging circumstances to remove details. In the example shown in
Fig. 23, strong illumination variation spans many pixels. To re-
move textures, our method may produce an over-sharpened result,
as exemplified in (b). This result, however, can still be used in detail
magnification. After edge adjustment as described in Sec. 4.4 and
taking the result as the base layer, we magnify only details. The
final result is shown in Fig.23(d). The aforementioned parameter
tuning for tone mapping is another limitation.
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