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Abstract
Objective: �e Achilles tendon (AT) is the longest and strongest tendon 

in the human body. Ultrasound (US) imaging including B-mode US and 
sonoelastography is valuable for examination of AT. Due to its long length, the 
AT is often divided into multiple successive and overlapping sections for US 
scanning. We aim to propose a coarse-to-�ne method for image stitching of these 
multiple US scans. 

Methods: First, a new similarity measure for rigid registration is proposed 
based on the boundary vector �eld, and it is maximized by using the particle 
swarm optimization for coarse alignment. Second, the log-domain di�eomorphic 
registration is followed for non-rigid re�nement. Finally, the weighted averaging 
is utilized for image blending. 

Results: Simulation experiments of non-rigid registration on 20 image pairs 
show that the horizontal, vertical and distance registration errors of our method 
are 1.422, 0.628, and 1.616 pixel, respectively. Non-rigid registration experiments 
on 11 pairs of real clinical US images demonstrate that the horizontal, vertical 
and distance registration errors are 1.514, 1.205, and 1.928 pixel, respectively. 
Registration results on both synthetic images and real clinical images by our 
method exceeded those of other four methods. After image blending on multiple 
AT sections of US scans, panoramas of AT are generated for dual modality 
visualization of both B-mode and sonoelastography. 

Conclusions: Our technique can accurately stitch multiple sections of both 
B-mode and elastographic US scans and provide panoramas of AT, which may 
help diagnosis and treatment evaluation of tendinopathies and tendon ruptures. 

Keywords
Achilles tendon, Log-domain di�eomorphic registration, Image stitching, 
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Introduction
�e Achilles tendon (AT) is the longest and strongest tendon in the human 

body [1, 2]. AT injuries consist of Achilles tendinopathies and tendon ruptures, 
which can dramatically a�ect the life quality of a patient [3, 4]. Making an accurate 
diagnosis and identifying the location and extent of the AT injuries is an essential 
step toward formulating e�ective treatment plan and evaluating prognosis. B-mode 
ultrasound (US) is bene�cial in the AT examination, thanks to its realtime image 
acquisition, high safety, low cost and wide availability [5]. Sonoelastography (SE) 
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is a new development of ultrasonography for assessment of 
tissue elasticity by measuring tissue strain or shear-wave speed. 
�ere has been increasing interest in SE for AT imaging [6, 7]. 
In addition to B-mode US, SE of AT provides supplementary 
information regarding its biomechanical properties [8, 9]. 

Due to the long length of AT and the limited length of 
a US probe, US examination of AT is divided into multiple 
successive and overlapping scans. �us, it is not accurate and 
convenient for comprehensively assessing the severity and 
extent of AT injuries. Image stitching of US scans can provide 
a panorama of AT, presenting its complete structure and 
elastic function. 

Image stitching technologies consist of two steps, 
image registration and image blending [10-12]. �e image 
registration can be classi�ed into rigid registration and non-
rigid registration. Rigid registration aligns, and matches 
overlap regions on two images exhibiting rigid deformation, 
which includes translation and rotation and is the most 
fundamental transform in medical images. Non-rigid 
registration recti�es the non-rigid deformation between two 
images. Tendons are elastic tissues, and their elongation and 
contraction produce elastic deformations. �us, a coarse-to-
�ne registration strategy, which consists of rigid registration 
for coarse alignment and a following non-rigid registration 
for re�nement, seems promising for image stitching of AT 
ultrasonography. �e image blending technique is used for 
correcting the grayscale and color di�erences and suppressing 
the seam-line between stitched images to yield seamless 
stitching. 

Commercial SE imaging systems often provide dual-
modality visualization, simultaneously displaying a color 
elastic image along with a grayscale B-mode image, as shown 
in �gure 1a. �us, it is needed to e�ectively and accurately 
stitch both B-mode and elastographic images of AT. We 
propose a coarse-to-�ne method for image stitching of 
multiple US scans. First, the rigid registration for coarse 
alignment is conducted with a new similarity measure based 
on the boundary vector �eld (BVF), which is maximized by 
using the particle swarm optimization (PSO). Second, the 
non-rigid registration is followed for transform re�nement 
using the log-domain di�eomorphic registration [13]. Finally, 
the image blending is performed with the weighted averaging 
approach.

Methods

Rigid registration using PSO of BVF-based similarity

�e rigid registration is composed of three components, 
the feature space, similarity measure, and search strategy. �e 
feature space is the data space that the registration relies on, 
which can be either all pixels in an image, or representative 
features extracted from an image. According to their feature 
space, the registration methods can be classi�ed into two 
categories, the pixel-based and the feature-based methods 
[14-16]. �e similarity measure is an index quantifying the 
similarity between two images, which is generally cross-

correlation, mutual information or a distance measure. �e 
search strategy is used for seeking the optional transform 
between two images while maximizing their similarity 
measure. Since exhaustive search is very time consuming, it is 
necessary to maximize the similarity measure by optimization 
algorithms.

In the dual-modality visualization, B-mode image is 
spatially matched with the SE image (Figure 1a). Because the 
B-mode image has higher spatial resolution and depicts more 
tissue structures, the image registration is conducted only on 
B-mode US to determine the transform between two images. 
�en the SE image is also aligned using the same transform. 

Feature Space. We propose a hybrid algorithm 
combining pixel-based and the feature-based methods. We 
derive an edge-strengthened image, called a feature image, 
and use all pixels in the image as the feature space of the rigid 
registration. Here we introduce a robust image feature, namely 
the BVF [17], which can not only enhance tissue edges and 
suppress speckle noise, but also have a minor varying �eld in 
homogeneous regions. �us, it might be robust when used as 
the feature space. 

�e BVF �eld was initially proposed for image 
segmentation [17]. It is a vector �eld derived from an image 
I(x, y) and is comprised of 2-D vectors towards tissue edges. 
In order to calculate BVF, a boundary map is �rst computed 
as the convoluted image of I(x, y) via Gaussian �ltering. �e 
boundary map is converted to a binary map, from which two 
potential functions are interpolated using two independent 
line-by-line scans along horizontal and vertical directions, 
respectively. �e BVF �eld v

BVF
(x, y) = [u(x, y), v(x, y)] is 

then calculated using the gradients of potential functions. Its 
horizontal component, u(x, y), and vertical component, v(x, y), 
emphasize the vertical and horizontal tissue edges, respectively, 
as shown in �gure 1c and 1d.

From the perspective of feature extraction, the BVF retains 
and enhances the image edge features in noisy background, and 
the introduction of the minor varying �eld into homogeneous 
areas extends the coverage of the �eld. 

Figure 1: Dual-modality visualization of sonoelastography (SE) and 
B-mode ultrasound for Achilles tendon (a), as well as the boundary vector 
�eld (BVF) of the B-mode image (b-d). �e left panel in (a) depicts the 
color SE image and the right the grayscale B-mode image. Black curves 
in (a) are manually delineated and indicate tendon border. (c) and (d) are 
the horizontal and vertical components of the BVF vector �eld calculated 
from the B-mode image (b).
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Similarity Measure. �e normalized mutual information 
(NMI) is a variant of mutual information, widely used in the 
pixel-based registration. However, the conventional NMI 
works on pixels of the original image and hence is sensitive to 
noise. Here we propose calculating NMI on BVF �elds, called 
NMIBVF, to increase the robustness of NMI: 

NMI
BVF 

= [H(u
1
)+H(u

2
)]/H(u

1
, u

2
)+[H(v

1
)+H(v

2
)]/H(v

1
, v

2
)    …..(1)

where H(u
i
) is the Shannon’s entropy of the BVF horizontal 

component, and H(v
i
) is that of the vertical component; i = 1, 

2, denoting the �xed image (i.e., reference image) and moving 
image (i.e., target image), respectively; H(u

1
, u

2
) is the joint 

entropy of the two BVF horizontal components and H(v
1
, 

v
2
) is that of the vertical components. When we transform 

the moving image by horizontal translation of t
x
, vertical 

translation of t
y
, and rotation of θ, denoted by a transform 

vector (t
x
, t

y
, θ), the NMIBVF between the �xed image (I

1
) 

and the transformed moving image (I
3
) is represented by 

NMI
BVF

(t
x
, t

y
, θ). When NMI

BVF
(t

x
, t

y
, θ) reaches maximum, 

the optimal transform vector (t
x
, t

y
, θ) is obtained. 

Search Strategy. An ideal search strategy should be 
capable of accurately and quickly �nding the optimal rigid 
transform (t

x
, t

y
, θ) between two images when the similarity 

measure reaches the maximum. PSO is a population-based 
evolutionary computation approach exploiting cooperative 
and social aspects of the biological phenomena [18-22]. It is 
an iterative method to move individuals (i.e., particles) in a 
population (i.e., a swarm) in the search space and eventually 
�nd the best solution. 

Here we use a hybrid PSO method which integrates 
PSO with genetic algorithms [23]. After particle positions 
are updated at each iteration, particles are selected in pairs 
for crossover. �e hybrid PSO enhances searching the space 
between particles. Via crossover, the searching may skip o� 
from the local maxima and approach the global maximum.

Iterative Adjustment of Overlap Regions. For 
computational simplicity and reduction of interference from 
irrelevant tissues, the rigid registration is only conducted 
in overlap regions between the �xed and moving images. 
�erefore, we should localize the overlap regions in the two 
images. Here we propose an iterative approach to localize the 
overlap regions. Without loss of generality, suppose the right 
part of the �xed image I

1
 and the left part of the moving image 

I
2
 are overlapped. Let there be d columns in matrix I

1
. �e 

adjustment of overlap regions is performed as follows:

a) �e right part of I
1
 with 

1
/d d n m= ×    columns 

are denoted by I
1
’ and recognized as the overlap region in 

I
1
, and the left part of I

2
 with d

1
 columns is denoted by I

2
’ 

and recognized as the overlap region in I
2
. Here, n and m are 

proportion factors, which are two integers initially set as 25 
and 50, respectively. ⋅    represents the rounding up operation.

b) �e horizontal displacement t
x
 is calculated by image 

registration between I
1
’ and I

2
’.

c) Let /xn t m d∆ = ×   . If 0n∆ ≠ , update n = n+ n∆  
and go back to step a; otherwise, move to step d. 

d) Obtain the �nal overlap regions and the rigid transform 
between I

1
 and I

2
. �e �nal overlap region on the �xed image 

is denoted as I
1
’ and that on the rigid transformed (i.e., coarse-

aligned) moving image is denoted as I
3
’.

Non-rigid registration using log-domain di�eomorphic 
algorithm

We employ a di�eomorphic non-rigid image registration 
algorithm coupled with the demons approach. �e algorithm 
uses a Lie group structure, which de�nes an exponential 
mapping from a smooth velocity �eld to a di�eomorphism, 
i.e., represents the complete deformation as an exponential 
of the smooth velocity �eld [24]. �us, it is called a log-
domain di�eomorphic algorithm (LDDA). Moreover, it uses 
a demons-like optimization approach for e�ciency [25, 26]. 

Our algorithm aims at �nding a well-behaved spatial 
transformation s: z    z+s(z), which de�nes a displacement 
�eld s(z) at each point z that optimally �ne-aligns the �xed 
image I1 and the coarse-aligned moving image I3 to get 
the �ne-aligned moving image I4. To reduce computational 
complexity and increase robustness, the algorithm is conducted 
in overlap regions I1’ and I3’ to get the �ne-aligned overlap 
region I4’. �e algorithm includes the following steps:

a) Choose a starting spatial transformation s that meets s = 
exp(v), where v is the log-domain displacement �eld (or called 
the velocity �eld), and exp() is the exponential operation that 
can be computed with a fast algorithm in a recursive manner 
[25].

b) Given the current transformation s, i.e., displacement 
�eld s(z), calculate an update velocity �eld u by minimizing an 
energy function E(I

1
’, I

3
’, s, u) with respect to u: 

E(I
1
’, I

3
’, s, u) = SIM(I

1
’, I

3
’, s ○ exp(u)) + ||u||2         …….(2)

where SIM(I
1
’, I

3
’, s ○ exp(u)) = || I

1
’ − I

3
’ ○ s ○ exp(u)||2/2 

is a similarity function and ○ denotes the   composition of 
functions. 

c) Perform �uid-like regularization u ← K
�uid

 * u, where 
K

�uid 
is a Gaussian kernel function and * is the convolution 

operation. 

d) Updated the velocity �eld by v ←v + u.

e) Perform di�usion-like regularization v ← K
di�usion

 * v, 
where K

di�usion
 is also a Gaussian kernel function.

f ) If the iteration converges, stop here; otherwise, go back 
to step b. 

g) When the non-rigid displacement �eld is determined, 
the overlap region on the moving image I

3
’ is transformed to 

get a �ne-aligned overlap region I
4
’. By using the interpolated 

non-rigid displacement �eld, the non-overlap region is 
transformed to get a �ne-aligned non-overlap region I

4
’’.

Image blending

After registration, image blending is performed on both 
grayscale B-mode image and color SE image. Our image 
blending technique is comprised of two steps: the brightness/
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color adjustment, and the seamless weighted averaging.

�e �xed and moving images may have brightness 
di�erence in B-mode US and color di�erence in SE. �us, the 
linear brightness/color adjustment is adopted to reduce the 
di�erence. For grayscale B-mode US, the highest and lowest 
intensities at overlap regions in the moving image are linearly 
adjusted to the same intensities in the �xed image. For color 
SE, the linear adjustment is employed on the intensity channel 
of the HSI (hue, saturation and intensity) space, while the 
other two channels remain unchanged, as shown in �gure 2.

�e weighted averaging method is performed at the 
overlap region I

1
’ on the �xed image and the �ne-aligned 

overlap region I
4
’ on the moving image [27-29], as shown in 

�gure 3. I
s
(z) is the intensity at pixel z on the blended image 

of overlap regions, which is the weighted average of I
1
’(z) and 

I
4
’(z), satisfying I

s
(z) = α × I

1
’(z) + (1−α) × I

4
’(z). Here, α is the 

weighting coe�cient, and its value is linearly varied from 1 
when stitching the far left on the overlap region to 0 when 
stitching the far right, hence leading to seamless blending and 
stitching.

Experiments and Results

 Experimental setup 

Clinical dual modal AT images of both B-mode US and 
SE were acquired from nine patients with AT disorders at 
Huashan Hospital, Fudan University, Shanghai, China. �e 
patients were examined using the HI VISION Preirus system 
(Hitachi Medical, Tokyo, Japan) equipped with a linear array 
transducer (L74 M, 5–13 MHz), while they were in a prone 
position with the foot hanging over the edge of the examination 

bed. Both B-mode US and SE were performed on AT by a 
radiologist with 12 years of experience in musculoskeletal US. 
Twenty dual modal images were acquired with a resolution of 
18 pixel/mm, where three overlapping images were acquired 
from each of two patients and two overlapping images were 
acquired from each of the other seven patients. All procedures 
were in accordance with the ethical standards of the 
institutional review board and informed consent was obtained 
from all individual participants included in the study. 

Simulation work was �rst conducted by intentionally 
transforming a clinical image as a moving image to generate 
a synthetic �xed image so as to validate the presented 
registration method, denoted by PSOBVF-LDDA, and 
compare it with four other methods, namely LDDA (without 
rigid registration), PSOBVF (without non-rigid re�nement), 
PSOBVF-FFD (non-rigid re�nement using free-form 
deformation [FFD] instead), and FFD (without rigid 
registration, only FFD for non-rigid registration) [30]. In the 
simulation experiments, each of the 20 clinical images was 
used as a moving image to generate a synthetic �xed image. 
�e simulation experiments of rigid transform and non-rigid 
transform were both performed on these 20 pairs of images for 
comprehensive evaluations. Because PSO was initialized with 
random particles, we conducted experiments of the algorithms 
involving PSO (namely PSOBVF, PSOBVF-FFD and 
PSOBVF-LDDA) 10 times to evaluate their performance.

Experiments on real clinical images were also conducted. 
�e coarse-to-�ne registration and image stitching 
experiments were performed on two (or three if applicable) 
real clinical images for each patient. A patient with three 
overlapping images has two pairs of images for registration and 
a patient with two overlapping images has one pair. �us, there 
are in total 11 pairs of clinical images for evaluation of the 
registration and stitching method. We conducted experiments 
of the algorithms involving PSO 10 times to evaluate their 
performance. 

All the computerized experiments were implemented with 
MatlabR2014a (Mathworks, Natick, MA). Since exhaustive 
search is very time consuming in the hybrid PSO method, 
three rigid transform parameters (t

x
, t

y
, θ) were optimized by 

using the grid search limited in a range of [-25, 25] with an 
interval of 1 pixel or degree. We empirically set the number of 
particles to 24 and the maximal number of iterations to 30 to 
yield best performance.

Simulation experiments of rigid transform 

A B-mode image, as a moving image, was horizontally 
and vertically shifted by p

0 
and q

0
 pixel respectively to generate 

a synthetic �xed image, as shown in �gure 4(top row), and 
the applied displacements along horizontal and vertical 
directions, P

g
 = (p

g,i
, q

g,i
) = (p

0
, q

0
), i = 1, 2, ..., n, served as the 

gold standard of image registration. Here n denoted the pixel 
number in an image. Five methods were used to register the 
two images before and after the rigid transform. �e estimated 
displacement �eld was P = (p

i
, q

i
). �e horizontal (e

x
), vertical 

(e
y
), and distance (e

d
) registration errors were de�ned as follows: 

Figure 2: Color adjustment for sonoelastography. (a) Fixed image, (b) 
moving image, and (c) moving image after color adjustment.

Figure 3: Diagram for image blending with the seamless weighted 
averaging.
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We set both p
0 
and q

0
 to di�erent pixel in our experiments 

for mimicking the in vivo displacements. �e results are listed 
in table 1. �e methods with rigid registration (PSOBVF, 
PSOBVF-FFD and PSOBVF-LDDA) attained horizontal 
and vertical errors between 0.037 and 0.135 pixel, better than 
those without rigid registration (FFD and LDDA, 0.333 – 
2.270 pixel). �e distance errors of the methods with rigid 
registration (0.102 − 0.163 pixel) were also superior to those of 
the methods without rigid registration (2.178 − 2.371 pixel).

Simulation experiment of non-rigid transform

As shown in �gure 4(bottom row), a B-mode image was 
transformed with a given non-rigid displacement �eld P

g
 = 

(p
g,i

, q
g,i

). �e non-rigid displacement �eld was a composite 
�eld, which consists of a rigid component with both p

0 
and q

0
 

equaling to 10 pixel and a non-rigid component mimicking 
tendon contraction and muscle twist.

�e estimated displacement �eld P = (p
i
, q

i
) was derived by 

�ve methods. �e displacement �eld estimated by PSOBVF-
LDDA (Figure 5e, middle) was very similar to the gold 
standard (Figure 4b, bottom) and the di�erence image (Figure 
5e, bottom) between the �xed image (Figure 4c, bottom) 
and the registered moving image (Figure 5e, top) was almost 
entirely black. �ese qualitative results were consistent with 
the small quantitative indices listed in table 2 (e

x
 = 1.422, e

y
 

= 0.628, and e
d
 = 1.616 pixel). PSOBVF-FFD achieved the 

second best results with an e
d
-value of 1.959 pixel, which were 

much better than other three methods. �e comparison work 
show that both the rigid registration PSOBVF and the non-rid 
registration LDDA have contributed to the best performance 
of PSOBVF-LDDA. 

Coarse-to-�ne registration for real clinical images 

Image registration was also performed on real in vivo 
clinical images. Taking �gure 6 as an example, the three 
methods using rigid registration, namely PSOBVF (c), 
PSOBVF-FFD (f ) and PSOBVF-LDDA (g), successfully 
recovered the rigid transform between the �xed and moving 
images, as illustrated by the yellow circle 1 (g). Furthermore, 
the hypoechoic strip in (g) indicated by yellow circle 2 was 
wider than those in (c) and (f ), and the hypoechoic hole in 
(g) indicated by yellow circle 3 was larger than those in (c) 
and (f ). Compared with PSOBVF (c) and PSOBVF-FFD (f ), 
our method PSOBVF-LDDA (g) recovered these hypoechoic 

Figure 4: Simulation experiment of ultrasound image registration. A 
moving image (a) is transformed to generate a synthetic �xed image (c), 
by using a simulated displacement �eld (b) as the gold standard. Top row: 
rigid transform, and bottom row: non-rigid transform.

Figure 5: Simulation results of non-rigid transform by using �ve methods. 
(a) PSOBVF, (b) FFD, (c) LDDA, (d) PSOBVF-FFD, and (e) PSOBVF-
LDDA. Top row: registered moving images; middle row: estimated 
displacement �elds; and bottom row: di�erence images between the �xed 
image and the registered moving images.

Table 1: Simulation results of rigid transform.

Methods Displacement errors

e
x 
(pixel) e

y
 (pixel) e

d
 (pixel)

PSOBVF 0.108 ± 0.042 0.087 ± 0.036 0.141 ± 0.068

FFD 2.270 ± 0.977 0.333 ± 0.532 2.371 ± 1.108

LDDA 1.330 ± 0.980 0.794 ± 0.386 2.178 ± 1.058

PSOBVF-FFD 0.084 ± 0.028 0.037 ± 0.020 0.102 ± 0.031

PSOBVF-LDDA 0.092 ± 0.082 0.135 ± 0.077 0.163 ± 0.077

Table 2: Simulation results of non-rigid transform.

Methods Displacement errors

e
x 
(pixel) e

y
 (pixel) e

d
 (pixel)

PSOBVF 2.771 ± 0.489 1.535 ± 0.167 3.156 ± 0.191

FFD 3.125 ± 0.373 1.488 ± 0.392 3.969 ± 0.399

LDDA 3.134 ± 1.047 1.682 ± 0.956 3.998 ± 1.650

PSOBVF-FFD 1.692 ± 0.240 0.724 ± 0.176 1.959 ± 0.307

PSOBVF-LDDA 1.422 ± 0.306 0.628 ± 0.051 1.616 ± 0.294
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regions more similar to those in the �xed image (a), indicating 
that the re�ned non-rigid registration by LDDA captured 
more details and performed better than FFD and the scheme 
without non-rigid re�nement.

�e displacement �eld between two real clinical images 
is unknown. In order to determine the registration errors, 
several points were marked manually in pairs on both the �xed 
(Figure 7a) and moving (Figure 7) (b) clinical images, and then 
the marked points on the moving image were automatically 
mapped to the registered moving image (Figure 7c) according 
to the estimated displacement �eld. �e registration errors e

x
, 

e
y
, and e

d
 were calculated via Equation (3) based on the distance 

between the paired markers in the �xed image and registered 
moving image, where n denoted the number of paired markers. 
Table 3 enumerates the results of clinical image registration. 
Our method PSOBVF-LDDA had e

x
-, e

y
-, and e

d
-values of 

1.514, 1.205 and 1.928 pixel, demonstrating high precision 
and superiority to the other four methods.

Stitching for Real Clinical Images 

For 11 pairs of real clinical images, typical stitching 
results are shown on �gure 8 and 9. Figure 8 suggests that our 
method is capable of stitching three B-mode US scans to form 

a panorama of AT. �e entire AT from musculotendinous 
junction to calcaneal insertion is presented in a single 
panoramic image. Fig. 9 illustrates two examples of stitching 
both B-mode and SE images for dual modality visualization 
of AT with a large �eld of view. �ese results demonstrate 
that our technique can accurately stitch multiple sections of 
B-mode and SE scans and provide panoramas of AT.

Discussion 
�is paper presents a technique for stitching US images 

of the Achilles tendon, which o�ers panoramas of AT and 
would help diagnosis and treatment evaluation of Achilles 
tendinopathies and tendon ruptures. �e technique is 
currently utilized for o�ine image analysis, and it is expected 
to be integrated into commercial US platforms for online 
clinical examination. �erefore, in daily clinical practice, it 
might be useful for diagnosing AT injuries, monitoring their 
progression, and evaluating response of surgical and non-

Table 3: Results of non-rigid registration for real clinical images.

Methods Displacement errors

e
x 
(pixel) e

y
 (pixel) e

d
 (pixel)

PSOBVF 1.877 ± 3.228 1.608 ± 1.622 2.532 ± 3.241

FFD 10.574 ± 4.188 1.170 ± 1.351 10.665 ± 4.278

LDDA 9.461 ± 4.555 1.724 ± 1.219 9.756 ± 4.605

PSOBVF-FFD 1.601 ± 3.478 1.223 ± 0.795 2.011 ± 3.499

PSOBVF-LDDA 1.514 ± 1.516 1.205 ± 0.619 1.928 ± 1.502

Figure 6: Registration on real clinical images by using �ve methods. �e 
overlap regions in a �xed image (a) and a moving image (b) were under 
registration to yield registered moving images by using (c) PSOBVF, (d) 
FFD, (e) LDDA, (f ) PSOBVF-FFD, and (g) PSOBVF-LDDA. Yellow 
circles on (g) indicate regions with better results by PSOBVF-LDDA 
compared with other methods.

Figure 7: Markers were manually speci�ed on a �xed image (a) and a 
moving image (b) for calculating registration errors on real clinical images. 
Markers were automatically mapped from the moving image (b) to the 
registered moving image (c) according to the estimated displacement �eld 
between them, and the registration errors were calculated based on the 
distance between the markers in (a) and (c).

Figure 8: Panoramas of Achilles tendons. A panorama (d or h) is generated 
by stitching three B-mode ultrasonic scans (a-c or e-g).

Figure 9: Dual-modality ultrasonic image stitching for two patients, one 
shown on (a-d) and the other on (e-h). (a) and (b), two successive and 
overlapping dual-modality images; (c) B-mode and (d) sonoelastographic 
images after stitching. (e-h) are similar to (a-d).
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surgical treatment, including open and arthroscopic surgeries, 
eccentric training, injections, and extracorporeal shockwave 
therapy.

In the simulation experiments, the known displacement 
�elds serving as gold standard of registration were employed 
from simple to complex. First, only a rigid displacement 
�eld was applied to an image, which simulated the scenario 
where two successive ultrasound scans of AT had horizontal 
and vertical translations. �e methods containing a rigid 
registration step attained better results than the purely non-
rigid methods (Table 1). Second, a more complex displacement 
�eld was generated by adding non-rigid disturbance to the 
rigid displacement �eld to mimic the non-rigid motions of 
AT during ultrasound scanning. It can be seen from table 2 
that the rigid registration method was inferior to the non-
rigid methods, and the integration of rigid and non-rigid 
registration methods had achieved best results, suggesting the 
superiority of our method.

�ere is some prior knowledge with regard to tendon 
motion and tendon texture. For instance, when a tendon is 
elongated, its thickness will be decreased the derivatives of the 
horizontal and vertical displacements should have opposite 
signs. Moreover, the textures of tendon and surrounding 
tissues appear mainly horizontally oriented (Figure 1d), which 
maybe provide additional information for image registration. 
In future studies, the prior knowledge needs to be combined 
in the registration scheme to ameliorate the image stitching 
performance.

�ere are some limitations in this study. First, we only 
collected the image data of patients with tendon injuries. We 
will add a control group by recruiting subjects with normal 
tendons in a future study to evaluate the performance of our 
methods on both injured and normal tendons. Second, a single 
radiologist acquired one ultrasound image for one section of 
an Achilles tendon, and thus the intra- and inter-observer 
variability could not be assessed. Multiple images of a same 
tendon section will be acquired by more than one radiologist 
in the future, and they will be used to quantitatively evaluate 
intra- and inter-observer variability. �ird, intensity variation 
during US scanning and speckle noise on US images has a 
great impact on diagnosis. �e BVF-based feature space 
used in our rigid registration step could enhance the edge of 
the tissue and suppress the speckle noise. It is expected that 
the statistics of the ultrasonography such as the Rayleigh 
or Nakagami distributions [31] will be incorporated in the 
algorithms to further improve the robustness of stitching to 
the noise and intensity variation.

Conclusions 
We have proposed a coarse-to-�ne image stitching 

method for Achilles tendon ultrasonography by integrating 
BVF, PSO and LDDA. �e simulation work and experiments 
on clinical image stitching demonstrate the high accuracy of 
the method. It may be potentially used as a tool for future 
diagnosis and treatment evaluation of Achilles tendon injuries
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