
IMAGE TRANSMORPHING WITH JPEG

Lin Yuan and Touradj Ebrahimi

Multimedia Signal Processing Group, EPFL, Lausanne, Switzerland

ABSTRACT

Picture-related applications are extremely popular because

pictures present attractive and vivid information. Nowadays,

people record everyday life, communicate with each other,

and enjoy entertainment using various interesting imaging

applications. In many cases, processed images need to be re-

covered to their original versions. However, most approaches

require storage or transmission of both original and processed

images separately, which result in increased bandwidth and

storage resources to be used. In contrast, in this paper, we

present a JPEG transmorphing algorithm, which converts an

image to its processed version while preserving sufficient

information about the original image in the processed im-

age. It does this by inserting partial information about the

original image in the application markers of the processed

JPEG image file, so that the original image can be later re-

covered. Experiments are conducted and results show that the

proposed method offers a number of attractive features and a

good performance in many applications.

Index Terms— JPEG, Transmorphing, application marker,

image compression, data hiding, privacy protection, image

editing

1. INTRODUCTION

With the popularization of high-quality digital cameras, smart

mobile devices with high-resolution cameras, as well as user-

friendly imaging and social networking applications, taking

pictures, then editing and sharing, have become part of ev-

eryday life for many. Popular imaging applications include

Photoshop (professional graphics editor), Picasa (integrated

image organizer), Instagram (photo sharing), Snapchat (photo

messaging), and tons of image-related games.

The success of digital imaging applications is in part due

to the development of effective standards such as JPEG [1]

and JPEG 2000 [2]. JPEG is one of the early standards and

is de facto the most popular compression format to store or

transmit images thanks to its efficiency and low complexity.

JPEG 2000 is a more recent standard for still image coding,

offering efficient image compression, progressive transmis-

sion, seamless scalability, region of interest coding, and error

This work has been conducted in the framework of the Swiss SERI

C12.0081 and Eurostars ToFuTV.

resilience. However, even though JPEG 2000 outperforms

JPEG in terms of compression efficiency, JPEG has remained

the most popular format in a large variety of consumer imag-

ing applications.

JPEG also offers a solution to tag images. JPEG/Exif (Ex-

changeable image file format) [3] is a popular way for digital

cameras and other photographic capture devices to tag cap-

ture and location related metadata about photos. JPEG/JFIF

(JPEG File Interchange Format) [4] is the most popular for-

mat for storage and transmission of images on the World

Wide Web. The two formats are often not distinguished from

each other and are simply referred to as JPEG each with their

own application segments (APP0 for JFIF, APP1 for Exif) in

the header of a JPEG file. Recently, a new standardization

activity called JPEG XT [5] has been initiated, addressing

the needs of photographers for higher dynamic range (HDR)

images [6, 7, 8] in both lossy and lossless coding [9, 10]

while retaining backward compatibility to the established

legacy JPEG decoders. The central idea underlying the back-

ward compatible coding of HDR content is to encode a low

dynamic range version of the HDR image generated by a

tone-mapping operator using a conventional JPEG encoder

and to insert the extra encoded information for HDR in an ap-

plication marker. Adopting this idea, any useful information

can be embedded in the application markers of a JPEG file.

In many situations, a modified image needs to be recov-

ered to its original version. The typical solution is to keep

both the original and the modified versions of the image, re-

sulting in an increase in needs for resources and careful man-

agement efforts. In this paper, we propose a more efficient so-

lution that preserves sufficient information about the original

image embedded in the modified version allowing its recov-

ery. Two experiments are conducted to assess the efficiency

and usability of the proposed algorithm.

The rest of the paper is structured as follows. Section 2

describes the proposed algorithm in detail. Then Section 3

describes the conducted experiments and the analysis of ex-

perimental results. Finally, Section 4 concludes the paper and

discusses potential future work.

JPEG

Transcoder

Mask matrix Sub-image Morphed JPEG image

Original image

Processed image

−

Sub-image embedded

in APPn Markers

T

Reconstructed image

0!0!0!0!0!0!0!0!0!0!

0!0!0!0!0!0!1!1!0!0!

0!0!1!1!0!1!1!1!1!0!

0!1!1!1!1!1!1!1!1!0!

0!1!1!1!1!0!1!1!0!0!

0!0!1!1!0!0!0!0!0!0!

0!0!0!0!0!0!0!0!0!0!

JPEG

Transcoder

Threshold t

JPEG

Transcoder

Fig. 1. JPEG Transmorphing algorithm.

2. JPEG TRANSMORPHING: THE ALGORITHM

The architecture of the JPEG transmorphing algorithm is il-

lustrated in Fig. 1. The whole algorithm consists of two pro-

cesses: transmorphing and reconstruction.

Assume that a digital image has been processed by one

or a series of image editing tools applied either to the entire

image or on specific regions in it. A typical example could

be masking a human face in an image by replacing it with

a smiley face. We define a JPEG transmorphing algorithm

composed of the following operations:

Generation of mask matrix First, the difference between

pixel values of the original and modified images is computed,

and a binary image is generated by applying any adequate

threshold. The elements 1 in the binary image are dilated to

match 16 × 16 Minimum Coded Unit (MCU) blocks bound-

aries and then the binary image is subsampled by the factor

of 16 such that each element points to a corresponding MCU

block. The resulted binary image is referred to as mask ma-

trix, in which elements 1 denote the regions or MCU blocks

where the image is modified, noted as modified regions or

modified blocks. The generation of mask matrix is performed

for every color component in the image (e.g., RGB) followed

by merging their corresponding mask matrices with logical

OR operations. In many cases, calculation of mask matrix

can be much simplified as the applications may know exactly

the modified image regions. For instance, in a mobile appli-

cation, a user can select and modify certain image regions by

finger touch and the application can record the coordinates of

touched points and would be able to generate the mask matrix

easily.

Creation of sub-image Based on the mask matrix, a sub-

image of the original image corresponding to the modified

regions is created and encoded with JPEG, by assuming all

DCT coefficients outside of the modified regions as zero. If

the original image is in JPEG format, this can be done by

transcoding the modified regions of the original image to sub-

image. The sub-image contains the information about the

original image corresponding to the modified regions.

Writing data in APPn markers Finally, the byte-stream of

the JPEG sub-image, along with some metadata, is inserted

in one or several application segments (APPn Markers) of the

processed JPEG image. A security option has been added

in the design of the proposed JPEG transmorphing algorithm

to meet the needs for image security and privacy protection

applications. In cases where security is needed, a Secure

JPEG [11] framework can be applied on the sub-image with

an appropriate image security tool (AES or scrambling) by

means of a secret key. Hence, the inserted metadata con-

tains the following information: (i) size of the sub-image in

bytes, (ii) the method used to secure sub-image, and (iii) el-

ements of the mask matrix. We use eight bytes (a long in-

teger) in APPn data to record the file size of the sub-image,

and three bytes to represent the security measure (protection

type and parameters, without secret key) applied on the sub-

image. The elements of the mask matrix are encoded to a

bitstream which is then written to another few bytes in the

APPn marker. The overhead added to the transmorphed JPEG

image is mainly impacted by the size of the JPEG encoded

sub-image, while the metadata overhead is negligible.

Reconstruction process aims at recovering the original

image from the transmorphed image. This can be done by

reversing the transmorphing operations described above: ex-

tracting sub-image byte-stream and metadata from APPn

markers, creating the sub-image and mask matrix, and then

replacing the DCT coefficients corresponding to the modified

blocks of the morphed image with that of the sub-image.

In case the sub-image is protected, a secret key needs to be

provided to decrypt or descramble the extracted sub-image.

Such a transmorphing algorithm involves four inputs:

original image, processed image, mask matrix and secret key.

In practice, the input original and processed images can be in

any format but are assumed to have the same pixel resolution.

The output transmorphed image and the reconstructed image

are of course in JPEG format. Our algorithm is implemented

based on an open source JPEG library version 6b maintained

by the Independent JPEG Group (IJG)1.

1http://www.ijg.org/

3. EXPERIMENT AND ANALYSIS

In the JPEG transmorphing algorithm, inserting additional in-

formation into a JPEG image file increases the storage or

bandwidth requirements. Besides, because image editing is

usually done in the pixel domain and the modified image is

re-encoded into JPEG, not all minor differences between the

original and the modified images due to JPEG re-encoding are

taken into account. Therefore, the reconstructed image is not

guaranteed to be exactly the same as the original image, un-

less threshold value is set to zero. In this section, we present

two experiments to assess (i) the relation between the size of

overhead and the size of modified regions, and (ii) the influ-

ence of thresholding on size of overhead and the quality of

reconstructed images.

3.1. Size of Overhead vs. Size of Modified Regions

In the first experiment, we used 1000 images from The Im-

ages of Groups Dataset [12]. The maximal length or width

of those images is 1024 pixels and their file sizes range from

100 KB to 329 KB, with 163 KB as the average size. For each

image, we detect the positions of human faces and insert the

face regions (rectangle shape) into the image itself using the

JPEG transmorphing algorithm. In this case, we assume that

those images have been modified in regions of people’s face

and that the processed images have the same file sizes as their

original version. Haar feature face detection from OpenCV

was used2. For each of the 1000 images, the increase of bi-

trate versus the size of modified regions (both in percentage)

is plotted as a dot in Fig. 2.

The result presents a linear trend between the increase

in image bitrate and the size of modified regions, though it

is not an exact linear relationship, due to the difference in

image content. Compared to keeping both original and pro-

cessed images, which introduces doubled overhead to storage

and bandwidth, this method requires relatively lower level of

overhead to bitrate, depending on the size of modified regions.

For some images, even though the number of modified blocks

is zero, the overhead to bitrate is non-zero. This is because

no face is detected in those images and therefore an “empty”

sub-image along with metadata is inserted, which still carries

a small volume of information, although the DCT coefficients

of the “empty” sub-image are all zero.

3.2. Size of Overhead vs. Reconstruction Quality

We then analyze the trade-off between size of overhead and

reconstruction quality, which is controlled mainly by the

threshold value. In this experiment, we used six images3

which are respectively processed by six different image pro-

cessing tools in Adobe Photoshop: masking, oil-painting,

2http://docs.opencv.org/modules/objdetect/doc/cascade classification.html
3Images ‘Family’ and ‘Cake’ are from Flickr Retrieval [13]

Percentage of modified blocks (%)

0 10 20 30 40 50 60 70

B
it

ra
te

 I
n

cr
ea

se
 (

%
)

0

10

20

30

40

50

60

70

80

Fig. 2. Size of bitrate overhead vs. size of modified regions.

Table 1. Information of six images for the second experiment

Image

name

Pixels Original

file size

Processed

file size

Family 282× 500 161 KB 155 KB

Cake 500× 375 157 KB 157 KB

EEG Hat 960× 1280 685 KB 507 KB

Christmas 3264× 2448 3.8 MB 3.2 MB

Castle 4000× 2667 6.5 MB 6.1 MB

Bear 5000× 3333 8.3 MB 8.0 MB

blurring, pixelation, inpainting, and thresholding. All the

original and processed images were decoded and re-encoded

to JPEG with a standard decoder and encoder from IJG using

the same compression settings (100 quality factor and 4:2:0

chroma subsampling). Those images are shown in Fig. 3 and

their basic information is listed in Table 1. We ran JPEG

transmorphing and reconstruction on each pair of the original

and processed images using 10 different threshold values:

0, 1, 2, 5, 10, 20, 30, 40, 50, and 60. The increase in bitrate of

the transmorphed image compared to the processed image,

as well as the peak signal-to-noise ratio (PSNR) between

the reconstructed and original images are computed for each

threshold value. Experimental results of all six images are

presented in Fig. 4.

In general, as threshold value increases, size of overhead

and PSNR both decrease, which is because a lower thresh-

old can detect smaller differences between original and modi-

fied images and therefore ensures more information about the

original image to be preserved in the transmorphed JPEG file.

In case the threshold is set to zero, the sub-image is the same

as the original image so the complete information about the

original image is inserted, which enables a perfect reconstruc-

tion but maximal overhead size. On the other hand, if the

threshold is too high, some modified blocks will be ignored

Fig. 3. Six pairs of images for the second experiment. From left to right: Family, Cake, EEG Hat, Christmas, Castle and Bear,

respectively. Original images in the first row; Processed images in the second row.

0 10 20 30 40 50 60
0

25

50

75

100

125

150

B
it

r
a

te
 I

n
c
r
e
a

se
 (

%
)

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

P
S

N
R

 (
d

B
)

Threshold

Bitrate Increase

PSNR

(a) Family

0 10 20 30 40 50 60
0

25

50

75

100

125

150

B
it

r
a

te
 I

n
c
r
e
a

se
 (

%
)

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

P
S

N
R

 (
d

B
)

Threshold

Bitrate Increase

PSNR

(b) Cake

0 10 20 30 40 50 60
0

25

50

75

100

125

150

B
it

r
a

te
 I

n
c
r
e
a

se
 (

%
)

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

P
S

N
R

 (
d

B
)

Threshold

Bitrate Increase

PSNR

(c) EEG Hat

0 10 20 30 40 50 60
0

25

50

75

100

125

150

B
it

r
a

te
 I

n
c
r
e
a

se
 (

%
)

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

P
S

N
R

 (
d

B
)

Threshold

Bitrate Increase

PSNR

(d) Christmas

0 10 20 30 40 50 60
0

25

50

75

100

125

150

B
it

r
a

te
 I

n
c
r
e
a

se
 (

%
)

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

P
S

N
R

 (
d

B
)

Threshold

Bitrate Increase

PSNR

(e) Castle

0 10 20 30 40 50 60
0

25

50

75

100

125

150

B
it

r
a

te
 I

n
c
r
e
a

se
 (

%
)

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

P
S

N
R

 (
d

B
)

Threshold

Bitrate Increase

PSNR

(f) Bear

Fig. 4. Influence of threshold on overhead size and reconstruction quality.

(see Fig. 5 for illustration) so that the quality of the recon-

structed image is much reduced. In practice, a trade-off be-

tween bitrate and reconstruction quality can be archived by

using a proper threshold value. As shown in the results, for

all images, 10 is considered to be a good threshold value that

ensures a satisfactory PSNR above 40 dB while keeping a

small overhead size approximating to the actual size of mod-

ified regions (in percentage).

4. CONCLUSION

This paper presents a JPEG transmorphing algorithm that al-

lows for reverting back when modifying an image without

need to keep a copy of the original. Results have shown ac-

ceptable bitrate overhead and good quality of reconstruction.

t = 2 t =10 t = 30t = 20

Fig. 5. Sub-images created using different thresholds.

Future work lies in further analysis of the influence of other

parameters such as the quality factor of modified JPEG coded

image, and adaptation of the algorithm for image security and

privacy protection applications.

5. REFERENCES

[1] G. K. Wallace, “The JPEG still picture compression

standard,” IEEE Transactions on Consumer Electron-

ics, vol. 38, no. 1, pp. xviii–xxxiv, Feb 1992.

[2] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The

JPEG 2000 still image compression standard,” IEEE

Signal Processing Magazine, vol. 18, no. 5, pp. 36–58,

Sep 2001.

[3] “Exchangeable image file format for digital still cam-

eras: Exif Version 2.2,” 2002, Standard of Japan Elec-

tronics and Information Technology Industries Associa-

tion.

[4] B. Brower, R. Clark, A. T. Hinds, D. T. Lee, and G. J.

Sullivan, “Information technology - Digital compres-

sion and coding of continuous-tone still images: JPEG

File Interchange Format (JFIF),” 2011, available on

www.jpeg.org as document WG1N5642, published by

ISO as 10918-5.

[5] T. Richter, “On the standardization of the JPEG XT im-

age compression,” in Picture Coding Symposium (PCS),

2013, Dec 2013, pp. 37–40.

[6] G. Ward and M. Simmons, “JPEG-HDR: A backwards-

compatible, high dynamic range extension to JPEG,” in

ACM SIGGRAPH 2006 Courses, New York, NY, USA,

2006, SIGGRAPH ’06, ACM.

[7] P. Korshunov and T. Ebrahimi, “A JPEG backward-

compatible HDR image compression,” in Proc. SPIE,

2012, vol. 8499, pp. 84990J–84990J–12.

[8] T. Richter, “Backwards compatible coding of high dy-

namic range images with JPEG,” in Data Compression

Conference (DCC), 2013, March 2013, pp. 153–160.

[9] T. Richter, “On the integer coding profile of JPEG XT,”

in Proc. SPIE, 2014, vol. 9217, pp. 921719–921719–19.

[10] A. G. Pinheiro, K. Fliegel, P. Korshunov, L. Krasula,

M. V. Bernardo, M. Pereira, and T. Ebrahimi, “Perfor-

mance evaluation of the emerging JPEG XT image com-

pression standard,” in IEEE 16th International Work-

shop on Multimedia Signal Processing, MMSP 2014,

Jakarta, Indonesia, September 2014, pp. 1–6.

[11] F. Dufaux and T. Ebrahimi, “Toward a Secure JPEG,”

in Proc. SPIE, 2006, vol. 6312.

[12] A. Gallagher and T. Chen, “Understanding images of

groups of people,” in Proc. CVPR, 2009.

[13] M. J. Huiskes and M. S. Lew, “The MIR Flickr re-

trieval evaluation,” in MIR ’08: Proceedings of the 2008

ACM International Conference on Multimedia Informa-

tion Retrieval, New York, NY, USA, 2008, ACM.

