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Image Transformation based on Learning
Dictionaries across Image Spaces
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Abstract—In this paper, we propose a framework of transforming images from a source image space to a target image space, based

on learning coupled dictionaries from a training set of paired images. The framework can be used for applications such as image

super-resolution, and estimation of image intrinsic components (shading and albedo). It is based on a local parametric regression

approach, using sparse feature representations over learned coupled dictionaries across the source and target image spaces. After

coupled dictionary learning, sparse coefficient vectors of training image patch pairs are partitioned into easily retrievable local clusters.

For any test image patch, we can fast index into its closest local cluster and perform a local parametric regression between the learned

sparse feature spaces. Obtained sparse representation (together with the learned target space dictionary) provides multiple constraints

for each pixel of the target image to be estimated. The final target image is reconstructed based on these constraints. The contributions

of our proposed framework are three-fold. (1) We propose a concept of coupled dictionary learning based on coupled sparse coding,

which requires the sparse coefficient vectors of a pair of corresponding source and target image patches have the same support,

i.e., the same indices of nonzero elements. (2) We devise a space partitioning scheme to divide the high-dimensional but sparse

feature space into local clusters. The partitioning facilitates extremely fast retrieval of closest local clusters for query patches. (3)

Benefiting from sparse feature based image transformation, our method is more robust to corrupted input data, and can be considered

as a simultaneous image restoration and transformation process. Experiments on intrinsic image estimation and super-resolution

demonstrate the effectiveness and efficiency of our proposed method.

Index Terms—Image transformation, Image mapping, Sparse coding, Intrinsic images, Super-resolution.

✦

1 INTRODUCTION

MANY problems in computer vision can be cast as
transforming images from one form to another. In

this work, we assume that the pairs of images have the
same content and are in registration with each other, but
are visually different. Typical applications include, but
not limited to, super-resolution, face mapping of differ-
ent styles, estimation of intrinsic images, such as shading
and albedo images, and various non-photorealistic ren-
dering. Some existing methods generate stylistic images
based on a single or a pair of reference images [3], [1], [2].
Others learn the mapping relations from large training
sets of paired images [4], [6], [7], [8], [49], [51]. Our work
belongs to the second category. A few representative
methods of such kind are summarized as follows.

Chang et al. [7] assumed that image patches in source
and target spaces form manifolds with similar local
geometries, and a target patch could be generated as a
linear combination of its neighbors. This approach was
applied to super-resolution. Tappen et al. [11] proposed
an ExpertBoost algorithm to learn a nonlinear Mixture of
Experts estimator, which was parameterized as a set of
prototype patches and their corresponding linear regres-
sion coefficients. It was applied to image denoising, and
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estimating intrinsic shading/albedo images. Spiritually
similar, Kim and Kwon [12] adopted sparse kernel ridge
regression to learn a mapping function from paired
training patches, and applied it to super-resolution.

In general, transforming images from a source space
to a target space is difficult. Natural images are very
high dimensional, statistically non-Gaussian, and exhibit
abundant varying texture patterns. Directly learning im-
age models and their mapping relations may not be fea-
sible. Even working on local patches, the dimensionality
is still too high to learn a good and explicit mapping
function. The above reviewed methods either use non-
parametric approaches, such as nearest neighbor (NN)
searching, and learn the mapping relations using the
found neighbor training patch pairs [4], [7], or use non-
linear regression based on summarizing the training data
using a small number of prototype patches [11], [12].
When dealing with a huge amount of training patches,
searching NNs could be prohibitively slow, and also
costs large memory. Although there exist acceleration
methods such as approximate nearest neighbor (ANN)
search [22], [23], however, they cannot generally cope
with the memory cost problem. For nonlinear regression
[11], [12], when the prototype number is getting large,
significant computation is required, while fewer proto-
types cannot well approximate the image space.

We are motivated to find alternative solutions that
can address these major challenges. In particular, we
consider the more direct approach of learning parametric
models. Note that for an input patch, non-parametric
approaches search its NNs at runtime, and those NNs
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correspond to a neighborhood of the query in the image
space. If one can divide the space into neighborhoods
that are precise and representative, and learn mapping
relations within each neighborhood offline, it will be
not necessary to store all training samples and online
search NNs, without sacrifice of the mapping accuracy.
In literature, vector quantization [45], such as k-means
clustering, is popularly used to partition a given space
into representative neighborhoods. However, in high-
dimensional spaces it is very difficult to achieve precise
quantization which requires a huge number of neigh-
borhoods. It requires high computational complexity to
learn and retrieve those neighborhoods, and also large
memory to store the neighborhood centroids. One may
consider other simpler methods such as scalar or lattice
quantizers [45], however, their performance is usually
poor since their assumptions of data distribution are
rarely satisfied by natural images.

The difficulties of working in the original image space
motivate us to consider doing the mappings in some
projected feature spaces. Recently, sparse representation
over a learned dictionary [26] has achieved state-of-the-
art performance for many image restoration applications
[25], [27] as well as various image classification tasks
[34], [31], [35]. It shows that over-complete sparse mod-
els can be well adapted to natural images. Motivated
by such progress, we are tempted to learn two separate
dictionaries for both the source and target image spaces,
and perform partitioning of the learned sparse feature
spaces for local parametric image transformation. In-
stead of doing independent dictionary learning for source
and target image spaces, we introduce the concept of
coupled dictionary learning based on coupled sparse coding.
The coupling is realized by enforcing sparse coefficient
vectors of a pair of corresponding source and target im-
age patches have the same support, i.e., the same indices
of nonzero elements. We use an efficient active set block
coordinate gradient descent (BCGD) algorithm for coupled
sparse coding, which can also efficiently approximate
the solution path [42], [41]. Coupled dictionary learning
bridges the processes of source and target dictionary
learning, resulting in dictionary atoms that well model
and correlate different image spaces. Indeed, coupled
sparse coding of image patch pairs can identify the
most significant, reduced, and correlated feature subspaces.
We devise an efficient scheme to partition the high-
dimensional (in case of over-complete dictionary) but sparse
(for nonzero coefficients) feature spaces of training patch
samples into easily retrievable local clusters (cells). Our
scheme exploits the information of both support patterns
and coefficient values of sparse feature vectors, and facil-
itates efficient retrieval of the closest cluster for a query
patch. Our aim is that by doing image mappings in the
learned sparse feature spaces, both mapping accuracy
and mapping efficiency can be achieved. The mapping
efficiency can be realized by local parametric regression
and is based on our proposed space partitioning method
that facilitates efficient retrieval of local clusters. The

mapping accuracy comes from two facts: (1) sparse
feature vectors of training patch samples are highly close
to each other within local clusters; (2) it is much easier
to model the mapping relations in reduced, significant
and correlated feature subspaces.

Given a query source patch, we compute its sparse
feature vector, and fast index into its closest local cluster,
and then estimate its sparse vector over the optimally
learned target space dictionary by local linear regression.
The mapping relations have been offline learned. Figure
1 gives a graphical illustration. By this way, we only
need to store the space indexing structure and regres-
sion parameters within each local cluster. Our method
can effectively deal with the speed and memory cost
challenges mentioned above. Compared with alternative
approaches that do not enforce coupled sparsity, the
number of parameters to be learned and stored is much
reduced, and the local regression process is also more
stable (cf. Section 3.1.1).

In this paper, we apply our framework to two ap-
plications, namely estimating the intrinsic components
(shading and albedo) of an observed image, and image
super-resolution. For the latter one, we achieve perfor-
mance comparable with the state-of-the-art. Our results
on intrinsic image estimation outperform current single-
input-image based methods. Our method is potentially
more robust to corrupted data. In intrinsic image estima-
tion, if noisy images are used as input, we get increased
performance gap compared with other methods. In this
sense our method can be considered as a simultaneous
image restoration and transformation process.

It is straightforward to apply our framework to other
applications such as image denoising. For example, we
can generate a training set of paired images by adding
Gaussian noise to clean images. Coupled dictionaries can
be optimally learned to both model the characteristics
of noisy images in the source space, and be used to
reconstruct target images of high quality. Given a patch
of a noisy test image, its denoised version can be esti-
mated by local regression in the learned, coupled sparse
feature spaces. With trained dictionaries specifically for
image denoising, our method is potential to achieve
performance comparable to state-of-the-art techniques
based on learned sparse models [25].

2 RELATED WORK

One of the well established image transformation ap-
proaches is Freeman et al.’s NN example-based learn-
ing [4]. Given a test image in the source space, each
patch of the test image is compared with the training
patches in the source image space, and its several nearest
neighbors are selected as candidates. To reconstruct the
target image, the candidate patches in the target space
are selected and stitched using Markov random fields
(MRF). The same approach is also applied to face sketch
synthesis [52]. Since this method uses only one of the
nearest neighbors for reconstruction, it is susceptible to
suffer from overfitting, visually producing noisy and/or
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Fig. 1. Pipeline of our proposed framework using super-resolution as an example, which is below the dashed line. For comparison,

top of the dashed line illustrates independent single sparse coding in different image spaces. Red squares in thin rectangles

represent sparse coefficients of image patches in the source space, and blue squares for sparse coefficients of image patches

in the target space. Different levels of color transparency represent the order of atoms being selected in sparse coding. Compared

with independent single sparse coding, sparse coefficients obtained by coupled space coding are much better aligned. And sparse

coefficient vectors in the same local cluster are similar in both coefficient values and patterns of nonzero support. (a) shows multiple

constraints for each pixel of the target image to be estimated.

jaggy artifacts. As extensions, neighbor embedding [7]
made benefits of multiple NNs, and mixture of mapping
experts [11] was learned by locally linear regression.

In terms of performing mappings in projected feature
spaces, Lin et al. [10] found the most correlative sub-
spaces of different image styles, and performed regres-
sion at the reduced subspace dimensions. For each style,
it could find only one common subspace, limiting its ap-
plicability to only mapping of face images with regular
structure. Li and Adelson [9] computed image wavelet
coefficients, and considered “nested binning” subband
coefficients of local neighborhood centered at each train-
ing image pixel. However, nested binning simplified
high-dimensional space partitioning as independent par-
titioning along each feature dimension (subband), and
thus produced lots of empty hyper-rectangular bins.

Yang et al. [15] used sparse coding for super-resolution,
which enforces corresponding low- and high-resolution
image patches to share the same sparse feature values.
However, this is hard to achieve, even with adapted
dictionaries. In practice, either more nonzero elements
in a sparse feature vector, or dictionaries of many times
over-completeness are required. In [15], approximately
10 times over-complete dictionaries were actually used,
and this increases the computation cost of sparse coding.
Using sparse representation with more nonzero elements
(i.e., non-sparse representation) tends to generate unde-
sired noisy patches, as verified in our super-resolution
experiments in Section 8. It is not clear either how their
method works on other types of image transformation.
In fact, we have conducted experiments on intrinsic im-
age estimation using the method in [15]. Results reported
in Section 7 show that it fails at such a general type
of image transformation application. Compared with
[15], our method allows the sparse feature vectors of

corresponding patches to choose different values, which
also leads to a sparser representation than [15] does.
Thus our method has more power and flexibility to
describe different image spaces.

Mairal et al. [36] also considered dictionary learning
for image transformation. They proposed a supervised
learning method to learn a dictionary in the source
image space and a corresponding transformation matrix.
The learned global transformation matrix was used to
map sparse features of source image patches to intensity
values of target patches. Instead, our method is based
on a local regression approach that learns transformation
parameters for each of a great number of local clusters.
Consequently our method admits a much richer model,
resulting in improved mapping power than the global
method used in [36]. Although supervised learning may
result in a dictionary better adapted to the task at
hand, the used global transformation model limits its
applicability to only image restoration applications, e.g.,
a classical inverse halftoning problem as considered in
[36]. It is unclear how their method can perform on more
general image transformation applications.

Our method also falls in a broader category of piece-
wise linear estimation (PLE). A popular choice of PLE is
based on Gaussian Mixture Models (GMM) [46], which
describes local image patches with a mixture of Gaussian
distributions. A key step in GMM model learning is
to divide the data (image patches) into precise and
representative local clusters. This might be applicable
to image restoration problems where it could be case
that only patches of the observed (degraded) image itself
are involved in clustering. This is exactly the approach
taken in [47], where maximum a posteriori expectation-
maximization (MAP-EM) algorithm was used for the
clustering purpose. However, as we discussed in Section

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



4

1, for general image mapping problems using a large
training set of paired images, it is very difficult to achieve
precise clustering which requires a huge number of local
neighborhoods. Similar to k-means clustering, in such
a scenario the MAP-EM algorithm considered in [47]
could be prohibitively slow. For these methods, it also
requires high computational complexity to retrieve local
clusters (Gaussians) in the estimation process. Instead,
our method uses coupled sparse coding to learn a sparse
feature space, based on which an efficient partition
scheme is proposed to divide the space into local clus-
ters, i.e., a union of low-dimensional linear subspaces. It
also facilitates efficient retrieval of closest local clusters.
Reported experiments in Section 5 show the efficacy and
efficiency of our proposed subspace partition scheme.
Sparse Coding Given a signal vector x ∈ ℜN and a
dictionary D ∈ ℜN×K whose columns are dictionary
atoms, sparse coding finds a sparse coefficient vector
a ∈ ℜK by solving mina ‖x−Da‖2

2
s.t. ‖a‖0 ≤ L,

where ‖ · ‖0 is the l0 norm, counting the nonzero el-
ements of a. D is over-complete when K > N . Each
column of D is constrained to have unit l2 norm. The
l0 norm above can be replaced with l1 regularization
[42], [43], resulting in the convex sparse coding problem
mina ‖x−Da‖2

2
+ λ‖a‖1 , where λ balances the sparsity

and reconstruction error. D can be chosen as pre-defined
ones, or be adapted to training data by learning. Repre-
sentative dictionary learning algorithms include K-SVD
[32], Fields of Experts (FoE) [27], and others [26], [33].

3 FRAMEWORK OVERVIEW

Given an input source image X, the task is to infer the
target image Y based on X. This is equivalent to maxi-
mizing the probability p(Y|X). If we model the inference
of Y on a MRF, the Hammersley-Clifford theorem tells
that we can write the probability as a Gibbs distribu-
tion p(Y|X) ∝ exp(−

∑
ω Φω(yω|X)), where Φω(yω|X)

is the potential function for a local patch (clique) yω

and conditioned on input X. In other words, p(Y|X) ∝∏
ω p(yω|X), where p(yω|X) is related to Φω(yω|X) by

an exponential. We make additional assumption that the
estimation of yω only depends locally on its correspond-
ing patch xω of X (patch size of xω could be the same
or larger than that of yω), i.e., p(yω|X) = p(yω|xω).

3.1 Local Parametric Regression

Natural images are high-dimensional and statistically
non-Gaussian. It is in general difficult to directly model
p(yω|xω). We consider to reduce the problem by divid-
ing training patch samples into local clusters, and then
perform parametric regression within each cluster. Given
M training patch pairs {xi,yi}Mi=1

with xi ∈ ℜNx and
yi ∈ ℜNy , suppose we can divide the set into C local
clusters. Each cluster c ∈ {1, . . . , C} contains {xi,yi}Mc

i=1
.

We model p(y|x) for each subset {xi,yi}Mc

i=1
. However,

as explained in Section 1, it is difficult to obtain precise
local neighborhoods by space partitioning over a huge
set of patch samples in the raw intensity domain. On

the other hand, natural images are inherently sparse
signals. For image patches in ℜNx and ℜNy , they gener-
ally do not scatter uniformly in the space. For example,
spatially smooth patches, edges, and textures are the
most common patterns observed in natural images. To
model p(y|x), it is typical to use product of expert
distributions in some transform domains, where experts
are usually defined on one-dimensional subspaces and
their distributions are shown to be highly kurtotic.

In fact, sparsity is one of the critical reasons for the
popularity of transform domain image processing. In
this work, we push the step further by learning trans-
form domain sparse representations in both the source
and target image spaces. Sparse coding of source image
patches can be seen as a nonlinear feature selection
process, which can identify the most significant fea-
tures (salient structures) of image patches for clustering
and local regression. When reconstructing target images
using sparse coefficients over optimally learned target
space dictionary, it is possible to produce natural images
of higher quality, with the effect of noise removal and
missing data recovery.

Moreover, to facilitate image mappings by local para-
metric regression, we require sparse representations in
the source and target image spaces to be coupled. That is,
the sparse coefficient vectors of a pair of corresponding
source and target image patches have the same support.
Suppose Dx ∈ ℜNx×K and Dy ∈ ℜNy×K are the learned
dictionaries for source and target spaces respectively, we
compute sparse feature vectors {aix,a

i
y}

M
i=1

of the set
{xi,yi}Mi=1

over Dx and Dy via coupled sparse coding.
Based on {aix,a

i
y}

M
i=1

, we devise an efficient partitioning
scheme in the sparse feature spaces, which can result in
local clusters with {aix}

Mc

i=1
in any cluster c being similar

in both coefficient values and patterns of nonzero sup-
port. As a result, {aix,a

i
y}

Mc

i=1
are also similar in the pat-

tern of nonzero support due to coupled sparse coding, as
shown in Figure 1. The problem of image transformation
by local parametric regression becomes to learn p(ay|ax)
for each of the local clusters. If we model p(ay|ax)
within the cth cluster as Gaussian, regression amounts
to learning a mapping function f(ax,Wc) = Wcax by
solving a least squares problem

min
Wc

‖WcA
c
x −Ac

y‖
2

F , (1)

where Ac
x = [a1x,a

2

x, . . . ,a
Mc
x ] ∈ ℜK×Mc , Ac

y =
[a1y,a

2

y, . . . ,a
Mc
y ] ∈ ℜK×Mc , and Wc ∈ ℜK×K contains

the parameters to be learned.

3.1.1 Benefits of Coupled Sparsity

For image transformation based on local parametric
regression, coupled sparse coding has important ad-
vantages, such as less memory cost and reliability of
regression parameter learning. In particular, equation (1)
is equivalent to learning K mapping functions for all the
feature dimensions in the target space

min
wk

c

‖Ac⊤
x wk

c − aky‖
2, ∀k ∈ {1, . . . ,K}, (2)
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where {wk⊤
c }Kk=1

and {ak⊤y }Kk=1
respectively correspond

to the row vectors of Wc and Ac
y . However, since

{aix,a
i
y}

Mc

i=1
have the property of coupled sparsity, with-

out loss of generality we can assume each vector in
{aix,a

i
y}

Mc

i=1
has L ≪ K nonzero elements at the same

coordinates. Thus in practice, we only need to learn
L mapping functions corresponding to those feature
dimensions with nonzero elements in {aiy}

Mc

i=1
. And for

each mapping function f(·,wk
c ) with wk

c ∈ ℜK , only L
effective parameters are to be estimated. Compared with
Wc ∈ ℜK×K , the number of parameters to be learned is
much smaller. This is beneficial for both ease of learning
and reducing memory cost.

When coupled sparse coding is not enforced, there will
be no such benefits. Suppose we perform independent
sparse coding for source and target training samples
respectively, and training sample pairs are divided into
local clusters based on obtained sparse feature vectors
{aix}

M
i=1

in the source space. In any cluster c, although
the columns of Ac

x can be similar in both coefficient
values and support patterns, the support patterns for
each pair {aix,a

i
y} are in general different (as shown in

the top of Figure 1), i.e., the columns of Ac
y have different

support patterns. As a consequence, it is necessary to
learn K mapping functions via solving (2) for all the
feature dimensions in the target space. Compared with
coupled sparsity, there are K/L times more parameters
to learn and correspondingly a greatly increased amount
of memory cost. Since mapping functions are learned for
all the feature dimensions, for any test patch x′ with its
sparse vector a′x, the estimation of target space â′y is in
general not sparse for a desired image reconstruction.

When sparse coding is not coupled, it is even worse
that modelling p(aky |ax) as Gaussian becomes inap-
propriate for any feature dimension k ∈ {1, . . . ,K},
and correspondingly learning mapping relations based
on least squares regression is unreliable. For training
patches {yi}Mc

i=1
in the cth cluster, assume dk

y is a dic-
tionary atom in the target space and corresponds to
some salient structure shared by {yi}Mc

i=1
. Ideally most

of these patches should fire on dk
y via sparse coding

in the target space, which means that most coefficients
of ak⊤y (the row vector of Ac

y corresponding to dk
y)

should have relatively large magnitude. However, due
to sensitiveness of sparse coding process [37] and dic-
tionary over-completeness, it is often the case that very
similar patch structures may be quantized on different
dictionary atoms. Thus in general much fewer patch
samples in {yi}Mc

i=1
may fire on dk

y , resulting in a ak⊤y
with many elements of zero value, which is indeed
unreliable for learning of wk

c by solving a least squares
problem as in (2). While modeling p(aky |ax) as Gaussian
is inappropriate, it is also difficult to find other generally
suitable conditional relations for this learning task.

One may be also interested in directly estimating raw
intensity values of target patches. This can be realized
by changing (2) slightly as minwk

c
‖Ac⊤

x wk
c − yk‖2 for

k ∈ {1, . . . , Ny}, where {yk⊤}
Ny

k=1
correspond to row

vectors of data matrix Yc = [y1,y2, . . . ,yMc ] of target
patches. Therefore we need to learn Ny mapping func-
tions for all pixels inside the target patch. In general, Ny

is much larger than L. Since natural images are signals
with structures, learning the mapping function for each
pixel of a patch is obviously unnecessary. Estimating raw
intensities directly has other drawbacks when training
patch samples are corrupted by noise or missing data,
which may degrade the learning of mapping parameters.
Indeed, when training samples are limited, corrupted
training data may bias the learning process, making it
more difficult to form an accurate prediction model [48].
Learning between coupled sparse representations is less
affected in such situations as sparse coding of target
patches has the inbuilt property of robustness against
data corruption. We present comparative experiments in
Section 7 to show the superiority of coupled sparsity
over the above mentioned alternatives.

3.2 Reconstruction of the Target Image

Independently estimated sparse coefficients of local
patches may not be consistent as a whole image with
desired statistical properties in the target image space. 1

These statistical properties can be seen as prior knowl-
edge and can be learned from training images, as [27]
did. In this work, we do not aim to learn those priors
and to do a MAP inference. Instead, we take an empir-
ical approach to refine the marginal histograms of es-
timated sparse coefficients. Specifically, for each feature
dimension k ∈ {1, . . . ,K}, denote Hk

y as the marginal
histogram of the estimated coefficient values {ak,ωy } of
local patches positioned at each ω in the target image Y,
corresponding to the atom dk

y of target dictionary Dy .

And Ĥk
y is a reference marginal histogram for dk

y in the
target space. To refine Hk

y , we apply histogram matching

[3], which matches Hk
y against Ĥk

y by the function

F(ak,ωy ) = Ĉk−1

y

[
Ck
y (a

k,ω
y )

]
, (3)

where Ck
y and Ĉk

y are cumulative histograms defined by

C(a) =
∫ a

−∞
H. To find Ĥk

y , we compare marginal his-
tograms of the input source image X with those of each
source image in the training set using KL divergence.
Then marginal histograms of the corresponding target
images of those found nearest neighbors are averaged
to give the reference histograms.

When local patches are densely overlapped, estimated
sparse coefficients together with the learned dictionary

1. Since we have modeled p(ay |ax) within each local cluster as
a Gaussian, by doing regression we actually estimate a conditional
mean of the sparse coefficients of the target patch. But probability
of image patches may not be well modeled as a Gaussian. From
another perspective, the whole image as an ensemble of local patches
follows some prior distribution. If we view target space dictionary
atoms as learned linear filters, the prior p(Y) can be expressed as∏

ω

∏
k
p(dk⊤

y yω) =
∏

ω

∏
k
p(ak,ωy ), where a

k,ω
y denotes the filter

response and is equivalent to elements of sparse coefficient vector ay

of patch yω .
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provide multiple constraints for each pixel of the target
image, as shown in Figure 1-(a). To reconstruct the target
image, we use different alternatives in applications of
intrinsic image estimation and image super-resolution.
Details will be explained in Sections 7 and 8.

4 COUPLED DICTIONARY LEARNING

Given the training set {xi,yi}Mi=1
of paired patches,

coupled sparse coding amounts to finding sparse fea-
ture vectors ax ∈ ℜK and ay ∈ ℜK over dictionaries
Dx ∈ ℜNx×K and Dy ∈ ℜNy×K , to produce good ap-
proximation of any training patch pair, while enforcing
the pair {ax,ay} to share a common support. Define
A = [ax,ay] ∈ ℜK×2, the problem can be stated as

min
A

1

2

(
‖x−Dxax‖

2

2
+ ‖y −Dyay‖

2

2

)
+ λ‖A‖p,q (4)

where ‖A‖p,q =
∑K

k=1
(‖a⊤k ‖q)

p is some matrix norm
with parameters p, q properly chosen to induce coupled
solution sparsity, and ak is the kth row of A with
ak = [akx, a

k
y ]. λ is a regularization parameter. Parameters

p, q can be chosen as 0 ≤ p ≤ 1 and q ≥ 1. When p = 1,
it penalizes the nonzero rows of A, thus promoting a
common sparsity pattern between ax and ay. Typical
choices of q are 2 and ∞. In this work, we use q = 2 for its
simplicity, and also for an efficient algorithm presented
shortly. Thus we have ‖A‖1,2 =

∑K

k=1
‖a⊤k ‖2.

We perform coupled dictionary learning on the large
training set {xi,yi}Mi=1

. Upon convergence, we expect the
learned atoms of dictionaries Dx and Dy can model both
the coherent structures of each individual image space
and correlation characteristics between different spaces,
and thus can facilitate better couplings of sparse coding.
In particular, coupled dictionary learning amounts to
solving the objective function

min
{Ai},Dx,Dy

M∑

i=1

1

2

(
‖xi −Dxa

i
x‖

2

2
+ ‖yi −Dya

i
y‖

2

2

)

+λ
K∑

k=1

‖ai⊤k ‖2

s.t. ‖dk
x‖

2

2
≤ 1, ‖dk

y‖
2

2
≤ 1 ∀ k = 1, . . . ,K. (5)

The above optimization is not convex with respect to
Dx or Dy . However, it is a joint optimization problem,
and is convex with respect to Dx or Dy (or, {aix,a

i
y}

M
i=1

)
while holding {aix,a

i
y}

M
i=1

(or, Dx and Dy) fixed. This
suggests an iterative approach that alternates between
the coupled sparse coding stage (solving {aix,a

i
y}

M
i=1

) and
the dictionary update stage (updating Dx and Dy). Similar
strategy has been employed for single space dictionary
learning problems [32], [33].

Given fixed dictionaries Dx and Dy , solving {ax,ay}
(or A) in equation (4) is equivalent to a regularized least
squares regression problem with a non-differentiable
sparsity inducing term ‖A‖1,2. In literature, block coor-
dinate descent has been used for related group Lasso
problems in case of a single dictionary [28]. In this

work, we use an active set method based on the block
coordinate gradient descent algorithm [30], namely active
set BCGD algorithm. Our algorithm maintains an active
set of growing size and systematically searches for the
optimal active set and sparse solutions, similar to the
strategy used in [29] and reviewed in [44]. It is par-
ticularly efficient by taking the advantage of the high
degree of solution sparsity. To enforce optimality inside
the active set, we use BCGD, while [29] is based on a
projected gradient method that requires specification of a
tuning parameter to ensure convergence. In contrast, our
algorithm based on BCGD is fully automatic and with
proved convergence. For details of our active set BCGD
algorithm, interested readers may refer to Appendix A
in the supplemental material.

Given coupled sparse solutions {aix,a
i
y}

M
i=1

, (5) boils
down to a constrained least squares problem. We adopt
Lee et al.’s Lagrange dual method [33], which is efficient
as it involves much fewer optimization variables than
the primal problem. Details of the dictionary learning
algorithm and its convergence analysis are given in
Appendices B and C in the supplemental material.

4.1 Solution Paths of Training Patch Samples

Equation (4) pursuits a coupled sparse solution given a
fixed value of λ. In some situations, it is useful if we can
compute the set of solutions for all possible λs, i.e., the
solution path. For example, by tracing the solution path
of sparse coding, one can identify the order of dictionary
atoms being sequentially selected. For group Lasso, this
is not as easy as the standard Lasso, e.g., the LARS [42],
and costs large additional computation, as the solution
path of group Lasso is not piecewise linear. However,
active set BCGD algorithm can approximate the solution
path on a grid of λ values with little additional cost.
Upon the solution at a certain λ value, the solution at the
next close-by λ value can be efficiently found using the
earlier solution as a warm start, and typically only several
further iterations are needed to get the new solution.

Computing solution paths of training patch samples
is particularly useful in our problem setting. In (4), we
use λ to control the level of coupled solution sparsity.
During test stage, we are actually solving a single sparse
coding (standard Lasso) problem

min
a′

x

1

2
‖x′ −Dxa

′
x‖

2

2
s.t. ‖a′x‖1 ≤ t , (6)

where t is a constraint value for the sparse solution of
input patch x′. For image transformation, it is necessary
to require that the test patch solutions and those of train-
ing patches in the source space be at the same sparsity
level, i.e., ‖a′x‖1 = ‖ax‖1. In practice, we address this
issue by specifying a shared constraint value t for both
training and test sparse coding. For training, we compute
approximate solution path and tune λ until ‖ax‖1 ≈ t.
For testing, we choose LARS algorithm to solve (6). It
should be noted that for a source patch x, computing
its sparse solutions ax using (4) and a′x using (6) cannot
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guarantee that a′x = ax. Even though we can enforce
‖a′x‖1 = ‖ax‖1, they may still have different nonzero
support patterns. Our coupled dictionary learning can
relax this problem. After the coupled dictionary learning
process converges, the learned corresponding dictionary
atoms between source and target spaces will be aligned
and correlated to each other. As a consequence, most of
patch samples will have the same first several selected
nonzero indices by using (4) and (6), as verified by exper-
iments in Appendix C in the supplemental material. For
a test patch x′ with its sparse solution a′x computed by
(6), it will index into the right local cluster with training
patches very similar to x′, based on our proposed space
partition method in Section 5. Consequently an accurate
mapping of x′ to its target patch y′ can be obtained.
Experiments on intrinsic image estimation and super-
resolution show that this scheme works well in practice.

5 PARTITIONING IN THE HIGH-DIMENSINAL

SPARSE FEATURE SPACE

Our image transformation method is based on local para-
metric regression. Given a training set of paired patches,
local regression requires first dividing the training sam-
ples into local clusters so that each cluster contains
samples which are as similar as possible, and the num-
ber of samples is large enough to learn the regression
parameters reliably. Given a query source patch, such
a data dividing should also facilitate efficient retrieval
of the cluster closest to the query. This is essentially a
high-dimensional space partitioning problem.

Space partitioning is closely related to the nearest
neighbor (NN) search. Classical approaches such as
kd-tree are only efficient in multi-dimensional spaces.
Approximate nearest neighbor (ANN) search [22] can
perform efficient search up to several dozen dimensions.
Locality-sensitive hashing (LSH) [23] has been shown to
be effective in higher dimensions. Due to its randomness,
the codes generated in LSH are in general non-compact,
which limits its practicality in large-scale search prob-
lems. Other empirical methods such as spectral hashing
[24] can achieve code efficiency. However, they cannot
generally produce balanced buckets (clusters), i.e., each
bucket contains similar number of samples, which is
desired for local regression based image transformation.

Besides data structures, search quality and efficiency
critically depend on the concise feature representation
of signals and the proximity measure. Our image trans-
formation is based on the learned sparse feature repre-
sentation. While the sparse representation of patch sam-
ples is in high dimensions, those nonzero features are
very sparse and essentially correspond to salient patch
structures identified by corresponding dictionary atoms.
When devising a data structure for efficient retrieval of
the closest cluster for a query patch, it is beneficial to
take advantage of such a high-dimensional but sparse
feature representation of signals. Besides sparsity, we
have additional information of the dimension selection

order in sparse coding of image patches via solving (4)
and (6). While most of existing methods use Euclidean
distance for similarity search, we argue that the dimen-
sion selection order in sparse vector representation also
provides important criteria for matching similar patches.

For reducing memory cost and ease of parameter
learning in our local regression approach, it is desirable
that after space partitioning, sparse feature vectors of
paired patch samples within each cluster have the same
support (cf. Section 3.1.1). In this work, we devise a data
indexing structure to specifically meet this requirement.
Our scheme iteratively use two kinds of information,
namely the dimension selection order in sparse feature
vector and the coefficient values on the selected feature
dimensions, to partition the space into cells (clusters).
Problem Definition Given M paired patches {xi,yi}Mi=1

,
their sparse feature vectors {aix,a

i
y}

M
i=1

are computed via
coupled sparse coding over Dx and Dy , where Dx has K
atoms and thus aix ∈ ℜK . Perform a partitioning of the
feature space ℜK so that given a query sparse vector a′x
of any test patch x′, a cell of the partition as close to a′x
as possible can be efficiently found. We define samples
in ℜK as close if their orders of feature dimensions being
selected in sparse coding are the same, and their feature
values measured by Euclidean distance are similar.

5.1 The Data Indexing Structure

Briefly speaking, we are interested in quantizing the
space ℜK into cells so that each cell can be represented
as a compact code and indexed efficiently. The efficiency
comes from table look-ups based on the quantized code
representations of local cells. Besides, each cell should
also contain enough samples for reliable learning of local
regression parameters.

Two distinctive quantization functions are defined un-
der our scheme. Based on the information of dimension
selection order in sparse coding, our first quantization
function is defined as

qjo(ax) = z, z ∈ {0, . . . ,K − 1}, (7)

where K is the dimensionality of the feature space,
and j corresponds to the dimension selection order. For
example, when j = 1, q1o(ax) identifies the dimension of
ax that is firstly selected in sparse coding of x. For each
order of j, we can maximally divide the set of samples
into K subsets, and the number of bits needed to encode
the data is no more than logK

2
. Our second quantization

function is a 1D quantizer. It concerns with partitioning
a selected dimension of ℜK based on feature values of
samples on that dimension. Defined as

qv(ax) = z, z ∈ {0, . . . , η − 1}, (8)

we require that after quantization, each of the η buckets
contains roughly the same number of samples. The
number of bits needed for this quantization is logη

2
. The

introduction of this 1D quantizer is essential to realize
a balanced partition for local regression based image
transformation, as will be discussed shortly.
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Fig. 2. Partitioning in the high-dimensional sparse feature

space, using the information of both sparse feature values and

the order of feature dimensions being selected. Color circles

represent partitioned subsets based on dimension selection

order, different colors for different feature dimensions. Squares

represent splitted buckets based on feature values by 1D

quantization along currently selected feature dimension. Black

squares represent leaf cells.

Given the training set {aix}
M
i=1

, we first use quantizer
q1o to divide the M samples into K subsets, each of which
contains samples with the same dimension being firstly
selected in sparse coding of them. For those samples
contained in any zth subset, we then apply quantizer qv
on them by examining their feature values of dimension
z, yielding η buckets, each of which roughly has the
same number of samples. We store the values of bucket
boundaries on dimension z for later query use. Such 1D
quantization can be easily obtained via order statistics.
Up to now we have partitioned the M samples into
K×η cells. Each cell can be encoded using logKη

2
number

of bits. At the second level, for each of the Kη cells
obtained, we further partition it using quantizer q2o and
then qv . The process continues by iteratively using these
two quantization functions, until the leaf cells contain a
specified minimum number (denoted as ζ) of samples,
which form our local clusters and can be used for local
parametric regression. Figure 2 illustrates the construc-
tion of our indexing structure. For each local cell, we also
store the mean values of its examined feature dimensions
(i.e., the centroid in the examined subspace) for later
query use. Assuming at most d dimensions have been
examined to reach leaf cells, we thus partition the space
ℜK into a number of cells bounded by Kdηd, and each
cell can be encoded using no more than d logKη

2
bits. For

efficient retrieval, a look-up table is constructed based
on quantized code representations of local cells.
Query Procedure Given the sparse vector a′x of a query
patch x′, we first compute its code representation by
iteratively using the quantizers qjo and qv to locate the
first candidate cell, whose code is also the code of query
a′x. In this process, we maintain a dynamic index of
intermediately retrieved cells. More specifically, given
the dimension selection order of a′x, we can easily obtain
q1o(a

′
x) = z assuming z is the first dimension being

selected in sparse coding of x′. We can then get the
index of those cells whose code given by q1o is also z, and
also the bucket boundaries for use of qv on dimension
z of a′x. After getting the code from 1D quantizer, we

further reduce the maintained index of retrieved cells.
The dynamic retrieval of cells and bucket boundaries
for 1D quantization can be efficiently implemented using
code collision and table look-up. This process guarantees
that the found cell has the same dimension selection
order as that of query. However, such cells are not
unique, and the first candidate cell is not necessarily
closest to the query in terms of feature value distance
(distances of query to cell centroids). At the second
stage, we compute and compare feature value distances
between the query and those retrieved cells with the
same dimension selection order, and find the closest one
as the cell that a′x is finally located.
Properties of Our Scheme Compactness of data repre-
sentation is a key factor in large-scale efficient search.
In our scheme, the number of total cells is bounded by
Kdηd, which grows exponentially with d. Fortunately,
sparse representation of patch samples has the property
that feature values on the first several selected dimen-
sions in sparse coding can dominate the signal energy,
thus we only need to examine several dimensions to
partition the space, i.e., d is very small (d = 2 ∼ 4
in practice). The number of total cells obtained is also
much fewer than Kdηd. When K is smaller than 256
and η is around 15, the code length of 48 bits is enough
to represent the data. On another hand, image trans-
formation based on local regression requires a balanced
partition of the training samples. Existing space parti-
tioning methods for sparse high-dimensional data, such
as inverted files structure used in image retrieval [38],
[39], cannot apply here. Indeed, space partitioning using
only the support information of sparse representation
is a combinatorial problem, yielding different groups of
samples either too big or too small. Instead, we realize
a balanced partition by iteratively using the information
of dimension selection order (support pattern) via the
quantization function qjo, and feature values via the
1D quantizer qv . The parameter η in 1D quantization
plays an important role here. When η is larger, we rely
more on feature values. Conversely we rely more on the
dimension selection order information.
Analysis of Search Complexity Our search procedure
involves retrieving local cells with the same dimen-
sion selection order as that of query, and also retriev-
ing bucket boundaries used by 1D quantizer, both of
which can be performed in constant time based on table
look-up. For each dimension being examined, the 1D
quantizer qv takes O(η) time when linear scan is used.
Assume d dimensions have been examined to find the
first candidate cell, the time cost is O(dη). At the second
query stage, we compute Euclidean distances between
the query and the centroids of those retrieved cells with
the same dimension selection order. Denote the number
of these cells as No. At the extreme case, No could be
as big as ηd. However, in practice, cells with the same
dimension selection order are much fewer, and it is a
few dozen on average. Thus the total time complexity
for a query is O(d(η +No)).
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Fig. 3. Quality and efficiency comparison with hierarchical k-

means (HKM) in both source (a) and target (b) image spaces.

Branch factors 3 and 5 are used in HKM. Search time of the

closest cluster for a query is measured by millisecond (ms).

5.2 Experimental Verification

We used the MIT intrinsic dataset [16], and randomly
sampled 500, 000 patch pairs from grayscale images and
their shading components, of which 10, 000 pairs were
randomly chosen as the query set, and others were the
training set. The patch size was 8×8, and the dictionary
size was set as K = 128. All comparative experiments
were conducted using Matlab implementation on an
Intel Core 2 Duo CPU running at 2.53GHz.

The quality of a space partition is commonly measured
by its average distortion 2. We used the Euclidean dis-
tance to measure the distortions of query patch samples
in the raw intensity domain, although the partition of
our method is induced in the sparse feature space, and
the partitions of other methods to be compared are
obtained using training raw patches. Appendix D in the
supplemental material shows how the performance of
our method depends on the sparsity level, the value of
ζ (minimum number of samples inside each cell), and
the value of η for 1D quantizer qv . In the experiments
below, we set η = 15 and the sparsity level as 8 nonzero
elements in sparse vectors of patch samples, while ζ was
varying for quality efficiency trade-off.

K-means clustering is based on the optimal space
partition criteria (minimum distortion) [54]. However,
it is prohibitively costly to apply it on the database
as large as half a million samples. We thus compare
our method with hierarchical k-means (HKM) [45], [53],
which is an efficient improvement over k-means. Except
for comparison in the source space, for image transfor-
mation, it is also important to investigate the quality
of the partition in the target space. In Figure 3, we
compare average distortions of different methods against
search time in both the source and target image intensity
domains, where HKM with branch factors 3 and 5 were
used (branch factor is the defined maximal number of
clusters at each hierarchical level of HKM). Figure 3
shows that our method is better than HKM in terms of
quality efficiency trade-off. At the same distortion level,
our method is much faster than HKM.

2. Given a query, average distortion measures the expected distance
between the query and the centroid of the cell that the query falls in.
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Fig. 4. Comparison of NN retrieval with spectral hashing (SH).

SH uses 64 bits. Retrieval quality is measured by recall@R.

We also test the effectiveness of our method for effi-
cient high-dimensional approximate NN search. We set
ζ = 20 and partitioned the database points into 15, 000
cells. Each cell was encoded using 48 bits. For a query
point, database points inside each returned cell were
considered as retrieved NNs. In ANN search literature,
spectral hashing (SH) [24] can produce compact code. We
compare our method with SH at 64 bits. To measure the
search quality, we use recall@R 3. While space partitions
of different methods are induced in the source space, we
measure recall@R in both the source and target intensity
domains. Figure 4 plots recall@R over a range of rank R,
which shows that our method for NN retrieval is more
effective than SH in both source and target spaces. It
should be noted that our method is more efficient for
retrieval at low rank values, which correspond to the
several closest cells for a query point. For example, SH
gets recall@R = 0.19 in the source space using 154.7 ms
for R = 4500, while our method gets recall@R = 0.35 in
the source space using 0.66 ms for R = 30.

6 SUMMARY OF ALGORITHMIC PROCEDURE

At the training stage, given the training set {xi,yi}Mi=1
,

we learn coupled dictionaries Dx and Dy by solving (5).
We then perform path-following coupled sparse coding
to get {aix,a

i
y}

M
i=1

for {xi,yi}Mi=1
, by solving (4) with

varying parameter λ for each i ∈ {1, . . . ,M}. Based on
{aix,a

i
y}

M
i=1

space partitioning in the sparse feature space
is then applied, for which we iteratively use quantization
functions (7) and (8) to produce code representations of
local cells. Suppose C local cells are obtained, regression
parameters wk

c inside each cell c ∈ {1, . . . , C} are then
learned, by solving (2) for those feature dimensions
k ∈ {1, . . . ,K} with nonzero feature values.

At the test stage, given an input image X, we first
extract densely overlapped local patches {xω} from X.
For each xω , we perform path-following sparse coding
by solving (6), and obtain sparse representation aωx . To
estimate its target sparse representation aωy , we need
to retrieve its closest local cell. To do so we compute
the quantized code representation of aωx by iteratively
using quantizers (7) and (8). By the same process we
can locate the first candidate cell, and those cells with

3. recall@R is defined as the probability that the nearest neighbor of
a query is among the retrieved R points, averaged over a large number
of queries, where distance measure is based on l2 norm.
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the same dimension selection order as that of aωx . We
then compute feature value distances between aωx and
those retrieved cells, and find the closest one as the
finally retrieved cell for aωx . Suppose it is the cth cell,
then each nonzero coefficient ak,ωy on dimension k can
be simply computed as wk⊤

c aωx , and we thus obtain
the estimated aωy . After obtaining {aωy } for all extracted
patches {xω}, we apply histogram matching using (3) to
refine the marginal statistics of {aωy }. Each corresponding
patch in the target image Y can be finally computed as
yω = Dya

ω
y . The estimated densely overlapped patches

{yω} provide multiple constraints for each pixel of Y. To
reconstruct Y, we use different approaches in intrinsic
image estimation and super-resolution. Details will be
presented in the following sections.

For a test image with a typical size of 200×300 pixels,
if we use 8× 8 patches with 5 pixels overlap, it takes 41
seconds on average to perform image transformation,
using Matlab implementation of our algorithms on an
Intel Core 2 Duo CPU running at 2.53GHz. The main
computation comes from sparse coding of local patches,
for which we have used a 2 times over-complete dictio-
nary and the LARS algorithm with 12 nonzero elements
in the corresponding sparse feature vectors.

7 INTRINSIC IMAGE ESTIMATION

We consider a type of intrinsic image estimation that is to
decompose an image I into its shading component S and
reflectance component R: I(x) = S(x)R(x) with x for a
pixel. This is an ill-posed problem. Existing works are ei-
ther based on a single grayscale image [17], [11], or addi-
tional information such as color or multiple images [18],
[19], [20]. For the first category, Retinex [17] assumed
that small gradients of the observed image correspond
to smooth illumination changes of the surface and large
gradients correspond to albedo changes. This simple
assumption does not hold for real-world images. Tappen
et al. [11] proposed a nonlinear regression approach to
estimate gradients of intrinsic images. For the second
category, Shen et al. [18] used the color-based Retinex
assumption. Weiss used multiple observed images under
varying lighting conditions [19].

Our method falls in the first category. Training paired
patches are extracted from observed grayscale images
and their shading components, where the mean (DC)
of each patch is removed. Intrinsic image estimation is
realized by estimating sparse feature vector at each pixel
of the target image. To reconstruct the target image, we
use MRF optimization: since dictionary atoms are DC-
free, for the estimated patches centered at each pixel,
we compute their optimal mean values by iterative
conditional mode [5]. Final reconstruction of the target
image is obtained by averaging DC returned estimated
patches at overlapped pixels.

7.1 Experimental Results

We conducted experiments on the MIT intrinsic dataset
[16], which contains 16 object images in realistic settings.

TABLE 1

Quantitative comparison of different methods.
Methods Retinex ExpertBoost Our-local Our-global

LMSE scores 0.041 0.040 0.033 0.031
Methods Our-NN Color Retinex Weiss

LMSE scores 0.030 0.030 0.021

We used 15 objects in the dataset for training, and the
left one for testing. For coupled dictionary learning, we
extracted 50, 000 8 × 8 patch pairs. The dictionary size
was K = 128. The sparsity level was set as t = 150,
which produced around 15 nonzero elements in the
sparse vector of each patch. For space partitioning, we
set ζ = 20 and η = 9. For extraction of local patches from
test images, denser sampling with more pixels overlap
can give slightly better results, however, it also involves
heavier computation. In practice we chose to sample 8×8
patches with 5 pixels overlap from each input image.

Figure 5 compares our results with those from Retinex
[17] and ExpertBoost [11], both of which use a single
grayscale image as input. For Retinex, the thresholding
parameters were learned from the training data. For
ExpertBoost, the parameter settings were the same as in
[11]. Images in [16] can be generally classified into three
levels of difficulty. The representatives are shown in Fig-
ure 5 where the difficulty levels go higher from “paper”
to “frog”. Our results of the “paper” and “raccoon” out-
perform those of Retinex and ExpertBoost. For both of
them, some reflectance components contaminate the es-
timated shading images, while there is no such apparent
contamination in our results. However, as Retinex and
ExpertBoost do, our method also leaves cast shadows in
the reflectance images. For the most difficult “frog”, all
methods fail to separate the shading/reflectance com-
ponents, because surface changes caused by them are
mixed at most of the pixels.

If memory is not a concern, for any test patch it is pos-
sible to search the closest sparse feature vector within its
retrieved local cluster, and use the corresponding sparse
feature vector in the target space as an estimate, instead
of doing regression. By this means our method keeps
efficiency, because we can still retrieve closest local cells
efficiently, and NN search within local cells costs little.
Figure 5-(g) shows that this means can generate even
better results. For example, reflectance contamination is
completely removed in the shading images of “paper”
and “raccoon” objects.

Note that in intrinsic image estimation, one is only
interested in recovering relative shading/reflectance im-
ages. To quantify the performance of different methods,
we used the local mean squared error (LMSE) criteria
proposed in [16]. Table 1 reports the LMSE scores of
different methods, averaged over all 16 testings, where
results of color Retinex [16] and Weiss’s method using
multiple input images [19] are from [16]. In Appendix
E in the supplemental material, we also give example
results for comparison of our method with color Retinex
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“paper”

“raccoon”

“frog”
(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Example results and comparison of intrinsic image estimation using different methods. In each column, for each pair of

results, above is the shading component image, and below is the reflectance image. (a) Input observed images; (b) ground truth;

(c) results of Retinex [17]; (d) results of ExpertBoost [11]; (e) our results just after local linear regression; (f) our results after global

correction by histogram matching; (g) our results based on nearest neighbor searching within each retrieved local cluster.

and Weiss’s method. Consistent with qualitative com-
parison, our method gives smaller quantitative error
than other single grayscale image based methods, and as
small as that using additional color information. Differ-
ent values of t may have effects on our results. Interested
readers may refer to Appendix F in the supplemental
material for a discussion of sparsity level effect.
Benefits of Coupled Sparsity We have analyzed in
Section 3.1.1 the advantages of coupled sparsity for im-
age transformation over several alternative approaches,
such as that based on independent sparse coding of
training patch samples in source and target image spaces
(dubbed ScIndependent), or directly estimating raw in-
tensity values of target patches from sparse represen-
tations of source patches (dubbed ScRaw). We verified
our analysis by experiments on intrinsic image estima-
tion. The parameter settings of sparse coding and space
partitioning in the source space were same for these
three methods. We set ζ = 20 and η = 9. The patch
size was 8 × 8, K = 128, and the sparsity level was
set as t = 150. The only difference between them is
how they estimate the target patches. Table 2 reports
averaged quantitative results over all 16 objects in the
dataset [16], where we compare the two alternatives
with our results right after local linear regression. Results
of an example object are shown in Appendix H in the
supplemental material. Except for using more regression
functions and parameters, Appendix H shows that the
estimated shading image by ScIndependent looks more

TABLE 2

Quantitative comparison with the alternative methods

ScIndependent and ScRaw (see text for explanation).
Methods ScIndependent ScRaw Our

LMSE scores 0.045 0.033 0.033
Methods ScRaw-Noisy Our-Noisy

LMSE scores 0.042 0.035

blurry and with more albedo component remaining. Cor-
respondingly more finer shape is left in its albedo image,
which confirms what we have analyzed in Section 3.1.1.
Upon using more regression functions, ScRaw gives
similar results as ours. However, ScRaw is susceptible
to corrupted training data, for example when training
patch samples are contaminated by noise or missing
data. To verify this, we performed another experiment by
adding Gaussian noise to training images, with standard
deviation set as 10. While our method can still give
cleaner shading and albedo images, results from ScRaw
are contamintated with noise. Table 2 quantitatively
compares these methods, and interested readers can refer
to Appendix H for visual quality comparison.

Comparison with the Related Coupled Sparse Coding
Method For the concept of coupled sparse coding, we
require sparse feature vectors of paired patches share the
same support. A recent method for super-resolution [15]
enforces corresponding low- and high-resolution image
patches to share the same sparse feature values. This
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TABLE 3

Quantitative comparison with the coupled sparse coding

method in [15] (see text for explanation).
Methods [15]-I [15]-II [15]-III Our-II

LMSE scores 0.056 0.055 0.055 0.033

TABLE 4

LMSE scores of different methods with noisy inputs,

corresponding to results in Appendix G.
Noise Std 0 2 4 6 8 10

Retinex 0.0108 0.0139 0.0192 0.0254 0.0311 0.0377

ExpertBoost 0.0146 0.0148 0.0156 0.0175 0.0200 0.0241

Our method 0.0016 0.0038 0.0041 0.0046 0.0063 0.0070

assumption seems intuitive for use in super-resolution.
But it is not necessarily true for general types of image
transformation. We conducted experiments on intrinsic
image estimation to validate our claim. In particular,
we replaced our coupled sparse coding and dictionary
learning method with the method proposed in [15], and
image transformation is still under the local parametric
regression framework. For the method in [15], we used
the same patch and dictionary sizes as in our method.
To make the comparison clearer, we only used the basic
procedure: results of both methods are directly from
local linear regression. Table 3 reports averaged quanti-
tative results over all 16 objects in the dataset [16], where
results from the method in [15] under three different
sparsity levels are presented. Sparsity levels I ([15]-I),
II ([15]-II), and III ([15]-III) respectively correspond to 8,
15, and 30 nonzero elements in any sparse feature vector.
Result by our method is under sparsity level II (Our-II).
Qualitative comparison of an example object is shown
in Appendix I in the supplemental material. Table 3 and
Appendix I show that our method is good at separating
shading/albedo components, and the method in [15]
fails at such a general image transformation application.
Simultaneous Restoration and Transformation When
images are to some extent corrupted, our method is
relatively stable when computing their sparse feature
vectors, thus inherently being more robust against cor-
rupted data. We verified the claim by performing intrin-
sic image estimation from noisy inputs. In particular,
we added Gaussian noise to input images, with stan-
dard deviation ranging from 0 to 10. Appendix G in
the supplemental material compares our method with
Retinex and ExpertBoost in these noisy settings, which
shows that noise does influence the performance of
different methods. Our method outperforms Retinex and
ExpertBoost, and consistently gives cleaner results until
standard deviation reaches 8. Quantitative comparison
of different methods is reported in Table 4. Overall,
our method can be considered as a simultaneous image
restoration and transformation process.

8 IMAGE SUPER-RESOLUTION

Super-resolution (SR) aims to generate a high-resolution
(HR) image based on one or several given low-resolution

(LR) images. The generated result should be sharp look-
ing and smooth. In literature, there are many different
methods for generic image SR, roughly categorized as
reconstruction-based, interpolation with natural image
priors [14], [13], and patch-wise learning based [4], [7],
[15], [12], [50]. In general, the third category is better at
super-resolving natural images with complex textures.
Our proposed method falls into this category. We per-
form image SR in the learned sparse feature spaces. After
estimating sparse feature vectors of densely overlapped
patches, we essentially obtain multiple constraints for
the desired HR image. To reconstruct the HR image, we
make a minimum error boundary cut between adjacent
patches [40]. Since the dictionary is DC free, for image SR
the DC problem is easily treated by removing it from the
LR input and returning back in the HR reconstruction.

8.1 Experimental Results

80 HR training images were collected from the Internet,
and their LR counterparts were produced by first sub-
sampling, and then upsampling via bicubic interpola-
tion, from which 80, 000 LR and HR patch pairs were
sampled to learn the coupled dictionaries. We used 5×5
patches for a 3x magnification factor, and 8×8 patches for
a 4x magnification factor. The dictionary sizes were fixed
as 4 times over-complete. The sparsity level was set as
t = 110. For space partitioning we set ζ = 20 and η = 9,
which can give 32, 104 local clusters out of 4, 013, 000
training patch pairs. For extraction of local patches from
test images, denser sampling with more pixels overlap
can give slightly better results, however, it also involves
heavier computation. In practice, we chose to sample
5×5 patches with 3 pixels overlap, or 8×8 patches with 5
pixels overlap, from each input image. For color images,
we only applied our method to the illumination channel,
and the chrominance channels were super-resolved by
bicubic interpolation.

We compare our method on SR with closely related
ones such as neighbor embedding [7], Yang’s method
[15] and soft edge prior [13]. Figure 6-(e) shows example
results of our method just after local linear regression,
and Figure 6-(f) shows the results after global correction
by histogram matching. Columns (c) and (d) in Fig-
ure 6 are results from neighbor embedding and Yang’s
method. We used the same parameter settings as in [7]
for column (c). The results of Yang’s method in column
(d) were produced using the code on their webpage.
Both our method and [15] can generate sharper images
than neighbor embedding. Compared with [15], our
results have no spotty artifacts and halo effects around
edges. We compare more of our results with neighbor
embedding and soft edge prior [13] in Appendix J in
the supplemental material. The result of neighbor em-
bedding is not as sharp as ours. The soft edge prior can
produce color attractive results, but also introduce some
smoothing effect that is sometimes undesired. Com-
pared with [13], our results look more photorealistic. To
quantitatively compare different methods, we report in
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(a) (b) (c) (d) (e) (f) (g)

Fig. 6. 3x super-resolution on girl and flower bud images (better view the electronic version). (a) LR input; (b) bicubic interpolation;

(c) neighbor embedding [7]; (d) Yang’s method [15]; (e) our results by local linear regression; (f) our final results; (g) ground truth.

TABLE 5

RMS errors of different super-resolution methods.
Images Bicubic [7] [15] [13] Ours

girl 8.739 8.594 8.372 N/A 7.919
flower bud 4.938 4.859 4.681 N/A 4.554

head 9.515 9.368 N/A 9.3 8.906
Parthenon 11.4 11.73 10.8 10.7 10.38

Fig. 7. Super-resolution comparison with [21]. From left to right:

bicubic interpolation, results from [21], our final results.

Table 5 the RMS errors for the images in Figure 6 and
Appendix J. Consistent with the visual comparison, our
method gives the lowest reconstruction errors using the
original HR images as ground truth. Different choices of
t may have effects on our results. Interested readers may
refer to Appendix K in the supplemental material for a
discussion of sparsity level effect.

Figure 7 compares our method with a single-image
based SR method proposed by Glasner et al. [21]. Both
methods can produce excellent results with sharp edges.
Nevertheless, the method in [21] takes advantages of
image self-similarities across scales and classical multi-
image fusion based techniques, both of which may be
only valid in the SR domain. In contrast, our method is
proposed for more general types of image transforma-
tion, which include SR as an example, and also other
applications such as intrinsic image estimation.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose a learning based framework for
image transformation. Our framework is based on a local
regression approach using sparse feature representations
over learned dictionaries across image spaces. To learn

the dictionaries, we propose the concept of coupled
sparsity, and use an active set BCGD algorithm for cou-
pled sparse coding. To learn mapping relations between
image spaces, we perform parametric regression within
small subsets of training image patch pairs. To this
end, we propose a space partitioning scheme that can
divide the high-dimensional but sparse feature spaces
into easily retrievable local clusters. For any test image
patch, our method can efficiently retrieve its closest local
cluster and perform regression within the cluster. We
applied our framework to intrinsic image estimation
and super-resolution, and obtained the state-of-the-art
performance. Our method is more robust to corrupted
data, and can be considered as a simultaneous image
restoration and transformation process.

In this work, coupled dictionary learning is performed
in a purely unsupervised, data-driven fashion: dictionar-
ies are learned for better reconstructing training patch
pairs. It is possible to extend the current formulation to
a supervised setting similar to [36], [35], i.e., dictionaries
are learned to be better adapted to a specific image
transformation task. We leave this extension in future
research. In future we are also interested in extending
our method on other image transformation applications.
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