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	e problem of generating a superresolution (SR) image from a single low-resolution (LR) input image is addressed via granular
computing clustering in the paper. Firstly, and the training images are regarded as SR image and partitioned into some SR patches,
which are resized into LS patches, the training set is composed of the SR patches and the corresponding LR patches. Secondly, the
granular computing (GrC) clustering is proposed by the hypersphere representation of granule and the fuzzy inclusion measure
compounded by the operation between two granules. 	irdly, the granule set (GS) including hypersphere granules with di
erent
granularities is induced by GrC and used to form the relation between the LR image and the SR image by lasso. Experimental results
showed that GrC achieved the least root mean square errors between the reconstructed SR image and the original image compared
with bicubic interpolation, sparse representation, and NNLasso.

1. Introduction

In the �eld of image processing, SR images are usually
desired for later image processing and analysis. Improve-
ment of picture information for human interpretation and
helping representation for automatic machine perception
are two principal application areas [1]. 	e resolution of a
digital image can be classi�ed in many di
erent ways: pixel
resolution, spatial resolution, spectral resolution, temporal
resolution, and radiometric resolution [2–5].

An image of� pixels height by� pixels width can have
any resolution less than� lines per picture height. But when
the pixel counts are referred to as resolution, the convention
is to describe the pixel resolution with the set of two positive
integer numbers, where the �rst number is the number of
pixel columns (width) and the second is the number of
pixel rows (height), for example, as 7680 by 6876. Another
popular convention is to cite resolution as the total number of
pixels in the image, typically given as number of megapixels,
which can be calculated bymultiplying pixel columns by pixel
rows and dividing by one million. Other conventions include
describing pixels per length unit or pixels per area unit, such
as pixels per inch or per square inch. None of these pixel
resolutions are true resolutions, but they are widely referred

to as such; they serve as upper bounds on image resolution
[2].

SR is a technique that constructs high-resolution (HR)
images from several observed LR images, thereby increasing
the high frequency components and removing the degra-
dations caused by the imaging process of the LR camera.
	e basic idea behind SR is to combine the nonredundant
information contained in multiple LR frames to generate a
HR image. A closely related technique with SR is the single
image interpolation approach, which can be also used to
increase the image size [1, 5]. However, since there is no
additional information provided, the quality of the single
image interpolation is very much limited due to the ill-posed
nature of the problem, and the lost frequency components
cannot be recovered. In the SR setting, however, multiple
LR observations are available for reconstruction, making the
problem better constrained. 	e nonredundant information
contained in these LR images is typically introduced by
subpixel shi�s between them. 	ese subpixel shi�s may
occur due to uncontrolled motions between the imaging
system and scene, for example, movements of objects, or
due to controlled motions, for example, the satellite imaging
system orbiting the earth with prede�ned speed and path
[6, 7].
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GrC is a transformation method between the universe
and the parts and is widely used in pattern recognition,
information system, and so forth. Zadeh identi�ed three fun-
damental concepts of the human cognition process, namely,
granulation, organization, and causation [8, 9].Granulation is
a process that decomposes a universe into parts. Conversely,
organization is a process that integrates parts into a universe
by introducing operation between two granules. Causation
involves the association of causes and e
ects. 	e construc-
tion of granule set, the operations between two granules,
and the inclusion measure between two granules are main
researches in GrC. In general, the fuzzy inclusion measure is
induced by granule and union granule, such that the positive
valuation functions of granules are used to de�ne the fuzzy
inclusion measure [10–15].

	e present work uses GrC clustering to construct the
SR image of the original image. 	e granules are repre-
sented as the hypersphere, and the join operation and meet
operation are designed to obtain GS including the granules
with di
erent granularities.	e fuzzy inclusion measures are
compounded by the positive valuation functions.

	e rest of this paper is presented as follows.	e theoret-
ical background of GrC clustering is described in Section 2.
Section 3 designs the GrC clustering algorithms. 	e image
SR reconstruction experiments are used to demonstrate GrC
clustering in Section 4. Section 5 summarizes the contribu-
tion of our work and presents future work plans.

2. Theoretical Background

GrC clustering is discussed on the basis of the contribution of
Kaburlasos and his colleagues in the view of set theory [10–
15].

2.1. Representation of Granules. A granule is represented as
a subset of � which is composed by the data with the similar
features, and the size of granule ismeasured by the granularity
de�ned by the maximal distance between data belonging to
the same granule. In order to facilitate the study of granular
computing, such as the operations between two granules, the
granules are represented as the standard form, for example,
the granule with the shape of circle in 2-dimensional space
and the shape of hypersphere in�-dimensional space.

A granule is represented as the hypersphere G = (C, �),
whereC is the center of granule and� is radius of granule, and
refers to the granularity of granule G which is measured by
the maximal distance between center and the data included
in granule. Particularly, a point x is represented by an atomic
granule with the center x and granularity 0 in�-dimensional
space. 	e distance between center C = (�1, �2, . . . , ��) and
datum x = (�1, �2, . . . , ��) can be de�ned as follows:

�(x,C)

= ((�1 − �1)2 + (�2 − �2)2 + ⋅ ⋅ ⋅ + (�� − ��)2)
1/2.

(1)
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Figure 1: 	e cross-points between hypersphere granules and
the line through C12. P1 and P2 are the cross-points between
hypersphere G1 = (C1, �1) and the line through C1 and C2, and Q1
andQ2 are the cross-points between hypersphereG2 = (C2, �2) and
the line through C1 and C2.

2.2. Operations between Two Granules. 	e operations
between two granules re�ect the transformation between the
macro world and the microscopic world of human cognition.
When a personwants to observe the objectmore carefully, the
object is partitioned into some suitable subobjects; namely,
the universe is partitioned into some parts in order to
study the object in detail in the view of the microscopic
world. Conversely, if some objects have the same attributes,
we regard them as a universe in the view of the macro
world. 	e operations between two granules are designed to
realize the transformation between the macro world and the
microscopic world. Set-based models of granular structures
are special cases of lattice-based models, where the lattice
join operation ∨ coincides with set union operation ∪ and
lattice meet operation ∧ coincides with set intersection
operation ∩.

Join operation ∨ and meet operation ∧ are used to
realize the transformation between the macro world and
the microscopic world. Operation ∨ unites the granules
with small granularities to the granules with the large gran-
ularities. Inversely, operation ∧ divides the granules with
large granularities into the granules with small granularities.
Join operation is associated with the dilation operation
of mathematical morphology (MM), and meet operation
is associated with the erosion operation of MM [15]. In
image analysis �eld, dilation operation replaces all the
pixel values in the neighborhood with the maximal pixel
value, and erosion operation replaces all the pixel values
in the neighborhood with the minimal pixel value [16].
Join operation ∨ and meet operation ∧ are designed as
follows.
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Figure 2: 	e join hypersphere granule between two hypersphere
granules. 	e hypersphere with blue curve is the join hypersphere
between two hyperspheres with red curves.

All points are regarded as atomic granules which are
indivisible, and the join process is the key to obtain the larger
granules comparedwith atomic granules. Likewise, the whole
space is a granule with the maximal granularity, and the
meet process produces the smaller granules compared with
original granules.

For two hypersphere granules G1 = (C1, �1) and
G2 = (C2, �2) in�-dimensional space, the join hypersphere
granule is

G = G1 ∨ G2 = (C, �). (2)

	e center C of G and the granularity of G are computed
as follows.

Firstly, the vector from C1 to C2 and vector from C2 to
C1 are computed. If C1 = C2, then C12 = 0 and C21 = 0. If
C1 ̸= C2, then C12 = (C2 − C1)/�(C1,C2) and C21 = (C1 −
C2)/�(C2,C1).

Secondly, the cross-points between the hypersphere G1
and the line through C12 are P1 = C1 − C12�1 and P2 = C1 +
C12�1. 	e cross-points between the hypersphereG2 and the
line through C12 are Q1 = C2 − �2C21 and Q2 = C2 + �2C21.
	e cross-points are shown in Figure 1.

	irdly, the join hypersphere granule G is computed by
the following formulas:

G = G1 ∨ G2

=

{{{{{{{{{
{{{{{{{{{
{

C = C1, � = �1
if �1 ≥ �2, �(C1,C2) ≤ �1 − �2

C = C2, � = �2
if �1 < �2, �(C1,C2) ≤ �2 − �1

C = 0.5(P1 +Q1), � = 0.5�(P1,Q1)
if �(C1,C2) > �����1 − �2����.

(3)
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Figure 3: 	e meet hypersphere granule between two hypersphere
granules. 	e hypersphere with blue curve is the meet hypersphere
between two hyperspheres with red curves.
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Figure 4: 	e clustering process of �� including 5 samples. Leafs
denote the atomic hypersphere granules, branch points denote the
join hypersphere granule, and the tree root denotes GS.

Similarly, the meet hypersphere granule is computed:

� = G1 ∧ G2

=

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

⌀
if �(C1,C2) > �1 + �2

� = C2, � = �2
if �(C1,C2) < �1 − �2, �1 ≥ �2

� = C1, � = �1
if �(C1,C2) < �2 − �1, �2 ≥ �1

� = 0.5(P2 +Q2), � = 0.5�(P2,Q2)
if �(C1,C2) > �����1 − �2����.

(4)

2.3. Fuzzy Inclusion Measure. As mentioned above, for all
G1,G2 ∈ GS,G1 ⊆ G1 ∨G2, andG2 ⊆ G1 ∨G2,G1 ∧G2 ⊆ G1
and G1 ∧ G2 ⊆ G2. Namely, the operations between granule
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Figure 5: Training images with di
erent sizes.

Figure 6: 	e patches sampled by GrC with  = 100 from the
training image shown in Figure 5.

G1 and granuleG2 are corresponding to the inclusion relation
between granules G1 and G2:

G1 ⊆ G2 ⇐⇒ G1 ∨ G2 = G2,
G1 ∧ G2 = G1.

(5)

	e inclusion relation between two hypersphere granules
is induced by the operations between two hypersphere
granules.

	e join hypersphere granule and the meet hypersphere
granule are used to measure the fuzzy inclusion relation. 	e
granularity � is used to de�ne the fuzzy inclusion measure:

#(G1,G2) =
V(G2)

V(G1 ∨ G2)
, (6a)

�(G1,G2) =
V(G1 ∧ G2)

V(G2)
, (6b)

where V(G) is the positive valuation function de�ned by
Kaburlasos et al., which can be the linear function or
nonlinear function [10–13]. A valuation function V: $ → �
is a mapping between a lattice $ and a real number. 	e
valuation function satis�es V(&) + V(') = V(& ∧ ') + V(& ∨ '),

&, ' ∈ $. A valuation function is called positive if and only if
& < ' ⇒ V(&) < V(') [14].

	e hypersphere granule set is a mathematical lattice
if the inclusion measure is de�ned as (6a) and (6b). More
speci�cally, (6a) and (6b) can be used for hyperspheres based
on the lattice of intervals on the line de�ned by the centersC1
andC2 of the hyperspheres (C1, �1) and (C2, �2), respectively,
as explained in Example 2.8 in [11].

According to [15], the strictly increasing function is a
positive valuation. For G = (C, �),

V(G) = � + * (7)

is a positive valuation function de�ned on GS, where * is a
constant.

2.4. Fuzzy Algebraic Structures. For a training set � =
{x� | - = 1, 2, . . . , 3}, every datum �� is represented as
an atomic hypersphere granule which is indivisible, and the
granule set is obtained. For the positive valuation function
(7), the fuzzy inclusion relation between two hypersphere
granules is computed by formulas (6a) and (6b). So the fuzzy
algebraic structures ⟨GS, #(G1,G2)⟩ and ⟨GS, �(G1,G2)⟩ are
formed by GS and #(G1,G2), where #(G1,G2) implies the
operation between two hypersphere granules and �(G1,G2)
implies the meet operation between two hypersphere gran-
ules. ⟨GS, #(G1,G2)⟩ and ⟨GS, �(G1,G2)⟩ are proved as fuzzy
lattice, and #(G1,G2) and �(G1,G2) are fuzzy inclusion
measures, which satis�ed the following four conditions [12,
14, 17].

(1) If G ̸= ⌀, then #(G, ⌀) = 0, �(G, ⌀) = 0.
(2) For G ∈ GS,#(G,G) = 1, �(G,G) = 1.
(3) If G1 ≤ G2, then #(G,G1) ≤ #(G,G2) �(G,G1) ≤

�(G,G2).
(4) If G1 ∧ G2 < G1, then#(G1,G2) < 1.

3. GrC Clustering

For the data set � = {x� | - = 1, 2, . . . , 3} in �-dimensional
space, we form the following three algorithms based on the
aforementioned theoretical background.

Algorithm 1 is the join process between two hypersphere
granules and produces the hypersphere granule with the
larger granularity compared with the original hypersphere
granules. For example, the join hypersphere of hypersphere
granules G1 = [0.2, 0.15, 0.1] and G2 = [0.1, 0.2, 0.05] in 2-
dimensional space is G = [0.1724, 0.1638, 0.1309] as shown in
Figure 2.

Algorithm 2 is themeet process between two hypersphere
granules and produces the hypersphere granule with the
smaller granularity compared with the original hypersphere
granules. 	e meet process of hypersphere granuleG1 = [0.2,
0.15, 0.1] and hypersphere granule G2 = [0.1, 0.2, 0.0.05] is �
= [0.1276, 0.1862, 0.0191] as shown in Figure 3.

For data set �, theGrC clustering algorithms are proposed
based on the join process by the following steps. Firstly,
the samples are used to form the atomic granule. Secondly,
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(a) (b) (c)

(d) (e) (f)

Figure 7:	e �ower imagemagni�ed by a factor of 3. Le� to right: (a) low-resolution image, (b) the original image, (c) superresolution image
by bicubic interpolation, (d) superresolution image by sparse representation, (e) superresolution image by NNLasso, and (f) superresolution
image by GrC.

(a) (b) (c)

(d) (e) (f)

Figure 8: 	e girl image magni�ed by a factor of 3. (a) Low-resolution image, (b) the original image, (c) superresolution image by bicubic
interpolation, (d) superresolution image by sparse representation, (e) superresolution image by NNLasso, and (f) superresolution image by
GrC.
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(a) (b) (c)

(d) (e) (f)

Figure 9:	e Lenna image magni�ed by a factor of 3. (a) Low-resolution image, (b) the original image, (c) superresolution image by bicubic
interpolation, (d) superresolution image by sparse representation, (e) superresolution image by NNLasso, and (f) superresolution image by
GrC.

the threshold of granularity is introduced to conditionally
unite the atomic granules by the aforementioned join opera-
tion, and the granule set is composed of all the join granules.
	irdly, if all atomic granules are included in the granules
of GS, the join process is terminated; otherwise, the second
process is continued. 	e GrC clustering algorithms are
described as in Algorithm 3.

Suppose the atomic granules induced by � are �1, �2, �3,
�4, and �5. 	e GrC clustering process can be described as
the tree structure shown in Figure 4, leafs denote the atomic
granules, root denotes GS including its child nodes G2 and
G3,G1 is induced by join operation of child nodes �1 and �2,
G2 is the join granule ofG1 and �3, andG3 is the join granule
of �4 and �5. 	e whole process of obtaining GS is the bottle-
up process.

4. Experiments

Experimental settings used the same parameters in [18];
namely, the superresolution image is magni�ed by the input
image with a factor of 3; for the low-resolution images, 3 ×
3 low-resolution patches with overlap of 1 pixel between
adjacent patches and the corresponding 9 × 9 patches with
overlap of 3 pixels for the superresolution patches are used

in our experiments. 	e experiments include three stages:
sampling, training, and reconstruction.

	e sampling stage is the generation of training set for
the training images in [18]. In general, the training images
are SR image. 	e purpose of sampling stage is to form the
corresponding LR image of SR image. For color images, the
illuminance component is applied to the proposed algorithms
since humans are more sensitive to illuminance changes.
Firstly, the color image is transformed into the gray image.
Secondly, LR images are extracted from SR images, SR image
patches and the corresponding LR image patches are selected
to form the vector, and all the vectors are used to generate the
training set. 91 training images are used to form the patches
to train the granule set, and 999910 patches are extracted to
form the training set S, which is redundant and has many of
similar data.

	e training stage is to reduce the redundancy of training
set by the aforementioned GrC clustering. Figure 5 shows
six training images with di
erent sizes, such as �owers and
faces, and the training set including redundancy patches is
generated by the sampling stage. Figure 6 shows the image
patches trained by GrC clustering with  = 100.

	e same reconstruction strategy as [18] is used to form
the SR image in reconstruction stage. We compare SR image
reconstruction via GrC clustering with bicubic interpolation
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(a) (b) (c)

(d) (e) (f)

Figure 10: 	e average female face image magni�ed by a factor of 3. (a) Low-resolution image, (b) the original image, (c) superresolution
image by bicubic interpolation, (d) superresolution image by sparse representation, (e) superresolution image by NNLasso, and (f)
superresolution image by GrC.

Table 1: 	e RMSE of di
erent methods for superresolution with magni�cation factor 3 with respect to the original images.

Images Bicubic [19] Sparse [18] NNLasso [20] GrC clustering

Flower (330 × 171) 4.0837 3.9240 6.5283 3.9153 ( = 0.7)

Girl (255 × 258) 6.8506 6.6383 9.9462 6.6318 ( = 0.7)

Lenna (512 × 512) 7.3515 6.9950 12.1007 6.9076 ( = 0.7)

Female face (400 × 320) 4.9347 4.7763 8.8875 4.4427 ( = 0.65)

Male face (400 × 320) 6.0613 5.7385 10.0067 5.3204 ( = 0.65)

[19], sparse representation [18], and NNLasso [20]. 	e
performance included the SR reconstruction images and the
RMSE between the SR reconstruction image and the original
superresolution image.

We compared GrC clustering with sparse representation,
bicubic interpolation, and NNLasso, on �ve test images of
a �ower [18], girl [18], Lenna [21], average female face [22],
and average male face [22]. Firstly, training set including
999910 image patches is obtained in the sampling stage,

and the redundancy of training set is reduced by GrC and
sparse representation. Secondly, the LS images of testing
images are resized by nearest method. 	irdly, the SR images
are obtained by sparse representation, bicubic interpolation,
NNLasso, and GrC clustering. 	e root mean square error
(RMSE) between the superresolution images and the original
images is listed in Table 1. From the table, we can see
that the superresolution images by GrC are better than the
superresolution by bicubic interpolation (bicubic), sparse
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(a) (b) (c)

(d) (e) (f)

Figure 11:	e average male face imagemagni�ed by a factor of 3. (a) Low-resolution image, (b) the original image, (c) superresolution image
by bicubic interpolation, (d) superresolution image by sparse representation, (e) superresolution image by NNLasso, and (f) superresolution
image by GrC.

Input: G1 = (C1, �1) and G2 = (C2, �2)
Output: G = (C, �)
if �1 >= �2

if �(C1,C2) <= �1 − �2
G = (C, �), where C = C1, � = �1

else
G = (C, �), where C = (P1 +Q1)/2, � = �(P1,Q1)/2

end
else

if �(C1,C2) <= �2 − �1
G = (C, �), where C = C2, � = �2

else
G = (C, �), where C = (P1 +Q1)/2, � = �(P1,Q1)/2

end
end

Algorithm 1: Computing C and � of join hypersphere granule G between G1 and G2.
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Input: G1 = (C1, �1) and G2 = (C2, �2)
Output: � = (�, �)
if �(C1,C2) > �1 + �2

� = ⌀
else

if �1 >= �2
if �(C1,C2) <= �1 − �2

� = (�, �), where � = C2, � = �2
else

� = (�, �), where � = (P2 +Q2)/2, � = �(P2,Q2)/2
end

else
if �(C1,C2) <= �2 − �1

� = (�, �), where � = C1, � = �1
else

� = (�, �), where � = (P2 +Q2)/2, � = �(P2,Q2)/2
end

end
end

Algorithm 2: Computing � and � of meet hypersphere granule � between G1 and G2.

Input: Data set �, the user-de�ned threshold  of granularity
Output: Granule set GS
S1. initialize the granule set GS = ⌀
S2. - = 1
S3. for the -th sample x� in S, form the corresponding atomic granule G�
S4. 7 = 1
S5. compute the fuzzy inclusion measure#�� = #(G�,G�) between the atomic granule G� and the 7th granule G� in GS

S6. 7 = 7 + 1
S7. �nd the maximal fuzzy inclusion measure#im

S8. if the granularity of the join of G� and G� is less than or equal to  , the granule G� is replace by the join G� ∨ G�,
otherwise G� is the new member of GS
S9. remove x� until � is empty.

Algorithm 3: GrC clustering process.

representation (sparse), and NNLasso. 	e LS images, orig-
inal images, and SR images are shown in Figures 7, 8, 9, 10,
and 11. For human visual, the original images are the most
clear, and the reconstruction images by NNLasso are blurry.

5. Discussion

	e experimental results of the previous section demonstrate
the e
ectiveness of image superresolution reconstruction via
GrC.However, one of themost important questions for future
investigation is to determine, in terms of the within-category
variation, the number of raw sample patches required to
generate a dictionary satisfying GrC. Because GrC is an
online learning algorithm, the achieved granule set is related
to the rank of training set. Image magni�ed by a factor of 3 is
performed in the paper, and the larger magni�cation factors
will increase the complexity of GrC and be discussed in the
future works.
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