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Abstract

Recently, image-to-image translation has made signifi-

cant progress in achieving both multi-label (i.e., translation

conditioned on different labels) and multi-style (i.e., gener-

ation with diverse styles) tasks. However, due to the unex-

plored independence and exclusiveness in the labels, exist-

ing endeavors are defeated by involving uncontrolled ma-

nipulations to the translation results. In this paper, we pro-

pose Hierarchical Style Disentanglement (HiSD) to address

this issue. Specifically, we organize the labels into a hierar-

chical tree structure, in which independent tags, exclusive

attributes, and disentangled styles are allocated from top to

bottom. Correspondingly, a new translation process is de-

signed to adapt the above structure, in which the styles are

identified for controllable translations. Both qualitative and

quantitative results on the CelebA-HQ dataset verify the

ability of the proposed HiSD. The code has been released

at https://github.com/imlixinyang/HiSD.

1. Introduction

Recently, deep learning based methods have achieved

promising results in image-to-image translation area. Early

works [47, 41, 21, 35] learn a deterministic mapping be-

tween two domains, which give rise to two emergent issues:

translating the inputs conditioned on multiple labels, and

generating diverse outputs with multiple styles. The former

is termed the multi-label task, and the latter is termed the

multi-style (or multi-modal) task. For the multi-label task,

methods [5, 11, 20, 38] combine the labels into the trans-

lator. For the multi-style task, methods [15, 18, 1, 48] in-

corporate latent codes drawn from Gaussian noise into the

translator. Recent unified solutions for these tasks can be

classified into two categories. (i). Works [34, 36, 42, 19]

learn the shared style by injecting the style code concate-
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Figure 1: Hierarchical Style Disentanglement. The origi-

nal labels are organized into independent tags and exclusive

attributes. We aim to disentangle the styles to represent the

clear manifestations in attributes, in an unsupervised way.

nated with the target labels into the generator. The shared

style code does not have an explicit effect on the source im-

age without changed labels, which is shown in Figure 3(a).

(ii). StarGANv2 [6] learns the mixed style by using the tar-

get label to index the mapped style code. It continues to

use the hypothesis of StarGAN [5] that an image domain is

the set of images sharing the same labels. The translations

frequently involve unnecessary manipulations like changing

facial identity and affecting background, as shown in Fig-

ure 3(b). In addition, they cannot independently learn the

respective styles for bangs, glasses, and hair color. These

uncontrollable translations severely limit their practical use.

We propose a novel framework, called Hierarchical Style

Disentanglement, to solve the above limitations. We notice

the general independence and exclusiveness among most la-

bel annotations. For example, in CelebA, original binary

labels ‘With Bangs’ and ‘With Glasses’ are independent,

while ‘Blond Hair’ and ‘Black Hair’ are exclusive. Ac-

cordingly, as shown in Figure 1, we organize the original

labels into a hierarchical structure, including independent

tags and exclusive attributes. The tags represent different

accordance of attributes, and every image is relabeled to
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Figure 2: Selected results of our method on CelebA-HQ. (a). The multi-style task, which aims to generate diverse tag-

relevant styles. The styles in our framework can be either generated by random latent codes or extracted from reference

images. (b). The multi-attribute task, which aims to translate images into multiple possible attributes. (c). The multi-tag

task, which aims to manipulate multiple tags of images simultaneously and independently.

index

Mixed GlassesBangs Hair colorShared

GB Hg h map

Labels

Tags and attributes

organize

(a) SDIT (b) StarGANv2 (c) Our method

Input

b hh

Z

Z

GB H

concat

separate

Noise

Z

Figure 3: Comparison of different style codes. Our style

codes are identified to the hierarchical structure.

one of the attributes for each tag. For example, accord-

ing to the tag ‘Glasses’, the attribute of images can be ei-

ther ‘with’ or ‘without’. Thus the multi-label issue is di-

vided into two sub-tasks: multi-attribute task, which trans-

lates a tag to multiple possible attributes; and multi-tag task,

which manipulates multiple tags simultaneously. However,

the human-annotated attributes cannot represent the clear

manifestations in images for tags. In this paper, we take

the clear manifestations in images for tags as tag-relevant

styles. The tag-relevant styles, which are identified to the

tags and attributes, provide a more controllable manner for

diverse translations. For example, the style for tag ‘Glasses’

can disentangle different glasses, such as myopic glasses,

sunglasses, and reading glasses in images, without super-

vised annotations. We introduce different modules to gen-

erate, extract, and efficiently manipulate the disentangled

tag-relevant styles. In the cycle-translation path, we consis-

tently optimize both generated and extracted styles to ma-

nipulate images realistically and accurately. Through cy-

cle consistency and style consistency, the generated and ex-

tracted styles are guaranteed to include the detailed mani-

festations for tags. To guarantee the disentanglement, we

introduce a local translator, which uses the attention mask

to avoid the global manipulations; and a tag-irrelevant con-

ditional discriminator, which uses redundant labels in the

annotations to prevent that these implicit conditions are ma-

nipulated by the translations. In Figure 2, we show some

selected results of our method on CelebA-HQ.

Our contributions include:

• We propose HiSD to address the issues in recent multi-

label and multi-style image-to-image translation meth-

ods by organizing the labels into a hierarchical struc-

ture, where independent tags, exclusive attributes, and

disentangled styles are allocated from top to bottom.

• To make the styles identified to the tags and attributes,

we carefully redesign the modules, phases, and objec-

tives. For unsupervised style disentanglement, we in-

troduce two architectural improvements to avoid the

global manipulations and implicit attributes to be ma-

nipulated during the translations.

• We conduct extensive experiments to prove the effec-

tiveness of our model.
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2. Related Works

Generative Adversarial Networks. GANs [8] have gained

remarkable results. After training, the generator is able

to produce outputs which are similar to the real samples.

Recently, many works optimize the training stability of

GANs [24, 9, 28] or release the potential of GANs in dif-

ferent areas [32, 17, 33]. Specifically, We use multi-task

GANs [26, 22] to make outputs satisfy the target attribute

and conditional GANs [27] to ensure that the tag-irrelevant

conditions remain satisfying during translations.

Image-to-image translation. Image-to-image translation

has attracted increasing attentions since its widely practical

use, such as colorization [43], super resolution [37], seman-

tic synthesis [3] and domain adaption [13]. Our framework

focuses on the broad concept of image-to-image transla-

tion to jointly solve multi-label [5, 11, 20, 38] and multi-

style [15, 18, 1, 48] issues, and overcomes the disadvan-

tages of previous joint frameworks [34, 36, 42, 19, 6, 39,

46, 40, 10].

Label-specific style. Label-specific style learns the clear

manifestation of the specific binary label, which is a special

case of our tag-relevant style. However, it ignores the ex-

clusiveness of some labels. Early works [39, 46, 30, 4, 2]

use a single or multi-valued style code while recent meth-

ods [40, 10] use the feature maps to represent the detailed

manifestation. However, they suffer from bad visual qual-

ity or unaligned images because of the pose-variant feature

maps and support only the reference-guided task.

3. Methods

The organized labels can be defined as a hierarchical

structure. For a single image, its attribute for tag i ∈
{1, 2, ..., N} can be defined as j ∈ {1, 2, ...,Mi}, where N

is the number of tags and Mi is the number of attributes for

tag i. However, the attribute j cannot represent the detailed

manifestation for the tag i in images, which we called tag-

relevant style si,j ∈ Si,j . Similarly, we denote the image

which has the attribute j for tag i by xi,j ∈ Xi,j .

Our framework aims to generate, extract, and manipu-

late the tag-relevant style in the image. Each purpose cor-

responds to a specific module. There are two ways to get

the style code for manipulation, as shown in Figure 5. For

the latent-guided task, the style code is generated by the

mapper module (M). Given a latent code z ∼ N (0, 1)
and an attribute j for tag i, M generates the style code

si,j = Mi,j(z). For the reference-guided task, the style

code is extracted by the extractor module (F). Given an

image xi,j and a tag i, F learns to extract the style code

si,j = Fi(xi,j). Then, the generated or extracted style is

utilized to guide the manipulation. However, it is inefficient

if we apply manipulation directly to the image when manip-

ulating multiple tags. Instead, denote a source image by x,

we first convert it into its immediate feature by the encoder

module (E), which is given by e = E(x). Then, to manip-

ulate the feature, we introduce the translator module (T).

Given a feature e and a tag-relevant style code si,j for tag

i, T learns to manipulate the specific tag of the feature by

Ti(e, si,j). In each translation, the feature can go through

the translators multiple times. To get the translated image,

we introduce the generator module (G) to convert the trans-

lated feature ẽ into the image. The translated image is given

by x̃ = G(ẽ). We also introduce the discriminator mod-

ule (D) to determine whether an image, given the tag and

attribute, is real or not. Notably, for modules which need

the tag or attribute as input, we choose to use them to in-

dex the selection of specific layers of the modules rather

than injecting them into the modules (e.g. using the individ-

ual module Mi,j(·) rather than a single M(·, i, j) with tag i

and attribute j as inputs).

Formally, during the test, the source image x is firstly

encoded to its immediate feature

e0 = e = E(x). (1)

Second, to manipulate the source feature into target at-

tributes j1, ..., jl for multiple tags i1, ..., il, respectively,

where l is the number of manipulated tags, we input the fea-

ture into the specific translator one by one, for k = 1, ..., l,

ek = Tik(ek−1, sik,jk), (2)

where sik,jk can be either a latent-guided style Mik,jk(z)
or a reference-guided style Fik(xik,jk). Finally, let ẽ = el,

the translated image is generated by

x̃ = G(ẽ). (3)

In particular, the test phases of the multi-style, multi-

attribute, and multi-tag tasks are shown in Figure 6.

3.1. Training Phases

To independently optimize the modules for different tags

and attributes, we randomly sample a tag i, a source at-

tribute j, and a target attribute j̃ in each iteration. As shown

in Figure 4, given a source image xi,j ∈ Xi,j , the training

phases include:

Non-translation path. We get the first reconstruction im-

age x′

i,j = G(E(xi,j)) in this path.

Self-translation path. We get the second reconstruction

image x′′

i,j = G(T(E(xi,j), si,j)), where si,j = Fi(xi,j)
is the extracted tag-relevant style code of the source image.

Cycle-translation path. In this path, we firstly generate

the target tag-relevant style code si,j̃ = Mi,j̃(z). Sec-

ondly, we render the generated style code si,j̃ into the fea-

ture of the source image xi,j and get the translated image

xi,j̃ = G(T(E(xi,j), si,j̃)). Finally, the feature of the

translated image xi,j̃ and the original extracted style code

si,j are inputted into the translator and we get the third re-

construction image x′′′

i,j = G(T(E(xi,j̃), si,j)).
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Figure 4: The training phases of our method include (a) a non-translation path, (b) a self-translation path, and (c) a cycle-

translation path. We further avoid unnecessary manipulations by two essential architectural improvements: (d) a feature-

based local translator and (e) a tag-irrelevant conditional discriminator.

3.2. Training Objectives

Adversarial objective. The adversarial objective of our

method encourages realistic manipulations for both gener-

ated and extracted styles, which is defined as

Ladv = 2Ei,j,x[log(Di,j(xi,j))]

+Ei,j,x,j̃,z[log(1−Di,j̃(xi,j̃))]

+Ei,j,x,j̃,z[log(1−Di,j(x̃
′′′

i,j))],

(4)

where xi,j̃ is the translated image using the style code gen-

erated by the mapper M, and x̃′′′

i,j is the cycle-translated im-

age using the style code extracted by the extractor F. This

objective not only encourages the mapper to accurately map

the tag-specific attribute information into the generated tag-

relevant style code, but also forces the extractor to extract

the tag-specific attribute information from the image.

Reconstruction objective. All final outputs of the non-

translation, self-translation, and cycle-translation paths are

the reconstruction images of the source image. Thus, we

apply a reconstruction objective to make the reconstruction

images equal to the source image, which is

Lrec = Ei,j,x[‖x
′

i,j − xi,j‖1]

+Ei,j,x[‖x
′′

i,j − xi,j‖1]

+Ei,j,x,j̃,z[‖x
′′′

i,j − xi,j‖1].

(5)

Specifically, the first two terms encourage the consistency

between the features whether through the translator T or

not. They are significant for our framework to manipulate

multiple tags during test, which is not directly involved dur-

ing training. The importance of these two terms has been

proved in ModularGAN [45].

The final term utilizes the cycle consistency to encourage

the extracted tag-relevant style to be accurate, which needs

models to extract the detailed manifestation of the source

image and render it to manipulate the translated image, so

that the cycle-translated image can be equal to the source

one (e.g., the model needs to extract the specific style of

glasses so that it can translate the non-glasses translated im-

age back into the source image).

Style objective. The extracted style code of the translated

image is supposed to be equal to the generated style code.

So we introduce the style objective

Lsty = Ei,j,x,j̃,z[‖Fi(xi,j̃)− si,j̃‖1], (6)

which encourages the consistency between the generated

and extracted styles [15, 18, 36, 19, 42, 6]. On the one hand,

it encourages the mapper M to generate the accurate tag-

relevant style code, which can be equally extracted by the

extractor F as well. On the other hand, it also encourages

the translator T to fully utilize the style code and forces

both generated and extracted styles to be camera-ready.

Full objective. Finally, the optimization of the full objec-

tive function can be written as

min
E,G,T,F,M

max
D

Ladv + λrecLrec + λstyLsty, (7)

where λrec and λsty are hyper-parameters that control the

relative importance of reconstruction and style objectives

compared to the adversarial objective, respectively. The full

objective guarantees the style codes to catch the clear mani-

festations of different tags with unnecessary manipulations.

We introduce two architectural improvements to avoid un-

necessary manipulations and make the style codes further

disentangled without extra objectives [30, 2, 14].
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Figure 5: During test, the tag-relevant styles can be either

(a) latent-guided (i.e. generated by random latent codes) or

(b) reference-guided (i.e. extracted from reference images).

3.3. Feature­based Local Translator

The translator in our framework affects the features

rather than the images [25, 31, 7, 29]. To utilize the tag lo-

cality, we introduce a feature-based local translator. Denote

the original feature by e, the translator outputs two folds of

features m and f with the same size (i.e. height, width, and

channel) of e. Then the translated feature is given by

σ(m) · e+ (1− σ(m)) · f, (8)

where σ(·) is the sigmoid function and σ(m) is an attention

mask. The attention mask in our translator is both spatial-

wise and channel-wise. This design can avoid global ma-

nipulations like background and illumination during trans-

lations, with negligible additional calculation and no regu-

larization objective.

3.4. Tag­irrelevant Conditional Discriminator

For different attributes, imbalanced phenomenons of im-

plicit conditions are widespread in the real-world datasets.

In CelebA-HQ, there are 83.3% male and 65.7% aged in

images with attribute ‘with’ for tag ‘Glasses’, while the per-

centages decrease to 36.0% and 20.0% correspondingly in

images with attribute ‘without’ for tag ‘Glasses’. The dis-

criminator will force the translations to manipulate these

implicit conditions. We address this problem by inject-

ing the tag-irrelevant conditions (e.g. labels ‘Male’ and

‘Young’) into the discriminator. Denote the tag-irrelevant

conditions of the original image xi,j for tag i by yi, we re-

place Equation 4 by

L
′

adv = 2Ei,j,x[log(Di,j(xi,j , yi))]

+Ei,j,x,j̃,z[log(1−Di,j̃(xi,j̃ , yi))]

+Ei,j,x,j̃,z[log(1−Di,j(x
′′′

i,j , yi))].

(9)

Consequently, the discriminator will notice the imbalanced

phenomenons and encourage the translations to not manip-

ulate the tag-irrelevant implicit conditions.
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Figure 6: Test phases for (a) the multi-style task, (b) the

multi-attribute task and (c) the multi-tag task. Note that the

multi-tag task is not involved during training but achieved

by the re-designed training phases and objectives indirectly.

4. Experiments

In this section, we conduct a set of experiments to prove

the effectiveness of our method. All experiments are con-

ducted using unseen images during training.

Dataset. We choose CelebA-HQ [16] as our dataset, which

contains 30,000 facial images with label annotations such as

hair color, gender, and presence of glasses. CelebA-HQ is

more challenging than the original CelebA [23]. The orig-

inal labels ‘With Bangs’, ‘With Glasses’, ‘Blond Hair’,

‘Black Hair’, and ‘Brown Hair’ in CelebA-HQ are orga-

nized into three tags ‘Hair color’ (with attributes ‘blond’,

‘black’ and ‘brown’), ‘Bangs’ (with attributes ‘with’ and

‘without’), ‘Glasses’ (with attributes ‘with’ and ‘without’)

for experiments. For tag-irrelevant conditions, we choose

two major labels, ‘Male’ and ‘Young’ to avoid the manip-

ulation of gender and age. We split the 30000 images in

CelebA-HQ into 3000 images as the test set and 27000 as

the training set.

Baselines. We use SDIT [36] (with shared style), Star-

GANv2 [6] (with mixed style), and ELEGANT [40] (with

label-specific style) as our baselines. All models of base-

lines are trained using the implementations provided by

their authors. We train three independent models for Star-

GANv2 for each tag to avoid the exponential number of la-

bel domains. For other implementation details, please refer

to our supplemental material.
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Figure 7: Qualitative results of the multi-style task, including (a) the latent-guided task and (b) the reference-guided task.

Please zoom in for more details.

4.1. Multi­style Task

In this section, we evaluate our method on translating a

tag of images into another attribute with diverse outputs. We

respectively manipulate tag ‘Bangs’ to attribute ‘with’ and

tag ‘Glasses’ to attribute ‘with’ as our examples from two

perspectives: latent-guided task and reference-guided task.

Latent-guided task. Figure 7(a) provides a qualitative

comparison of the competing methods. We cannot provide

the results of ELEGANT because it only has the reference-

guided capacity. The visual quality and diversity of SDIT

are limited. StarGANv2 manipulates tag-irrelevant details

(e.g. changing the hair color when manipulating tag ‘Bangs’

and translating the young female into an aged male when

manipulating tag ‘Glasses’). Our method manipulates accu-

rate tag-relevant styles for both tags, with high visual qual-

ity, satisfying diversity of the manipulated attributes, and

maintaining tag-irrelevant details.

Reference-guided task. Figure 7(b) provides a qualita-

tive comparison of the competing methods. In this task,

the styles are extracted from the reference images. SDIT

cannot effectively extract the styles. The expression of at-

tributes comes from the change of the labels. StarGANv2

extracts and manipulates many distinctive styles (e.g. hair
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Method
Realism(FID) Diversity(User Study%) Disentanglement(FID)

L R G L R G L R G

SDIT [36] 33.73 33.12 00.61 09.94 08.25 01.69 80.25 79.72 00.53

StarGANv2 [6] 26.04 25.49 00.55 29.18 26.63 02.55 90.08 78.03 12.05

ELEGANT [40] - 22.96 - - 38.80 - - 75.03 -

Ours 21.37 21.49 00.12 50.00 48.97 01.03 71.85 71.48 00.37

Table 1: Quantitative results of the multi-style task. (L: latent-guided; R: reference-guided; G: gap between L and R.)

(b) Multi-tag task
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(a) Multi-attribute task

OursStarGANv2 SDIT 

Input ‘Hair color’ to ‘brown’ / ‘blond’

Figure 8: Qualitative results of (a) the multi-attribute task and (b) the multi-tag task.

color, background, and facial identity). ELEGANT suc-

ceeds in extracting and manipulating the accurate styles,

but it generates visible artifacts in the last row of the left

results. Another limitation is that the transfer of unaligned

images is ineffective, because it uses pose-variant feature

maps to represent the styles, while we use pose-invariant

global style codes. Our method transfers the styles for both

tags accurately.

We also perform three quantitative comparisons between

our method and baselines, including:

Realism. To qualitatively evaluate realism, we calculate the

Frechét inception distance (FID) [12]. For each test im-

age without bangs, we translate it into images with bangs

using 5 style codes, which are generated by randomly sam-

pled latent codes for the latent-guided task or extracted from

random samples from images with bangs for the reference-

guided task. We then calculate the average FID between

the translated images and real images with bangs. Table 1

shows the quantitative comparison of the competing meth-

ods. Our method outperforms all baselines in terms of real-

ism.

Diversity. To qualitatively evaluate diversity, the widely

used metric is the learned perceptual image patch similarity

(LPIPS) [44]. However, it encourages the models to manip-

ulate the image as much as possible, which is not desired in

practical use. Hence, we choose to use user study for quan-

titative comparison of diversity. For each task, the percent-

age is given by asking users which diversity is more pre-

ferred, compared to the latent-guided results of our method.

The results in Table 1 show that the baselines cannot obtain

a vote bigger than our method (i.e. 50%), which means that

users prefer the diversity of our method more.

Disentanglement. To qualitatively evaluate the disentan-

glement of the tag-relevant styles, we translate the young

male images without bangs into 5 images with bangs and

use the translated images and real young male images with

bangs to calculate the average FID distance. This met-

ric challenges the methods to only transfer the tag-relevant

styles and maintain the tag-irrelevant details. If the model

transfers tag-irrelevant details, such as changing the gender

of the images, the FID between the translated images (some

female images) and the real images (all male images) will

increase. The results show that the disentanglement of our

method is superior to the baselines.

Moreover, we also report the capacity gap, which is the

L1-norm between the values of the latent-guided task and

reference-guided task. The results show that our method

gets the most balanced performance.

4.2. Multi­label Task

Multi-label task in previous methods is divided into two

sub-tasks in our method: multi-attribute task and multi-tag

task. The former translates images into multiple possible

attributes for one tag only. The latter manipulates multiple

tags of images.

Multi-attribute task.. We translate the tag ‘Hair color’ of
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Figure 9: Qualitative results of the ablation study. Results to the left of the dotted line are latent-guided while results to the

right of the dotted line are reference-guided.

images from ‘black’ into two attributes ‘brown’ and ‘blond’

for example. As shown in Figure 8(a), SDIT gets worse

visual quality than other methods, and StarGANv2 manipu-

lates tag-irrelevant details (e.g. skin color and illumination).

Our method accurately manipulates the disentangled tag-

relevant styles, which satisfy both attributes for ‘Hair color’.

The visual quality and diversity of our method are also de-

sirable.

Multi-tag task. An ideal method is supposed to indepen-

dently manipulate each tag, which cannot be performed by

SDIT and StarGAN due to their shared or mixed style code.

We manipulate two tags, ‘Bangs’ and ‘Glasses’, simulta-

neously. As shown in Figure 8(b), simultaneous transla-

tions of ELEGANT for multiple tags lead to interference

(e.g. changing the style of bangs while changing the style

of glasses). Furthermore, the results of our method demon-

strate the disentanglement of our tag-relevant style codes.

4.3. Ablation Study

In this experiment, we evaluate several ablations of our

method with different settings to investigate the effect of

each additional component in our framework. The qualita-

tive and quantitative results are shown in Figure 9 and Ta-

ble 2, respectively. The first ablation removes the feature-

based local translator (w/o Att.). The result shows that it

cannot focus on the tag-relevant style (e.g. changing the

color and illumination of the images). The second abla-

tion uses the translator with only spatial-wise attention (w/

Spa.). Although it can obtain tag-relevant diversity, the

color distribution of the input image changes. The third ab-

lation removes the tag-irrelevant conditions for the discrim-

inator (w/o Con.). As expected, it is observed to change

the gender and age of the input, but it achieves the best

performance in terms of the realism due to the imbalanced

phenomenon in the test images. The last ablation removes

the adversarial objective of the cycle-translation output (w/o

Cyc.). The results of this ablation in the latent-guided task

are similar to the full model, but in the reference-guided

task, it is observed to output fuzzy results. The realism

and disentanglement metrics of it in the reference-guided

task are the worst among all ablations. We suspect that

the optimization with only the reconstruction objective of

Setting
Realism(FID) Disentanglement(FID)

L R G L R G

w/o Att. 22.30 21.83 00.47 73.91 71.50 02.41

w/ Spa. 23.94 23.94 00.00 75.17 75.17 00.00

w/o Con. 20.63 20.66 00.03 74.91 73.61 01.30

w/o Cyc. 22.31 28.39 06.08 74.18 80.34 06.16

Full 21.37 21.49 00.12 71.85 71.48 00.37

Table 2: Quantitative results of the ablation study. (Bold:

best; Underline: runner-up.)

cycle-translation output is unclear for the framework, espe-

cially for small objects like glasses. Our full model gets the

best performance in qualitative results and sacrifices a bit of

realism for disentanglement in quantitative results, which

proves the significance of each component in our frame-

work.

5. Conclusion

In this paper, we propose the Hierarchical Style Disen-

tanglement for image-to-image translation, with scalabil-

ity and controllable diversity. The key idea is to organize

the labels into a hierarchical tree structure, which consists

of independent tags, exclusive attributes, and unsupervised

but disentangled styles. Extensive qualitative and quanti-

tative experiments prove the effectiveness of our method.

Moreover, it is easy to adapt our method to joint training of

multiple datasets [5], continuous learning of new tags [45],

semi-supervised learning of semi-labeled dataset [19], and

few-shot learning of tags with many attributes [22]. We be-

lieve that our method is more suitable for practical use than

the state-of-the-art image-to-image translation methods.
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