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ABSTRACT 

This paper addresses the design of a spread spectrum image transmission system 

to provide increased antijam protection to a television link from a small remotely 

piloted vehicle. Transform encoding and frame rate control may be used to re- 

move the natural redundancy inherent in the image in order to permit the use of 

spread spectrum encoding for increased antijam protection. 

Emphasis is placed on the two-dimensional discrete cosine transform (DCT) 

and a hybrid DCT with differential pulse code modulation (DPCM). Both the 

two-dimensional DCT and the hybrid DCT/DPCM provide nearly the theoreti- 

cally optimal performance of the Karhunen-Loeve transform, while permitting 

implementation by small, lightweight hardware in real-time. 
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INTRODUCTION 

This program addresses the design of a spread spectrum image transmission system to 

provide increased anti-jam protection to a television link from a small remotely piloted 

vehicle. Transform encoding and frame rate control may be used to remove the natural 

redundancy inherent in the image in order to permit the use of spread spectrum encoding 

for increased antijam protection. 

Previous phases of this program included s study of the performance of one- and 

two-dimensional transforms, the demonstration of the feasibility of small, lightweight, 

real-time implementations of the discrete Fourier transform (DFT), and the conceptual 

design of similar two-dimensional (DFT) implementations. 

During the present reporting period, emphasis has been placed on the two-dimensional 

discrete cosine transform (DCT) and a hybrid DCT with differential pulse code modulation 

(DPCM). Both the two-dimensional DCT and the hybrid DCT/DPCM provide nearly the 

theoretically optimal performance of the Karhunen-Loeve transform, while permitting 

implementation by small,'    itweight hardware in real-time. 

The conceptual design of the two-dimensional DCT has been completed, but its further 

evaluation awaits the development of a random access sensor with nondestructive readout. 

The hybrid DCT/DPCM is compatible with present sensors and therefore the most 

promising transform for use in the immediate future. 

SYSTEM DESCRIPTION 

Two hybrid cosine-DPCM bandwidth reductior systems have been selected for con- 

struction and evaluation. The first uses a Charge Injection Device (CID) [ 1 ] image sensor 

and a Bucket Brigade Device (BBD) transform implementation. The second uses an 

ordinary vidicon sensor and a Charge Coupled Device (CCD) transform implementation. 

In the CID system a 100x100 pixel solid state sensor will be used. The nominal 

horizontal line scan will be one millisecond. The nominal frame rate will be 10 frames per 

second which can be displayed without flicker through the use of a scan converter. The 

1 millisecond line scan time was chosen in order to match the sensor to the BBD filter 

which operates at a clock rate of 100 kHz with good charge transfer efficiency. At 10 

,„..„..,:„,.„.„,   mmtum 
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frames per second, image motion should be reproduced well even though some picture de- 

tail will be lost because of the low spatial sampling afforded by the 100x100 pixel format. 

When the cosine transform in the horizontal direction is combined with Differential 

Pulse Code Modulation (DPCM) in the vertical direction to form a hybrid transform sys- 

tem, performance essentially indistinguishable from "optimum" Karhunen Loeve should 

be achieved as shown in Appendix A. Minimum overall bit rate will be achieved by a com- 

bination of zonal filtering and variable bit assignment with low spatial frequencies assigned 

more bits of quantization than high spatial frequencies. Table 1 shows the bit rate which 

results from three overall bits/pixel assignments at a pixel rate of 105 pixels/sec. An overall 

bit assignment of 1 bit/pixel should result in a signal-to-distortion ratio of better than 30 

dB. In addition, since channel errors occur in the Fourier domain, channel error rates as 

large as P=I0"2 will still provide useful reconstructed images. 

The second bandwidth reduction system will be compatible with a standard vidicon 

camera. It will use CCD fihers for the cosine transform which will operate at a 4.8 MHz 

sampling rate. Compatibility with standard television format will be maintained in as 

many aspects as possible. Thus 53.5 microseconds of every line scan will be used for video 

data transmission and 10 microseconds of every line will be reserved for special functions 

such as synchronization. If the interlace field is used directly as the input to the transform 

hardware a resolution of approximately 240 lines by 256 pixels is possible at 60 frames/ 

second. This is equivalent to a video bandwidth slightly less than 2.5 MHz. However, in 

order to reduce the effective frame rate, a block of 32 adjacent pixels will be used. Thus 

if every ocher 32 pixels of each line were transformed, it would result in a horizontal inter- 

lace and an equivalent frame rate of 30 frames/sec. Slower frame rates can be achieved 

Table 1. Bit Rate as a Function of Quantization for the 
CID System 

Bits/Pixel 

2 

1 

1/2 

Bit Rate 

200 kilobits/sec 

100 kilobits/sec 

50 kilobits/sec 

I 

.1 

.1 

/ 
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Field Rate 
(fields/sec) 

Bit Rate 
(kilobits/s 

30 1843.2 

15 921.6 

7.5 460.8 

30 921.6 

15 460.8 

7.5 230.4 

by deleting additional 32 pixel blocks until a minimum frame rate of 7.5 frames/sec is 

achieved when only one 32 pixel block per line is used. 

The number of pixels per frame is 61440. Table 2 shows the bit rate which results at 

several frame rates and bits/pixel. 

Table 2. Bit Rate as a Function of Quantization and Field 
Rate for the Vidicon Compatible System. 

Bits/Pixel 

1 

1 

1 

1/2 

1/2 

1/2 

SPREAD SPECTRUM ENCODING 

The amount of anti-jam capability of the system will depend on the subsequent coding 

algorithm used to encode the data. A relative compression ratio (in dB) can be defined for 

use in comparing various bandwidth compression schemes 

channel bit ratev 
C.R.= 101og(     N,B,F ) 

where N is the number of p.xels per video frame, B is the number of quantization bits per 

pixel and F is the frame rate. The channel bit rate is assumed to be 20.0 megabits per 

second. 

The compression ratio is, in a sense, an approximate lower bound on the amount of 

anti-jam capability available by a not very sophisticated coding scheme. A bit stream repe- 

tition would be one such naive scheme. A candidate scheme to use maximal length PN 

cyclic codes to spread the spectrum nppears to offer significant improvements over naive 

schemes. 
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[I 
Consider the conventional vidicon system in which it is planned to transmit 32 r'v.els 

out of every line for an effective frame rate of 7.5 frames/sec. A length 1023 PN sequence 

sent at a 20 megabit rate occupies 51.15 jus leaving  12.3 /us for a coded sync pulse. A 

cyclic 1023 bit PN sequence can transmit 10 bits of information via cyclic pulse position 

modulation. This corresponds to 27.1 dB of anti-jam protection as measured by the increased 

distance between code words as compared to a direct binary transmission. However we have 

only transmitted an average of 0.312 bits/pixel. An alternative would be to break the 1023 

bit sequence into two sequences of length 511 each lasting 25.6 jtxs. Each one carries 9 

bits of information for a total of 18 bits and an average of .563 bits/pixel at 24.1 dB anti- 

jam protection. This is further illustrated in table 3. As can be seen from this table a 

sophisticated coding scheme gives approximately a 5 dB benefit in AJ. Consider the same 

situation for the 100x100 pixel charge coupled device camera.  If length 1023 PN sequences 

are clocked at 20 megabits per second twenty 51.15 microsecond periods could be used 

per line to produce a frame rate of about 10 per second. Performance versus codeword 

length is summarized in Table 4. The additional anti-jam benefit from die coding scheme 

gives the C1D camera the capability of running at a higher frame rate than that given in 

Table 4 and still achieving good picture quality and good AJ capability. Table 5 summar- 

izes the performance for a 30 frame/sec system. Since this system is capable of operating 

at 30 frames per second with good AJ and good picture quality (27.1 dB AJ at 1.08 bits/ 

pixel), it offers the possibility of eliminating a potentially costly scan converter at the 

ground station. The picture is however, either of lower resolution or of smaller field of 

view than the vidicon system. 

, 

Table 3. AJ Improvement for Vidicon Compatible System Using PN-PPM 

Length of 
the Sequence 

1023 

511 

255 

127 

No. of Sequences 
Transmitted 

1 

2 

4 

8 

Decoded Bits Total No. Average Bits AJ CR 
per Sequence of Bits per Pixel (dB) (dB) 

10 10 0.31 27.1 21.4 

9 18 0.56 24.1 18.9 

8 32 1.0 21.1 16.4 

7 56 1.75 18.1 13.9 

"■-^^-'""^-^-';-' 
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Table 4. Performance vs. Codeword Length for the CID 
System at 10 Frames/sec Using PN-PPM. 

Length of 
the Sequence 

No. of Sequences 
Transmitted 

Decoded Bits 
per Sequence 

Total No. 
of Bits 

Average Bits 
per Pixel 

AJ 
(dB) 

CR 
(dB) 

1023 20 10 200 2.0 27.1 20.0 

511 40 9 360 3.6 24.1 17.4 

255 80 8 640 6.4 20.1 14.9 

. 

i 

Table 5. Performance vs. Codeword Length for the CID 
System at 30 Frames/sec Using PN-PPM. 

Length of 
the Sequence 

No. of Sequences 
Transmitted 

Decoded Bits 
per Sequence 

Total No. 
of Bits 

Average Bits 
per Pixel 

AJ 
(dB) 

CR 
(dB) 

1023 6 10 60 0.6 27.1 21.2 

511 12 9 108 1.08 24.1 17.9 

255 24 8 192 1.92 21.1 15.4 

DPCM TRANSFOSlVi IMPLEMENTATION 

For television bandwidth reduction, it has been shown [2, 3] that a two-dimensional 

mixed transform, e.g. Fourier in the horizontal direction and Hadamard in the vertical di- 

rection, generally gives performance intermediate between the tv, o transforms. An exception 

to this generalization is the DPCM transform. The combination of the cosine transform in 

the horizontal direction and the DPCM transform in the vertical direction has performance 

equivalent to the optimal Karhunen Loeve transform, as shown in Appendix A. 

This result has been demonstrated both theoretically and by computer simulation. A 

hardware DPCM system has been designed and is being constructed. It. is meant to interface 

with a slow scan television system such as the new 100 x 100 charge coupled device cameras 

now entering the market. A block diagram of the DPCM system is shown in Figure 1. 

The DPCM has been designed with a sixteen level nonlinear quantizer representing 

three bits of magnitude information and one bit of sign information. The quantization 
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Figure I. The DPCM System. 

levels can be set to arbitrary levels. Zero, two, three or four bits of information can be 

transmitted per coefficient depending on a command from a memory unit. The memory 

unit is programmable and allows the operator to adjust the number of bits per coefficient 

to the coefficient location. The system is also designed to give the operator control of the 

number of coefficients sent. The analog memory is being simulated by an A/D converter, 

a set of digital shift registers and a D/A converter. An appropriate charge coupled device 

analog memory is not available at the present time. From the experience gained in the 

design of this DPCM encoder it appears that an all digital DPCM system (except for the 

initial summing amplifier) would be the simplest type to construct and has significant 

power and weight advantages over a hybrid encoder. 
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IMPLEMENTATION OF ONE- AND TWO-DIMENSIONAL 
DISCRETE COSINE TRANSFORMS 

Emphasis has been placed on the implementation of the discrete cosine transform 

(DCT) because it provides a very close approximation to the optimum Karhunen-Loeve 

transform, while permitting compact, real-time implementation by a combination of 

multipliers and filters. The two types of DCT which are useful for reduced redundancy 

television image transmission are obtained by extending a length N data block to have 

even symmetry, taking the discrete Fourier transform (DFT) of the extended data block, 

and saving N terms of the DFT. 

The "Odd DCT" (ODCT) extends the length N data block to length 2N-1 and the 

"Even DCT" extends the length N data block to length 2N. For example, if the data 

block were ABC, the two extensions would be CBABC and CBAABC, respectively. Ana- 

lytic expressions for these transforms are given in Appendix B. 

An ODCT or EDCT in the horizontal direction may be combined with an ODCT or 

EDCT in the vertical direction to give three different types of two-dimensional DCT. 

Three different ways of implementing a one-dimensional DCT in real time have been 

found, requiring filter lengths of approximately 4N, 2N, and N for an N-point transform. 

A detailed comparison is provided in Table 1 of Appendix B. 

Two of the three types of two-dimensional DCT may also be implemented in real- 

time using combinations of multipliers and fillers. The image points may be scanned so 

as to produce a one-dimensional sequence whose one-dimensional transform is the re- 

quired two-dimensional DCT of the image as described in Appendix B and illustrated in 

Tables 2 and 3 of that appendix. If the horizontal and vertical sizes of the extended data 

block have no common divisor, then the two-dimensional DFT required for a two- 

dimensional DCT may be performed as a one-dimensional DFT by suitably scanning the 

extended da+a block by re-scanning the original data block. 

The choice of a hybrid ODCT by even DCT permits maximum flexibility in the block 

size, since any square block size may be used, and the two-dimensional transform may be 

implemented using the switching filter EDCT, shown in Figure 3 of Appendix B, to maxi- 

mize the block size attainable with a limited number of taps per filter. In this case, filters 

MifllilTri^iM Wi-n  --—■•" 
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of length N2(2Nj-l) will be needed for a block si/.e of N] by N-,. so that a two-dimensional 

DCT of a 10 by 10 data block is within the limits of present bucket brigade device filters. 

REPORT SUMMARY 

This report describes the progress on the third phase of a NUC program on image 

bandwidth reduction for application to the ARPA RPV problem of sending television 

images over spread spectrum channels. This report details the second quarter of a hardware 

development and implementation phase. In this quarter implementation and interfacing 

were considered for the two-dimensional DCT and hybrid DCT/DPGM which were previ- 

ously shown to provide nearly optimum performance. 

Two-dimensional discrete cosine transform implementations have been designed, 

but their utilization awaits development of a compatible sensor,   fwo-dimensional hybrid 

DPCM/DCT transform hardware is being built, and a suitable pseudonoise pulse position 

coding format has been shown to maximize the minimum distance between code words 

and to provide a significant increase in AJ protection compared to simple bit stream repe- 

tition. The improvement is about 5 dB for a codeword size of 5 I ! bits with a compression 

ratio of 78 to 1  and is a slowly varying function of the compression ratio. The coding 

format is compatible with transmission through either an analog or a binary channel. 
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ABSTRACT 

Several image coding systems based upon transform coding have 
been studied. Analysis and simulation has shown that in many appli- 
cations these systems are capable of image coding at about one to two 
bits per pixel with acceptable image quality and tolerance to channel 
errors. Implementation studies and tests that have been performed 
indicate that the systems can be implemented for real time television 
operation using recently developed technologies. 

INTRODUCTION 

Transform coding techniques have been explored extensively in 
theoretical studies and by simulation. It has been shown that a signif- 
icant bandwidth reduction can be achieved in many applications with 
minimal image degradation and relative tolerance to channel errors. 
The major drawback of transform image coding for real time television 
applications in the past has been computational complexity. However, 
recently developed technologies such as acoustic surface wave delay 
lines and charge coupled devices have made transform image coding at 
real time television rates feasible. 

CODING TECHNIQUES 

Transform Coding 

In transform coding systems a one or two dimensional mathe- 
matical transform of an image line segment or block is performed at 
the coder. The transform coefficients are then quantized and coded. 
At the receiver, after decoding, an inverse transfonn is taken to obtain 
an image reconstruction. Transforms that have proven useful include 
the Fourier, Hddamard, Slant, Cosine, and Karhunen-Loeve trans- 
forms. A bi' rate reduction is obtained by efficient quantization and 
coding of the transform coefficients. Many of the transform coeffi- 
cicnis of a natural image are of relatively low magnitude and can be 
discarded entirely, or coded with a small number of bits per coeffi- 
cient while maintaining a small mean square error. Simulation studies 
indicate that a bit rate reduction to aboui 1.5 bits/pixel can be ob- 
tained for monochrome image transform coding in 16 X 16 pixel 
blocks. Color images require about 2.0 bits/pixel. Figure I shows an 
original and encoded pictures for two-dimem>ional transform coding 
in 16 X 16 pixel blocks at bit rates of 0.5 and 1 bit per pixel. 

DPCM Coding.2 

In a DPCM system the value of a scanned image sample is pre- 
dicted and the difference between the actual and the predicted value 
is quantized and transmitted. At the receiver a similar predictor uses 
transmitted values of the quantized differential signal to reconstruct a 
replica of the scanned image. Prediction of a data point is performed 
by using a number of adjacent previously scanned sample values where 
the parameters of the predictor are specified in terms of the correla- 
tion of picture elements. 

Properties of the differential signal that make a DPCM system 
attractive are a significant reduction in the variance of the differential 
signal, as compared to the variance of the original samples, and the 
fact that the probability density function of the differential signa» Is 
closely approximated by an exponential fuuetion.3 The former 

la) Original 

(b) 0.5 Bits/Pixel 

0* ti* 
-.''-fr-  1 ¥i 

i 
v 

(c)  I Bit/Pixel 

Fig. 1. Original and viuvdeü signal using two-dimensional cosine 
transform and him k qmntization. 

*This work was supported by the Advanced Research Projects Agency of the Department of Detcnse and monitored by the Air Force Eastern 
Test Range under Contract R08606-72-0008 and by the Naval Undersea Center, San Diego, Calilbrnia. under Contract N001 23-73-C-I507. 
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Fig, 3. Bit rale versus the signal-to-notse ratio for ilw proposed one-dimensional 
hybrid systems far the diserete random field. 

(a) O.S Bit/Pixel 
p = 10" ^ 

(b) I.OBit/Pixe 
P = 1 o-2 

»•   '^ 

:: 
Fig. 4. Encoded pictures using the hybrid encoder (cosine transform and DPCM). 
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IMNSF0RMCOD1NG QUANTIZATION ERRQRJRgpucTlo^ 

coding error is P       '"  The resul,lng mean square 

denote the result of the smoothing process where W i, th. cm    .K- 
operator matrix. The reconstruÄ^ T^l ^Z^ 

1= A-'f 

ope^^ÄS-rsr^rzr8 

mainquantizatn^r^rn  pt^tothTHl^S of MI image n 16 X 16 oixel bloc!«   in til        Haaamard transform 
spaoal frequency traLfo^'^ens ATstlernAr 
finely quantized so that their quantization eiior 4s „Shi  Th^ 

improvement possible with this techmque ge qUallty 

TRANSFORM IMPf FMFMTAT[ON 

transSrXngS'iÄt^ COding 0r ^^ 
multiplications requled by «,  tan  Z, wh 'r theiarge number of 

mmmssm 
One Dimensional Transform«; 

The discrete Fourier transform (DFT) it well <L,ut*A r 
rea-toe image processing since itTs asympVotS ^ ^^^ '" 
Karhunen-Loeve transform and can be imp^emente'dta Smtation 

Original 

Zonal Selection 

10:1  Zonal Selection 
Spectrum Extrapolation 

Fig. .5. Hadamard Spectrum Extrapolation 

of multipliers and filters. In one dimension the DFT nf . 
vector g composed of N samples ™n by 

COmP 

k ~ 2-» gnexPi   i-Tnk/N} 
n=U 

Gu = 
(I) 

Gk = exP|-^2/N}pexP|iff(n-k)2/N|exp{.iTO2/N}gn(2) 

through the use of the substitution 2nk = n2 + k2 - rn 1^2   T1 , 
Chirp-Z-transform (CZT) representation of^ht DFT^einTteted 
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as a multiplication of the vector to be transformed by a discrete chirp, 
periodic convolution ol" the multiplied vector by a discrete chirp, and 
post multiplication by a discrete chirp.6 

Equation (2) may be implemented using real multipliers and real 
filters. This configuration is shown in Figure 6. With the further 
restriction that the function g is real, nun-negative and even, G is real 
and is an autocorrelation function. For an image vector of size N 
there are two symmetrized extensions of the vector; the first of size 
2N, the other of size 2N- I. Corresponding to the DFT of these two 
extended vectors there are two discrete cosine transforms (DCT) 

N- 

(U :I]ßn cos jr (n+1/2) k/N       (EDCT) 
n=0 

'ok' 

N-l 

ii=() 

ens -rnk (N-l 12) g„ (ODCT) 

(3) 

1-41 

Since the DFT is equivalent to the Fourier transform of a periodic 
repetition of the data vector, symmetrizing the input signal improves 
the convergence at any light-dark edge discontinuities of the periodic 
extension.  In addition, for images with exponential correlation func- 
tions Atoned^ has shown that the FDCT is almost indistinguishable 
from the Karhunen-Loeve transform. 

However, it is in hardware implementation that the IX'Ts excel 
since they may be computed simply as the real part of a DFT via the 
CZT algorithm. The CZT algorithm is a "real-time " algorithm which 
makes it possible to compute, in natural frequency order, Fourier co- 
efficients at the same rate as the data is being gathered. In addition, 
the computation involves only multiplication and convolution which 
can be performed by analog multipliers and linear filters respectively. 
Thus analog to digital conversion of the video is not required nor is 
there a need for special purpose digital computations. 

Two technologies are available for the implementation of the 
convolution filters; surface acoustic waves (SAW) and charge transfer 
devices (CTD). The SAW technology uses acoustic waves on piezo- 
electric crystals with deposited electrodes while the CTD uses an elec- 
tric lield to induce propagation of concentrations of minority carriers 
at a silicon-silicon oxide boundary in a monolithic silicon analog inte- 
grated circuit.  In both technologies the required linear filters are 

implemented as transversal filters whose impulse responses are deter- 
trsined by the metalization pattern deposited during fabrication. 

The transversal filter was first proposed l>y Kallmann7 and con- 
sists of a non-dispersive delay line contiguously tapped along its length 
transverse to the direction of signal propagation with lightly coupled 
non-interacting taps. The impulse response of tins filter is uniquely 
specified by the amplitude and polarity of the tips and any bounded, 
finite duration impulse response of specified bandwidth can be synthe- 
sized by sampling the desired response signal at its Nyquist rate and 
selling Ihe lap weights along the delay line to lh;se values. Although a 
Iransversal filler normally implements a non-periodic convolution, 
periodic convolution can be achieved by a number of techniques; (1) 
the input signal can be repealed; (2) the output of Ihe delay line can 
be recirculated to the input; (3) the impulse response can be made two 
periods of the desired function; or (4) an auxiliary delay line can be 
employed. 

In order to continuously transform the input signal, this signal 
nnist be subdivided into blocks whose lengths are the same size as the 
size of the appropriate Fourier transform and two sets of convolution 
tillers used alternately. However, the pre- and post-multipliers may be 
multiplexed between the two groups of fillers. By these techniques a 
logiN increase in throughput is possible over a corresponding fast 
Fourier transform (FFT) operating at the same sample rate and em- 
ploying one complex multiplier. This results in a reduction of size and 
power since no quantization is required and calculation proceeds at Ihe 
data sample rate. 

When a vertical differential pulse code modulator (DPCM) modem 
follows a horizontal cosine transform a very compact digital real-time 
image transmission system results. As shown in part 2, this system 
achieves performance essentially indistinguishable from that of the 
Karhunen-Loeve transform for pictures with exponential correlation 
functions without having to employ two dimensional transform encod- 
ing. However, if two dimensional Fourier encoding is required it may 
be achieved by concatenation of two one dimensional transforms with 
auxiliary memory to transpose the partial transform from row to col- 
umn format; or it may be achieved by linear congruential scanning of 
the two dimensional area and the use of a one dimensional transfor- 
mation as described under two dimensional transforms. 

D 
U 
1.1 
D 

: 

o 

:. 

cos 
COS 

VR 

■SIN 

CONVOLUTIONS 

9n,l ► 

cos?™2 

N 
\ \ 

1 

SIN ^# 
N V 

"" 

Fig. 6. DI'T via CZT algorithm with parallel imptementalion of complex arithmetic. 
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Two Dimensional Transforms 

The alternative expressions for the ODCT and EDCT shown in 
eqs. (5) and (6) make evident their implementation. The appropriate 
premultiplier reference function, transversal filter tap weights and 
postmultiplier reference function for the ODCT and EDCT are given 
by a, b, c of eqs. (7) and (8) respectively. 

■■ok 2 Re   exp 
r (-^21 
[eXPi2NrTi 

N-l 

J=0 

exp 
2N- 

exp 
2N-1 (5) 

where SQ = .5 and Sj,, = 1 for j > 0 

i-iir(k2 + k)| 
-"ek = 2 Re   exp [eXPi 2N-j 

N-l 

j=0 

exp« 
2N 

exp 
2N 

For the ODCT 

exp 

exp- 

exp 

For the EDCT 

exp< 

exp 

exp 

-ITJ 
2N-1 

2N-1 

2N-1 

2N 

I 2N 

j=0 

^N-l 

-i7rü2+j) 
2N 

for j"-(N-l),... (N-l) 

for j=0,. . . N- 1 

forj=0, ...N-l 

for j=-(N-l), ...(N-l) 

, forj=0, ...N-l 

(6) 

(7A) 

(7B) 

(7C) 

(8A) 

(8B) 

(8C) 

A two-dimensional DFTof an Mi by Mo data block may be per- 
formed as a one-dimensional Dl T of size M = M | M2 of a sequence 
obtained by an appropriate linear congruential scan of the data block 
provided that M| and M2 have no common divisor.8>10 

The equivalent two and one dimensional DFTs are given in eqs. 
(9) and (10) respectively, with the input scan defined by eqs. (11) and 
(12), and th; output scan defined by eqs. (13) and (14). The constants 
U], V] • U2, '2 may be any solutions of eqs. (15) and (16). 

M,-l MT IV1]-1    IVM" 1 

G(ki.k2)=  2^   L,  g0lJ2) 

jpO   j2=0 

exp <-i2n 
[hk\    J2k2l ) 
[M,      M2j( (9) 

for   k 

M-l 

exp 

K2 - u 

-i27rpq 
M 

,.Mrl 

, . M,- 1 

for q = 0,. . . M-1 

P(J1,J2) = JiulM2+J2u2Ml (MODM) 

(10) 

(11) 

fp = g(J],J2) 

q(k1,k2) = k1V|M2 + k2V-,M| 

Fq = G (kj.ko) 

M2U|V|   =  I        (MODM|) 

M|U2V2 =   I        (MOD Mi) 

(MODM) 

(12) 

(13) 

(14) 

(15) 

(16) 

The incorporation of a two-dimensional DPT device using the 
linear congruential scan into a reduced redundancy image transmission 
system is shown in Figure 7. Since unequal quantization would nor- 
mally be applied to the transform output values, the output scan coor- 
dinates available at B and C may be used to keep track of the coordi- 
nates of the output value at A. 

A two-dimensional DCT of an N | by N2 data block may be 
regarded as a two-dimensional DFT of an M1 by M2 data block, where 

<Mk = 2N|< or M^ = 2^- 1 depending on whether an EDCT or an 
ODCT is used in the kth direction. If M1 and M2 have no common 
divisor, the two-dimensional DCT may therefore be performed as a 
one-dimensional DFT using CZT hardware. The configuration of 
Figure 8 is therefore appropriate for the two dimensional DCT as well 
as the two-dimensional DFT. For the two-dimensional DCT, however, 
the extended data block is scanned by an appropriate rescan of the 
original data block, and a modified scan generator will be needed. In 
addition, the one-dimensional DFT size needed to perform a two- 
dimensional DCT in this way is M|M2, which is almost four times 
larger than N1N2. If the symmetry of the one-dimensional sequence 
generated by the linear congruential scan of the extended data block 
is exploited, the length M [MT one-dimensional DFT may be replaced 
by a one-dimensional DCT of about half that length, thus permitting a 
substantial reduction in the number of taps needed in the filters. 

Transform Hardware. 

This section will describe how both surface acoustic wave devices 
and charge transfer devices have been used to implement the chirp-Z 
algorithm for bandwidth reduction.9-10 The surface acoustic wave 
system was constructed to be compatible with standard television. The 
charge transfer device system was constructed to be compatible with a 
slow scan television camera such as the new 100 X 100 charge coupled 
device cameras now on the market. A second charge transfer device 
system is being constructed to be compatible with standard television. 

A block size of 32 has been chosen for a feasibility demonstration 
of a surface acoustic wave implementation of the real-time discrete 
Fourier transform. With a conventional line scan time of 53.5 micro- 
seconds and a sample rate of 256 samples per line, a 4.78 MHz sam- 
pling rate is required. A block of 32 points transforms 6.69 microsec- 
onds or one eighth of the video signal. The total number of taps on 
the filter is 63, i.e., 2N- 1. Two SAW devices have been constructed at 
the Naval Undersea Center. One is used to generate the 32 point sine 
and cosine chirp signals for pre- and postmultiplication. The other is 
used to convolve the multiplied input with the four transversal filters 
as shown in Figure 6. A photograph of the SAW device in shown in 
Figure 8. 

The feasibdity of the charge transfer device implementation has 
been demonstrated with a bucket brigade transversal filter. The bucket 
brigade devices have 200 taps and can operate at a sampling rate of 
several hundred kilohertz. This makes them ideal for slow scan, low 
resolution TV such as the recent 100 X 100 charge coupled device 
cameras. The tap weights of the bucket brigade device had been cho- 
sen for another purpose. The devices were built by Texas Instruments 
under Rome Air Development Center contract # F30602-73-C-OO27 
for an application other than bandwidth reduction. Fortunately the 
tap weights had been chosen so as to approximately implement a 
cosine transform. Devices are being redesigned with the tap weights 
necessary for an exact odd cosine transform. The approximate cosine 
transform system has been constructed. The exact cosine transform 
system would have given a single pulse width of 10 microseconds for a 
line scan time of one millisecond and a sample rate of 100 samples per 
line. The approximate cosine system gives an output that is function- 
ally like sin x/x. The width and shape of the output agree with 
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(10) Means, R. W., J. M. Speiser, H. J. Whitehouse, et al. Image Trans- 
mission Via Spread Spectrum Techniques, ARPA Quarterly Tech- 
nical Report June 1 -October 1, 1973, Order Number 2303 
Code Number 3G-10. 

(11) Means, R. W., D. D. Buss, and H. J. Whitehouse, Real Time Dis- 
crete Fourier Transforms Using Charge Transfer Devices, Pro- 
ceedings of the CCD Applications Conference held at the Naval 
Electronics Laboratory Center, San Diego, California  18-20 
Sept. 1973, pp. 95-101. Reprinted in [10). 

(12) Alsup, J. M., R. W. Means, and H. J. Whitehouse, Real Time Dis- 
crete Fourier Transforms Using Surface Acoustic Wave Devices 
to appear in the Proceedings of the IEEE International Specialist 
Sen: mar on Component Performance and Systems Apphcations 
of Surface Acoustic Wave Devices, held at Aviemore, Scotland 
24-;8 Sept. 1973. Reprinted in [ 10]. 
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APPENDIX B 

HIGH SPEED SERIAL ACCESS IMPLEMENTATION 

FOR DISCRETE COSINE TRANSFORMS 

Jeffrey Speiser 
Naval Undersea Center 
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INTRODUCTION 

Two different types of discrete cosine transform (DCT) are useful for 

reduced redundancy television image transmission [1-3]. Both are obtained by 

extending the length N data block to have even symmetry, taking the discrete 

Fourier transform (DFT) of the extended data block, and saving N terms of the 

resulting DFT. Since the DFT of a real even sequence is a real even sequence, 

either DCT is its own inverse if a normalized DFT is used. 

The "Odd CDT" (ODCT) extends the length N data block to length 2N-1, with 

the middle point of the extended block as a center of even symmetry. The 

"Even DCT" (EDCT) extends the length N data block to length 2N, with a center 

of even symmetry located between the two points nearest the middle. For 

example, the odd length extension of the sequence ABCisCBABC, and the 

even length is C B A A B C. In both cases, the symmetrization eliminates the 

jumps in the periodic extension of the data block which would occur if one 

edge of the data block had a high value and the other edge had a low value; 

in effect it performs a sort of smoothing operation with no loss of information. 

It will be noted that the terms "odd" and "even" in ODCT and EDCT refer only to 

the length of the extended data block - in both cases the extended data block 

has even symmetry. 

Both types of DCT may be implemented using compact, high speed, serial 

access hardware, in structures similar to those previously described [1,2] for 

the Chirp-Z transform (CZT) implementation of the DFT. The significant difference 

between the ODCT and the EDCT is the block size of the transform which may be 

implemented using transversal filters having a given limit on the number of 

taps. A comparison of different high speed implementations of the DCT for a 

block size of N is given in Table 1. 
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ODD DISCRETE COSINE TRANSFORM 

Let the data sequence be g0, gp . . ., g^. The ODCT of g is defined as 

N-l 

Jok 
j^-D 

gje 

2N-1 for k = 0, 1, . . ., N-l (1) 

D 

where g - = g. for j = 0, 1, . . ., N-l. 

By straightforward substitution it may be shown that 

(2) 

G ! = 2 Re 
ok 

2N-2 

E 
3=0 

gJe 

iZirjk 
2N-1 

where g. is defined by equation (4). 

(.5 g0, 3 = 0 

gj    =    ]      g:j,  j = 1,   .   .   ., N-l 
(        0, j = N 2N-2 

(3) 

(4) 

The identity (5) may be used to obtain the CZT form of the ODCT shown in 

equation (6). 

wJk  =  r5 k2  w--5(k-J)2  w-5j2 

G ,    =    2 Re < e 
ok 

iTTk2    2N-2 
2N-1    ^ 

j = 0 

.   .2 
ITTI 
2N-1 P.    e 

iTT(k-j)2/ 
2N-1     \ 

(5) 

(6) 

-t 
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EVEN DISCRETE COSINE TRANSFORM 

The EDCT of g is defined by equation (7), where the extended sequence is 

defined by equation (8). 

bek =   e 

- iirk   N-l - 12^ k 
2N     VV    _      2N 

22 Sj for k = 0, 1,  .   .  ., N-l 

j= -N 
(7) 

g-l-j gj 
for j = 0, 1, , N-l (8) 

If the mutually complex conjugate terms in equation (7) are combined, 

then equation (9) results.    Equation (9) may be viewed as an alternate way of 

defining the EDCT. 

- iirk N-l 

Gek   =   2 Re < e 2N 

j=0 
gje 

- i2,irjk 
2N 

3=0 

(9) 

7' 

Equation (9) may be put in either of the CZT formats given in equations 

(10) and (11), where g- is defined by equation (12), 

2 
iirk     - iirk     N-l 

Gek   =   2Reie   W     e     2N 5 [gje 2N 
i^(k-j)' 

2N (10) 

ek =    2 Re ^ e 

- itrk     - iirk   2Nrl 
2N 2N 

2N-1 

j=0 

-  im 

g3e 
2N 

i^(k-j)2 

2N 
(11) 

W' 

1 

g gj, j = 0, 1,   .   .   ., N-l( 

^ '   0, j  = N,   .   .   .,  2N-1 
(12) 
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IMPLEMENTATION OF THE DCT VIA THE CZT 

A general DFT of length M, defined by equation (13) may be computed by a 

CZT defined by equations (15) and (16) as shown in Figure 1. 

M-l 

H 

- iZiTJk 
M 

j=0 

M-l 

Hk = PJ E [h3 p!] pk-j 

Ps    =   e 

j=0 
.    2 
ITTS 

M =  p 

(13) 

(14) 

(15) 

:! 

ii 

D 
D 
[I 

D 

D 
0 

INPUT 

'M-l 

P* "o 

p 
M-l 

TRANSVERSAL FILTER 

2M-1 TAPS 

ROM ROM 

. 

: 

Figure 1 - General DFT Implemented via a CZT 
Using a Transversal Filter. 
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It will be noted that the postraultiplier of Figure 1 is ready to produce 

the first transform point when the first input to the filter is lined up with 

the central tap. 

If the ODCT is viewed as a DFT using equation (1), then it may be imple- 

mented using the structure shown in Figure 1 with M = 2N-1, and the required 

filter length is 2M-1 which equals 4N-3. 

The EDCT as defined by equation (7) may be implemented similarly with 
2 

M = 2N by changing the postmultiplier weights to  ~1TrCk +k) _ 

e   2N 

R. Means has noted that a twofold reduction in the required length of 

the filter and read only memories is possible [4] when the ODCT is computed via 

equation (3) with a CZT used to perform the required DFT. Since only N terms 

of the input are non-zero, and only N terms of the transversal filter's output 

are needed, only the first N outputs of the ROMs and the central 2N-1 taps of 

the transversal filter of Figure 1 are needed when the ODCT is computed this 

way. A similar conclusion holds for the EDCT computed via equation (9) with 

a CZT used to compute the required DFT. 

r 
«A 
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IMPLEraTATION OF THE EDCT USING SWITCHING FILTERS 

The computationally difficult step in the realization of the EDCT via 

equation (10) is the convolution-like operation shown in equation (16). 

2 
iTT(j-k) 

V a. e  2N for k = 0, 1, . . ., N-l 

j=0 

N-i       JlLbM.' 
Ak = >  a. e 

If P is defined by equation (15) with M = 2N, the convolution-like 

character of equation (16) may be made more explicit as shown in equation (17) 

N-l N-l 

A, 

j=0 

aJ Vk E ai pk-j 
j=0 

Equation (17) would represent a (periodic) convolution or correlation if 

the P sequence had period N. In our case, however, the P sequence has period 

2N. The essential symmetries of the P sequence are given by equations (18) 

and (19). 

Ps = P-S 

N-s = e 

iTT(N2-2Ns+s2) 
2N 

iirN 
,- i ^s    2 (-1)  e 

(16) 

(17) 

(18) 

(19) 

LI 
D 
LI 
LI 

: i 

;. 

For specific values of N, equation (19) can be simplified further by 

using equation (20). 

iirN 
1, N = 0 (mod 4) 

i, N = 1 (mod 4) 

j-1, N = 2 (mod 4) 

-i, N = 3 (mod 4) 

B-8 

(20) 
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i. 

1. 

Table 2 shows the weights needed to evaluate (17), where identity (18) 

has been used to eliminate negative indices. Table 3 shows the same weights 

after additional simplification using identities (19) and (20) when N is a 

multiple of four,to view the weights needed at successive times as modifications 

of cyclic shifts of PQ, P^ . . ., P^. Table 4 shows the weights of Table 3 

arranged to correspond to cyclic shifts of the data, corresponding to an 

inplementation using length N transversal filters with data points read twice. 

i 

D 
i I; 

D 

SHIFT 
INDEX 

0 

1 

2 

N-l 

N-l 

■N-2 

N-3 ' 

WEIGHT SET 

N-l 

Table 2 - Weights Required for the Correlation-Like Operation 

in the TDCT, Ordered for Fixed Data Position. 
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SHIFT 
INDEX 

0 

1 

2 

3 

N-l 

N-2 

N-3 

N-4 

WEIGHT SET 

P   P 
1   0 

-p. N-l 

N-l 

N-2 

-P N-l 

N-2 

■N-3 

I 

k   Vk-r-- pi po -+ (-1)k"lpN-k+l (-^Vk 

Table 3 - Reduced Form of the Weights Required for the Correlation-Like Operation 

in the EDCT when N = 0 (Mod 4], Ordered for Fixed Data Position. 

SHIFT 
INDEX 

0 

1 

2 

3 

N-l 

N-l 

N-l 

N-l 

N-2 

P   P rN-2 ^-3' 

P  -P 
N-2 ^3* 

WEIGHT SET 

Table 4 - Weights Required for the Correlation-Like Operation in the EDCT when 

N = 0 (Mod 4) Ordered for Cyclically Shifting Data. 
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The required time-variant operations may be moved out of the filters as shown 

in Figure 2. 

i . 

I 

ROM, 

N-1 

N 1's 

TRANSVERSAL 
FILTER 

■OUTPUT 
SWITCH 
AT EVERY 
SHIFT 

Figure 2 - Switching Filter for use in the EDCT for 
N = OCMod 4) or N = 2(Mod 4) 

A complete EDCT structure using the switching filter is shown in Figure 3. 

The switch changes position with every data shift, and its initial position is 

determined by whether the block size is congruent to zero or two modulo four. 

A similar structure may be used for block sizes congruent to one or three 

modulo four, except that ROM 1 and ROM 2 will contain ± i entries instead of 
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+ l's. Because of the simple structure of the output needed from ROM 1 and 

ROM 2 it may be preferable to replace them with a combination of a counter and 

gates to generate the required functions. 

INPUT 

ROM0 

ROM 

N-1 Alternating 

9N_2,,,9i go gN-r"gi go-*^x)*- 

-iTTJ2 

e2N 

1 
1 
1 

1 
1 

+ 1 
-1 

+ 1 
-1 

K^H 

OUTPUT 

N   1'S 

N-1 Alternating 
il's 

ROM. 

Figure 3 - EDCT Architecture using Switching Filter 
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i. 

CONCLUSIONS 

The three general types of DCT implementations using transversal filters 

and multipliers each possess unique advantages. A DCT implementation using a 

coirplete CZT will use transversal filters with tap weightings which should 

become standard components in the near future. An implementation using 

shortened versions of the filters and ROMs needed for a standard CZT permits a 

longer block length transform to be implemented for a given number of taps per 

filter, and simultaneously eliminates the need to rescan data points. A new 

structure called the "switching filter EDCT" permits a further increase in 

block size for a given filter length, but requires more filters, some additional 

switching circuitry, and a rescan of the data. The switching filter iirplemen- 

tation of the EDCT uses transversal filters each having a number of taps equal 

to the transform block length. The other implementations require nearly twice 

as many and four times as many taps per filter. 
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APPENDIX C 

i 

TWO-DIMENSIONAL DISCRETE COSINE TRANSFORM 

IMPLEMENTATION USING A TOROIDAL SCAN 

Jeffrey Speiser 
Naval Undersea Center 
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INTRODUCTION 

TVfo different types of one-dimensional discrete cosine transform (DCT) 

called the Even DCT (EDCT) and Odd DCT (ODCT) which are useful for reduced 

redundancy image transmission [1-3] may be combined to form three distinct 

types of two-dimensional discrete cosine transform. Each of the two-dimensional 

DCTs may be defined as a two-dimensional discrete Fourier transform (DFT) of a 

doubly symmetrized extension of the data block in which the extended data 

block has even symmetry about each of two axes. If the original data block 

size was N, by N-, the extended block size may be 2NL by ZN- for the EDCT by 

EDCT, 2^-1 by 2N2 for the ODCT by EDCT, or 2^-1 by 2N2-1 for the ODCT by ODCT. 

Although the three types of two-dimensional DCT may be expected to provide 

similar performance for television image redundancy reduction, they differ 

markedly with respect to difficulty of real-time impJementation. Each of the 

two transforms may, of course, be implemented by performing a line-by-line one- 

dimensional partial transform, using an auxiliary "comer-turning" memory to 

store and transpose the partial transform, and then perform a partial transform 

in the second dimension. 

It has previously been shown that a two-dimensions?. jFT may be implemented 

as a one-dimensional DFT of size M = M-NL of an appropriate linear congruential 

scan of an M, by M2 data block, provided that M, and 1^ have no common divisor 

[1]. Since 2N, and 2^ have the common divisor of 2, the linear congruential 

scan does not aid in performing a two-dimensional EDCT. For a two-dimensional 

ODCT, the linear congruential scan will be compatible with certain block sizes, 

but never when the block is square. For a hybrid ODCT by EDCT two-dimensional 

transform, the linear congruential scan is compatible with all square block 

sizes, since 2N and 2N-1 never have a common divisor. 
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It will be shovm that the linear congruential scan converts a hybrid ODCT 

by EDCT of an N by N data block into a length N(2N-1) one-dimensional EDCT which 

may be implemented via a switching filter EDCT [4] using transversal filters of 

length N(2N-1). For a given upper limit on the number of taps in the transversal 

filter, the hybrid ODCT by EDCT therefore permits a larger block size than would 

be possible with a two-dimensional ODCT, and a vastly simpler implementation than 

would be needed for a two-dimensional EDCT. A comparison of the two-dünensional 

DCT implementations for an N, by N2 block size is given in Table 1. 
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SYMMETRIES PRESERVED BY SELECTED TOROIDAL SCANS 

D 
. 

D 

, 

' D 
11. 

no 

For a two-din.ensional DFT to be equivalent to a one-dimensional DFT, 

the two-dimensional block size M, by M, mst be such that M, and M, have ' 

co^n divisor. In that case, the two-dimensional DFT of equation (1) will be 

equivalent to the one-dimensional DFT of equation (2) with M = M^. The 

appropriate linear congruential input scan is defined by equations (3) and (4), 

and the associated output scan is defined by equations (5) and (6). ^e 

constants V v^ u2, v2 may be any solution of equations (7) and (8). 

Mj-1 M2-l 

h=0h=0 

[^ M2 

M-l 

p=0 
v 

-iZirpq 
M 

P^l'V    =    JiuiM2 + J2U2M1 

f
P   

=   gCJ1,J2) 

qCkp^)    =   ^v^ + k2v2M1 

Fq   =   GCkl.k2) 

M2uivi = 1     (muj 

M1U2V2    =    1 (^DM,) 

for kj = 0, 

k2 = 0, 

for q = 0,   . 

(M3D M) 

(MOD M) 

^-1 

M2-l 

M-l 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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0 
The behavior of the input scan is extremely simple to describe if v, and 

V2 are both chosen equal to one. In this case, to move from the presently 

scanned point to the next point, each coordinate is incremented by 1, and the 

first coordinate is reduced modulo M, and the second coordinate is reduced 

modulo M-, as shown in equation (9). The notation (a), denotes the residue of 

a modulo b. Such a scan may be viewed as a spiral on the surface of a torus. 

The required scan generator is simply a pair of counters and digital to analog 

converters. 

The desired equation (9) follows from (11) and (12). Since the scan 

takes the two-dimensional origin (0,0) into the one-dimensional origin 0, 

equation (9) may be solved by induction to yield the closed form scan equation 

(13). 

C9) 

Simplification of (10) yields  (11). 

p(l,l)    =   I^Uj + M^    =   1 (Modulo M) (11) 

Equation (12)  follows from the scan defining equation  (3). 

: 

p((s+l)M ,   (s+l)M )    =    P(^M'
(S)

M)
+1
 (Modulo M) 

Equation (9) will now be proved.    From (7) and (8)  it follows that 

^Uj^l) is a multiple of M-^ and (M-^-l)  is a multiple of M-.    The product 

is therefore a multiple of M-jM- as shown in equation (10). 

(M^-l)   (M1u2-1)    =    0 (Modulo M) (10) 
Q 

p((s+l)M ,(s+l)M y  Cs+l)u1M2 + (s+l)u2M1 = p^(s)M ,(s)M )+ p(l,l) (12) U 

0 

0 

0 
P((S)M ,   (s)M )   =    s (Nfedulo M) (13) 

12 
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Equation (13) says that the kth coordinate of the point scanned at time s is 

obtained by reducing s modulo H . 

The scanning of a data block which has been symmetrized for the two- 

dimensional ODCT will now be considered in detail. The data block is extended 

using the double mirror symmetry defined in equation (14). 

The two-dimensional DFT of the extended data block defines the two- 

dimensional DCT of the original data block given in equation (15), with 

Nj-l N-l -1211 

Jr -(Ni-D j2= 
gÜ1J2)  e 

h\    h^i 
VL M 2 J 

(N2-l) 

Since the indices are only defined modulo M1 and M, respectively, the 

summation limits in (15) are really no different from those in (1). If the 

scan is defined by equations (3) and (4), then the symmetry of the corresponding 

one-dimensional sequence is shown in equation (16). 

f-p = gHp-jp = g(jirj2) = fp 

The toroidal scan of the extended data block - which is, of course, 

obtained by repeatedly scanning points of the original data block - is 

illustrated in Table 2 for a block size of 2 by 3. The numbers in the table 

indicate the scan order, while the letters indicate the data values. 

(14) 

(15) 

(16) 
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Table 2A - Toroidal Scan for an ODCT of a 2 by 3 Data Block 

F 
-7 

D 
-1 

B 
5 

E 
3 

C 
-6 

A 
0 

F 
-2 

D 
4 

ß 
-5 

D j   C D 
-4 ; 6 

J 

1 

F 1   E F 
2 -3 

i 

7 

N2= 3 

Nn = 2 

Table 2B - One-Dimensional Sequence Produced by a Toroidal Scan 

for an ODCT of a 2 by 3 Data Block. 

INDEX DATA VALUE 

-7 F  

-6 C    • 
-5 B    • 

-4 D    • 
-3 E 
-2 F 
-1 

0 
1 

D -i 
A 
D J 

2 F 
3 E 
4 D    • 
5 B    • 
6 C    • 
7 F   — 

0 

. 

0 

D 

: 

D 

Ü 

Ly 

D 
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The symmetry of a sequence produced by a toroidal scan of a data block 

symmetrized for a hybrid ODCT by EDCT will now be examined. The symmetrization 

for the hybrid two-dimensional ODCT by EDCT is described by the requirement 

that each pair of points of the extended data block, (j-J?) an^  CJiJo) have 

the same data value whenever the points satisfy equation (17). 

* * 
jj = j1   or   Ji 

+ Ji = 0 (Modulo M1)       (17A) 

A it 

j2 = j2   or   ^2 + h   =  "1 (Mouulo M2)       (17B) 

Equations (18) and (19) examine the point scanned k samples after 

(N,,N2) and k samples before the previous point (N,-1,N7-1). 

p(N1,N2) + k = P^+k^ , (N2+k)M ) (Modulo M) 

p(N1-l,N2-l) - k = p^-l-k)^^ , (N2-l-k)M \ (Modulo M) 

[ 

I 
n t(p(N1.N2) +k) = ^(^-1,^-1) - k) 

C-9 

(18) 

(19) 

The sum of the first coordinates for the points on the right-hand side 

of equations (18) and (19) is given in equation (20). The corresponding sum 

for the second coordinates is given in equation (21). 

(N1+k) + (N^l-k) = 2^-1 = 0 (Modulo M1)       (20) 

(N2+k) + (N2-l-k)    =    2N2-1   = -1 (Modulo Ny (21) 

It therefore follows from equation (17) that the two points have the 

same data value as shown in equation (22). 

Vr.rM -i M --n  - v\ C22) 
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If the toroidal scan is therefore used, starting at point (N-. ,N2) of the 

extended image, the resulting sequence will have the symmetry required for a 

one-dimensional EDCT. The toroidal scan of a 2 by 2 data block extended for 

the two-dimensional hybrid ODCT by EDCT is shown in Table 3. 

Table 3^ - Toroidal Scan of a 2 by 2 Data Block Examined for the 
Two-Dimensional Hybrid ODCT by ODCT. 

D C C D 
2 11 8 5 

B A A B 
6 3 o 9 

D C c D 
10 7 4 1  1 

Table 3B - One-Dimensional Sequence Produced by the 
Toroidal Scan of a 2 by 2 Data Block Symmetrized 

for a Two-Dimensional Hybrid ODCT by EDCT. 

INDEX DATA VALUE 

8 C 
9 B 

10 I) 
11 C 

0 A 
1 D 
2 D 
3 A 
4 C 
5 D 
6 B 
7 C 
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LINEAR CONGRUENTIAL SCAN GENERATORS FOR SYMMETRIZED DATA BLOCKS 

. 

A toroidal scan of an actual M, by ^ data block was shown by equation 

(9) to be obtained by successively adding 1 to each of the scan coordinates 

and reducing the sums modulo M1 and M2, respectively. 

The corresponding results when the data block is a symmetric extension 

of an ^ by N2 data block are shown in Table 4. Note that the kth scan has 

period ^ as a function of the one-dimensional scan index, so that only ^ 

successive values for the kth scan need be shown. It will be noted that, 

unlike the case of the linear congruential scan for the two-dimensional DFT. 

each scan coordinate changes by at most one from one scanned point to the nlct. 

Tablnf4^ ^ Scanning Function for the kth Coordinate 
of a Two-Dimensional DCT Symmetrized to Odd 

Length on the kth Coordinate 

INDEX 

0 

1 

jk  (M3DUL0 Mfc) jk REOJCED TO ORIGINAL DATA BLOCK 

0 

1 

0 

1 

I Nk-1 V1 
Nk-1 

Nk-1 

' 

%2 -1 

L -■■■■■ ■  
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Table 4B - Scanning Function for the Vch  Coordinate 
of a Two-Dimensional DCT Symmetrized to Even Length 

on the kth Coordinate. (M, = 2N,) 

INDEX    ^k ^DDUL0 Mfc)    J'k REDUCED TO ORIGINAL DATA BLOCK 

[J 

! : 

Nk-1 

N, 

Nk-1 Nk-1 

Nk-1 

2Nk-2 

2Nk-l 

-2 

-1 

1 

0 

The vertical and horizontal scan functions may be thought of as sampled 

triangular waveforms. During a complete sampling of the extended data block, 

M2 complete periods of the triangular waveform of period M, occur, and M, 

complete periods of the triangular waveform of period M?  occur. 

An analog version of the required scan may be obtained by sampling the 

integral of a square wave. A digital version may be obtained from an up-down 

counter with appropriate gating to reverse the count direction when necessary. 

. . 
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CONCLUSIONS 

It has been shown that two different types of two-dimensional DCT may 

be implemented as one-dimensional DCTs of an appropriate scan of the data 

block. For a hybrid ODCT by ODCT, a single complex filter of length 

(2N1-1) (2N2-1) is needed. For a hybrid ODCT by EDCT, either two complex 

filters of length ^(2^-1) or a single complex filter of length C2N1-1)(2N2)-1 

is needed. The required scan on each coordinate is a sampled triangular wave 

and thus may be easily generated and has no abrupt changes of the coordinate 

values. 

. 
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ON TUE EQUIVALEMCE OF ONE AND TWO DIMENSIONAL FOURIER TRANSFORMS 

By J. W. Bond 

ABSTRACT 

Two dimensional discrete Fourier transforms can be calculated by ordering an 

N| by N2 array of data and calculating a one-dimensional Fourier transform, 

provided N1 and N2 are relatively prime. This note shows how any isomorphism 

from the direct sum of the integers modulo Nj and N7 to the integers modulo 

NJN2 can be used to relate one and two dimensional discrete Fourier Transforms. 

Among the available isomorphisms it is always possible to choose one that has either 

a particularly simple input scan or a particularly simple output scan. Both the input 

and output scans can be particularly simple only when Nj and N2 differ by one. 

These simple scans consist of spiraling along a discrete torus. Such scans can be 

calculated with a pair of counters modulo the horizontal and vertical block size. 

INTRODUCTION 

Discrete Fourier transforms have been of considerable interest since the discovery of 

algorithms, known as Fast Fourier Transforms, which enable the rapid calculation of dis- 

crete Fourier transforms on digital computers. R. W. Preisendorfer** noticed that one- 

dimensional Fourier transforms of length N could be implemented as two dimensional Nj 

by N2 Fourier transforms when N j N2 = N with N] and N2 relatively prime and an iso- 

morphism of the integers modulo N is used onto the direct sum of the integers module N. 

and the integers module N-). 

Jeff Speiser and Harper Whitehouse realised that such an isomorphism could also be 

used to implement the two-dimensional discrete Fourier transform as a one-dimensional 

transform. They suggested a particular architecture which would enable the calculation of 

two-dimensional Fourier transforms at much higher rates than the FFT implementations 

which are usually used at present.* In this report it is shown that either the input scan or 

output scan utilized in this architecture can be chosen as a simple diagonal scan on the torus. 

*R. W. Means, Speiser, J. M., Whitehouse, H. J., et. al, Image Transmission via Spread Spectrum Techniques ARPA 

^QuarterlyTechnicalReport June I-October 1,1973, Order Number 2303 Code Number 3G10 
R. W. Preisendorfer, Introduction to Fast Fourier Transforms, Visibility Lab, University of California San Diego 
Spring 1967. ' ' 
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Furthermore, it is shown that both input and output scans can be chosen to be simple only 

when the array block sizes differ by one. 

THE DIAGONAL SCAN 

An N! by N2 scan is defined by specifying an ^ by N2 matrix S = (n-A, where jn- } is 

n I o < n < N1N2 - If. The result of a scan applied to an Nj by N2 array of data A = (a--) 

is to order the data corresponding to n^-. For example, the scan ( ? f ? ) applied to the 

d e f ) orders the data a, e, c, d, b, f. 

The simplest scan of interest in this note begins with 0 in the upper lefthand corner 

and numbers successively down the diagonal according to the rules shown in Figure 1. Fig- 

ure 2 contains examples which indicate that the diagonal scan covers an Nj by N2 array if 

and only if Nj and N2 are relatively prime. This result is established in Corollary 1 of 

Proposition 1. 

DISCRETE FOURIER TRANSFORMS AND DIAGONAL SCANS 
■ 

Suppose throughout this section that Nj and N2 are relatively prime. The top corner 

of the diagonal scan of an N j by N2 array has the form 

Later we will show that the integer in the j j, J2 spot of the diagonal scan is the integei 

between 0 and Nj^ - 1 congruent modulo Nj^ to jj Uj N2 +J2 ^ Nj, u^ U2 integers. 

Given real or complex numbers o ^jj <Ni - 1, o^jo^No - l,let 

fP = gÜi,J2)'wherep ~ th ul N2+J2u2Nj)moduloNlN2- Then if 

N^-l 

Fq  = 

F„, F, 

y.    fp exp (-i 27r pq/Nj N2), the sequence 
p=o 

0, . j, . .. , FNJN2-1 
is called the discrete Fourier transform (D F T) of the sequence 

fo.fl fN^-l 
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N- 
n+2 

N, 

n+3 

START n+1 / 

m 

.   m+1 

CONTINUATION OF SCAN WHEN 
(!,]) = (Nj - l.j) 

m+2    . 

.    m+3 . / 

CONTINUATION OF SCAN WHEN 
(i.j) = i,N? - 1) 

Inductive definition of scan 

Assign 0 to (0,0). If n has been assigned to (i, j) then n + 1 is assigned to (i + 1, j + D 

with i + 1 reduced to zero when i = N! - 1 and with j + 1 reduced to zero when j = N2 - 1 

provided an integer has not already been assigned to (i + 1, j + 1 )• Note the indices run 

from 0 to Npi or N-H rather than from 1 to N] or N2. 

Note also that if k is assigned to (ij) then i is the least nonnegative integer congruent 

to k modulo Nj and j is the least nonnegative integer congruent k modulo No- 

.1 

1 

1 

! 

Figure 1. Definition of the Diagonal Scan. 
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i. 

I. • 

N1=2      N2=4 

'0 2 

1 3 

i 

c 

li: 

/ 

v; 

5 1 17 13      9 

10 6 2 18 14 

15 11 7      3 19 

Nj  = 4 N2 = 7 

0      8    16 24 4 12 20 

21      1      9 17 25      5 13 

14    22      2 10 18 26      6 

15    23 3 11 19 27 

N,  = 3     N-, = 6 

/ 

Note   The diagonal scan exhausts an N j by N2 array if and only if Nj and N2 are relatively 

prime. Indeed the diagonal scan naturally defines an isomorphism from the direct sum of 

integers modulo Nj and N2 to the integers modulo the least common multiple of N j and 

N2- 

Figure 2. Examples of the Diagonal Scan. 
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Let 

q = kj N2 + k2N1,k1,k2 integers, 

then 

F k,N2 + k2N] 

Nrl   N2-I 

= 2-f    2-f fJiUiN2+^u^Nl eXp(("i27r/NlN2)(jlulN2+^u9Nl)(klN? + k?N])) 
jpO   J2=0 

since exp (-i 27r/N1N2) NJN2 = 1, the exponents can be reduced modulo Nj^. 

Since the diagonal scan has 1 assigned to (1,1) we have uj^ + u-^Nj s 1 modNiN^. 

Conclude from multiplication by N^ from this equation that u   N^ = N9 mod N^ 

and by N j that u2 N j s N j mod N. N     Thus 

a1u1N2+J2U2N1)(k]N2 + k2N1) = jjkjUj N2+J2k2U2N2 

= (Jik1N2+J2k2N1)modN]N2. 

Therefore 

1^2 

'k]N2 + k2Nl 

Nj-1   N2-I 

' 2-s    2-s  (fJiUiN2+J9U 
ji=0   j9=0 

jlulN2 +J2U2N1) eXP (("i 27r/NlN2) (Jik,N2 +J2k2N,)) 

and the n 

](0,0) " F0'---'G(k1)k2) - Fk.N-^ + k^ |i>2 "■" K2N1 

is the two-dimensional DFT of g 
(0,0)'---'8(k1,k2) g(Nr 1,N2- !)• 

0 
0 
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andG 

To see this simply note that the previous equation when written in terms of z,-   ■ 

(k,,^) is 
1J2) 

Nrl   N2-l 

G(ki,k2) = 2^   ZJ   80i,J2)exp[-i27rÜlkl/Nl+J2k2/N2)] ■ 
JpO    J2=0 

The output scan associated with mapping (kj, k2)^ (k^ + k2N1) is described in Fig- 

ure 3. Examples of input diagonal scans and output scans are illustrated in Figure 4; the 

output scan appears to be simple when Nj and N2 differ by 1. That this is the only case 

when the output scan is simple is discussed in the concluding paragraphs of this report. 

Note that the output scan can be viewed as proceeding on diagonals perpendicular to the 

input scan when N j and N2 differ by one. 

THE GENERAL THEORY 

Let ZN denote the additive group of residue classes modulo N. An element of ZN 

consists of all integers that differ by a multiple of N. 

The direct sum of two groups Z^ and Z^ is the group written Z^ + Z^ consisting 

of pairs of elements one from Z^ and one f.om Z^ with component addition.2 

The group ZN] + Z^ and ZN1N2 
are isomorphic (i.e., structurally the same) if and 

only if Nj and N2 are relatively prime. The clearest way to see this is to exhibit a generic 

homomorphism from ZNl + ZN2 into ZNl N2 and show that some of the homomorphisms 

are onto if and only if Nj and N2 are relatively prime. 

Any homomorphism ^ of ZNi + Z,^ into Z^j^ is completely determined by 

<// (1,0) and .// (0, 1) for !// (jjj^ = jj i// (I, 0) + j2 .// (0, 1). Furthermore Nj i//(l, 0) 

= ,// (Nj ,0) = ,// (0,0) = 0 and N2 ^ (0,1) = ^ (0,N2) = ^ (0,0) = 0 because any homomorphism 

must take (0,0) onto 0. If we interpret the residue classes 0 (1,0)'and ^ (0,1) as integers 

between 0 and NjN2 - 1, then N, ^ (1,0) and N2 ^ (0, 1) must be divisible by N^ so 

that ^(1,0) = u1N2and^(0,l) = u2N1 for some integers U! and u2 between, respective- 

ly, 0 and Nj - 1 and 0 and N2 - 1. Therefore ^ü1J2) = Jlu1N2+J2u2N1 for O^jj^N! 

- 1, 0 < j2< N2 - 1. The term ^ will be onto when the J1u1N2 + j^^! reduce Modulo 

N^ to all the integers between 0 and N1N2 - 1. 
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If the input scan is the diagonal scan 

mui .1 IIUJIII inu. PII jii«iijKipijuiinBMiiiB|»j  i 

1 

/ 

0     Li^N, 

uiN2 

./ 

t 

then the output scan is 

/ 

0   Nj 

!(N|+NV) 

./ 

Figure 3. The Output Scan Associated with an Input Diagonal Scan. 

Consider the set S = |j1U|N2+J2U2N1,.i1,J2 integers} and let d be the least positive 

element of S. It is easy to show that d is the greatest common divisor of U|N-), u^Nj. 

Suppose that d = ia+jb is the least positive integer in jia + jb I i, j integers} and d did 

not divide a. Then a = kd + r with 0 < r < d (the division algorithm). So r = a - kd = a 

- k (la + jb) = a (1 - ki) + (-j) b, which is an element of S, contradicting the choice of d. Like- 

wise d divides b. Next if d' divides both a and b then it divides every sum ia + jb, hence it 

divides d. Therefore d is the greatest common divisor of a and b. 

. 

Ü 
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INPUT OUTPUT 

Nj = 5      N2 = 7 

/0 15 30 10 25 5 20\ 

'21 1 16 31 11 26 6 

7 22 2 17 32 12 27 

28 8 23 3 18 33 13 

\l4 29 9 24 4 19 34 / 

I 0 5 10 15 20 25 30 

7 12 17 22 27 32 2 

14 19 24 29 34 4 9 

21 26 3i 1 6 11 16 

\28 33 3 13 18 23 / 

Nj = 5  N2 = 6 

/ 

0 25 20 15 10 5 

6 1 26 21 16 11 

12 7 2 27 22 17 

18 13 8 3 28 33 

\24 19 11 9 4 29 
/ 

/ 0 5 10 15 20 25 

6 11 16 21 26 1 

12 17 22 27 2 7 

18 23 28 3 8 13 

\24 29 4 9 14 19i 

Figure 4. Examples of Input Diagonal Scans and Associated Output Scans 

If we reduce the elements of S modulo N1N2 we will get all integers between 0 and 

NJN2 - 1 if and only if there exists e such that de ^ 1 mod N1N2) i.e., d is a unit in the 

residue class modulo N1N2. This is immediate when we observe all the elements in S are of 

the form kd, k an integer. Ifkd^l mod N^ for some k, then every integer can be ob- 

tained between 0 and N1N2 - 1; conversely, if 1 is not of this form, then 1 is not in the 
image. 

PROPOSITION 1 

Let i/' : ZNi+N2 -► ZNiN2 be a homomorphism. 

Then i// has the form: 

tf'CJi.J!) = j^j^+j^N, with the common divisor of UJN2 and ujN] in the 
integers is a unit in the intergers modulo NjN^ 
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Proof 

We have shown that any homomorphism has the above form, but we have not shown 

that V/ is well defined, i.e., ifj, -j'j =kN, and j2-j'2 = k'^ then i//(jpjo) - i//(j'j JS) 

^k'T^Nh. But, (//(j,,]^)- i//a'ij'2) = JlulN2+J2u2Nl " Ci'iU]^ + j^i^P 

= Üi - j"1)u,N2 + a2-J'2)U2N1 =kN1u1N2 + k'N2U2N] = (kuj +k'u9)N,No. 

Corollary 1 

ZN, +ZN-, isisomorphictoZN N   if and only if Nj and N2 are relatively prime. 

Proof 

Ifd> I divides N| and N2 then dk = 0 mod N|NT wihO<k<N]NT - 1. Note then 

thatifdk'H= 1 mod NjN;, for some k", dk'- 1 = k" N,N2 and hence dkk'- k = kk" NjN-,, 

i.e., k"N ,N2 - k = k k" NJN2, or k = 0 mod N , N^, a contradiction. 

Now we wish to work out the relationship between scans and homomorphisms. Sup- 

pose i// is a homomorphism from ZN   + ZN   into ZN N . 

Then 

/ H0,0) 

^(1,0) 

^(O.l) i//(0,N2-l) 

0(1,N^1) 

\ 

y ^(Nj-1,0) 0(Nrl,l) . . . ^(Nrl,N2-l)  / 

is the associated scan. 

PROPOSITION 2 

The diagonal scan defines a homomorphism from ZL onto ZN   + ZN   where L is the 

least common multiple of N| and N9. 

Proo^ 

Note by the definition of the diagonal scan of an N ] by N9 array shown in Figure 1 

every element of the first row is divisible by N| and every element of the first column is 

divisible by N2. The assignment of integers continues until the bottom corner is reached so 

! 

u 
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: 

that the next spot is zero. Then if we let L-l denote the entry in the bottom corner L must 

be congruent to 0 for the scan to define a homomorphism. Since L is congruent to an ele- 

ment in the first row and first column it is a common multiple of N, and N2. Therefore 

L > the least common multiple of N j and N?. 

Next consider what pairs (j!, J2) can be assigned integers by a diagonal scan. Let d be 

the greatest common divisor of Nj and N2. Note that the integers reached come from (k, k) 

with k reduced modulo Nj in the first index and k reduced modulo N2 in the second index. 

Therefore if (j j, J2) is assigned an .,.. .ger, we have Cj j, j2) = (k+k^, k+k2N2) for some 

integers kj and k2; so that jj -j2 = kjNj - k2N2 = k3 d. In particular, the only integers 

reached in the first row (i.e., when jj = 0) are multiples of d and in the first column are 

multiplesofd. More generally, the diagonal only fills out 1/d of the array. Therefore at 

most 1/d of the locations in an array can be covered by the scan. Since N1N2/d is the least 

common multiple of Nj and N2, we have L < the least common multiple of Nj and N2. 

Thus L is the least common multiple of Ni and N2. 

Next, we work out the relationship between discrete Fourier transforms and the 

isomorphisms we have been constructing. It will turn out that the mappings under discus- 

sion must be isomorphisms. 

If ^ is any one to one mapping of Z^ + Z^ onto Z^^ then it induces a mapping 

^from the functions indexed by Z^^ to those indexed by Z^ + Z^ by defining 

^*%1,k2) =^(kI)k2)- 

Let DFT1 denote the one dimensional Fourier transform which maps a function in- 

dexed by ZL into functions indexed by ZL. In particular 

L-l 

Fq  = DFTq (0   = ^ fP eXP ^ 27r/L) P^)' 
p=0 

D-ll 
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. 

Let DFT- denote the two dimensional Fourier transform which maps a function g 

indexed by ZN   + Z^ into a function indexed by ZN   +ZN .  In particular, G (kj, k2) 

= DFT2
(kl)k2)(g) 

Npl   N2-\ 

= 2   £ S(Jiüo)expl-i27r(jlkl/Nl+j2k2/N2>l 
jpO   j2=0 

N,-!  N2-I 

E^ g exp((-i 2^^^) (kn.NT + kojoN,)) 
n ^ri CJ1J2) jpO   J2=0 

The relationship between DFT1 and DFT" is summarized in the following proposition. 

PROPOSITION 3 

a) If i// and ^ are on-to-one maps from ZN   + Z^^ onto ZN N   such that the diagram 

. . 

DFT1 

V V 

DFT^ 

commutes then; 

1) Ni and N-» are relatively prime and 

2) 1//and ip are isomorphisms of Zjyj   + Zj^   onto Zja ^ . 

b) If ii is any isomorphism of ZN   + ZN^ onto ZN N   then there exists an iso- 

morphism ^ so that the diagram 

: 

commutes. 

V 

DFT1 

DFT- 
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c) If^Ö,iJ2) = JlulN2+J2U2N1 then 

^(kl.k2) = k1v1N2 + k2v2N1withu1v1N2 + u2v2N]  = i. 

Note that the commutativity of the above diagrams is singly the .athe.atical way to 

D^   JI    !       (8)]f'0rDFTlca"b-~edbyDFT2 ^.^^ 
N l M ' " 3 ^ ^ ^^ ^—^ - only possih. when N   an   N2 are relatlveIy prime and the ^^ of ^ ^ ^ 

of residue classes under addition. 

Before proving the proposition we prove the following Lemmas. 

Lemma 1 

If 

f 

i 

DFT1 

DFT 

^ 

then     ^Oi.j^^k^) SJlklN2+J2k N      odN 
'lN2 

Proof 

That the diagram commutes means that 

G = DFT2(^*f) = ^tDFTl(f)] 

To calculate DFT2 (^ f) = , [DFT1 (f)] ^.^ ^ ^^^^ 

DFT2(kl)k2) = G(k]>k2) 

Nrl  N9-l 

mapping 

Zg   S   ^^ÜlJ^^^^Nl^Ö^j^-fj^Nj) 
J2 

Nrl  N9-l 

^^ JpO   j2=0 
^(j 

1,J2)exp(-i27r/N1N2)ö1k1N2+j2k2N1) 
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To calculate y [DFT1 (f)] let G = ^*F. Then 

NjN^-l 

= F (k^kj) " r^(k1,k2) =     Y^     rkexp(-i27r/N1N2)lp(k1,k2)p 

p-0 

Nj-1  N2-l 

= 2^   2^  f^(jij2)exp(-i27r/N1N2)^(k1,k2)i//(JiJ2)- 
jpO   j2=u 

The two expressions are the same only if ip (kj, k2) ^ ü] J?) — Jik]N2 +j2k')Nj mod 

N|N2forallJiJ2,k],k2. 

Lemma 2 

\f\pij\,}2)V(k\> k2) = GikiN2+j2k2N|)mod NjN2 for all integers j|,j2, k|,k2 

then \jj and $ one to one mappings of Z^   + ^^   onto Z^ ^^ implies that \p and y are 

isomorphisms. 

Proof 

For (j'j J2) such that ^ (j',, j'2) = 1, ^ (k, + k',, k2 + k'2)=i\ (kj + k',) N2 + j'2 (k2 

+ k'2)N1=(j']k1N2+j^k2N,) + (j'1k'1N2+j^k'2N1) = ^(k1,k2) + ^(k'1Jk'2)modN1N2. 

Likewise for v? (k'j k'-)) such that f (k'j, ko) = 1 it follows that ^ is a homomorphism. 

Lemmas 1 and 2 complete the proof of part (a) of proposition 3. To prove b, note 

that if i// (j j, j-)) - j i u j N9 + J^IHN |, then the existence of $ is equivalent to the existence 

of V] and v2 such that ^ (k|, k^) = kjVjNi + kov2N| and 

(j|UjN2 + JTii-iN]) (k]V|NT + koVoN]) = üik|NT + JTkjNj) mod NJNT . 

Let Vj and v2 satisfy UJVIN-I + uov^N] = 1 MOD NJNT which also has a solution 

since U|N2 and u2N j have greatest common divisor in the integers which is a unit in 

Zxj w . If v'j and v^ solves u 1 v'jN^ + iiov^N] = d, d the greatest common divisor of UjN2 

and UoN j, then v j = e v'] mod N | N2 and v-) = e v^ mod N ] N-» where de = 1 mod N jN2 

will provide a solution to U]V|N2 + LI^V^N] = 1 mod N]N2. 

: 

.. 

. 
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From UjVjN2 + U2V2N j = 1 mod NjN2 it follows from multiplication by Nj and N2 

that U2'V2^\   =Ni mod N1N2 and ujVjN2   =N2 mod Nj^. These congruences allow us 

to calculate modulo NjN2 

aiu1N2+J2U2N1)(k1v1N2 + k2V2N1) = jjk1u1v1N22 + J2k2U2v2Nl2 

= JlkiN2+J2k2N1 , 

which completes the proof of proposition 3. 

There are two ratural symmetries in the scans associated with an isomorphism. These 

arise because 

»/'(Jl + 1J2+ 1)->/' (J1.J2) = U1N2 + U2N1 

and 

i 

i r 

i/'Ül + IJ2- D-»/' (Ji,J2) = U1N2"U2N1 

are independent of (j 1, J2)- 

The simplest possible scans occur when one of these two differences is one. 

Note that if 1// (}\ + l,J2+ I)-i' (}\,}2) = " then vj = 1, V2 = 1 and 1/3 (kj^) 

= kjN2 + k2Nj defines the output scan so that the output scan is only simple when N| and 

N2 differ by one since \// (jj + IJo'^'^ÜlJ?)"* '• This results because for all cases 

of interest Nj + N2 is small composed with NiNn. U1N2 - U2N = 1 then vj = 1 V2 = - 1 

provides a solution and »p (ji J2) = ^1^2 "^2^1' an^ ^ere t^e on^y ^me that ^ Cij + 1> 

J2 + 1) - >// Üi, J2) = * 1 is when N1 and N2 differ by one. Therefore, the input and output 

scans are simple only when N| and N2 are both relatively prime and differ by one. 
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From U]VjN2 + U'^N] = 1 mod N jN2 it follows from multiplication by N j and N2 
9  j 

that U2V2NJ   =Nj mod NjN2 and UJVJN2   =N2 mod NjN2. These congruences allow us 

to calculate modulo NjN2 

ü1u;N2+J2U2N1)(k1v1N2 + k2V2N1) s j1k1u1v1N22 + J2k2U2V2N1
2 

- JlklN2+J2k2Nl ' 

which completes the proof of proposhion 3. 

There are two natural symmetries in the scans associated with an isomorphism. These 

arise because 

'/'(Jl + 1J2+ n-'/' (J1J2) = U1N2 + U2N1 

and 

I 

L 

»/'(Jl + IJ2-1)-'/' (J1J2) = U1N2"U2N1 

are independent of (j 1, ij)- 

The simplest possible scans occur when one of these two differences is one. 

Note that if 1// (j] + IJ2 + 1) - ^ Ö11J2) =  1 then Vj = 1, V2 = I and $ (kj, k2) 

= kjN2 + k2N| defines the output scan so that the output scan is only simple when N| and 

N2 differ by one since \p (j| + 1, J2 - 1)- 'Z' (i\,}2) = ± i- This results because for all cases 

of interest Nj + N2 is small composed with N|N2. ujN2 - U2N = 1 then V| = 1 V2 = - 1 

provides a solution and tp (Ji,J2) = Jl^2 "^^l' an^ ^ere ^e on^y ^me t'lat ^ Ol + l> 

J2 + 1) - t/' (J 1, J2) = * ^ is when N j and N2 differ by one. Therefore, the input and output 

scans are simple only when Ni and N2 are both relatively prime and differ by one. 
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ABSTRACT 

A new signnl processing sensor is possible using a combination of charge 

transfer devices and signal processing concepts which simultaneously measures 

the incident optical signal and performs a linear transformation upon that 

signal. This paper will discuss possible implementations and the types of 

transforms which may be performed. It appears possible, at this time, to 

perform the Discrete Fourier Transform in a linear imaging device. 

Extension of the concept to a two-dimensional array may be feasible. 

I 
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INTRODUCTION 

In signal processing optical images often constitute one of the many forms which signals 

may take. These images are typically processed either optically by means of moving trans- 

parencies or optical diffraction cells through which the image passes prior to its detection by 

a photodetector, or the optical signals are converted to electrical signals by means of image 

sensors and these electrical signals are subsequently processed electronically. 

In this paper a new optical sensor is proposed which combines the functions of signal 

processor and image sensor in a single photosensitive silicon Charge Coupled Device (CCD). For 

simplicity of description and ease of fabrication a one dimensional signal processing sensor 

is described. However, in many of its applications a two dimensional array of one dimen- 

sional sensors would be required. In principle, these two dimensional arrays can be formed 

by the juxtaposition of a number of one dimensional arrays on a single silicon chip with 

common clocks to all CCD registers. 

ARCHITECTURE 

Both 500 X I and 100 X 100 photosensitive silicon CCD arrays have been commer- 

cially fabricated'using buried channel techniques with small charge transfer inefficiencies at 

clock rates in excess of 1 MHz. Using similar techniques, it appears feasible to simultaneously 

control the amount of photogenerated charge and its transverse transfer to the CCD shift 

registers. Successive iteration of the charge generation and transfer corresponds to a weighted 

superposition of lagged versions of the image and thus corresponds to a discrete convolution 

of the ima^e as sampled by the spatial structure of the sensor with the time function repre- 

sented by the transfer signal. Thus, in a single structure, are combined the functions of image 

sensing, spatial to temporal multiplexing, and convolution. A block diagram of a signal proc- 

essing array is shown in Fig. 1. The discrete nature of the CCD image sensor is indicated by 

the boxes indicated by "array", the controlled transfer of the generated charge is indicated 

by "multiplication", and the CCD registers are indicated by "delay". The serial output of 

the signal processing array thus occurs at the clock rate of the CCD registers which may not 

be regular. 

1. Pairchild Camera & Instrument Corp.; Syosset, New York. 
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Since convolution and correlation are both basic to signal processing, their interpre- 

tation as discrete spatial operations will be reviewed. The cross convolution and correlation 

of two continuous functions are given by equations (1) and (2) respectively: 

(a)  convolution       [f * g] (x) f(i7) g(x-Tj) drj 

(b) correlation |f®g] (x) =     /     f(i?) g(x+T?) drj 

(1) 

(2) 

The corresponding relafionships for discrete functions may be found by replacing 

the integrals by products as given in equations (3) and (4): 

gl n    = Z fn 8n- 
k 

(b) correlation [f®gln    =^  fn 8nH-k 

(a)  convolution       [f*g],,     :  /_, ^ 8n-k 
k 

(3) 

(4) 

The value of the discrete convolution or correlation may be viewed as the coefficient of Zn 

in the polynomial products 3' and 4'  respectively. 

Thus 

n \ e / \ITI / 

(3') 

and 

y (f®g)nz
n = 

s e 

v:tlem rill' (4') 

As an example the convolution and correlation of the binary sequence 1,1,1.1, with a non 

negative sequence 1,1,1,1 is given below where ovcrbar denotes negation. 

, 
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(a) convolution       1,2,1,2,1,0 1 

(b) correlation 1,0,1,2,1,2,1 

Due to the representation of the sampled variable by the amount of minority charge 

.n the potential well induced in the silicon, only numbers of a fixed sign can be represented 

Tins presents a problem when it is desired to convolve the data with a sequence having both 

positive and negative terms. Th.s difficulty does not arise in ordinary image sensors since 

snnple sensing of the light intensity requires only numbers of the same s.gn. Unfortunately, 

the solution which is used in signal processing applications of CCD of adding a fixed bias of 

half the maximum value of the input signal is difficult for a signal processing image sensor, 

since the bias signal would then need to be optical at half the intensity of the maximur 

optical input. However, by designing an image sensor with two CCD registers and bidi 

tional charge transfer, it is possible to sense the difference between the charge in the two 

registers, and in this way, represent both positive and negative numbers. 

Two applications of this proposed signal processing image sensor are considered as 

examples of its potential use. These are real time cross correlation or filtering, and transform 

.mage encoding. Cross-correlation uses spatially-uniform time-varying illumination. Trans- 

form image encoding uses a spatially-varying illumination which is constant during this 

processing interval. 

An optical cross correlator or optical filter is shown diagrammatically in Fig. 2   The 

input signal f modulates the light output from a photo diode one focal distance in front of a 

converging lens. The collimated light then falls on the signal processing image sensor whose 

transfer gates are controlled by the signal g. The output from the sensor will then be the 

cross correlation of the input signal f with the transfer gate signal g, and will be available in 

real time at the same clock rate as the input signal f. This is an improvement proportional 

to log2N in the rate of computation over evaluation by "in place" digital computat.on using 

the "fast convolution" algorithm on a computer with the same cycle time as the input signal 
sample rate. 

A transform image encoder is shown diagrammatically in Fig. 3. An input object is 

at infinity before a converging lens of focal length d. An image is formed a distance d behind 
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the lens on a signal processing image sensor. If a signal g is applied to the transfer gates of 

the Signal Processing Image Sensor (SPIS), the cross correlation of the image and the signal 

g will be obtained as an output, provided the image is stationary for the duration of the 

signal f. 

Proposed Solution 

The signal processing concepts presented and illustrated above may be implemented 

by an idealized structure shown in Fig. 4. The suggested device configuration will allow the 

controlled routing and algebraic summation of analog signals. The structure consists primar- 

ily of: 

a. a sensing array of MIS capacitors, called photo-gates, 

b. two CCD shift registers on either side of the line sensing devices, 

c. a dual transfer gate system to control the direction in which the signal charge 

flows out from the sensor area. 

Whea an image is projected on the sensing elements, electron-hole pairs are generated. The 

electrons (in a p-type semiconductor substrate) will be normally recombinea within a diffu- 

sion length from their generation sites in the deflection regions formed under the photogates. 

By independently adjusting the surface potential under the transfer gates, one is able to limit 

the diffusion and to transfer the stored charges from under the sensors (e.g., photogates) 

onto the desired CCD register for subsequent mathematical operations. 

. 

Binary Convolution 

The implementation of a discrete convolution will now be considered in detail. The 

two sequences can be easily represented (1) as the input signal ej(t) in the form of charge 

packets generated and stored under each sensing element and (2) as a digital pattern of 

. 
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narrow pulses Wk applied to the transfer gates. The convolution of these two functions or 

sequences yields a third one which is mathematically described as the superposition of the 

effect of past input excitations to account for the present output. If one assumes that the 

device under consideration has not reached saturation, i.e., the different potential wells are 

not completely filled, the output is expressed directly in terms of an explicit summing opera- 

tion upon the input. Thus, the present value of the output is a weighted sum over the history 

of the input ejCt). 

The explicit input-output relationship is: 

e0(t) = [W0ei(t) + W1ei(t-T) + W2ei(t-2T) + ...] 

or in other notation 
N 

e0(t) =   2 Wkei(t-kT) 
k=o 

where Wk is the weighting function associated with the kth position of the pulse in the tim- 

ing sequence. In the present case, the weights Wk are treated as binary numbers + or - I. 

The output is thus a weighted sum of the image samples with coefficients + or - 1. 

The fundamental building block shown in Fig. 4 provides an output signal e0(t) as 

expected from equation (1) - that is the product of the sensing element signal and a param- 

eter set by the digital timing sequence applied to the transfer gates and is algebraically summed 

at the output of the CCD shift registers to account for past excitations. The convolution 

operation is thus seen to be resulting from a series of shifting, multiplication by a weighted 

constant and summation. This is illustrated in Figure 5 which shows how an image is con- 

volved with a digital pattern. The four images a, b, c, and d which constitute the input signal 

CjCt) illuminate four adjacent photogates as depicted in Figure 6(a). The result of 

applying the weighting sequence Wk described by the digital pattern   1,1,1,1 is shown 

in Fig. 6(b). The weighting sequence is decomposed into two timing sequences to be 

applied appropriately to the transfer gates. The resulting output convolutions or cor- 

relations are shown in Fig. 6(c) for two assumed illuminations a=b=c=d=l and 

a=b=d=l,c=0. 

E-7 

■ ■....... ... ^...i. ,,.^..,,.^»^a>^:.;......»..«^^^ai.,.-^^  ■ ....^;...,..-II^-..-^.,.,■„■^..„^j^i^,^..^^.,.^.^,^..-.-.-   .;!.„..tl,,, ■ .■|lil|.^^.uij-^t.iJ»^a^^.j...J.i^m^.aaa.j 



Amplitude-weighted Convolution 

The above example dealt with binary patterns which were defined by the timing dia- 

gram relative to both transfer gates.  Integration time or pulse position affect the number of 

generated carriers which are stored in the sensing MIS elements.  Pulse width and pulse ampli- 

tude control the partial or total transfer of the carriers from the sensor potential wells into 

the CCD shift registers. Thus, the mechanism by which the charges spill over into the CCD 

shift registers for signal processing is controlled hy one or more of these parameters: integra- 

tion time, pulse width and pulse amplitude: 

a. The integration time is the time needed to generate sufficient number of carriers 

to adequately characterize the object (signal) to be measured.  During integration time, the 

Photogate is energized, thus forming a depletion layer under it to attract, capture and hold 

the photon generated minority carriers. The number of these carriers is proportional to the 

integration time, the intensity is the signal and the illuminated area. 

b. The surface potential established under the transfer gate electrode is proportional 

to the pulse amplitude applied to the gate.  Narrowing the pulse width with or without an 

amplitude reduction results in restricting the flow of charges out from their storage area. 

Widening the pulse and/or increasing the pulse amplitude has the effects of totally emptying 

the MIS depletion regions. 

A crucial deficiency appears in mechanism (b) when compared to the first one as it leaves a 

fraction of the signal in the sensor area. This unused portion of signal when added to subse- 

quent signals, will interfere with the desired device characteristics. There is however a means 

to remove the left-over charges: by negatively b.asing the photogates to bring them into accu- 

mulation. During the process of accumulation, majority carriers (holes) are drawn to the 

Si/SjO. interface to be recombined with the signal carriers (electrons). The mechanism of 

recombination is however slow in a high carrier lifetime material as is the usual case for charge 

transfer. 

Mechanism (a), when implemented yields a more efficient operation as it transfers all 

available charges to the processing CCD's. Assuming that the saturation level of the potential 

under the photogates is not reached, one is able to adjust the fraction of the well to be filled 

. 

] 
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by controlling the integration time, i.e. by adjusting the pulse position between points t, and 

t2 of Figure 7. Subdividing the integration time into "n" equal time intervals, the signal 

|      ., ei(t) can be "insured down to "n" levels. The error will be commensurate with the 

proportion of carriers generated during the dead time from tj to t2 which should 

therefore be at most one hundreth of the integration time in order to provide tap 

weights accurate to one percent. The emphasis is thus on pulse position variation 

to control the level of the sensed signal down from its maximum amplitude. The 

four images a,b,c,and d which constitute the input signal ejCt) illuminate four ad- 

jacent photogates as depicted in Fig. 8(a). The result of applying the weighting 

sequence Wk described by the digital pattern  Xfrjkfr is shown in Fig. 8(b). 

The weighting sequence is decomposed into two timing sequences to be applied 

appropriately to the transfer gates. The resulting output is shown in Fig. 8(c) for 

the assumed illumination a=b:=c=d=l. 

I. 

f ■ 
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Figure I.   Block Diagram for a Signal Processing Array 
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OPTICAL INPUT 

SPATIALLY UNIFORM TIME VARYING 

I APPLICATION 

OPTICAL CORRELATOR 

LED SENSOR 

[f®g]n 

Figure 2.   Configuration for an Optical Correlator/Filter 
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