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ABSTRACT

In this paper we propose a novel optimization framework

to obtain High Resolution (HR) Passive Millimeter Wave

(PMMW) images from multiple Low Resolution (LR) obser-

vations captured using a simulated Compressed Sensing (CS)

imaging system. The proposed CS Super Resolution (CSSR)

approach combines existing CS reconstruction algorithms

with the use of Super Gaussian (SG) regularization terms

on the image to be reconstructed, smoothness constraints on

the registration parameters to be estimated and the use of

the Alternate Direction Methods of Multipliers (ADMM) to

link the CS and SR problems. The image estimation sub-

problem is solved using Majorization-Minimization (MM),

registration is tackled minimizing a quadratic function and CS

reconstruction is approached as an l1-minimization problem

subject to a quadratic constraint. The performed experiments,

on simulated and real PMMW observations, validate the used

approach.

Index Terms— Passive millimeter-wave, compressive

sensing, super resolution, image restoration

1. INTRODUCTION

Due to their characteristics, MMW images are used in appli-

cations like weather operations, low visibility navigation, and

the imaging of people for concealed object and threat detec-

tion [1, 2, 3], just to name a few.

Based on their interest, image processing techniques have

recently started to be applied to these images. For instance,

Passive Millimeter Wave (PMMW) image enhancement has

been addressed in [4]. In [5] the high frequency components

of those images were restored using a MAP estimator, and

they were then added to the input image to produce a HR

image. Registration and fusion of visible and MM images as

well as segmentation of MMW images have been addressed

in [2, 6, 7].
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Unfortunately PMMW systems have two serious short-

comings: the long acquisition time needed to produce a

PMMW image and the poor resolution of captured images.

CS systems, with its reduced image acquisition time, have

been applied to PMMW imaging, see[8, 9]. In [10, 11] the

authors utilize Hadamard masks to reduce the acquisition

time. In [12] a PMMW imaging system with extended depth-

of-field that can produce images with reduced number of

samples is presented. CS and Blind Image Deconvolution

have been combined in [13]. By end large the resolution

of MMW images is small, therefore making their analysis a

challenging task. In this paper we propose a novel optimiza-

tion framework to obtain HR PMMW images from multiple

LR observations captured using a simulated CS imaging

system based on the ADMM to link the CS and SR problems.

The rest of this paper is organized as follows. The mod-

eling problem is stated in Section 2, and the estimation pro-

cess in section 3. We demonstrate the effectiveness of the

proposed method with experimental results in Section 4 and

conclusions are drawn in Section 5.

2. SYSTEM MODELING

In this paper we assume that we have access to a set of Q CS

LR observations of the form

yq = Φzq + rq q = 1, . . . , Q, (1)

where yq is an M × 1 vector representing compressed obser-

vations from the LR image zq , Φ is a CS M×D measurement

matrix, zq is a column vector of size D × 1 representing the

q−th LR image and rq represents the observation noise. If

we define R to be the compression ratio of the measurement

system, then R= M/D. The sensing matrix Φ consists of

real entries, or it can be binary. The matrix used in our work

is of the binary format, as this can be synthesized physically

[9, 10, 11]. In both cases the rows/columns of Φ are normal-

ized to 1. We also assume that the LR observations zq are

related to an HR image x we seek to estimate by

zq = AHqC(sq)x +wq = Bq(sq)x +wq, (2)

where x is a column vector of size N we want to recover, A

is a D × N down-sampling matrix, D ≤ N . If we define P



as the zooming factor, in each dimension of the image, then

N = P 2D. Hq is an N×N blurring matrix, C(sq) is the N×
N warping matrix corresponding to the motion vector sq =

[θq, dhq, dvq]
t
, where θq is the rotation angle, dhq and dvq

are respectively the horizontal and vertical translations of the

q−th LR image with respect to the reference frame, and wq

is the noise corresponding to the LR acquisition process. A

detailed description of the explicit form of the C(sq) matrices

can be found in [14]. We have written Bq(sq) = AHqC(sq)
for simplicity. Using (1) and (2) we can write

yq = ΦBq(sq)x + nq , for q = 1, . . . , Q, (3)

where nq represents the CS and LR acquisition noise and x

is the HR image we want to estimate. Since zq are translated

and rotated LR versions of the original image x (which are as-

sumed to be compressible in a transformed domain) we could

estimate the original HR image by first recovering the LR im-

ages using CS techniques and then recover the HR image us-

ing standard SR techniques on the recovered LR images. To

be precise, if we assume that the LR images are sparse in

a transformed domain with zq=Waq , we could recover them

from the model in (1) by solving

âq = argmin
aq

η

2
‖ ΦWaq − yq ‖2 + τ ‖ aq ‖1, (4)

where η, τ are regularization parameters, ‖ .‖ is the Euclidean

norm, and ‖ . ‖1 the ℓ1 norm. Then defining ẑq = Wâq and

s = (s1, . . . , sq) we could solve

x̂, ŝ = argmin
x,s

{

β

2

∑

q

‖ Bq(sq)x − ẑq ‖2 + α Q(x)

+
∑

q

(sq − s̄q)
t
Ξq(sq − s̄q)

}

, (5)

where α and β are non-negative parameters, and the remain-

ing terms are described in details now. Q(x) is the following

log regularization term

Q(x) =
∑

d∈∆

N
∑

i=1

log(|ωx

d (i)|) , (6)

where ωx

d (i) is the i-th pixel of the filtered image ωx

d = Fdx.

Fd is a high-pass filter operator, and the index d ∈ ∆
identifies one of the members of the used filter set. In

this paper we have used a filter set with elements ∆ =
{h, v, hv, vh, hh, vv}, where h, v represent the first order

horizontal and vertical difference filters, hv and vh represent

first order differences along diagonals, and hh and vv the

horizontal and vertical second order differences. This regu-

larization term favors sparsity of the high-pass filtered images

Fdx, and corresponds to a Super-Gaussian log prior used in

blind deconvolution [15]. Finally Ξq is a 3 × 3 known ma-

trix of regularization parameters and s̄q represents the known

initial values of registration parameter sq .

As we will show in the experimental section, combining

the sequential optimization problems above into a simultane-

ous one leads to improved performance, as this enables the

better exploitation of the compressibility of the LR observa-

tions using the additional information derived from the esti-

mated HR image. Let a = (a1, . . . ,aq) and define

L(x,a, s) =
η

2
‖ ΦWaq − yq ‖2 + τ ‖ aq ‖1

+ β
∑

q

‖ Bq(sq)x − Waq ‖2 + α Q(x)

+
∑

q

(sq − s̄q)
t
Ξq(sq − s̄q). (7)

Then we could approach the compressed-sensing super reso-

lution (CSSR) problem by minimizing L(x,a, s) where β is

made iteratively large. Alternatively, the approach we follow

in this paper, is to solve

minL(x, a, s)

s.t. Bq(sq)x = Waq , for q = 1, . . . , Q , (8)

as described in the next section.

3. A SUPER-RESOLUTION FROM COMPRESSED

SENSING APPROACH

The constrained optimization problem in (8) is converted

into an unconstrained optimization one, and modified to ap-

ply ADMM [16, 17]. We define the following augmented

Lagrangian functional

L(x,a, s,λ) = L(x,a, s) +
∑

q

λt
q(Bq(sq)x − Waq), (9)

where L(x,a, s) has been defined in (7) and for q = 1, . . . , Q,

λq are D × 1 Lagrangian multiplier vectors with λ =
(λ1, . . . ,λQ). The ADMM gives rise to the following it-

erative sequence of unconstrained problems,

xk+1 = argmin
x

L(x, ak, sk,λk) , (10)

a
k+1 = argmin

a
L(xk+1, a, sk,λk) (11)

s
k+1 = argmin

s

L(xk+1, ak+1, s,λk) (12)

λk+1
q = λk

q − β[Bq(s
k+1
q )xk+1 − Wak+1

q ] q = 1, . . . , Q,

(13)

where k is the iteration number. Let us now describe the es-

timation process. The calculation of each λk+1
q is straightfor-

ward. The function ρ(s) = log |s| in (6) is symmetric around

0, and ρ(
√
s) is concave and increasing for s ∈ [0,∞) [15].

So, it can be represented as (see [18])

ρ(s) = inf
ξ>0

1

2
ξs2 − ρ∗(

1

2
ξ) , (14)

where ρ∗( 12ξ) is the concave conjugate function

ρ∗(
1

2
ξ) = inf

s>0

1

2
ξs2 − ρ(s) . (15)



It is shown in [15] that the infimum in (14) is achieved when

ξ = ρ′(s)/s. Consequently, for the regularization term Q(x)
in (7), we can write

Q(x) ≤ R(x, ξ) =
1

2

∑

d∈∆

xtFt
dΩdFdx −

∑

d∈∆

N
∑

i=1

ρ∗(
1

2
ξd(i))

(16)

where ξ = (ξ1, . . . , ξQ), ξq = (ξq(1), . . . , ξq(N)) for q =
1, . . . , Q, with all its components positive, and Ωd is a diago-

nal matrix with entries

Ωd(i, i) = ξd(i). (17)

For a given x, the first inequality in (16) becomes an equality

if (see [15] for details),

ξxd (i) =
1

|ωx

d (i)|2 + ǫ
, (18)

where ωx

d (i) is defined from x as above, ǫ > 0 is added

to avoid division by zero. Then we can apply standard

Majorization-Minimization (MM) methods [19]. Given

xk,ak, sk and defining

Lk(x) =
β

2

∑

q

‖ Bq(s
k
q )x −Wa

k
q ‖2

+
∑

q

λk
q

t
(Bq(s

k
q )x −Wa

k
q ) (19)

it can be easily shown that

Lk(xk) + αQ(xk) ≥ Lk(xk+1) + αQ(xk+1) (20)

where

xk+1 = argmin
x

{

β

2

∑

q

‖ Bq(s
k
q )x −Waq ‖2 +αR(x, ξx

k

)

+
∑

q

λk
q

t
(Bq(s

k
q )x −Wa

k
q )

}

(21)

Then, the optimization step in (10) produces the following

linear equation for xk+1

[

β
∑

q

Bkt

q(s
k
q )B

k
q (s

k
q ) + α

∑

d∈∆

Ft
dΩ

k
dFd

]

xk+1

=
∑

q

Bk
q (s

k
q )

t [

βWak
q − λk

q

]

(22)

where, (ǫ > 0 is included to avoid division by zero)

Ωk
d(i, i) =

1

ǫ+ |ωx
k

d (i)|2
(23)

The optimization step in (11) for each aq produces

ak+1
q = argmin

aq

{η

2
‖ ΦWaq − yq ‖2 +τ ‖ aq ‖1

+
β

2
‖ Bk

q (s
k
q )x

k+1 − Waq ‖2 −λk
q

t
(Bk

q (s
k
q )x − Waq)

}

(24)

Algorithm 1 Compressive Sensing Super Resolution (CSSR)

Require: Values α, β, τ , η, Ξq and s
0
q , for q = 1, . . . , Q.

Initialize a
0, s0, λ0, Ω0 = {Ω0

d, d ∈ ∆},

k = 0
while convergence criterion is not met do

1. Calculate xk+1 by solving (22)

2. For d ∈ ∆, calculate Ω
k+1
d using (23)

3. For q = 1, . . . , Q, calculate a
k+1
q using (26)

4. For q = 1, . . . , Q, calculate s
k+1
q using (28)

5. For q = 1, . . . , Q, update λk+1
q using (13)

6. Set k = k + 1
end while

return x

which is equivalent to

ak+1
q = argminaq

{

η
2 ‖ ΦWaq − yq ‖2

+ β
2 ‖ Bk

q (s
k
q )x

k+1 − λk
q − Waq ‖2 +τ ‖ aq ‖1

}

(25)

The above equation can be rewritten as

ak+1
q = argmin

aq
‖ Φ

′Waq − J′ ‖2 +τ ‖ aq ‖1 (26)

where

J′ =







√

η
2yq

√

β
2 (B

k
q (s

k
q )x

k+1 − λk
q )






and Φ

′ =







√

η
2Φ

√

β
2 I






(27)

with I the D ×D identity matrix.

The above optimization problem can be solved using the

algorithm in [20].

To update the registration parameters, we need to mini-

mize (12) for sq; however, we have experimentally observed

that a fast and reliable estimation of the registration parame-

ters can be obtained by estimating warping parameters from

the upsampled reconstructed LR observations with respect to

the estimated HR image. Replacing s̄q by s
k
q , the minimiza-

tion problem becomes

s
k+1
q =arg min

sq

[

β

2
‖ C(sq)x

k+1 − [AHq]
t
Wak+1

q ‖2

+(sq − s
k
q )

t
Ξq(sq − s

k
q )
]

. (28)

We follow a similar approach to the one utilized in [14] to

solve the above optimization problem.

The complete CSSR algorithm is presented in Algo-

rithm 1

4. EXPERIMENTAL RESULTS

To evaluate the proposed algorithm, three experiments were

carried out. The first two analyze the behavior of the pro-

posed CSSR method on synthetic data for varying parame-

ters, using the cameraman and Lena images shown in Figure

1. They are degraded as follows: they are first warped using

random displacement vectors to account for horizontal, verti-



(a) Cameraman (b) Lena

Fig. 1. Original Images

Table 1. Performance comparison for SR algorithms with pro-

posed CSSR algorithm, with P=4, SNR=40dB, Q=4 and for

CSSR R=1.0. In bold are the highest PSNR values.

Alg BI VB SnS FRSR RSR CSSR

Img Var PSNR Values

3 20.5 21.8 22.2 21.1 20.5 24.6

Cam 5 20.5 21.8 22.1 20.9 20.4 24.1

7 20.5 21.7 21.8 20.7 20.4 23.7

3 21.0 26.0 26.4 21.9 21.7 27.9

Len. 5 21.1 26.3 26.9 21.8 21.7 27.3

7 21.1 26.0 26.7 23.4 21.7 26.7

cal and rotational displacements. They are then blurred with

Gaussian blur, with variable variance and down-sampled by

a factor P. Finally they are compressed using Φ, with vari-

able ratios (R), and white Gaussian noise is added to the CS

observations with SNR=40dB. Q different observations are

generated. The performance measure we used is the Peak

Signal to Noise Ratio, PSNR. Stopping criteria are met when

either
norm(xk−xk−1)

norm(xk−1)
≤ 10−3, or the maximum number of

iterations, being thirty, is reached. The 3-level Haar wavelet

transform is used as the transform basis W, and a circulant

Toeplitz matrix Φ with entries drawn from a Bernoulli distri-

bution serves as a measurement matrix.

In the first experiment, we compare our proposed method

with the following existing SR methods: Bicubic Interpola-

tion (BI), SR using a variational approach [21] (VB), SR us-

ing sparse and non-sparse priors [14] (SnS), a fast and ro-

bust SR [22] (FRSR), and a robust SR method [23](RSR).

The number of input LR images was Q=4, with resolution

increase P = 4. We used compression ratio R= 1.0 to com-

pare with the above mentioned algorithms which do not use

compressed observations. Results are tabulated in Table 1.

In the second experiment, we investigate the performance

of our method for variable compression rates, R. For all im-

ages we used Gaussian blur of variance 3, zooming factor

P=1, and SNR=40dB and Q=3. The results are tabulated in

Table 2, for the two images used in our study. Figure 2(a),

shows the estimated cameraman image using CSSR, with

P=1, R=0.5, Q=3, Blur Var=3.

Table 2. Performance of CSSR algorithm via compression

ratio. P=1, Blur Var=3, SNR=40dB, Q=3.

Ratio 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Image PSNR Values

Cam 25.1 25.4 25.6 25.7 25.8 25.8 25.9

Lena 28.2 29.0 29.7 30.1 30.4 30.6 30.8

In the third experiment, four real PMMW images of a per-

son were acquired successively, see Figure 2(b). These obser-

vations were synthetically compressed using R=0.6, 0.8 and

1.0. For each R, the four observations were utilized to esti-

mate one HR image with P = 2. The estimated image us-

ing bilinear interpolation from one reconstructed LR image is

shown in Figure 2(c), and the estimated using CSSR is shown

in Figure 2(d), both using P=2 and R=0.8. Notice that al-

though both SR images have poor quality the one obtained by

our method looks smoother and shows additional details. This

good performance for PMMWIs is expected to be very useful

in threat detection, one of the main usages of these images.

(a) (b) (c) (d)

Fig. 2. (a) Estimated Cameraman image using CSSR, P=1,

R=0.5, (b) Four noisy real PMMW observations, (c) Bilinear

interpolation from one reconstructed LR image, (d) Estimated

image using CSSR, R=0.8, P=2.

5. CONCLUSIONS

In this paper we have proposed a framework to obtain HR

images from compressed LR observations which has been

applied to simulated CS PMMW images obtained from real

PMMW images. An optimization framework based on the

combination of existing CS reconstruction algorithms and

ADMM has been proposed. The method included the au-

tomatic estimation of the registration parameters. Its effec-

tiveness has been demonstrated experimentally on real and

synthetic images. In future work we will examine the appli-

cability of the proposed method to improve threat detection

rates on PMMW images.



REFERENCES

[1] L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter

wave imaging,” Microwave Magazine, IEEE, vol. 4, no.

3, pp. 39–50, Sept 2003.

[2] H. Chen, S. Lee, R. Rao, M. Slamani, and P. Varsh-

ney, “Imaging for concealed weapon detection: a tu-

torial overview of development in imaging sensors and

processing,” Signal Processing Magazine, IEEE, vol.

22, no. 2, pp. 52–61, 2005.

[3] C. Zheng, X. Yao, A. Hu, and J. Miao, “A passive

millimeter-wave imager used for concealed weapon de-

tection,” Progress In Electromagnetics Research B, vol.

46, pp. 379–397, 2013.

[4] J. Yang, J. Wang, and L. Li, “A new algorithm for pas-

sive millimeter-wave image enhancement,” in Signal

Processing Systems (ICSPS), 2010 2nd International

Conference on. IEEE, 2010, vol. 3, pp. V3–507.

[5] Y. Li, Y. Li, J. Chen, and Y. Hou, “Passive millimeter-

wave image restoration based on improved algorithm

of nonlinear extrapolation in frequency space,” Inter-

national Journal of Digital Content Technology and its

Applications, vol. 5, no. 5, pp. 42–49, 2011.

[6] H. Lee, D. Lee, S. Yeom, J. Son, V. Guschin, and

S. Kim, “Passive millimeter wave imaging and analysis

for concealed object detection,” in Data Mining and In-

telligent Information Technology Applications (ICMiA),

2011 3rd International Conference on. IEEE, 2011, pp.

98–101.

[7] P. Chen, T. Zou, J. Chen, Z. Gao, and J. Xiong, “The

application of improved pso algorithm in pmmw im-

age ostu threshold segmentation,” in Applied Mechan-

ics and Materials. Trans Tech Publ, 2015, vol. 721, pp.

779–782.

[8] W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R.G.

Baraniuk, and D.M. Mittleman, “A single-pixel tera-

hertz imaging system based on compressed sensing,”

Applied Physics Letters, vol. 93, no. 12, pp. 121105–

121105–3, Sep 2008.

[9] A. Heidari and D. Saeedkia, “A 2d camera design with a

single-pixel detector,” in Infrared, Millimeter, and Ter-

ahertz Waves, 2009. IRMMW-THz 2009. 34th Interna-

tional Conference on, Sept 2009, pp. 1–2.

[10] N. Gopalsami, S. Liao, T. W Elmer, E. R Koehl,

A. Heifetz, A. C Raptis, L. Spinoulas, and A. K Kat-

saggelos, “Passive millimeter-wave imaging with com-

pressive sensing,” OPTICAL ENGINEERING, vol. 51,

no. 9, SEP 2012.

[11] N. Gopalsami, TW. Elmer, S. Liao, R. Ahern,

A. Heifetz, A. Raptis, M. Luessi, D. Babacan, and

AK. Katsaggelos, “Compressive sampling in passive

millimeter-wave imaging,” in SPIE Defense, Security,

and Sensing. International Society for Optics and Pho-

tonics, 2011, pp. 80220I–80220I.

[12] V. Patel and J. Mait, “Passive millimeter-wave imag-

ing with extended depth of field and sparse data,” in

Acoustics, Speech and Signal Processing (ICASSP),

2012 IEEE International Conference on. IEEE, 2012,

pp. 2521–2524.

[13] B. Amizic, L. Spinoulas, R. Molina, and A.K. Kat-

saggelos, “Compressive blind image deconvolution,”

Image Processing, IEEE Transactions on, vol. 22, no.

10, pp. 3994–4006, Oct 2013.

[14] S. Villena, M. Vega, S.D. Babacan, R. Molina, and A.K.

Katsaggelos, “Bayesian combination of sparse and non-

sparse priors in image super resolution,” Digital Signal

Processing, vol. 23, no. 2, pp. 530–541, 2013.

[15] S. Babacan, R. Molina, M. Do, and A. K. Katsagge-

los, “Bayesian blind deconvolution with general sparse

image priors,” in Computer Vision–ECCV 2012, pp.

341–355. Springer, 2012.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,

“Distributed optimization and statistical learning via the

alternating direction method of multipliers,” Founda-

tions and Trends R© in Machine Learning, vol. 3, no. 1,

pp. 1–122, 2011.

[17] Y.-H. Xiao and Z.-F. Jin, “An alternating direction

method for linear-constrained matrix nuclear norm min-

imization,” Numerical Linear Algebra with Applica-

tions, vol. 19, no. 3, pp. 541–554, 2012.

[18] R Tyrrell Rockafellar, Convex analysis, Number 28.

Princeton university press, 1997.

[19] K. Lange, Optimization, Springer-Verlag, 2013.

[20] K. Koh, S. J Kim, and S. P Boyd, “An interior-point

method for large-scale l1-regularized logistic regres-

sion.,” Journal of Machine learning research, vol. 8,

no. 8, pp. 1519–1555, 2007.

[21] S.D. Babacan, R. Molina, and A.K. Katsaggelos, “Vari-

ational bayesian super resolution,” IEEE Transactions

on Image Processing, vol. 20, no. 4, pp. 984–999, 2011.

[22] S. Farsiu, M.D. Robinson, M. Elad, and P. Milanfar,

“Fast and robust multiframe super resolution,” IEEE

Transactions on Image Processing, vol. 13, no. 10, pp.

1327–1344, 2004.

[23] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-

resolution,” in Computer Vision and Pattern Recogni-

tion, 2001. CVPR 2001. Proceedings of IEEE Computer

Society Conference on, 2001, vol. 1, pp. I–645–I–650.


