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ABSTRACT We propose a novel image transformation network for generating visually protected images

for privacy-preserving deep neural networks (DNNs). The proposed transformation network is trained by

using a plain image dataset so that plain images are converted into visually protected ones. Conventional

perceptual encryption methods cause some accuracy degradation in image classification and are not robust

enough against state-of-the-art attacks. In contrast, the proposed network not only enables us to maintain

the image classification accuracy that using plain images achieves but is also strongly robust against attacks

including DNN-based ones. Furthermore, there is no need to manage any security keys as the conventional

methods require. In an image classification experiment, the proposed network is demonstrated to strongly

protect the visual information of plain images while maintaining a high classification accuracy under the use

of two typical classification networks: ResNet and VGG. In addition, it is shown that the visually protected

images are robust enough against various attacks in an experiment in which we tried to restore the visual

information of plain images.

INDEX TERMS Adversarial example, deep neural network, privacy preserving, visual protection.

I. INTRODUCTION

The spread of deep neural networks (DNNs) has greatly con-

tributed to solving complex tasks for many applications [1],

[2], such as computer vision, biomedical systems, and infor-

mation technology. Deep learning utilizes a large amount of

data to extract representations of relevant features, so perfor-

mance is significantly improved [3]. Therefore, DNNs have

been deployed in privacy-sensitive/security-critical applica-

tions, such as facial recognition, biometric authentication,

and medical image analysis.

Recently, with the development of cloud services, DNNs

are often carried in cloud environments. One of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Junhua Li .

advantages of cloud environments is that cloud providers

can provide various web-based software services like soft-

ware as a service (SaaS). However, since cloud providers

are not assumed to be trusted in general, private data,

such as personal information and medical records, may

be revealed in cloud computing [4]. Therefore, it is nec-

essary to protect data privacy in cloud environments, and

privacy-preserving DNNs have become an urgent challenge.

Proposals in some studies on privacy-preserving machine

learning were made on the basis of a differential privacy

strategy [5], [6]. In [5], a computation-efficient decentralized

stochastic gradient algorithm was proposed, and it can mask

the privacy of each constituent function. In [6], a differen-

tially private-distributed stochastic subgradient-push algo-

rithm was also proposed to effectively mask differential
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privacy. These studies have made a great contribution to the

research field of privacy-preserving machine learning.

In contrast, various perceptual encryption methods

have been proposed for generating images without

visual information [7]–[21] in accordance with a visual

information-protection strategy, although information theory-

based encryption (like RSA and AES) generates cipher-

text. In contrast to information theory-based encryption,

images encrypted by perceptual encryption methods can

be directly applied to various image processing algorithms.

Perceptual encryption aims to generate images without

visual information on plain images on the basis of a

visual information-protection strategy since visual informa-

tion includes sensitive personal information such as time,

place, and personally identifiable information. However,

most perceptual encryption methods cannot be applied to

DNNs. There are only three methods, Tanaka’s method

[18], a pixel-based encryption method [19], [20], and a

GAN (generative adversarial network)-based transformation

method [22], for privacy-preserving DNNs. However, with

these methods, performance degrades in DNNs, compared

with the use of plain images. In addition, they are not robust

against various attacks.

For such reasons, in this paper, we propose a novel

transformation network for generating visually protected

images for privacy-preserving DNNs under the visual

information-protection strategy. The proposed network,

which is inspired by the idea of adversarial examples, con-

verts a plain image into a visually protected one. It is trained

so that the generated images reduce the loss value of a classi-

fication network. Therefore, it enables us not only to protect

visual information on plain images but also to maintain the

performance of DNNs. In addition, the proposed framework

has no security keys unlike the conventional methods because

the proposed network irreversibly transforms images into

visually protected ones with features used for classifying

images, like a robust hashing function.

In an experiment, image classification is carried out under

the use of the CIFAR datasets [23] and two classification

networks, ResNet-20 [24] and VGG16 [25] with batch nor-

malization, to evaluate the effectiveness of the proposed

transformation network. From the results, visually protected

images generated by the proposed network are demonstrated

to have less visual information than those generated by

using conventional methods while maintaining the classifica-

tion accuracy that using plain images achieves. In addition,

an experiment is conducted to evaluate robustness against

various attacks including DNN-based ones.

The rest of this paper is structured as follows. Section II

presents background information and related work on per-

ceptual encryption and adversarial examples. Regarding the

proposed transformation network, Section III includes an

overview, a training procedure, image classification with the

proposed network, and robustness against attacks. Experi-

ments on the proposed method in terms of classification

accuracy and robustness are presented in Section IV, and

Section V concludes this paper.

II. RELATED WORK

In this section, we briefly summarize existing visual protec-

tion methods for images and their problems. Also, we explain

the adversarial examples that inspired the proposed transfor-

mation network.

A. PROTECTING VISUAL INFORMATION

This paper focuses on protecting visual information for

privacy-preserving DNNs. A lot of perceptual encryption

methods have been proposed for protecting the visual infor-

mation of images [7]–[21]. Perceptual image encryption gen-

erates visually protected images that are described as bitmap

images. Therefore, the encrypted images can be directly

applied to some image processing algorithms. For example,

encryption methods [7], [8] have been proposed not only for

visually protecting privacy and security but also for matching

and searching for images in the encrypted domain.

Compressible encryptionmethods have been also proposed

that consider both security and efficient compression so that

they can be adapted to cloud storage and photo sharing

services [9]–[14]. Some of them [11]–[13] can be applied

to traditional machine learning algorithms, such as support

vector machine, k-nearest neighbors, and random forest, even

under the use of the kernel trick [15], [16]. However, when

these methods are applied to DNNs, the performance of the

DNNs heavily degrades.

B. VISUAL PROTECTION METHODS FOR DNNs

There are three visual protection methods [18]–[22] that gen-

erate visually protected images for privacy-preserving DNNs

(see Fig. 1). The first is Tanaka’s method [18], which utilizes

an adaptation network prior to DNNs to reduce the influence

of image encryption. The second is a pixel-based encryption

method [19], [21]. The third is a GAN-based transformation

method [22].

FIGURE 1. Images visually protected with conventional methods.
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However, these methods cause a decrease in the clas-

sification accuracy [20]. In addition, images encrypted by

using these methods are not robust against some attacks,

as described later. Therefore, visual information on plain

images is reconstructed by using attack methods. These

methods also encrypt images by using a security key, so it

is necessary to manage the key, except for the method

in [22].

In this paper, our proposed novel transformation

network for generating visually protected images for

privacy-preserving DNNs overcomes these issues that the

conventional methods have. Most conventional visual pro-

tection methods generate visually protected images without

any information on a classification model. Although the

GAN-based protection method [22] uses information on a

classification model for training a transformation network,

the model used for training a transformation network is not

equal to that used in the process of image classification.

In contrast, in the proposedmethod, a transformation network

is trained by using the same model as that used in the process

of image classification. Under this condition, a transfor-

mation network is trained with a loss that consists of two

loss functions, classification accuracy and visual protection,

as described in Eq. 2. Therefore, the proposed method does

not cause accuracy to degrade as much as the conventional

methods.

The contributions of this paper are summarized as below.

• We propose a novel transformation network for generat-

ing visually protected test images for privacy-preserving

DNNs. The proposed transformation network is trained

by using a model used for classifying test images under

two loss functions, classification accuracy and visual

protection, for the first time.

• We conduct experiments on image classification using

the CIFAR datasets to confirm the effectiveness of the

proposed method. The results show that the proposed

method outperformed all conventional methods in terms

of both classification accuracy and robustness against

attacks. In particular, it was demonstrated to be robust

enough against various attacks including state-of-the-art

ones.

C. ADVERSARIAL EXAMPLES

The proposed transformation network is inspired by the

approach of adversarial examples. Adversarial exam-

ples are known as images to which specific impercep-

tible perturbations are added. Attacks using them are

well-known as attack methods that machine learning suffers

from. Neural networks, including convolutional ones, have

already been demonstrated to be vulnerable to adversarial

examples [26], [27]. These examples can cause neural net-

works to misclassify images with high confidence or force

them to classify a target class. There are many studies

on attacks that use adversarial examples and the defenses

against them [27]–[33], and one of them is an attack

method that uses fully convolutional networks (FCNs) [28],

including U-Net [34]. It trains an FCN to convert clean inputs

into adversarial examples. We consider whether this method

can be applied to generate visually protected images by using

an FCN from clean images.

Adversarial examples were also applied to access restric-

tions for controlling trained networks in [35], in which input

images were converted so that the output images could be

classified correctly only when specific DNNs were used.

However, visual protection for images has not been consid-

ered yet. In this paper, we propose a transformation network

for generating visually protected images that can be correctly

classified for the first time.

III. PROPOSED TRANSFORMATION NETWORK

A. OVERVIEW AND THREAT MODELS

Figure 2 illustrates the framework used in this paper. Trans-

formation network hθ and image classification model ψ are

prepared by a third party. The third party provides hθ and ψ

to a client and a cloud provider, respectively. On the client

side, visually protected test images are generated from testing

plain ones by using hθ , and the protected test images are then

sent to the cloud provider. In the cloud, the protected images

are classified by using ψ , and the results are sent back to the

client.

FIGURE 2. Framework of proposed scheme.

In this framework, it is assumed that a cloud provider

is untrusted or semi-trusted, so visual information of test

images may be leaked or illegally used in cloud computing.

Therefore, in our framework, this information is not provided

to the cloud provider. In contrast, a third party does not need

any test images for training a transformation network, so there

is no possibility of visual information leakage. The third party

has to be trusted by public users because a transformation

network trained by the third party is required to be used by

users with confidence. Therefore, the third party should be an

organization that has been evaluated and that is independent

of the cloud provider.
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Image classification is carried out under the use of visu-

ally protected images. The cloud provider cannot reconstruct

visual information on plain images from protected images,

even when transformation network hθ is open to the public. In

addition, the proposed framework has no security keys unlike

the conventional methods because the proposed network irre-

versibly transforms images into visually protected ones with

features used for classifying images, like a robust hashing

function. Accordingly, the cloud provider can offer various

web-based software services like software as a service (SaaS)

to many clients by using model ψ with high performance

while preserving the privacy of the clients. The use of network

hθ enables clients to securely use modelψ , which they cannot

prepare themselves, with high performance even when all

clients use a common transformation network.

Model ψ is also available for plain test images, so the

cloud provider can provide services to clients who do not

worry about protecting visual information or cannot prepare

the computing cost needed for image transformation with hθ .

B. TRAINING TRANSFORMATION NETWORK

The training procedure of the proposed transformation net-

work is illustrated in Fig. 3, where X = {x1, x2, . . . , xm} is

an input plain image set, X̂ = {x̂1, x̂2, . . . , x̂m} is an image

set output from the transformation network x̂i = hθ (xi),

Y = {y1, y2, . . . , ym} is a one-hot encoded target label

set, and Ŷ = {ŷ1, ŷ2, . . . , ŷm} is a label set output from

a classification network ŷi = ψ(x̂i). A one-hot encoded

label, e.g., yi ∈ {y1, y2, . . . , ym}, is described as yi =

(yi(1), yi(2), . . . , yi(c)), yi(j) ∈ {0, 1},
∑c

j=1 yi(j) = 1, and

an output label, e.g., ŷi ∈ {ŷ1, ŷ2, . . . , ŷm}, is described as

ŷi = (ŷi(1), ŷi(2), . . . , ŷi(c)), 0 ≤ ŷi(j) ≤ 1,
∑c

j=1 ŷi(j) = 1,

where c is the number of classes. The proposed network

converts images to visually protected ones. Network hθ is

trained so that generated images reduce the loss value of a

classification network (ψ).

FIGURE 3. Training process of transformation network hθ .

To train the proposed network hθ with parameter θ by using

a plain input image (xi) and its one-hot encoded target label

(yi), loss function Ltrans is minimized as

minimize
θ

1

m

m∑

i=1

Ltrans(xi, hθ (xi), yi), (1)

with

Ltrans(xi, x̂i, yi) = Lclass(x̂i, yi) − α · Lfeat(xi, x̂i), (2)

where Lclass denotes a classification loss function, which is

used to classify visually protected images correctly, Lfeat is

a feature reconstruction loss function to be used for visually

protecting input images, and α ∈ R is a weight of Lfeat. In

this paper, we used the stochastic gradient descent (SGD)

optimizer, which is a well-known optimizer, to solve the

minimization problem in Eq. (1). Note that, for adversar-

ial examples, α = 0 is chosen in Eq. (2), and Lclass is

maximized.

In this paper, Lclass is given by the cross-entropy loss as in

adversarial examples. Therefore, Lclass is calculated by using

ŷi(j) as

Lclass(x̂i, yi) = −

c∑

j=1

yi(j) log ŷi(j), (3)

where ŷi is an output of classification network ψ trained with

plain images. Lfeat is also given by

Lfeat(xi, x̂i) =
1

CkHkWk
‖φk (x̂i) − φk (xi)‖

2
2, (4)

where φk (x) is a feature map with a size of Ck × Hk × Wk

obtained by the k-th layer of a network when image x is fed

[36].

In simulations, we utilized U-Net [34] for transformation

network hθ , and the feature map of the second ReLU function

of VGG16 [25] without batch normalization pretrained with

ImageNet was used for φk .

C. PRIVACY-PRESERVING IMAGE CLASSIFICATION

Under the use of the proposed network pretrained with clas-

sification network ψ , image classification is performed in

accordance with the following procedure.

1) A client inputs a plain test image (x) to transformation

network hθ in order to obtain a visually protected image

(x̂).

2) The client sends x̂ to the cloud provider.

3) x̂ is classified by using classification network ψ , and

the result (ŷ) is returned to the client.

D. ROBUSTNESS AGAINST ATTACKS AND THREAT MODELS

In this framework, the cloud provider has no visual informa-

tion of plain images, but they have visually protected images

and transformation network hθ . Therefore, they might try to

estimate the visual information of plain images from the visu-

ally protected ones. The proposed transformation network

is designed not only to achieve a high classification perfor-

mance but also to be robust enough against such attacks.

A cloud provider might try to estimate the visual informa-

tion on test images. Therefore, the proposed transformation

network should be evaluated in terms of robustness against

various attacks, although the visual protection is carried out

without any security keys. In particular, DNN-based attacks
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have been demonstrated to be able to reconstruct visual

information on plain images from encrypted ones as one of

the ciphertext-only attacks [20], [37], [38], where the state-

of-the-art is a GAN (generative adversarial network)-based

attack [38].

The GAN-based attack may enable us to estimate visual

information on plain images even when a correct pair set of

plain images and protected images is not prepared, as shown

in Fig. 4. In the proposed scheme in Fig. 2, attackers can easily

prepare a correct set because hθ is open to the public. There-

fore, attackers may be able to more easily create an inverse

transformation model by using the correct pair set to estimate

visual information on plain images, as shown in Fig. 5. In this

paper, even when the DNN-based attack in Fig. 5 referenced

to as ITN-Attack is applied to the proposed transformation

network, protected images will be shown to be robust enough

against the attack in an experiment.

FIGURE 4. Training of GAN-based attack model.

FIGURE 5. Training of inverse transformation model used in this paper.

IV. EXPERIMENTS

We evaluated the proposed transformation network in terms

of classification accuracy and visual protection.

A. CLASSIFICATION ACCURACY

1) EXPERIMENTAL SETUP

In this simulation, two classification networks, ResNet-20

[24] and VGG16 [25] with batch normalization as ψ , were

used to evaluate the effectiveness of the proposed method.

We also used two datasets, the CIFAR-10 and 100 datasets

[23], which consist of a training set with 50,000 images and a

test set with 10,000. To train both the classification networks

and transformation network hθ , 45,000 and 47,500 images

in the training sets of CIFAR-10 and 100, respectively, were

utilized, and the other images were used as validation data.

Also, the test sets of CIFAR-10 and 100 were utilized for

evaluating the performance of the networks. In addition,

FIGURE 6. Structure of transformation network (U-Net). Each box denotes
multi-channel feature map produced by each layer. Number of channels
is denoted above each box. Feature map resolutions are denoted to left
of boxes.

standard data-augmentation methods, i.e., random crop and

horizontal flip, were performed in the training. The transfor-

mation network, based on U-Net, had the structure shown

in Fig. 6.

All networks were trained for 200 epochs by using stochas-

tic gradient descent (SGD) with a weight decay of 0.0005 and

a momentum of 0.9. The learning rate was initially set to

0.1, and it was multiplied by 0.2 at 60, 120, and 160 epochs.

The batch size was 128. After the training, we selected the

model that provided the lowest loss value under the use of

the validation set.

2) VISUAL-PROTECTION PERFORMANCE

Figure 7 shows an example of visually protected images

generated from ten test images in CIFAR-10 by using hθ
trained with ResNet-20 for calculating Lclass, where the top

row shows plain images, and the next row to the bottom row

show images generated with the parameters α = 0, 0.005,

0.01, and 0.05 in Eq. (2).

From the figure, the generated images had almost no visual

information on the plain images when α ≥ 0.005. Also,

in the case of α = 0, the generated images were not visually

protected sinceLfeat, i.e., the loss for visually protecting input

images, did not work.

From Fig. 7, it was confirmed that the visual protection was

more enhanced when using larger alpha values. In addition,

when α ≥ 0.005, the protected images were very similar.

The reason that the generated images were similar is that the

transformation network extracts features required for image

classification from plain images, and this is a positive prop-

erty for visual protection.
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FIGURE 7. Visually protected images generated by proposed transformation network trained with ResNet-20.

From the comparison of Figs. 1 and 7, the encrypted

images in Fig. 1 still had some visual information on the plain

images. Therefore, the proposed transformation network

was shown to strongly protect visual information on plain

images.

In this framework, the output of the transformation network

is expressed in an image format, so it is suitable for using

well-known image classifier models without any modifica-

tion. Accordingly, the cloud side can also carry out image

classification without distinction between plain images and

transformed ones. Model ψ is also available for plain test

images, so the cloud provider can provide services to clients

who do not worry about protecting visual information.

3) CLASSIFICATION ACCURACY

We evaluate the classification accuracy under the use of

visually protected images in this section. Tables 1 and 2

show the experimental results of using CIFAR-10 and 100,

respectively, where ‘‘ResNet-20’’ and ‘‘VGG16’’ mean that

each network was used for ψ .

As shown in Table 1, the proposed method achieved a

higher classification accuracy than the conventional methods

under both ResNet-20 and VGG16. The classification accu-

racy was also confirmed to depend on the value of α. When

a value of α = 0.01 was used, the proposed method provided

TABLE 1. Classification accuracy with CIFAR-10.

a high classification accuracy, which was almost the same as

that when using plain images.

Similarly, the proposed method outperformed the conven-

tional ones in terms of classification accuracy even with

CIFAR-100 under both ResNet-20 and VGG16 with an

appropriate value for α selected, as shown in Table 2. When

α = 0.005 was selected, it achieved the highest accuracy

values under both ResNet-20 and VGG16.

The reason the proposed method does not cause accuracy

to degrade that much is that a transformation network is

trained by using the same model as that used in the process

of image classification. In contrast, most conventional visual

protection methods generate visually protected images with-

out any information on a classification model. Although the

GAN-based protection method [22] uses information on a
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FIGURE 8. Images restored with three attack methods. SSIM values are given under images.

classification model for training a transformation network,

the model used for training a transformation network is not

equal to that used in the process of test image classification.

In contrast, in the proposedmethod, a transformation network

is trained by using the same model as that used in image

classification. Therefore, the proposed method does not

cause accuracy to degrade compared with the conventional

methods.

TABLE 2. Classification accuracy with CIFAR-100.

B. EVALUATING ROBUSTNESS AGAINST ATTACKS

1) EXPERIMENTAL SETUP

In this simulation, transformed images were evalu-

ated in terms of robustness against three state-of-the-art

attacks: the feature reconstruction attack (FR-Attack) [39],

the GAN-based attack (GAN-Attack) [38], and the inverse

transformation network attack (ITN-Attack) [40]. For

FR-Attack and GAN-Attack, we used the same settings as in

[41]. For ITN-Attack, U-Net was used as an inverse trans-

formation network, and the inverse transformation model

was trained with hθ under the use of the CIFAR-10 dataset

as shown in Fig. 6, where hθ was trained with ResNet-

20 as ψ , and mean squared errors were used. Only random

horizontal flip was performed as the data augmentation in the

training. The other settings were the same as the training of

transformation networks in IV-A.

2) ESTIMATING VISUAL INFORMATION WITH ATTACKS

Figure 8 shows images restored from visually protected

images generated by using three conventional protection

methods: Tanaka’s, pixel-based, and GAN-based methods
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FIGURE 9. Example of images restored from protected images generated by proposed transformation network (ResNet-20, α = 0.05). SSIM values
are given under images.

[18], [19], [22], where structural similarity index measure

(SSIM) [42] values between a plain image and the pro-

tected/estimated ones are also given under the images in order

to evaluate the quality of the restored images. SSIM is a

method for predicting the perceived quality of images, and

it is used for measuring structural similarity between two

images. The difference with other techniques such as mean

squared error (MSE) or peak signal-to-noise ratio (PSNR)

is that these approaches estimate absolute errors. The SSIM

index is a real value between zero and one, where a value of

one means that two images are identical, and a value of zero

indicates no structural similarity.

From the reconstructed images, Tanaka’s method [18] was

not robust against two attacks: GAN-attack and ITN-attack.

For the pixel-based method [19], some visual information

on the plain images was reconstructed by using FR-attack

or GAN-attack. Similarly, the GAN-based method [22] was

not robust against ITN-Attack. The GAN-based method is a

model-based visual protectionmethod aswell as the proposed

one, but it adopts the CycleGAN architecture [43], in which

there is a process to convert a protected domain to a plain one.

Therefore, ITN-Attack can reconstruct visual information

on plain images from protected images. From the results,

FIGURE 10. SSIM values of estimated images. Boxes span from first to
third quartile, referred to as Q1 and Q3, and whiskers show maximum
and minimum values in range of [Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)].
Band inside box indicates median. Outliers are indicated as dots.

the conventional visual protection methods were not robust

enough against the attacks.

In Fig. 9, visually protected images generated by using the

proposed transformation network are shown together with the

corresponding plain and estimated ones, where the transfor-

mation network was trained with ResNet-20 and α = 0.05.

From the figure, all estimated images were confirmed to have
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almost no visual information on the plain images, even if the

estimated images had slightly high SSIM values.

Figure 10 also shows scores calculated for the

10,000 images in the test set of CIFAR-10. The estimated

images still had low SSIM values, so it was confirmed that

the visual information of the plain images could not be

restored from the protected images even when the state-of-

the-art attacks were applied. Although some of the restored

images had slightly high values, they also had almost no

visual information on the plain images (see Fig. 9). We

also confirmed that all of the restored images had no visual

information on the plain images. Accordingly, the proposed

transformation network was more robust against these attacks

than the conventional methods.

V. CONCLUSION

In this paper, we proposed a novel transformation network for

generating visually protected images for privacy-preserving

DNNs for the first time. The proposed network enables us not

only to protect visual information on plain images but also to

apply visually protected images toDNNs directly. In addition,

there is no need to manage any security keys as the conven-

tional methods require. In image classification experiments,

visually protected images generated by the proposed network

were demonstrated to have less visual information than those

generated using the conventional methods, while maintaining

the classification accuracy that using plain images achieves,

under the use of the CIFAR-10 dataset and two classification

networks: ResNet-20 and VGG16. We also confirmed that

the visually protected images were robust against state-of-

the-art attacks. As future work, we will consider applying

visual protection methods to other tasks such as semantic

segmentation and object detection.
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