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ABSTRACT

This paper addresses the design of a spread spectrum image transmission system
to provide increased antijam protection to a television link from a small remotely
piloted vehicle. Transform encoding and frame rate control may be used to re-
move the natural redundancy inherent in the image in order to permit the use of
spread spectrum encoding for increased antijam protection.

Emphasis is placed on the two-dimensional discrete cosine transform (DCT)
and a hybrid DCT with differential pulse code modulation (DPCM). Both the
two-dimensional DCT and the hybrid DCT/DPCM provide nearly the theoreti-
cally optimal performance of the Karhunen-Loeve transform, while permitting

implementation by small, lightweight hardware in real-time.
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INTRODUCTION

This program addresses the design of a spread spectrum image transmission system to
provide increased anti-jam protection to a television link from a small remotely piloted
vehicle. Transform encoding and frame rate control may be used to remove the natural
redundancy inherent in the image in order to permit the use of spread spectrum encoding
for increased antijam protection.

Previous phases of this program included 2 study of the performance of one- and
two-dimensional transforms, the demonstration of the feasibility of small, lightweight,
real-time implementations of the discrete Fourier transform (BFT), and the conceptual
design of similar two-diniensional (DFT) implementations.

During the present reporting period, emphasis has been placed on the two-dimensional
discrete cosine transform (DCT) and a hybrid DCT with differential pulse code modulation
(DPCM). Both the two-dimensional DCT and the hybrid DCT/DPCM provide nearly the
theoretically optimal performance of the Karliunen-Loeve transform, while permitting
implementation by small,” itweight hardware in real-time.

The conceptual design of the two-dimensional DCT has been completed, but its further
evaluation awaits the development of a random access sensor with nondestructive readout.

The hybrid DCT/DPCM is compatible with present sensors and therefore the most

promising transform for use in the immediate future.

SYSTEM DESCRIPTION

Two hybrid cosine-DPCM bandwidth reductic: systems have been selected for con-
struction and evaluation. The first uses a Charge Injection Device (CID) [1] image sensor
and a Bucket Brigade Device (BBD) transform impleinentation. The second uses an
ordinary vidicon sensor and a Charge Coupled Device (CCD) transform implementation.

In the CID system a 100x 100 pixel solid state sensor will be used. The nominal
horizontal line scan will be one millisccond. The nominal frame rate will be 10 frames per
second which can be displayed without flicker through the use of a scan converter. The

1 millisecond line scan time was chosen in order to match the sensor to the BBD filter

which operates at a clock rate of 100 kHz with good charge transfer efficiency. At 10




frames per second, image motion should be reproduced well even though some picture de-
tail will be lost because of the low spatial sampling afforded by the 100x100 pixel format.

When the cosine transform in the horizontal direction is combined with Differential
Pulse Code Modulation (DPCM) in the vertical direction to form a hybrid transform sys-
tem, performance essentially indistinguishable from “optimum” Karhunen Loeve should
be achieved as shown in Appendix A. Minimum overall bit rate will be achieved by a com-
bination of zonal filtering and variable bit assignment with low spatial frequencies assigned
more bits of quantization than high spatial frequencies. Table 1 shows the bit rate which
results from three overall bits/pixel assignments at a pixel rate of 10° pixels/sec. An overall
bit assignment of 1 bit/pixel should result in a signal-to-distortion ratio of better than 30
dB. In addition, since channel errors occur in the Fourier domain, channel error rates as
large as P=10'2 will still provide useful reconstructed images.

The second bandwidth reduction system wil! be compatible with a standard vidicon
camera. It will use CCD filiers for the cosine transform which will operate at a 4.8 MHz
sampling rate. Compatibility with standard television format will be maintained in as
many aspects as possible. Thus 53.5 microsercuds of every line scan will be used for viGeo
data transmission and 10 microseconds of every line will be reserved for special functions
such as synchronization. If the interlace field is used directly as the input to the transform
hardware a resolution of approximately 24G lines by 256 pixels is possible at 60 frames/
second. This is equivalent to a video bandwidth slightly less than 2.5 MHz. However, in
order to reduce the effective frame rate, a block of 32 adjacent pixels will be used. Thus
if every other 32 pixels of each line were transformed, it would result in a horizontal inter-

lace and an equivalent frame rate of 30 frames/sec. Slower frame rates can be achieved

Table 1. Bit Rate as a Function of Quantization for the

CID System
Bits/Pixel | Bit Rate
2 200 kilobits/sec
\ 100 kilobits/sec

1/2 50 kilobits/sec




by deleting additional 32 pixel blocks until a minimum frame rate of 7.5 frames/sec is
achieved when only one 32 pixel block per line is used.

The number of pixels per frame is 61440. Table 2 shows the bit rate which results at
several frame rates and bits/pixel.

Table 2. Bit Rate as a Function of Quantization and Field
Rate for the Vidicon Compatible System.

Field Rate Bit Rate
Bits/Pixel (fields/sec) (kilobits/sec)
1 30 1843.2
1 15 921.6
1 7.5 460.8
1/2 30 921.6
1/2 15 460.8
1/2 1.5 230.4

SPREAD SPECTRUM ENCODING
The amount of anti-jam capability of the system will depend on the subsequent coding
algorithm used to encode the data. A relative compression ratio (in dB) can be defined for
use in comparing various bandwidth compression schemes

channel bit rate
N*B*F

C.R.=10log (

where N is the number of pixels per video frame, B is the number of quantization bits per
pixel and F is the frame rate. The channel bit rate is assumed to be 20.0 megabits per
second.

The compression ratio is, in a sense, an approximate lower bound on the amount of
anti-jam capability available by a not very sophisticated coding scheme. A bit stream repe-
tition would be one such naive scheme. A candidate scheme to use maximal length PN
cyclic codes to spread the spectrum nppears to offer significant improvements over naive

schemes.
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Consider the conventional vidicon system in which it is planned to transmit 32 p'vels
out ol every line for an effective frame rate of 7.5 frames/sec. A length 1023 PN sequence
sent at a 20 megabit rate occupies 51.15 ps feaving 12.3 us for a coded sync pulse. A
cyclic 1023 bit PN sequenee can transmit 10 bits of information via cyclic pulse position
modulation. This corresponds to 27.1 dB of anti-jam protection as measured by the increased
distance between code words as compared to a direct binary transmission. However we have
only transmitted an average of 0.312 bits/pixel. An alternative would be to break the 1023
bit sequencc into two sequences of length 511 cach lasting 25.6 ps. Each one carries 9
bits of information for a total of 18 bits and an average of .563 bits/pixel at 24.1 dB anti-
jam protection. This is further illustrated in table 3. As can be seen from thiis table a
sophisticated coding scheme gives approximately a 5 dB benefit in AJ. Considcr the same
situation for the 100x 100 pixel charge coupled device camera. 1f length 1023 PN sequences
are clocked at 20 megabits per second twenty 51.15 microsccond periods could be used
per line to producc a frame rate of about 10 per second. Performance versus codeword
length is summarized in Table 4. The additionat anti-jam benefit from the coding scheme
gives the CID camera the capability of running at a higher frame rate than that given in
Table 4 and still achicving good picture quality and good AJ capability. Table 5 summar-
izes the performance for a 30 frame/sec system. Since this system is capable of operating

at 30 frames per second with good AJ and good picturc quality (27.1 dB AJ at 1.08 bits/

pixel), it offers the possibility of climinating a potcntially costly scan converter at the
ground station. The picture is however, either of lower resolution or of smaller field of

view than the vidicon system.

Table 3. AJ Improvement for Vidicon Compatiblc System Using PN-PPM s
Length of | No. of Sequences | Decoded Bits | Total No. | Average Bits Al CR vy 1
the Sequence Transmitted per Sequence | of Bits per Pixel (dB) | (dB) 3
1023 I 10 10 0.31 27 I[2 e e
511 2 9 18 0.56 24,1 | 18.9 -
355 4 8 32 1.0 21.1 |16.4 ~
127 8 7 56 1.75 18.1 |13.9 -
e
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Table 4. Performance vs. Codeword Length for th: CID
System at 10 Frames/sec Using PN-PPM.

Length of | No. of Sequences | Decoded Bits | Total No. | Average Bits | AJ CR
the Sequence Transmitted per Sequence | of Bits per Pixel (dB) | (dB)
1023 20 10 200 2.0 RJLIR 1010
511 40 9 360 3.6 24.1 { 174

255 80 8 640 6.4 20.1 | 149

Table 5. Performance vs. Codeword Length for the CID
System at 30 Frames/sec Using PN-PPM.

Length of | No. of Sequences | Decoded Bits | Total No. | Average Bits | AJ CR
the Sequence Transmitted per Sequence | of Bits per Pixel (dB) | (dB)
1023 6 10 60 0.6 270 W 202
511 12 9 108 1.08 24.1 | 17.9

255 24 8 192 1.92 21.1 | 154

DPCM TRANSFO& NV IMPLEMENTATION

For television bandwidth reduction, it has been shown [2, 3] that a two-dimensional

mixed transform, e.g. Fourier in the horizontal direction and Hadamard in the vertical di-

rection, generally gives performance intermediate between the tv.o transforms. An exception

to this generalization is the DPCM transform. The combination of the cosine transform in

the horizontal direction and the DPCM transform in the vertical direction has performance

equivalent to the eptimal Karhunen Loeve transform.as shown in Appendix A.

This result has been demonstrated both theoretically and by computer simulation. A

hardware DPCM system has been designed and is being constructed. It is meant to interface
with a slow scan television system such as the new 100 x 100 charge coupled device cameras
now entering the market. A block diagram of the DPCM system is shown in Figure 1.

The DPCM has been designed with a sixteen level nonlinear quantizer representing

three bits of magnitude infcrmation and one bit of sign information. The quantization
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Figure 1. The DPCM System.

levels can be set to arbitrary levels. Zero, two, three or four bits of information can be
transmitted per coefficient depending on a command from a memory unit. The memory
unit is programmable and allows the operator to adjust the number of bits per coefficient
to the coefficient location. The system is also designed to give the operator control of the

number of coefficients sent. The analog memory is being simulated by an A/D converter,

a set of digital shift registers and a D/A converter. An appropriate charge coupled device

analog memory is not available at the present time. From the experience gained in the i
-y
design of this DPCM encoder it appears that an all digital DPCM system (except for the |
g3
initial summing amplifier) would be the simplest type to construct and has significant
oy
power and weight advantages over a hybrid encoder.
1 wi .
5
s




IMPLEMENTATION OF ONE- AND TWO-DIMENSIONAL
DISCRETE COSINE TRANSFORMS

“ Emphasis has been placed on the implementation of the discrete cosine transform

(DCT) because it provides a very close approximation to the optimum Karhunen-Loeve

R transform, while permitting compact, real-time implementation by a combination of

. multipliers and filters. The two types of DCT which are useful for reduced redundancy

§ television image transmission are obtained by extending a length N data block to have

a even symmetry, taking the discrete Fourier transform (DFT) of the extended data block,

i and saving N terms of the DFT.

The “Odd DCT” (ODCT) extends the length N data block to length 2N-1 and the

“Even DCT” extends the length N data block to length 2N. For example, if the data

. block were ABC, the two extensions would be CBABC and CBAABC, respectively. Ana-
fad lytic expressions for these transforms are given in Appendix B.
An ODCT or EDCT in the horizontal direction may be combined with an ODCT or

$ EDCT in the vertical direction to give three different types of two-dimensional DCT.
B Three different ways of implementing a one-dimensional DCT in real time have been

found, requiring filter lengths of approximately 4N, 2N, and N for an N-point transform.
. A detailed comparison is provided in Table 1 of Appendix B.
1 Two of the three types of two-dimensional DCT may also be implemented in real-
time using combin‘é"tions of multipliers and filicrs. The image points may be scanned so
as to produce a one-dimensional sequence whose one-dimensional transform is the re-
quired two-dimensional DCT of the image as described in Appendix B and illustrated in
Tables 2 and 3 of that appendix. It the horizontal and vertical sizes of the extended data
block have no common divisor, then the two-dimensional DFT required for a two-
dimensional DCT may be performed as a one-dimensional DFT by suitably scanning the
extended da*a block by re-scanning the original data block.

The choice of a hybrid ODCT by even DCT permits maximum flexibility in the block

size, since any square block size may be used, and the two-dimensional transform may be
‘ implemented using the switching filter EDCT, shown in Figure 3 of Appendix B, to maxi-

mize the block size attainable with a limited number of taps per filter. In this case, filters




of length N2(2N]—]) will be needed for a block size of Nl by N:. so that a two-dimensionaul

DCT ol'a 10 by 10 duata block is within the limits of present bucket brigade device Filters.

REPORT SUMMARY

This report describes the progress on the third phase of a NUC program on image
bandwidth reduction for application to the ARPA RPV problem ol sending television
images over spread spectrum channels. This report details the second quarter of a hardware
development and implementation phase. In this quarter implementation and interfacing
were considered for the two-dimensional DCT and hybrid DCT/DPCM which were previ-
ously shown to provide nearly optimum performance.

Two-dimensional discrete cosine transform implementations have been designed.
but their utilization awaits development ol a compatible sensor.  Fwo-dimensional hybrid
DPCM/DCT transform hardware is being built, and a suitable pseudonoise pulse position
coding format has been shown to maximize the minimum distance between code words
and to provide a significant increase in AJ protection compared to simple bit stream repe-
tition. The improvement is about 5 dB lor a codeword size ol 511 bits with & compression
ratio of 78 to | and is a slowly varying function ol the compression rutio. The coding

format is compatible with transmission through cither un analog or a binary channel.
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ABSTRACT

‘ Several image coding systzms based upou transform coding have
- been studied. Analysis and siniulation has shown that in many appli-
cations these systems are capable of image coding at about one to two
bits per pixel with acceptable image quality and tolerance to channel
ervors. Implententation studies and tests that have been performed
indicate that the systems can be implenented for real time television
operation using recently developed technologies.

! INTRODUCTION

t Transform coding techniques have beep exolored extensively in

- theoretical studies and by simulation. It has been shown that a signif-

; icant bandwidth reduction can be achieved in many applications with

3 minimal inage degradation and relative tolerance to channel errors. (1) Original

The major drawback of transform image coding for real time television
] applications in the past has been computational complexity. However,
. recently developed technologies such as acoustic surface wave delay

3 lines and charge coupled devices have made transform image coding at
real time television ratcs feasible.

CODING TECHNIQUIS

3 Transform Coding. I

f In transform coding systems a one or two dimensional mathe-
matical transform of an image line segment or block is performed at
the coder. The transform coefficients are then quantized and coded.
At the receiver, after decoding, an inverse transformn is taken to obtain
an image reconstruction. Transforms that have proven useful include

i the Fourier, Hadamard, Slant, Cosine, and Karhunen-Loeve trans-

; forms. A bi' rate reduction is obtained by efficient quantization and
coding of the transform coefficients. Many of the transform coeffi-
cients of a natural image are of relatively low magnitude and can be [
discarded entirely, or coded with a small number of bits per coeffi- thy 0.5 Bits/Pinel 1
cient while maintaining a small mean square error. Simulation studies P
indicate that a bit rate reduction to aboui 1.5 bits/pixel can be ob- 3
tained for monochrome image transform coding in 16 X 16 pixel
blocks. Color images require about 2.0 bits/pixel. Figure | shows an
original and encoded pictures for two-dimensional transform coding
in 16 X 16 pixel blocks at bit rates of 0.5 and | bit per pixel.

DPCM Coding.

1In a DPCM system the value of a scanned image sample is pre-
dicted and the difference between the actual and the predicted value
is quantized and transmitted. At the receiver a similar predictor uses
transmitted values of the quantized differential signal to reconstruct a
replica of the scanned image. Prediction of a data point is performed
by using a number of adjacent previously scanned sample values where
the parameters of the predictor are specified in terms of the correla-
tion of picture elements.

]
ot i

Properties of the differential signal that make 2 DPCM system -
attractive are a significant reduction in the variance of the differential () | Bit/Pixel
signal, as compared to the variance of the original samples, and the <
fact that the probability density function of the differential signal is Fig. 1. Original and cncoded signal using two-dimensional cosine :
closely approximated by an exponential furnction.3 The former transform and block quantization,

*This work was supported by the Advanced Research Projects Agency of the Department ol Defense und monitored by the Air Force Eastern
Test Range under Contract R08606-72-0008 and by the Naval Undersea Center, San Diego, Culifornu. under Contract N0O123-73-C-1507.
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property results in smaller quantization noise power, while the latter
property allows for designing an optimum quantizer to obtain a fur-
ther reduction of noise power. Besides these two improvements, the
quantized differential signal has a smaller entropy than the quantized
original signal. This results in further bandwidth reduction (cr equiva-
lently improvements in signal to noise ratio) if the transmitted signal
is entropy coded. With standard DPCM systems, monochromes images
are coded with 2.5 to 3.0 bits/pixel.

Comparison of Transform and DP*_M Coding.3

Both DPCM and the transiorm coding techniques have been used
with some success in coding pictorial data. A study of both these sys-
tems has indicated that each technique has some attractive character-
istics and some limitations. Transform coding systems: (a), achieve
superior coding performance at lower bit rates; (b), distribute the cod-
ing degradation in a manner less objectionable to a human viewer;

(c), show less sensitivity to data statistics (picture-to-picture variation);
and (d), are less vulnerable to channel noise, compared to DPCM cod-
ing systems. On the other hand, DPCM systems, when designed to
take advantage of spatial correlations of the data: (a), achieve a better
coding performance at a higher bit rate; (b), require less complex cod-
ing equipment; (c), produce a minimal coding delay; and (d), do not
require a large block memory, as compared to transform coding
systems.

Hybrid Transform/DPCM Coding.

A serious shortcoming of two-dimensional transform encoders is
the requirement of a block memory. To avaid this problem and yet
retain the attractive features of transform coding systems, a hybrid
encoder that uses a cascaded unitary transformation, DPCM encoder
has been developed. The hybrid encoder, shown on Figure 2, exploits
the correlation of the data in the horizontal direction by iaking a

one-dimensional transform of each line of the picture, then it operates
on each column of the transformed data us ng a bank of DPCM coders.
The DPCM coders replace the quantizers i a two-dimensional trans-
form coding system. Since the unitary transformation involved is a
one-dimensional transformation of individual lines of the pictorial
data, the equipment complexity and the number of computational op-

erations is considerably less than for a two-dimensional transformation.

The hybrid system concept can be extended to interframe coding
of television signals. Such a coding system would start by taking a
two-dimensional transformation of each block of the television signal,
then it would encode the transformed signal in the temporal direction
by a number of parallel DPCM encoders, thus exploiting the correla-
tion of data in temporal as well as spatial directions.

Both theoretical and the experimental results indicate that a hy-
brid system employing a Karhunen-Loeve transformation pruuuces a
better result than a hybrid system using any other unitary transforma-
tion. The theoretical results for Markov data, summarized in Figure 3,
also show that the performance of the Cosine transform system is only
slightly suboptimum to the Karhunen-Loeve transformation system,
and is superior to the hybrid Hadamard or Fourier transform systems.
As an illustration of performance, Figure 4 contains encoded pictures
for a hybrid transform/DPCM coder.

To evaluate the effect of a noisy transmission link, hybrid coded
images have been subjected to a simulated binary symmetric channel
with a probability of bit reversal equal to p. It has been found that the
inherent error propagation in the DPCM systems of the hybrid coder
can be reduced considerably by using a smaller value for the A;’s
shown in Figure 2. Naturzlly, the best value for the A;’s depends upon
the bit error probability p. For p=10-2 a value of A; = 0.8 gives near
optimal results. Figure 4a and 4b show encoded pictures for a hybrid
coder with A; = 0.8 for a probability of error of p= 102,

u (y) _wly) w, (y)+q,(y) wly)+q(y) v(y)
Q T s &
- 0
Auly D D Auly 1)
E
R
uy(y) w,(y) + g,ly) 5 w,(y) +a,(y) v y)
(D] e - T -
W) [T 5w, (e N N
~ |TRANSF[ . N , ,
) wy)+ay) AR
+a, - --(H)—
Anup (y-Dle—G Anun(y-D—

Fig. 2. Block diagram of the hybrid system using a cascade of one-dimensional transformations
and a bank of DPCM systems to encode pictorial data.
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(a) 0.5 Bil/l;ixcl by 1.0 Bil/l;ixcl
p=102 p=10"~
Fig. 4. Encoded pictures using the hybrid encoder (casine transform and DPCM). 3
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TRANSFORM CODING QUANTIZATION ERROR REDUCTION4

In transform coding systems a banlwidth reduction is achieved N
by coarsely quantizing the transform coefficients, This, of course,

Consider an N element vector f that represents the pixels in an
image block. The transform coefficients of the image block are given
by the N element vector

L= Af

where Aisan N X N unitary transformation matrix. For purposes of
analysis assume fisa sample of a zero mean random process with

known covariance matrix Kf. Then the covariance matrix of the trans-
form coefficients is

Kp= AKpa™!

If a Karhunen-Loeve transform is employed, all transform coefficients
are uncorrelated, and K becomes an identity matrix. For al| other
transforms, there is somie residual correlation between coefficients that
can be exploited to reduce quantization error,

a=t4}{q—6q-ﬁTﬂ

It is possible to reduce the mean square error by introducing a linear
smoothing of the quantized transform coefficients. Let

L=Vl

denote the result of the smoothing process where W s the smoothing
operator matr/x. The reconstructed vector of image pixels is then
= Wiy

Considerable study has been performed to develop smoothing
operators W which reduce the mean Square coding error, but yet are
computationally feasible. Detajls are available.4 As an example of the
potential of this te.nwique Figure 5 shows the result of transform do-
main quantization error reduction applied to the Hadamard transform
of &in image in 16 X 16 pixel blocks. In these simulations the lowest
spatial frequency transform coefficientsina 5 X 5 element block were

TP.ANSFORM IMPLEMENTATION

The major difficulty in implementing transform coding or hybrid

One Dimensional Transforms.

The discrete Fourier transform (DFT) is well suited for use in
real-time jmage processing since it js asymptotically close to the
Karbuneu-Loeve transform and can be implemented by a combination

A-5
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10:1 Zonal Selection

10:1 Zonal Selection
Spectrum Extrapolation

Fig. 5. Hadamard Spectrum Extrapolation

of multipliers and filters. In one dimension (lic DFT of a complex
vector g composed of N sumples is given by

N- |
Gy = Z g, cxp{--ilnnk/N} (1)
n=0
or
N- |
Gy = exp{—iwkz/N}Zexp{iw(n—k)z/N}cxp{—i1rn2/N}gn 2)
n=0

through the use of the substitution 2nk = n2 + k2 - (n-k)z. This
Chirp-Z-transform (CZT) representation of the DFT can be interpreted
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as a multiplication ol the vector to be translormed by 4 discrete chirp,
periodic convolution ol the multiplicd vector by a discrete chirp, and
post multiplication by a discrete chirp.

Equation (2) may be implemented using real n ultifa]iers and real
filters. This configuration is shown in Figure 6. With the Turther
restriction that the function g is real, non-negative and even, G is real
and is an autocorrelation functicn. For an image vector of size N
there are two symmetrized extensions of the vector; the first ol size
2N, the other of size 2N-1. Corresponding to the DFT ol these two
extended vectors there are two discrete cosine transforms (DCT)

N-1
Gei = 2 Z g, cos (n+1/2) k/N (EDCT) (2)
n=(0
N-1
(;ok =gyt i Z cos TnkIN=1/2) g (0ODCT) “hH
n=()

Since the DFT is equivalent to the Fourier transform ol a pertodic
repetition of the data vector, symmetrizing the input signal improves
the convergence at any light-dark edge discontinuities of the periodic
extension. In addition, for images with exponential correlation Fune-
tions Ahmed> has shown that the EDCT is 2 imost indistinguishable
from the Karhunen-Loeve transform.

However, it is in hardware implementation that the DCTs excel
since they may be computed simply as the real part of a DFT via the
CZT algorithm. The CZT algorithm is a “‘real-time * algorithm which
makes it possible to compute, in natural frequency order, Fourier co-
efficients at the same rate as the data is being gathered. In addition,
the computation involves only multiplication and convolution which
can be performed by analog multipliers and linear filters respectively.
Thus analog to digital conversion of the video is not required nor is
there a need Tor special purpose digital computations.

Two technologies are available for the implementation of the
convolution filters; surface acoustic waves (SAW) and charge transfer
devices (CTD). The SAW technology uses acoustic waves on piczo-
electric crystals with deposited electrodes while the CTD uses an clee-
tric ticld to induce propagation ol concentrations of minority carriers
at a silicon-silicon oxide boundary in a monolithic silicon analog inte-
grated circuit. In both technologies the required linear filters are

CONVOLUTIONS

implemented as transversal Tilters whose im pulse responses are deter-
runed by the metalization pattern depositea durning fabrication.

The transversal filter was first proposed Ly Kallmann? and con-
sists of u non-dispersive delay line contiguously tapped along its length
transverse to the direction of signal propagation with lightly coupled
non-interacting taps. The impulse response of this filter is uniquely
spevified by the amplitude and polarity of the taps and any bounded,
finite duration inpulse response ol specified bandwidth can be synthe-
sized by sampling the duesired response signal at its Nyquist rate and
setting the tap weights along the delay line to these values, Although a
transversal filter normally implements a non-periodic convolution,
periodic convolution can be achieved by a number of techniques: (1)
the input signal can be repeated; (2) the output of the delay line can
be recireulated to the input; (3) the impulse response can be made two
periods of the desired funetion; or (4) an auxiliary delay line can be
employed.

In order to continuously translorm the input signal, this signal
must be subdivided into blocks whose lengths are the same size as the
size ol the appropriate Fourier transform und two sets of convolution
tilters used alternately. However, the pre- and post-multipliers may be
multiplexed between the two groups of filters, By these techniques a
logaN increase in throughput is possible over a correspondirg fast
Fourier transform (I°'FT) operating at the same sample rate and em-
ploying one complex multiplier. This results in a reduction of size and
power since no yuantization is required and calculation proceeds at the
data sample rate.

When a vertical differential pulse code modulator (DPCM) modem
follows a horizontal cosine translorn a very compact digital real-time
image transmission system results. As shown in part 2, this system
achicves performance essentially indistinguishable from that of the
Karhunen-Logve translorm for pictures witl exponential correlation
Functions without having to employ two dimensional transform encod-
ing. However, it two dimensional Fourier encoding is required it inay
be achieved by concatenation of two one dimensional transforms with
auxiliary meniory to transpose the partial transform from row to col-
umn format; or it may be achieved by linear congruential scanning of
the two dimensional area and the use of a one dimensional transfor-
mation as described under two dimensional transtorms.

cos .7’_"‘_2
N

({0}
9,R
SIN
i
- SIN N

prd
costh
N

Fig. 6. DFT via CZT algorithur with parallel implementation of complex arithmetic.
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Two Dimensional Transforms

The alternative expressions for the ODCT and EDCT shown in
egs. (5) and (6) make evident their implementation. The appropriate
premultiplier reference function, transversal filter tap weights and
postmultiplier reference function for the ODCT and EDCT are given
by a, b, c of egs. (7) and (8) respectively.

imk2 | R f inj2
Gok = 2 Re exPiZN—l z(;sjgjexpl2 o
J=

im(k-j)2
"p; N1 f] &)

where sg=.5and s, = 1 forj> 0

N
-ink2 + k)
£ b 2N

. Re)
=17
Gek = 2 Re [expg-T g-expg—']—

=0
Az 3
of]

For the ODCT

§, j=1,...N-1 (7A)

o
I}

i1rj2 .
j = exp IN-T , forj=-(N-1),...(N-1) (7B)

2
g expg v t forj=0, ... N-1 (70}

2N-1
For the EDCT

55
_ -imj - -
aj—expg 2Nt‘f°” 0,...N-1 (8A)

=2
n

i1rj2 .
j = exp NG forj=-(N-1),...(N-1) (8B)

C

- ol
]

2N

A two-dimensional DFT of an M| by M, data block may be per-
formed as a one-dimensional DET of size M = MM of a sequence
obtained by an appropriate linear congruential scan of the data block
provided that M| and M7 have no common divisor.8:

‘ , forj=0,...N-1 (8C)

The equivalent two and one dimensional DFTs are given in eqgs.
(9) and (10) respectively, with the input scan defined by egs. (11) and
(1), & U setpit sem Jetiieed Yy ogs. U1 3 and {19, The constants
up, V| * ug, ¥9 may be any solutions of egs. (15) and (16).

Ml—l M ’l
Gl kp = D i: 2613y

‘ll=0 12=0

[k dgky
exp {—12# [Tl +-M7 %)

for k1=0,Ml—l
k2=U,...M2-I

forq=0,...M-1 (10)
P(j],jz) = j|U1M2 +j2U2M1 (MOD M) (11)

rp =) g(.']:]z) (12)
q(kl,kz) = klle2+k2v2Ml (MOD M) (13)
Fq = G (ky, ko) (14)

Mjuavy = | (MOD M») (16)
The incorporation of a two-dimensional DFT device using the
linear congruential scan into a reduced redundancy image transmission

system is shown in Figure 7. Since unequal quantization would nor-
mally be applied to the transform output values, the output scan coor-

dinates available at B and C may be used to keep track of the coordi-
nates of the output value at A.

A two-dimensional DCT of an Nj by N5 data block may be
regarded as a two-dimensional DFT of an M| by M5 data block, wlere
My = 2N or My = 2Ng-1 depending on whether an EDCT or an
ODCT is used in the kth direction. 1If M| and M3 have no eommon
divisor, the two-dimensional DCT may therefore be performed as a
one-dimensional DFT using CZT hardware. The configuration of
Figure 8 is therefore appropriate for the two dimensional DCT as well
as the two-dimensional DFT. For the two-dimensional DCT, however,
the extended data block is seanned by an appropriate rescan of the
original data block, and a modified scan generator will be needed. In
addition, the one-dimensional DFT size needed to perform a two-
dimensicnal DCT in this way is M 1M2, which is almost four times
larger than N|Nj. If the symmetry of the one-dimensional sequence
generated by the linear congruential scan of the extended data block
is exploited, the length MM one-dimensional DFT may be replaced
by a one-dimensional DCT of about half that length, thus permitting a
substantjal reduction in the number of taps needed in the filters.

Transform Hardware.

This section will deseribe how both surfare acoustic wave devices
and charge transfer devices have been used to implement the chirp-Z
algorithm for bandwidth reduction.9:10 The surface acoustic wave
system was constructed to be compatible with standard television. The
charge transfer device system was constructed to be compatible with a
slow scan television camera such as the new 100 X 100 charge coupled
device cameras now on the market. A second charge transfer device
system is being construeted to be compatible with standard television.

A block size of 32 has been chosen for a feasibility demonstration
of a sutface acoustic wave nnplementaiion of ihe real-ume discrete
Fourier transform. With a conventional line scan time of 53.5 micro-
seconds and a sample rate of 256 samples per line, a 4.78 MHz sam-
pling rate is required. A block of 32 points transforms 6.69 microsec-
onds or one eighth of the video signal. The total number of taps on
the filter is 63, i.e., 2N- 1. Two SAW devices have been constructed at
the Naval Undersea Center. One is used to generate the 32 point sine
and cosine chir,) signals for pre- and postmultiglication The iker i
used to convolve the multiplied input with the four transversal filters
as shown in Figure 6. A photograph of the SAW deviee in shown in
Figure 8.

The feasibility of the charge transfer device implementation has
been demonstrated with a bucket brigade transversal filter. The bucket
brigade devices have 200 taps and can operate at a sampling rate of
several hundred kilohertz. This makes them ideal for slow scan, low
resolution TV such as the recent 100 X 100 charge coupled device
cameras, The tap weights of the bucket brigade device had been cho-
sen for another purpose. The deviees were built by Texas Instruments
under Rome Air Development Center contract # F30602-73-C-0027
for an application other than bandwidth reduction. Fortunately the
tap weights had been chosen so as to approximately implement a
cosine transform. Devices are being redesigned with the tap weights
necessary far an exact odd cosine framal em Tl apgtorimala coub e
transform system has been constructed. The exact cosine transform
system would have given a single pulse width of 10 microseconds for a
line scan time of one milliseeond and a sample rate of 100 samples per
line. The approximate cosine system gives an output that is function-
ally like sin x/x. The width and shape of the output agree with
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SELECTION

TABLE
[_._.___...._.____.._T.
' | 1
| 1-DIMEN-] I
IMAGING SIONAL 1 |SELECTION =
I DEVICE DFT GATE MODEM |—+— CHANNEL MODEM
| DEVICE @
bk o] |
| INVERSE
1 I TRANSFORM
D/A D/A I AND
| i DISPLAY
‘ =
| il o gl
! INPUT i
| SCAN OUTPUT
| | GENERATOR SCAN
I GENERATOR |
| |
| » DELAY +
-
|
|
I CLOCK
|

Fig. 7. Reduced redundancy image transmission sysiem using two-dimensional discrete
Fourier transform device with linear congruential scan.

(3)

(4)

CZT TRANSVERSAL FILTER )

Fig. 8. SAW device.

(6)
computer simulation of the approximate cosine transform. This im-
plies the filters and the multipliers are performing adequately.
Both the charge transfer device system and the surface acoustic (7
wave system are light weight, low power, low cost systems that pro-
vide a capability of real-time bandwidth reduction. )

SUMMARY

Several image transform coding systems have been described,
analyzed, and tested by simulation. It has been shown that the two (9)
dimensional Cosine transform system and the hybrid Cosine transform
DPCM system both provide significant bandwidth reduction with
acceptable image quality and tolerance to channel errors. linplemen-
tation techniques particularly suited to these coding systems have been

A-8

developed using acoustic surface wave delay lines and charge coupled
devices for coding at real time television rates. Also, post processing
techiniques have been demonstrated for the reduction of quantization
error in transform components.
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HIGH SPEED SERIAL ACCESS IMPLEMENTATION
FCR DISCRETE COSINE TRANSFORMS

Jeffrey Speiser
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INTRODUCTION

Two different types of discrete cosine transform (DCT) are useful for
reduced redundancy television image transmission [1-3]. Both are obtained by
extending the length N data block to have even symmetry, taking the discrete
Fourier transform (DFT) of the extended data block, and saving N terms of the
resulting DFT. Since the DFT of a real even sequence 1s a real even sequence,
either DCT is its own inverse if a normalized DFT is used.

The "0dd CDT" (ODCT) extends the length N data block to length 2N-1, with
the middle point of the axtended block as a center of even symmetry. The
"Even DCT" (EDCT) extends the fength N data block to length 2N, with a center
of even symmetry located between the two points nearest the middle. For
example, the odd length extension of the sequence A B C is C B A B C, and the
even length is C BA A B C. In both cases, the symmetrization eliminates the
jumps in the periodic extension of the data block which would occur if one
edge of the data block had a high value and the other edge had a low value;
in effect it performs a sort of smoothing operation with no loss of information.
It will be noted that the terms '‘odd" and "even' in ODCT and EDCT refer only to

the length of the extended data block - in both cases the extended data block

has even symmetry.
Both types of DCT may be implemented using compact, high speed, serial

access hardware, in structures similar to those previously described [1,2] for

the Chirp-Z transform (CZT) implementation of the DFT. The significant difference

between the ODCT and the EDCT is the block size of the transform which may be il
implemented using transversal filters having a given limit on the number of

taps. A comparison of different high speed implementations of the DCT for a

block size of N is given in Table 1.
B-2
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0DD DISCRETE COSINE TRANSFORM

Let the data sequence be 8g» 810 ¢ ¢ vo Byt The ODCT of g is defined as

N-1 - 12mjk
L 2N-1 _ )
6, - }%: g e Fork 1= Oty 1. K TP
j= -1
where g_j = gj for j=0,1, . . ., N-1.

By straightforward substitution it may be shown that

2N-2 - 12TT]k
G, = 2Re Z T. e 2N-1
ok J

3=0

where Ej is defined by equation (4).

(580 5=0

oal
1
o
s
—
=
—

j e
. 0, j=N, ..., 2N-2

The identity (5) may be used to obtain the CZT form of the ODCT shown in

equation (6).

] R 2
k SEKEL oS (RE)

we = w 3]

W

] <N [. -inj? im (k-3)
1 e 5 Relde N1 }E: 2N-1 Z TON-T
E ok =

e

(1)

(2)

(3)

(4)

(5)

(6)

iz il b =




a EVEN DISCRETE COSINE TRANSFORM

The EDCT of g is defined by equation (7), where the extended sequence is

defined by equation (8).

If the mutually complex conjugate terms in equation (7) are combined,

Equation (9) may be viewed as an alternate way of

then equation (9) results.

defining the EDCT.

i - imk N-1 - i2mjk _
“ = 2N Z 2N - [211 j+.5 k]
Gek ZRe< e gj e 2 %gj cos N 9

. j=0 J=0

Equation (9) may be put in either of the CZT formats given in equations

(10) and (31), where Ej is defined by equation (12).

T - irk - imkd N1 -imgl i (k-3)
i ) N N 2N 2N
Gek 2 Reqe e 2 g; e e (1m)
£ =
i -imk - imd Ny | - am?] dmgei)?
] N N " N 2N
2 Rele e gj e e (11)



IMPLEMENTATION OF THE DCT VIA THE CZT

A general DFT of length M, defined by equation (13) may be ccmputed by a

CZT defined by equations (15) and (16) as shown in Figure 1. .

M-1 - i2w lk
— M ;
e = Z fh58e - ]
j=0 :
%_ M-1 '
] = p* . P*¥] P .
B = PE ) Ty PH By () ‘
j=0
)
1ms
_ M |
Ps = e P L
INPUT TRANSVERSAL FILTER OUTPUT 1
hM_l..‘ I‘b _»@_’— PH__]'#- PIF‘]P| AL PM—' —’—@hl‘lk
“
| px 2M—1 TAPS P3
; :  |rom . |ROM
g I:‘M—l PM_l

Figure 1 - General DFT Implemented via a CIT
Using a Transversal Filter.
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It will be noted that the postmultiplier of Figure 1 is ready to produce
the first transform point when the first input to the filter is lined up with
the central tap.

If the ODCT is viewed as a DFT using equation (1), then it may be imple-
mented using the structure shown in Figure 1 with M = 2N-1, and the required
filter length is 2M-1 which equals 4N-3.

The EDCT as defined by equation (7) may be implemented similarly with

im (K2
M = 2N by changing the postmultiplier weights to EEL%Nikl .
e

R. Means has noted that a twofold reduction in the required length of
the filter and read only memories is possible [4] when the ODCT is computed via
equation (3) with a CZT used to perform the required DFT. Since only N terms
of the input are non-zero, and only N terms of the transversal filter's output
are needed, only the first N outputs of the ROMs and the central 2N-1 taps of
the transversal filter of Figure 1 are needed when the ODCT is computed this
way. A similar conclusion holds for the EDCT computed via equation (9) with

a CZT used to compute the required DFT.

P O




IMPLEMENTATION OF THE EDCT USING SWITCHING FILTERS

The computationally difficult step in the realization of the EDCT via

equation (10) is the convolution-like operation shown in equation (16).

e 2
N-1 11T(!"k)
2N
Ak = E aj e for k=0,1, . . ., N-1
j=0

If B is defined by equation (15) with M = 2N, the convolution-like

character of equation (16) may be made more explicit as shown in equation 17).

N-1 N-1
Ay © Z 3; Pj—k = a; Pk-j
j=0 j=0

Equation (17) would represent a (periodic) convolution or correlation if
the P sequence had period N. In our case, however, the P sequence has period
?N. The essential symmetries of the P sequence are given by equations (18)

and (19).

in(N2-2N5+sz) imN
2N N s 2

For specific values of N, equation (19) can be simplified further by

i using equation (20).

; imN 1, N =0 (mod 4) L 3

7 L) N=1mwdd) CUN I

1 1, N =2 (mod 4) o

e -i, N =3 (mod 4) i
1




Table 2 shows the weights needed to evaluate (17), where identity (18)
has been used to eliminate negative indices. Table 3 shows the same weights
after additional simplification using identities (19) and (20) when N is a

; ) multiple of four,to view the weights needed at successive times as modifications

of cyclic shifts of PO’ Pl’ B 5 PN-l' Table 4 shows the weights of Table 3

arranged to correspond to cyclic shifts of the data, corresponding to an

; ’ implementation using length N transversal filters with data points read twice.

SHIFT
INDEX WEIGHT SET
0 Pug - - - P, P,
i 1 PN-2 P Po Py
2 P . P, P P, P,
- p
N-1 Py Py P, 1 PN-1

Table 2 - Weights Required for the Correlation-Like Operation

in the I'DCT, Ordered for Fixed Data Position.
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SHIFT

INDEX WEIGHT SET
0 Py Py Po
1 PN-2 Py Py PN-1
2 'neg - Py By Py-1 Px-2
: PN-4 PPy Py PN-2 PN-3
3
E
: k-1 k
E k PNeke1-or Py Pgeeee-ton. 1" Pypy CL Pk
Table 3 - Reduced Form of the Weights Required for the Correlation-Like Operation

3 in the EDCT when N = 0 (Mod 4), Ordered for Fixed Data Position.
SHIFT
INDEX WEIGHT SET
0 Plas Py P
1 -Py_ Pyos 51 Py
2 PN-1 PN-2 Pz - By ®o
3 -PN_1 PN-Z-PN-S' . B P1 PO

Table 4 - Weights Required for the Corralation-Like Operation in the EDCT when

N =0 (Mod 4) Ordered for Cyclically Shifting Data.
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The required time-variant operations may be moved out of the filters as shown

; L in Figure 2.

4 .

; i *

1 § +1

: i B =

ROM,

TRANSVERSAL
FILTER

FN—}' P F'U‘

E‘:’ ) ﬂN_I"'Hn HN_I"' ﬂﬂ+

Pa_y* * - Po]—e—d SHIFT

TRANSVERSAL
FILTER

INPUT AT EVERY
1
1

N T

4

Figure 2 - Switching Filter for use in the EDCT for
. N =0(Mod 4) or N = 2(Mod 4)

1 ¢ A complete EDCT structure using the switching filter is shown in Figure 3.
The switch changes position with every data shift, and its initial position is
determined by whether the block size is congruent to zero or two modulo four.
A similar structure may be used for block sizes congruent to one or three

" modulo four, except that ROM 1 and ROM 2 will contain * i entries instead of




+ 1's. Because of the simple structure of the output needed from ROM 1 and

ROM 2 it may be preferable to replace them with a combination of a counter and

gates to generate the required functions.

OUTPUT

’ Gek

ROM,
+1
]
: |} N—1 Alternating
i +1's
+1
-1
1
1
SN 18
1
1
TRANSVERSAL
FILTER
'.h(fj*“1 Prnoat P
gN_z'“gl 9o gN_l'“gl 9o EEE;%
—~
INPUT
>-§>>< Py Po —0
TRANSVERSAL
FILTER
ROM, } ROM,
-imj? SN s kT
2
e N ! & 2N
+1
-1
1) N—1 Alternating
+1 *1's
-1
ROM,

Figure 3 - EDCT Architecture using Switching Filter
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CONCLUSTONS

The three general types of DCT implementations using transversal filters
and multipliers each possess unique advantages. A DCT implementation using a
complete CZT will use transversal filters with tap weightings which should
become standard components in the near future. An implementation using
shortened versions of the filters and ROMs needed for a standard CZT permits a
longer block length transform to be implemented for a given number of taps per
filter, and simultaneously eliminates the need to rescan data points. A new
structure called the "switching filter EDCT" permits a further increase in
block size for a given filter length, but requires more filters, some additional
switching circuitry, and a rescan of the data. The switching filter implemen-
tation of the EDCT uses transversal filters each having a number of taps equal
to the transform block length. The other implementations require nearly twice

as many and four times as many taps per filter.
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APPENDIX C

TWO-DIMENSIONAL DISCRETE COSINE TRANSFORM
IMPLEMENTATION USING A TOROIDAL SCAN

Jeffrey Speiser
Naval Undersea Center



INTRODUCTION

Two different types of one-dimensional discrete cosine transform (DCT)
called the Even DCT (EDCT) and Odd DCT (ODCT) which are useful for reduced
redundan¢y image transmission [1-3] may be combined to form three distinct
types of two-dimensional discrete cosine transform. Each of the two-dimensional
DCTs may be defined as a two-dimensional discrete Fourier transform (DFT) of a
doubly symmetrized extension of the data block in which the extended data
block has even symmetry about each of two axes. If the original data block

size was N1 by NZ’ the extended block size may be 2N1 by 2N, for the EDCT by

2

EDCT, 2N1-1 by ZN2 for the ODCT by EDCT, or 2N,-1 by 2N2-1 for the ODCT by ODCT.

1

Although the three types of two-dimensional DCT may be expected to provide
similar performance for television image redundancy reduction, they differ
markedly with respect to difficulty of real-time implementation. Each of the
two transforms may, of course, be implemented by performing a line-by-iine one-
dimensional partial transform, using an auxiliary "'corner-turning' memory to
store and transpose the partial transform, and then perform a partial transform 7
in the second dimensioﬁ.

It has prezviously been shown that a two-dimensional OFT may be implemented
as a one-dimensional DFT of size M = MlMZ of an appropriate linear congruential
scan of an M1 by M2 data block, provided tﬁat Mi and M2 have no common divisor
[1]. Since 2N1 and 2N2 have the common diVisor of 2, the linear congruential 77|
scan does not aid in performing a two-dimensional EDCT. For a two-dimensional =5
ODCT, the linear congruential scan will be compatible with certain block sizes,
but never when the block is square. For a hybrid ODCT by EDCT two-dimensional

transform, the linear congruential scan is compatible with all square block

sizes, since 2N and 2N-1 never have a common divisor.

C-2
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It will be shown that the linear congruential scan converts a hybrid ODCT
by EDCT of an N by N data block into a length N(2N-1) one-dimensional EDCT which
may be implemented via a switching filter EDCT [4] using transversal filters of
length N(2M-1). For a given upper limit on the nurber of taps in the transversal
filter, the hybrid ODCT by EDCT therefore permits a larger block size than would
be possible with a two-dimensional ODCT, and a vastly simpler implementation than
would be needed for a two-dimensional EDCT. A comparison of the two-dimensional

DCT implementations for an N1 by N, block size is given in Table 1.
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SYMMETRIES PRESERVED BY SELECTED TOROIDAL SCANS

For a two-dimensional DFT to be equivalent to a one-dimensional DFT,

the two-dimensional block size M1 by M2 must be such that M1 and M2 have no

i common divisor. In that case, the two-dimensional DFT of equation (1) will be

equivalent to the one-dimensional DFT of equation (2) with M = MlMZ' The

appropriate linear congruential input scan is defined by equations (3) and (4),

and the associated output scan is defined by equations (5) and (6).

The
constants Uy, vy, Uy» V, may be any solution of equations (7) and (8).

ik 35k
_iZW[ 11, 32 2]

%IM—I M1 MZ
| "ok T 2 $Gyp) © &

j1=0 j2=0
for k1 =0, : Ml-l

k2 =0, E Mz-l ;
M-1  -i2mpq 1
=0 forq=0, ..., M1
11535) = jouM, + j.uM D 3) 1
P(j153,) Iy + JuM (MOD M) ( }
f
£, = g0, 4) :

q(kl,kz) = klle2 + kZVZMl (MOD M) (5
) Fq = G(kl,kz) (6) 45
) Mzulv1 = 1 (MOD Ml) (7) :

Mluzv2 = 1 (MOD MZ) (8)
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The behavior of the input scan is extremely simple to describe if vy and

v, are both chosen equal to one. In this case, to move from the presently

scanned point to the next point, each coordinate is incremented by 1, and the

first coordinate is reduced modulo M1 and the second coordinate is reduced

o Wi iha

modulo MZ’ as shown in equation (9). The notation (a)b denotes the residue of
a modulo b. Such a scan may be viewed as a spiral on the surface of a torus.
The required scan generator is simply a pair of counters and digital to analog

converters.

p((s*y (s+1)MZ) = p(O)y Gy )+ (Modulo M) (9)

E Equation (9) will now be proved. From (7) and (8) it follows that
(Mzul-l) is a multiple of M, and (Mluz-l) is a multiple of MZ' The product

E is therefore a multiple of MlMZ as shown in equation (10).

(Mzul-l) (Mluz-l) = 0 (Modulo M) (10)

Simplification of (10) yields (11).
p(1,1) = Mzu1 + Mlu2 = 1 (Modulo M) (11)
Equation (12) follows from the scan defining equation (3).
p<(5+1)M1,(s+1)MZ)= (s+l)yM, + (s*ju,M; = p((S)Ml,(S)M2)+ p(1,1) (12) =

The desired equation (9) follows from (11) and (12). Since the scan
takes the two-dimensional origin (0,0) into the one-dimensional origin 0,
equation (9) may be solved by induction to yield the closed form scan equation e

(13).

p((s)Ml, (s)M2> = s (Modulo M)
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Equation (13) says that the kth coordinate of the point scanned at time s is
obtained by reducing s modulo Mk'

The scanning of a data block which has been symmetrized for the two-
dimensional ODCT will now be considered in detail. The data block is extended

using the double mirror symmetry defined in equation (14).
gy, i) = glips i) (14)

The two-dimensional DFT of the extended data block defines the two-

dimensional DCT of the original data block given in equation (15), with

M = N1, . '
L
Nl‘l Nz‘l -127 —]\T + W

6l k) = ) > g(ip,,) e (15)
J17 =D 3,7 - (1)
Since the indices are only defined modulo M1 and M2 respectively, the
summation limits in (15) are really no different from those in (1). If the
scan is defined by equations (3) and (4), then the symmetry of the corresponding
cne-dimensional sequence is shown in equation (16).

£, = 8(ip-in) = el = £, (16)

The toroidal scan of the extended data block - which is, of course,
obtained by repeatedly scanning points of the original data block - is
illustrated in Table 2 for a block size of 2 by 3. The numbers in the table

indicate the scan order, while the letters indicate the data values.

g m’f‘i'_ o uﬂ




Table 2A - Toroidal Scan for an ODCT of a 2 by 3 Data Block

i F E F :
j | -7 3 -2
D¢ oD .
i -1 -6 4
B A B |
5 E 0 -5 o
D ' C D N, =3 {
-4 6 1
F i E F ]
2 -3 7 !
E i
N =~
N1 = 2

Table 2B - One-Dimensional Sequence Produced by a Toroidal Scan
for an ODCT of a 2 by 3 Data Block.

INDEX DATA VALUE
1 -7 F =
] -6 0}
-5 B
-4 D
3 -3 E
3 '2 F
f -1 D
: 0 A ]
; 1 D
i 2 F
: 3 E
' 4 D
5 B
6 C :
7 F —

C-8 ‘
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The symmetry of a sequence produced by a toroidal scan of a data block
symmetrized for a hybrid ODCT by EDCT will now be examined. The symmetrization
il for the hybrid two-dimensional ODCT by EDCT is described by the requirement
- that each pair of points of the extended data block, (j 1jz) and (j;,j;) have

the same data value whenever the points satisfy equation (17).

* *
i i = 1 or Jjptd = 0 (Modulo Ml) (174)
i . -* . -*
i i = Iy or jp * Jp, = -1 (Modulo Mz) (17B)

Equations (18) and (19) examine the point scanned k samples after

(Nl,Nz) and k samples before the previous point (Nl-l,Nz—l).

_ CRARS IS (CROMNCRN (Modulo M) (18)

p(N-1,N,-1) - k = p((Nl-l—'k)Ml, (Nz-l-k)M2> (Modulo M) (19)

The sum of the first coordinates for the points on the right-hand side
of equations (18) and (19) is given in equation (20). The corresponding sum

for the second coordinates is given in equation (21).

(N1+k) + (Nl-l—k) 2N. -1

1

"
o

(Modulo Ml) (20)

(N, +k) + (Nz-l-k) = WN,1 = -1 (Modulo M,) (21)

It therefore follows from equation (17) that the two points have the

same data value as shown in equation (22).

f(p(Nl,Nz) # k) f(P(Nl-l,Nz-l) - k) (22)



If the toroidal scan is therefore used, starting at point (Nl,Nz) of the
extended image, the resulting sequence will have the symmetry required for a
onc-dimensional EDCT. The toroidal scan of a 2 by 2 data block extended for

the two-dimensional hybrid ODCT by EDCT is shown in Table 3.

Table 3f - Toroidal Scan of a 2 by 2 Data Block Examined for the
Two-Dimensional tybrid ODCT by EDCT.

D C C D
2 11 8 5
B A a8
6 310 9
N, = 2

p clc b 1
0 7 ;4 1
- =B

N, = 2

Table 3B - One-Dimensional Sequence Produced by the
Toroidal Scan of a 2 by 2 Data Block Symmetrized
for a Two-Dimensional Hybrid ODCT by EDCT.

INDEX DATA VALUE

8
9
10
11

|

OwWo OO0
—

|

~NNooumthA o E o
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LINEAR CONGRUENTIAL SCAN GENERATORS FOR SYMMETRIZED DATA BLOCKS

A toroidal scan of an actual N& by M2 data block was shown by equation
(9) to be ok

tained by successively adding 1 to each of the scan coordinates

and reducing the sums modulo M1 and M2’ respectively.

The corresponding results when the data block is a symmetric extension

of an N1 by N2 data block are shown in Table 4. Note that the kth scan has

period Mk as a function of the one-dimensional scan index, so that only Mk

successive values for the kth scan need be shown. It will be noted that,

unlike the case of the linear congruential scan for the two-dimensional DFT,

each scan coordinate changes by at most one from one scanned point to the next.

Table 4A - Scanning Function for the kth Coordinate
of a Two-Dimensional DCT Symmetrized to 0dd
Length on the kth Coordinate

INDEX jk (MODULO Mk) jk REDUCED TO ORIGINAL DATA BLOCK
0 0 0
1 1 1
Nk-l Nk-l Nk-l
Nk -(Nk-l) Nk-l
ZNk-Z -1 1

C-11
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Table 4B - Scanning Function for the ¥ch Coordinate
of a Two-Dimensional DCT Symmetrized to Even Length
on the kth Coordinate. (Mk = ZNk)

INDEX jj, (MODULO M,) 3, REDUCED TO ORTGINAL DATA BLOCK
0 0 0

Nk-l Nk'.l Nk_l

ZNk‘Z -2 1

sz-l _1 O

The vertical and horizontal scan functions may be thought of as sampled
triangular waveforms. During a complete sampling of the extended data block,
M2 complete periods of the triangular waveform of period M1 occur, and M1
complete periods of the triangular waveform of period M2 occur.

An analog version of the required scan may be obtained by sampling the

integral of a square wave. A digital version may be obtained from an up-down

counter with appropriate gating to reverse the count direction when necessary.

C-12
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CONCLUSIONS

It has been shown that two different types of two-dimensional DCT may
be implemented as one-dimensional DCTs of an appropriate scan of the data

block. For a hybrid ODCT by ODCT, a single complex filter of length

(ZNl-l)(ZNZ-l) is needed. For a hybrid ODCT by EDCT, either two complex
filters of length N,(2N;-1) or a single complex filter of length (ZNl-l)(ZNZ)-l 4
is needed. The required scan on each coordinate is a sampled triangular wave

and thus may be easily generated and has no abrupt changes of the coordinate

values.

£ R ek ol i bk o i
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ON TIE EQUIVALENCE OF ONE AND TWO DIMENSIONAL FOURIER TRANSFORMS

By J. W. Bond

ABSTRACT

Two dimensional discrete Fourier transforms can be calculated by ordering an
N, by N5 array of data and calculating a one-dimensional Fourier transform,
provided N and N, are relatively prime. This note shows how any isomorphism
from the direct sum of the integers modulo Ny and N, to the integers modulo
N N5 can be used to relate one and two dimensional discrete Fourier Transforms,
Among the available isomorphisms it is always possible to choose one that has either
a particularly simple input scan or a particularly simple output scan. Both the input
and output scans can be particui.rly simple only when Nj and N2 differ by one.
These simple scans consist of spiraling along a discrete torus. Such scans can be

calculated with a pair of counters modulo the horizontal and vertical block size.

INTRODUCTION

Discrete Fourier transforms have been of considerable interest since the discovery of
algorithms, known as Fast Fourier Transforms, which enable the rapid calculation of dis-
crete Fourier transforms on digital computers. R. W. Preisendorfer™* noticed that one-
dimensional Fourier transforms of length N could be implemented as two dimensional N
by Ny Fourier transforms when N} N5 = N with N and N, relatively prime and an iso-
morphism of the integers modulo N is used onto the direct sum of the integers module N,
and the integers module N2.

Jeff Speiser and Harper Whitehouse reali_ed that such an isomorphism could also be
used to implement the two-dimensional discrete Fourier transform as a one-dimensional
transform. They suggested a particular architecture which would enable the calculation of
two-dimensional Fourier transforms at much higher rates than the FFT im pleinentations
which are usually used at present.® In this report it is shown that either the input scan or

output scan utilized in this architecture can be chosen as a simple diagonal scan on the torus.

*R. W. Means, Speiser, J. M., Whitehouse, l1. J., et. al, Image Trausmission via Spread Spectrum Techniques, ARPA
Quarterly Teelnical Report June | — QOctober 1, 1973, Order Number 2303 Code Number 3G10.

**R. W. Preisendorfer, lutroduction to Fast Fourier Transforms, Visibility L.ab, University of California, San Diego,
Spriug 1967.
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) Furthermore, it is shown that both input and output scans can be chosen to be simple only

il | when the array block sizes differ by one.

] THE DIAGONAL SCAN

! .

7 L An N by N scan is defined by specifying an N by No matrix S = (nij), where {nij } is

{n lo<n< NNy - 1}. The result of a scan applied to an N, by N, array of data A = (aij
5 is to order the data corresponding to njj- For example, the scan ( g ‘1" g ) applied to the

data ( 2L C) orders the data a, e, ¢, d, b, f.
def
The simplest scan of interest in this note begins with 0 in the upper lefthand corner
and numbers successively down the diagonal acéording to the rules shown in Figure 1. Fig-
ure 2 contains examples which indicate that the diagonal scan covers an N by N, array if

and only if N; and N, are relatively prime. This result is established in Corollary 1 of

Proposition 1.

DISCRETE FOURIER TRANSFORMS AND DIAGONAL SCANS
Suppose throughout this section that N and N are relatively prime. The top corner

of the diagonal scan of an N by N, array has the form

0 L.tle

Later we will show that the integer in the jl , j2 spot of the diagonal scan is the intege:
between 0 and NNy - I congruent modulo NN, tojg g N2 +j2 uy Ny, uy, uy integers.
] Given real or complex numbers o <j S N;-1Lo <j2 < N2 -1, let

fp = gGl’jZ)’ where p = G149y Ny +jy Uy Nl)moduloNlNz. Then if
NlNz—l

P Fq = E fp exp (-i 2w pq/NlNz), the sequence
{ p=o

Eg Fl AR, FN1N2—1 is called the discrete Fourier transform (D F T) of the sequence

fo, fl, b« ’leNZ"l'




/o 2
0 \ | n+3

START n+1
CONTINUATION OF SCAN WHEN

m

mtl
m+2

\ .omt3 . . ]

CONTINUATION OF SCAN WHEN
G,0) =1, Ny = D

Inductive definition of scan

Assign 0 to (0,0). If n has been assigned to (i,]) thenn+ 11is assigned to i+ 1,j+ 1)
with i+ 1 reduced to zero wheni=Nj -1 and with j + 1 reduced to zero when j = Nq - 1
provided an integer has not already been assigned to (i+1,j+1). Note the indices run
from 0 to N -1 or No-I rather than from 1 to N or No.

Note also that if k is assigned to (i, j) theniis the least nonnegative integer congruent

to k modulo N and j is the least nonnegative integer congruent k modulo N».

Figure 1. Definition of the Diagonal Scan.

D-4
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(]
Nl = 3 NZ =5 Nl =2 N2 =4
0 6 12 3 9 0 2
10 1 7 13 4 1 3
i s 11 2 8 14
L Ny =4 Ny =35 Ny =4 Ny =6
- 0 16 12 8§ 4 0 B 4
3 1 17 13 9 1 9 5
10 6 2 18 14 f 2 10
15 11 7 3 19 7 3 11
b Ny =4 Ny=7 Ny =3 Ny=6
i 0 8 16 24 4 12 20 0 3
21 1 9 17 25 5 13 1 4
14 22 2 10 18 26 6 2 5 :
] 7 15 23 3 11 19 27 |
{ Note The diagonal scan exhausts an N by Nj array if and only if Ny and N are relatively ;
i prime. Indeed the diagonal scan naturally defines an isomorphism from the direct sum of I
i integers modulo N and N5 to the integers modulo the least common multiple of N; and :
' Ny. :
k
Figure 2. Examples of the Diagonal Scan. 2
|
{ !
i 1
i D-5
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Let
q = kl N2+k2 N],kl,k2 integers,

then
F
N=1 Np-1
= E E f:llulN2+J2u2Nl exp ((-lQﬁ/NlNz) (J]lllNz +_]2112N1)(klN2+k2N1))
_]1=O _]2‘:0

since exp (-i 21r/N1N2) N1N2 =1, the exponents can be reduced modulo N1N2.

Since the diagonal scan has 1 assigned to (1,1) we have uiN, + usN| =1 mod N1N2'

Conclude from multiplication by N,) from this equation that u N2 =N, mod N1N2

1727
2_
and by N1 that U, N1 —N1 mod N1N2' Thus

. . _ 2. 2
UpupNy +iguaNp (ki Ny +kpNp) = jrkqup NS +jgkouy N

= (JlklNQ +]2k2N1) mod N1N2.

Therefore
F
k1N2+k2N1
Nl—l No-1
= z : E : 0 0Ny +jyuyN ) €xp (127N Ny) Gk Ny +j9k )N )
-]]=O _]'2:0
and the n

60,0 = Fo -Gk ky) = FieyNy 4 kN, -+

is the two-dimensional DFT of 2(0,0) - - - » g(kI’ k2)’ e ,g(N] -1, N2 - 1)

D-6
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To see this simply note that the previous equation when written in terms of &(j I Jz)

| and G(kl’kz) is
Nl—l N2—1
G(kl’kz) = Z Z B(j1,jp) ©¥P [=12m (k| /Ny +j9ko/Ny)]
Jl=0 12=0

The output scan associated with mapping ky, ko)~ (k| Ny+ k2N1)is described in Fig-
ure 3. Examples of input diagonal scans and output scans are illustrated in Figure 4: the
output scan appears to be simple when N and N5 differ by 1. That this is the only case
when the output scan is simple is discussed in the concluding paragraphs of this report.

Note that thc output scan can be viewed as proceeding on diagonals perpendicular to the

input scan when N and N, differ by one.

THE GENERAL THEORY
Let ZN denote the additive group of residue classes modulo N. An element of Zy
consists of all integers that differ by a multiple of N,
The direct sum of two groups ZN1 and ZN2 is the group written ZN1 + ZN2 consisting
of pairs of elements one from ZN1 and one from ZN2 with component addition.
¢ The group ZN1 + ZN2 and ZN1N2 are isomorphic (i.e., structurally the same) if and
only if Nl and N2 are relatively prime. The clearest way to see this is to exhibit a generic

homomorphism from ZN1 + ZN2 into ZN1 N, and show that some of the homomorphisms

are onto if and only if Ny and N2 are relatively prime.
Any homomorphism ¢ of ZN1 + ZN2 into ZN1N2 is completely determined by
¥ (1,0) and ¢ (0, 1) for y (i1,i9) =j1 ¥ (1,0) +j9 ¥ (0, 1). Furthermore Ny ¢ (1,0)
=y (Nl ,0)=¢ (0,0)=0 and Ny v (0,)=y (0,N5) = ¢ (0,0) = 0 because any homomorphism
must take (0,0) onto 0. If we interpret the residue classes Y (1,0)'and ¢ (0,1) as integers
4 ; between 0 and N1N2 -1, then Ny ¢ (1,0)and N5 ¥ (0, 1) must be divisible by N|Nj so
that ¥ (1,0) = uiNs and ¢ (0,1) = usN; for some integers up and uy between, respective-

ly, 0 and N; -1and 0 and N5 - 1. Therefore (jl,j2)=j1u1N2 +j2u2N1 for 0 <j1 <N1
-1,0< j2 < N; - 1. The term ¢ will be onto when thej1u1N2 +j2u2N1 reduce Modulo
NN to all the integers between 0 and NNy - 1.

| ¢ D-7




If the input scan is the diagonal scan

0 L12N1
ulN2 ]
2
then the output scan is
0 N
N2 N]+N2

Figure 3. The Output Scan Associated with an Input Diagonal Scan.

Consider the set S = {jju Ny +j5usN|,j|, 5 integers} and let d be the least positive
element of S. It is easy to show that d is the greatest common divisor of Ny, s Ny,
Suppose that d = ia+jb is the least positive integer in {ia +jbli,j integers} and d did
not divide a. Then a =kd +r with 0 < r <d (the division algorithm). Sor=a- kd=a
- k(ia+jb)=a (1 - ki) +(-j) b, which is an element of S, contradicting the choice of d. Like-
wise d divides b. Next if d’ divides both a and b then it divides every sum ia + jb, hence it

divides d. Therefore d is the greatest common divisor of a and b.

D-8




N INPUT OUTPUT
; Nj=5 Ny=7

0 15 30 10 25 5 20 0 5 10 15 20 25 30
L 21 1 16 31 11 26 6 7 12 17 22 27 32 2
i 722 2 17 32 12 27 14 19 24 29 34 4 9
. 28 8 23 3 18 33 13 21 26 31 1 6 11 16 |
14 29 9 24 4 19 34 28 33 3 8 13 18 23/
| Nj=5 Ny=6

0 25 20 15 10 5\ /o 5 10 15 20 25

o 6 1 26 21 16 11 6 11 16 21 26 1

127 2 27 22 17 2 0 22 27 vy 7

1813832833/ 18 23 28 3 8 13

24 19 11 9 4 29 \24 29 4 9 14 19

Figure 4. Examples of Input Diagonal Scans and Associated Output Scans

If we reduce the elements of S modulo N N7 we will get all integers between 0 and
N1N2 - 1 if and only if there exists e such that de = 1 mod N1N2, 1.e.,d is a unit in the

residue class modulo Nl N2. This is immediate when we observe all the elements in S are of

the form kd, k an integer. If kd = 1 mod N1N2 for some k, then every integer can be ob-

tained between 0 and N1N2 - 1; conversely, if 1 is not of this form, then 1 is not in the

image,

PROPOSITION 1
Let y : ZN1+N2 - ZNlNz be a homomorphism.
Then y has the form:
VAT ol j1u1N2 +j2u2N1 with the common divisor of uiN, and usNy in the

integers is a unit in the intergers modulo N1N2.

- »
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Proof

We have shown that any homomorphism has the above form, but we have not shown
that  is well defined, i.e., if j; -j'} = kN and j, —j'2 = k'N2 then ¢ (jy.,jy) - ¢ (' J')
=k'" N Ng. But, ¥ (j1.jp) - ¥ 0'1,j'2)=j1ulN2 +jousNy - (' juyN,y +i'5uyN )
SUp-i'pPDuNy + (7 - i) uyNy = kNju Ny + kNouyN| = (kup +k'uy) NN,.
Corollary 1
@ ZN] + ZN2 is isomorphic to Zy N> if and only if N; and N, are relatively prime.
Proof
If d> 1 divides N} and N, then dk =0 mod NNy with 0 <<k < NN, - 1. Note then
that if dk' = 1 mod N N5 for some k", dk’ - 1 =k'' N 1N7 and hence dkk' -k = kk'' NN,
i.e., k"NyNy -k =k k" NN, ork =0 mod N|N,, a contradiction.
g Now we wish to work out the relationship between scans and homomorphisms. Sup-

pose Y is a homomorphism from ZN1 + ZN2 into ZNIN’.Z'
Then

¥(0,0) v,y ... Y(ON>-1)
Y(1,0) vy L. Y(1,Ny- 1)

YNI-1,0) W(Np-1,1) ... (Nj= 1 N5 1)

is the associated scan. T

PROPOSITION 2

The diagonal scan defines a homomorphism from Z| onto ZN] + ZN7 where L is the

least common multiple of N and N»,.

Proof
Note by the definition of the diagonal scan of an N by N, array shown in Figure 1
every element of the first row is divisible by N and every element of the first column is

divisible by N,. The assignment of integers continues until the bottom corner is reached so
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that the next spot is zero. Then if we let L-] denote the entry in the bottom corner L must
be congruent to O for the scan to define a homomorphism. Since L is congruent to an ele-
ment in the first row and first column it is a common multiple of Nl and N2. Therefore

L = the least common multiple of N and Ny.

Next consider what pairs U1, i9) can be assigned integers by a diagonal scan. Let d be
the greatest common divisor of N and Nj. Note that the integers reached come from (k, k)
with k reduced modulo Ny in the first index and k reduced modulo N5 in the second index.
Therefore if (jl »J9) is assigned an i.t2ger, we have (jl,jz) = (k+k1N1 : k+k2N2) for some
integers ky and ks;so that j -y = klNl - k2N2 =k3 d. In particular, the only integers
reached in the first row (i.e. » Wwhen j; = 0) are multiples of d and in the first column are
multiples of d. More generally, the diagonal only fills out 1/d of the array. Therefore at
most 1/d of the locations in an array can be covered by the scan. Since N{N5/d is the least
common multiple of Nj and N5, we have L < the least common multiple of N and N2
Thus L is the least common multiple of Nj and N,.

Next, we work out the relationship between discrete Fourier transforms and the
isomorphisms we lhave been constructing. It will turn out that the mappings under discus-
sion must be isomorphisms.

If Y is any one to one mapping of ZN1 + ZN2 onto Zy N2 then it induces a mapping
Y™ from the functions indexed by ZN1N2 to those indexed by ZN1 + ZN2 by defining
" f)(kl ky) = lll(kl, ko)

Let DFT! denote the one dimensional Fourjer transform which maps a function in-

dexed by ZL into functions indexed by ZL' In particular

L-1

Fq = DFT(I1 ) = Z; £, exp ((-i 27/L) pq).
p:
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Let DET?2 denote the two dimensional Fourier transform which maps a function g
indexed by ZNI + ZN2 into a function indexed by ZNI + ZN-z' In particular, G (ky, k9)
= DFTz(kl, K+) (g)

Nj-1 Njp-1

- j{: j{: B3, 4o €XP 1527 1k /N) +igka/Ny)]
j1=0 J2=0

exXp ((—l 2TT/N lNz) (k 1j1N2 + kzijl))

1}
i nd
aQ
[y
<
~
-

The relationship between DFT! and DFT2 is summarized in the following proposition.

PROPOSITION 3
a) If ¥ and ¢ are on-to-one maps from ZNI + ZN2 onto Zy Ny such that the diagram

DFT!

—
w* kp*

DET2

—_— G

o

commutes then;

1) Njand N are relatively prime and i
2 and ¢ isomorphisms of Zy; + Zy . onto Z . ]
} Y and p are iso phisms N, Ny 1 NN, :
” b) If ¢ is any isomorphism of ZNI + ZN2 onto ZNIN»_) then there exists an iso- :
'-3 morphism  so that the diagram "'*,
_ DET!
f —_— F
v ‘ v

DFT2 ;
o —_— G ;
;
commutes. 3
3
;

D-12
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c) Ify (j],jz) = jlulNZ +j2u2N1 then

(p(kl,kz) v kIVINZ +k2V2N1 with U1V1N2+U2V2Nl = 1.

Note that the commutativity of the above diagrams is simply the mathematical way to
say that by utilizing the maps J* and ¢* either DFT2 can be implemented by DFTI, name-
ly, G =p* {DFT1 [*1 (@) }, or DFT! can be implemented by DFTZ, namely F = p*~1
{DFT2 [v* ()] } - Proposition 3 shows that these implementations are only possible when

Nl and N are relatively prime and the mappings of indices are isomorphisms of the group

of residue classes under addition,

Before proving the proposition we prove the following Lemmas,

Lemma 1
If

DFT!

DFT2

<
*
C}‘i—\'-n
S
*

Proof

That the diagram commutes means that
G = DFT? (y* ) = o [DFT! ()]

To calculate DFT2 w*n = ¢ [DFT! (D] consider the component mapping
DFT2 (k;,k,) = G
kpkg) = G, k)

Nj-1 Ny-1

Jl=0 12=0
Nj-1 Nj-1
_]1=O 12=O
D-13

b i i S




RGeS - -

To calculate [DFT] (D] let G =¢* F. Then

N Ny-1
Gk, ky) = Fotky, ky) = E; fi exp (=i 21/N No) ¢ (k}, ko) p
2 2
Ni-1 Nop-I
B Z fy(iy, i) €XP (1 20/NINDY 0 (ky, k) ¥ Gy, i) -
J]=0 ]2=0

The two expressions are the same only if ¢ (k], k2) V/ (jl,jz) =j ]k]Nz +j2k2N] mod
NlNz foral]j],j?_,kl, k?_.

Lemma 2
If Y Gy,Jp) @ (k. kp) = (i1k Ny +jyk 9Ny mod NN, for all integers jy, jp, k1, ko
then ¢ and v one to one mappings of ZN] + ZN7 onto ZN]Nz implies that ¥ and ¢ are

isomorphisms.

Proof
For (j'l’j”l) such that ¢ (i'],j'?_) =l ek + k'], ky +k5) =j (k) + k) Ny +i5 (kg
tky) N = (7K Ny +j5koN ) + (j’lk'lN2 +j'2k’2N])E¢ (ki ky)te (k’l ,jk'z) mod N N».
Likewise for ¢ (k| k%) such that ¢ (k', k5) = 1 it follows that  is a homomorphism.
Lemmas 1 and 2 complete the proof of part (a) of proposition 3. To prove b, note
that if (j],jz) =j]u1N2 + jzuq_N] , then the existence of ¢ is equivalent to the existence

ﬂfV] and D) such tha\‘kp(k],kz) = k]V]N2+k2V2N] and

Let vy and v4 satisfy ujv(N, + upvoN| =1 MOD N N5 which also has a solution
since u Ny and uyN have greatest common divisor in the integers which is a unit in
ZN]Nz' If v/} and v’ solves ujviN, + uyvyN| = d, d the greatest common divisor of u N5
and upN,, thenv| =e v'] mod NNy and vy =e vi_, mod NN, where de = 1 mod NN,

will provide a solution to ujv{N + ujvoN| =1 mod N N».

by LN
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From uyviNy +uyv9)N;| =1 mod NN it follows from multiplication by N and N,
that u2v2N12 =N mod N{N, and u1v1N22 =N, mod N|N,. These congruences allow us
to calculate modulo NN,

(191N +igugN ) (k) viNy +kgvyNy) = jikqu v Ny? +jokyugvoNy 2
= JikiNy +igkoNp

which completes the proof of proposition 3.
There are two r atural symmetries in the scans associated with an isomorphism. These

arise because

V01 + Lig+t D-v¥Gp.p) = uNy tupN,
and

Y Gyt Lig=-D=9¢Gy,ip) = uiNgy-uoN,;

are independent of (j|, jp)-

The simplest possible scans occur when one of these two differences is one.

Note that if ¢ (j; + 1,jp+ 1) - ¢ (i1,i9) = 1 thenv| =1,vy=1and ¢ (ky,k9)
=k Ny + k9N, defines the output scan so that the output scan is only simple when N and
N, differ by one since ¥ (j) + 1,j5 - 1) - ¥ (i, ) = £ 1. This results because for all cases
of interest N| + N is small composed with N{N5. 0{N9-ugN=1thenv;=1vy=-1
provides a solution and ¢ (j1,j7) =j1Ng -jyNy, and here the only time that Y Gy +1,
i+t =¥ G ,j2) =+ 1 is when N and N differ by one. Therefore, the input and output

scans are simple only when N and N are both relatively prime and differ by one.

D-15
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From uyv Ny +u9v9N; =1 mod NN, it follows from multiplication by N and N,

2 2

that uyvo9N{“=N{ mod N{N, and uyv{N,“ =N, mod N|N,. These congruences allow us

to calculate modulo N1N2
(123N +iguaNy) (kviNy +kgvaNp) = jikquyviNy? +jgkougvoN, 2
= J1k Ny +igkoNy ,

which completes the proof of proposition 3.

There are two natural symmetries in the scans associated with an isomorphism. These

arise because
Y Gy +Lig+t D=y Gy,ip) = uiNy+usN;

and

YUy +Lipg-D=¢3y,i9) = uiNy-uslNy

are independent of (jy, j9).

The simplest possible scans occur when one of these two differences is one.

Note that if ¢ (j) +1,j5+ 1) - V} (jl,jz) = 1thenvy =1,v9=1and p k|, k)
=k Ny + k9N defines the output scan so that the output scan is only simple when N and
N, differ by one since ¢ (jj +1,j9 - 1) =¥ (1,ip) = * 1. This results because for all cases
of interest Ny + N5 is small composed with NyN5. ujNy-usN=1thenv;=1vy=-1
provides a solution and ¢ (j{,j9) =i}N9 -jyNy, and here the only time that ¢ (; + 1,
ip +1)=¥ (y,i9) = £ 1 is when N, and N, differ by one. Therefore, the input and output

scans are simple only when N and N are both relatively prime and differ by one.
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A SIGNAL PROCESSING SENSOR USING CCDs

s H. J. Whitehouse

1 I. Lagnado
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ABSTRACT

A new signal processing sensor is possible using a combination of charge
transfer devices and signal processing concepts which simultaneously measures
the incident optical signal and performs a linear transformation upon that
signal. This paper will discuss possible implementations and the types of
transforms which may be performed. 1t appears possible, at this time, to
perform the Discrete Fourier Transform in a linear imaging device.

Extension of the concept to a two-dimensional array may be feasible.
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INTRODUCTION

In signal processing optical images often constitute one of the many forms which signals

may take. These images are typically processed either optically by means of moving trans-

parencies or optical diffraction cells through which the image passes prior to its detection by
a photodetector, or the optical signals are converted to electrical signals by means of image
sensors and these electrical signals are subsequently processed electronically.

In this paper a new optical sensor is proposed which combines the functions of signal
processor and image sensor in a single photosensitive silicon Charge Coupled Device (CCD). For
simplicity of description and ease of fabrication a one dimensional signal processing sensor
is described. However, in many of its applications a two dimensional array of one dimen-
sional sensors would be required. In principle, these two dimensional arrays can be formed
by the juxtaposition of a number of one dimensional arrays on a single silicon chip with

common clocks to all CCD registers.

ARCHITECTURE

Both 500 X 1 and 100 X 100 photosensitive silicon CCD arrays have been commer-
cially fabricated'using buried channel techniques with small charge transfer inefficiencies at
clock rates in excess of | MHz. Using similar techniques, it appears feasible to simultaneously

control the amount of photogenerated charge and its transverse transfer to the CCD shift

registers. Successive iteration of the charge generation and transfer corresponds to a weighted
superposition of lagged versions of the image and thus corresponds to a discrete convolution
of the image as sampled by the spatial structure of the sensor with the time function repre-
sented by the transfer signal. Thus, in a single structure, are combined the functions of image
sensing, spatial to temporal multiplexing, and convolution. A block diagram of a signal proc-
essing array is shown in Fig. 1. The discrete nature of the CCD image sensor is indicated by
the boxes indicated by “array”, the controlled transfer of the generated charge is indicated
by “multiplication”, and the CCD registers are indicated by “‘delay”. The serial output of
the signal processing array thus occurs at the clock rate of the CCD registers which may not

be regular.

1. Fairchild Camera & Instrument Corp.; Syosset, New York.
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Since convolution and correlation are both basic to signal processing, their interpre-

tation as discrete spatial operations will be reviewed. The cross convolution and correlation

of two continuous functions are given by equations (1) and (2) respectively:

(a) convolution [f *xg] (x) = / f(n) g(x-n) dn (N
(b) correlation [f®g] (x) = / f(n) g(x+n) dn (2)

The corresponding relationships for discrete functions may be found by replacing

the integrals by products as given in equations (3) and (4):

(a) convolution  [f*xg] = z fh ok (3)
k

(b) correlation (f®gl, = Z () Btk (4)
k

The value of the discrete convolution or correlation may be viewed as the coefficient of Z"

in the polynomial products 3" und 4’ respectively.

Thus
2 (frg), 2% = <z fe Ze> <z Em Zlﬂ> .
n e

m

and

m

Z (f®g),Z" = <z 1‘Cz"°> <z gm Z‘“> (4"
n €

As an example the convolution and correlation of the binary sequence 1,1,1.1, with a non

negative sequence 1,1,1,1 is given below where overbar denotes negation.

A et R
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(a) convolution 1,2,1,2,10 1

(b) correlation 1,0,1,2,1,2,1

Due to the representation of the sampled variable by the amount of minority charge
in the potential well induced in the silicon, only numbers of a fixed sign can be represented.
This presents a problem when it is desired to convolve the data with a sequence having both
positive and negative terms. This difficulty does not arise in ordinary image sensors since
simple sensing of the light intensity requires{ only numbers of the same sign. Unfortunately,
the solution which is used in signal processing applications of CCD of adding a fixed bias of
half the maximum value of the input signal is difficult for a signal processing image sensor,
since the bias signal would then need to be optical at half the intensity of the maximum
optical input. However, by designing an image sensor with two CCD registers and bidirec-
tional charge transfer, it is possible to sense the difference between the charge in the two

registers, and in this way, represent both positive and negative numbers,

Two applications of this proposed signal processing image sensor are considered as

examples of its potential use. These are real time cross correlation or filtering, and transform

image encoding. Cross-correlation uses spatially-uniform time-varying illumination, Trans-
form image encoding uses a spatially-varying illumination which is constant during this

4
processing interval.

An optical cross correlator or optical filter is shown diagrammatically in Fig. 2. The

input signal f modulates the light output from a photo diode one focal distance in front of a

converging lens. The collimated light then falls on the signal processing image sensor whose

transfer gates are controlled by the signal g. The output from the sensor will then be the ]

cross correlation of the input signal f with the transfer gate signal g, and will be available in

real time at the same clock rate as the input signal f. This is an improvement proportional

to logoN in the rate of computation over evaluation by “in place” digital computation using

the “fast convolution” algorithm on a computer with the same cycle time as the input signal
sample rate,
A transform image encoder is shown diagrammatically in Fig. 3. Aninput object is

at infinity before a converging lens of focal length d. An image is formed a distance d behind

B e o o e Lt o e e e i
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the lens on a signal processing image sensor. 1f a signal g is applied to the transfer gates of

the Signal Processing Image Sensor (SP1S), the cross correlation of the image and the signal
g will be obtained as an output, provided the image is stationary for the duration of the

signal t.

Proposed Solution

The signal processing concepts presented and illustrated above may be implemented
by an idealized structure shown in Fig. 4. The suggested device configuration will allow the
controlled routing and algebraic summation of analog signals. The structure consists primar-

ily of:

a. a sensing array of MIS capacitors, called photo-gates,
b. two CCD shift registers on either side of the line sensing devices,

¢. adual transfer gate system to control the direction in which the signal charge

flows out from the sensor areu.

When an image is projected on the sensing elements, electron-hole pairs are generated. The

electrons (in a p-type semiconductor substrate) will be normally recombine« within a diffu-

sion length from their generation sites in the deflection regions formed under the photogates.

By independently adjusting the surface potential under thie transfer gates, one is able to limit
the diffusion and to transfer the stored charges from under the sensors (e.g., photogates)

onto the desired CCD register for subsequent mathematical operations.

Binary Convolution

The implementation of a discrete convolution will now be considered in detail. The
two sequences can be easily represented (1) as the input signal ej(t) in the form of charge

packets generated and stored under each sensing element and (2) as a digital pattern of

i s e e




narrow pulses Wy applied to the transfer gates. The convolution of these two functions or
sequences yields a third one which is mathematically described as the superposition of the
effect of past input excitations to account for the present output. If one assumes that the
device under consideration has not reached saturation, i.e., the different potential wells are
not completely filled, the output is expressed directly in terms of an explicit summing opera-
tion upon the input. Thus, the present value of the output is a weighted sum over the history
of the input el-(t).

The explicit input-output relationship is:
eo(t) = [Wqej(t) + Wie(t-T) + Woe,(t-2T) +. . ]

orin other notation

N
eolt) = Wkei(t—kT)
k=0
where Wy is the weighting function associated with the kth position of the pulse in the tim-
ing sequence. In the present case, the weights Wk are treated as binary numbers + or - |,
The output is thus a weighted sum of the image samples with coefficients + or - l.

The fundamental building block shown in Fig. 4 provides an output signal eg(t) as
expected from equation (1) — that is tie product of the sensing element signal and a param-
eter set by the digital timing sequence applied to the transfer gates and is algebraically summed
at the output of the CCD shift registers to account for past excitations. The convolution
operation is thus seen to be resulting from a series of shifting, multiplication by a weighted
constant and summation. This is illustrated in Figure 5 which shows how an image is con-
volved with a digital pattern. The four images a, b, ¢, and d which constitute the input signal
ej(t) illuminate four adjacent photogates as depicted in Figure 6(a). The result of
applying the weighting sequence Wy described by the digital pattern 1,1,1,1 is shown
in Fig. 6(b). The weighting sequence is decomposed into two timing sequences to be

applied appropriately to the transfer gates. The resulting output convolutions or cor-

relations are shown in Fig. 6(c) for two assumed illuminations a=b=c=d=1 and

a=b=d=1, ¢=0.




Amplitude-weighted Convolution

The above example dealt with binary patterns which were defined by the timing dia-
gram relative to both transfer gates. Integration time or pulse position affect the number of
generated carriers which are stored in the sensing MIS elements. Pulse width and pulse ampli-
tude control the partial or total transfer of the carriers from the sensor potential wells into
the CCD shift registers. Thus, the mechanism by which the charges spill over into the CCD
shift registers for signal processing is controlled hy one or more of these parameters: integra-

tion time, puise width and pulse amplitude:

a. The integration time is the time needed to generate sufficient number of carriers
to adequately characterize the object (signal) to be measured. During integration time, the
photogate is energized, thus forming a depletion layer under it to attract, capture and hold
the photon generated minority carriers. The number of these carriers is proportional to the
integration time, the intensity is the signal and the illuminated area.

b. The surface potential established under the transfer gate electrode is proportional
to the pulse amplitude applied to the gate. Narrowing the pulse width with or without an
amplitude reduction results in restricting the flow of charges out from their storage area,
Widening the pulse and/or increasing the pulse amplitude has the effects of totally emptying

the MIS depletion regions.

A crucial deficiency appears in mechanism (b) when compared to the first one as it leaves a
fraction of the signal in the sensor area. This unused portion of signal when added to subse-
quent signals, will interfere with the desired device characteristics. There is however a means
to remove the left-over charges: by negatively biasing the photogates to bring them into accu-
mulation. During the process of accumulation, majority carriers (holes) are drawn to the
Si/SiOZ interface to be recombined with the signal carriers (electrons). The mechanism of
recombination is however slow in 4 high carrier lifetime material as is the usual case for charge
transfer.

Mechanism (a), when implemented yields a more cfficient operation as it transfers all
available charges to the processing CCD’s. Assuming that the saturation level of the potential

under the photogates is not reached, one is able to adjust the fraction of the well to be filled




by controlling the integration time, i.e. by adjusting the pulse position between points t| and
ty of Figure 7. Subdividing the integration time into “n” equal time intervals, the signal
ej(t) can be measured down to “n” levels. The error will be commensurate with the
proportion of carriers generated during the dead time from t] to t5 which should
therefore be at most one hundreth of the integration time in order to provide tap
weights accurate to one percent. The emphasis is thus on pulse position variation

to control the level of the sensed signal down from its maximum amplitude. The

four images a,b,c,and d which constitute the input signal ej(t) illuminate four ad-

Jacent photogates as depicted in Fig. 8(a). The result of applying the weighting
sequence W) described by the digital pattern l,‘/z,%,% is shown in Fig. 8(b).

The weighting sequence is decomposed into two timing sequences to be applied

appropriately to the transfer gates. The resulting output is shown in Fig. 8(c) for

the assumed illumination a=b=c=d=].
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Figure 3. Configuration for an Image Encoder
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Figure 7. Mechanization of Convolution/Correlator Operations with Fractions
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