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Image Watermarking Based on Invariant Regions of
Scale-Space Representation
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Abstract—This paper proposes a novel content-based image
watermarking method based on invariant regions of an image.
The invariant regions are self-adaptive image patches that deform
with geometric transformations. Three different invariant-region
detection methods based on the scale-space representation of
an image were considered for watermarking. At each invariant
region, the watermark is embedded after geometric normalization
according to the shape of the region. By binding watermarking
with invariant regions, resilience against geometric transforma-
tions can be readily obtained. Experimental results show that
the proposed method is robust against various image processing
steps, including geometric transformations, cropping, filtering,
and JPEG compression.

Index Terms—Content-based synchronization, feature point,
geometric distortion, invariant region, scale space, watermarking.

I. INTRODUCTION

W
ITH the advent of Internet, the use of digital media

through electronic commerce and on-line services

has grown rapidly. Since digital media is easily reproduced

and manipulated, anyone is potentially capable of incurring

considerable financial loss to the media producers and content

providers. Digital watermarking is introduced to safeguard

against such loss. While the most prominent application of

watermarking is copyright protection [1], others including fin-

gerprinting [2], broadcast monitoring [3], image authentication

[4], and copy protection [5] are important research areas.

With the development of watermarking technologies, attacks

against watermarking systems have become more sophisticated.

In general, the attacks on watermarking systems can be cat-

egorized into noise-like signal processing and geometric dis-

tortions. While the noise-like signal processing, such as lossy
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compression, denoising, noise addition and lowpass filtering, re-

duces watermark energy, geometric distortions induce synchro-

nization errors between the original and the embedded water-

mark pattern and therefore can mislead the watermark detector.

Most of the previous methods have shown robustness against

noise-like signal processing attacks, and only a few special-

ized watermarking methods have addressed the geometric dis-

tortions. These few can be classified into nonblind scheme, in-

variant transform, embedding-based synchronization, and con-

tent-based synchronization.

• Nonblind scheme: Nonblind schemes use the original

image to synchronize watermark. In [6] and [7], the

meshes of the original image and the watermarked image

are compared to recover synchronization errors. Nonblind

scheme is effective for local distortions, but an exten-

sion to global affine transformations is computationally

demanding [8].

• Invariant transform: The most obvious way to achieve

resilience against geometric distortions is to use an in-

variant transform. In [9]–[11], the watermark is embedded

in an affine-invariant domain such as the Fourier–Mellin

transform. Despite its robustness against affine transfor-

mations, those techniques involving invariant domain

suffer from implementation issues and are vulnerable to

cropping [10].

• Embedding-based synchronization: Another way to cope

with geometric distortions is to use template [12] or pe-

riodic insertion [13] of the watermark pattern. In [12],

the template is embedded in the discrete Fourier trans-

form (DFT) domain as local peaks in predefined positions.

The embedded local peaks are searched during watermark

detection process in order to yield information about the

affine transformations that the image has undergone [14].

In [13], it is shown that the periodic insertion of the wa-

termark pattern can give synchronization information. The

periodically embedded watermark pattern appears as a lat-

tice of peaks in the autocorrelation domain, and careful

analysis of both the orientation of the lattice and the dis-

tance between the peaks can reveal vital information about

the affine transformations. However, this kind of approach

can be tampered by the malicious attack stated in [15]

since anyone can access the peaks in the DFT or the auto-

correlation domain and easily eliminate them.

• Content-based synchronization: By binding the water-

mark synchronization with the image characteristics,

watermark detection can be done without synchronization

error. In [16]–[19], moment-based normalization ap-

proaches are proposed. In spite of the robustness against

1053-587X/$20.00 © 2006 IEEE
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affine transformations, they are highly vulnerable against

cropping attacks. In [20], a region-based watermarking

method is proposed by segmenting an image into a

number of regions. The two largest regions are water-

marked with the affine normalized watermark. In [8],

[21], and [22], the feature points of an image are used as a

reference for retaining synchronization of the watermark.

The previous feature-point-based watermarking methods

achieved robustness against various geometric attacks

using a geometric normalization method in the form of

tessellation [8], self-spanning pattern [21], and moments

[22]. The robustness of the resulting watermark strongly

depends on the repeatability of the geometric normal-

ization method. The weak point of the content-based

approaches is the added computational complexity in

calculating the features of an image before watermark

detection.

This paper presents a novel content-based watermarking

method based on scale-space feature points. Although there

are approaches that deal with the geometric distortions, the

problems with random bending attack [23], geometric dis-

tortion with cropping, nonisotropic scaling, and projective

transformation still remain difficult. By binding the watermark

synchronization with invariant regions of an image, watermark

detection can be performed without synchronization error.

More specifically, the invariant regions attained from the fea-

ture points of the scale-space representation of an image are

used for referencing the watermark. Since a feature point falls

short of providing sufficient information about the geometric

transformations that the image has undergone, additional

information about the geometric transformations has to be

somehow obtained. We considered three different methods

for obtaining the additional information: characteristic scale

[24]–[26], shape adaptation of the Gaussian kernel [27], [28],

and feature-point sets [29]–[31]. Feature points with the addi-

tional information lead to geometrically invariant regions. The

invariant-region detection methods were originally proposed

as an effort to find correspondences between images in which

there are large changes in viewpoint, scale, and illumination.

The invariant regions are self-adaptive image patches that

deform with geometric transformations as to keep on covering

identical physical parts of a scene [32]. There have been ap-

proaches that use feature points of an image as a reference

for watermarking [8], [21], [22]; however, these approaches,

which do not explicitly consider the variation of feature points

regarding to the scaling of an image, have limited robustness

against scaling. Recent literature has shown that this problem

can be mitigated by using the scale-space feature points [25],

[26], [33]. The details of scale-space feature points and in-

variant-region detection methods are described in Section II.

By synchronizing watermarking with invariant regions, the

proposed watermarking method achieves robustness against

both noise-like and geometric attacks.

This paper is organized as follows. Section II describes the

scale-space feature points and the three invariant-region detec-

tion methods. Section III describes the proposed watermarking

method. Section IV evaluates the performance of the proposed

method. Section V summarizes the performance and the limita-

tions of the proposed method.

II. INVARIANT-REGION DETECTION BASED ON

SCALE-SPACE FEATURE POINTS

To develop a content-based method, image characteristics ap-

propriate for watermarking should be carefully selected. Fea-

ture points can be a good candidate for content-based water-

marking since there exist feature point detection methods that

are proven to be robust against many image processing steps

such as sharpening, blurring, compression, and geometric trans-

formations [34], [26], [25], [35]. However, a feature point pro-

vides only the position information. To cope with affine or pro-

jective transformations, we need additional information about

the geometric transformations, which can be acquired from the

neighborhood of the feature point. Three different methods are

considered for that purpose, such as characteristic scale, shape

adaptation of the Gaussian kernel, and feature-point sets. In

[24]–[26], the characteristic scale of a feature point is used for

scale-invariant pattern matching. The characteristic scale is the

scale at which the normalized scale-space representation of an

image attains a maximum value. In [27], [28], and [36], the

second-moment matrix around a feature point is used to form

an affine-invariant region. It is based on the shape adaptation

[27] procedure that adapts the Gaussian smoothing kernel to

the local image structures around the feature point. The shape

adaptation process is iteratively performed until the shape of the

kernel converges. In [29], [30], and [37], feature-point sets ob-

tained by grouping feature points are used for invariant pattern

matching since the relative positions of the feature points are

geometrically invariant [31]. The details of the scale-space fea-

ture points and the three invariant-region detection methods are

described in the next subsections.

A. Detection of Harris Points Through Scale Space

The detection of feature points, which are invariant to geo-

metric transformations, has been one of the main issues in pat-

tern recognition and computer vision. A feature point is the point

where the characteristics of an image change in multiple direc-

tions, such as corners, high curvature points and junctions. Har-

alick and Shapiro [38] consider a point in an image interesting if

it has two main properties: distinctiveness and invariance. This

means that a point should be distinguishable from its immediate

neighbors, and the position as well as the selection of the inter-

esting point should be invariant with respect to the expected geo-

metric distortions [35]. Among various feature point detectors,

the Harris detector [39] showed the best performance in the eval-

uation test [34], [8] in terms of repeatability. The Harris point

is geometrically stable under various image processing steps

that include rotation, noise addition and illumination change.

However, it is unstable under scaling with a large ratio since

the window size used in extracting Harris points is fixed. The

image structures in a fixed-size window can change substan-

tially after scaling. Without prior knowledge of the image struc-

tures, there is no reason to favor any particular window size [40].

A main argument behind the scale-space representation is that

if no prior information is available about what is the appropriate

window size (scale) for a given data, then the only reasonable

approach is to represent the input data using various window

sizes (at multiple scales) [24]. The scale-space representation



SEO AND YOO: IMAGE WATERMARKING BASED ON INVARIANT REGIONS OF SCALE-SPACE REPRESENTATION 1539

is a set of images represented at different levels of resolutions.

Given a scale , the uniform Gaussian scale-space representa-

tion of an image is defined by

(1)

where refers to the image spatial coordinate,

is the associated uniform Gaussian kernel with standard devia-

tion and mean zero, and denotes linear convolution. It was

proven in [41], [42] that the Gaussian kernel is the unique kernel

for generating scale-space representation under some postulated

conditions. This mathematical result is also in accordance with

the biological experimental results in [43] stating that the mea-

sured response at the optic nerve of the human eye is similar to

the derivative of the Gaussian [24].

The Harris detector is based on a specific image descriptor

called the second-moment matrix, which reflects the local dis-

tribution of gradient directions in the image [27]. The scale-nor-

malized second-moment matrix is given by

(2)

where and is set to in this paper.

This matrix represents the statistics of gradient directions in the

neighborhood of the point . Harris and Stephens [39] claim

that the point is a feature (corner) point if the matrix

has two significant eigenvalues. To avoid explicit eigenvalue

decomposition of , the trace and the determinant of

, which are the summation and the multiplication of the

two eigenvalues, respectively, are used in the formulation. Then

the scale-normalized Harris corner strength (SHCS) measure

at scale and point is given in terms of as

follows:

(3)

At each level of the scale space, Harris points are detected as the

local maxima in the image plane as follows:

(4)

where and denote the neighborhood of the point and

the detection threshold respectively. Corners are placed at local

maxima of the corner strength measure. The corner strength

measure then can be used to order the corners in order of sig-

nificance. In general, the number of the Harris points decreases

with increasing scale [25].

B. Automatic Scale Selection and Scale-Invariant

Feature Point

Although the scale-space representation presented in the pre-

vious subsection provides a well-founded framework for rep-

resenting and detecting image structures at multiple scales, it

does not address the problem of how to select locally appro-

priate scales for further analysis. Lindeberg proposed a general

method for feature detection with automatic scale selection in

[24]. The basic idea is to apply the feature detector at all scales

and then select scale levels at which normalized measures of

feature strength assume local maxima [40].

A well-known property of the scale-space representation is

that the amplitude of spatial derivatives in general decreases

with scale [24], i.e., if a signal is subjected to scale-space

smoothing, then the numerical values of spatial derivatives

computed from the smoothed data can be expected to decrease.

Thus, to select scale that reflects local characteristics of an

image, a scale-normalized derivative is introduced [24] as

follows:

(5)

where and are the order of differentiation. To give a

formal characterization of the characteristic scale, consider two

images and related by . The scale-space rep-

resentations and of and are defined by (1), respectively.

Then the scale-space representations are related by

(6)

where and . Differentiation of (6) by and with

order and gives the following relationship:

(7)

where . By

multiplying to (7), we can obtain the scale invariance

from (5) as follows:

(8)

The scale level, at which a combination of normalized deriva-

tives attains a local maximum over scales, can be treated as re-

flecting a characteristic length of corresponding structure. Thus,

the normalized scale-space maxima have been considered as

characteristic scale of the image. The scale-invariance prop-

erty of normalized derivatives ensures the invariance of scale-

space maxima [24]. If a normalized scale-space maximum is at

in the scale-space representation of an image , then the

corresponding scale-space maximum is assumed at

in the scale-space representation of . Fig. 1 shows an example

of scale selection. For the same point in the original and the

cropped and scaled image (scale factor is 2.0), we compute

the amplitude of normalized derivatives (Laplacian) [44] over

scales. The figure shows that the characteristic scale is relatively

invariant to scaling. The ratio of the scales at corresponding

points in the two images, at which the maxima were found, is

equal to the scale factor between the two images. In the com-

parative tests [25], [34], the Harris points proved to be the most

reliable under various image processing steps, and the Laplacian

was determined to have the best repeatability for scale selection

under large scale changes. Thus, the scale selected by the Lapla-

cian at each Harris point is used as the characteristic scale. The

scale-invariant feature points selected by the Harris measure and

the Laplacian exhibit invariance to scaling (preserving aspect

ratio), rotation and translation as well as robustness to illumina-

tion changes [25].
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Fig. 1. (a) Original image. (b) 50% cropped and 200% scaled image.
(c) Scale-normalized Laplacian of the image (a) around the feature point at the
center of circle. (d) Scale-normalized Laplacian of the image (b) around the
feature point at the center of circle. The radius of the circle is 10s, where s is
the characteristic scale at that point.

C. Shape Adaptation of Scale-Space Operator

Scale selection based on the uniform Gaussian scale space in

(1) cannot provide invariance when there is nonisotropic scaling

and skew. For such cases, the window shape used in the feature

detection should adapt differently along different directions to

keep on covering the identical region of an image. When dealing

with the linear transformations of the spatial domain, a natural

generalization of the uniform Gaussian scale-space representa-

tion in (1) is the affine Gaussian scale-space representation [27]

generated by convolution with nonuniform Gaussian kernel:

(9)

where is a symmetric positive-definite 2 2 matrix. Then the

affine Gaussian scale-space representation is defined by

(10)

The second-moment matrix of the affine Gaussian

scale space is given by

(11)

where and are the covariance matrices corresponding to

the integration and the local scale respectively. The computa-

tion of the second-moment matrix involves the integration of the

local image statistics (corresponding to ) over a finite-sized

image region (corresponding to ) [27]. By comparing (10)

with (1), we can easily realize that the scale selection in the

uniform Gaussian kernel in (1) is corresponding to the selec-

tion of the covariance matrix in the nonuniform Gaussian

kernel in (10). The selection of the covariance matrix is usu-

ally performed iteratively [27], [28] until the second-moment

matrix computed at a certain point is proportional to the of

the Gaussian kernel. The iteration process is called the shape

adaptation of the Gaussian kernel.

To give a formal characterization of the shape adaptation of

the Gaussian kernel and its invariance against linear transforma-

tions, consider two images and related by .

In [27], Lindeberg showed that the second-moment matrices

and of and , respectively, satisfy the following transfor-

mation property:

(12)

where refers to the transpose of the matrix . From the

transformation property, it is shown that if the second-moment

matrix at a point of the image satisfies the following fixed-

point condition:

(13)

then the second-moment matrix at the point of the

image also satisfies the following conditions:

(14)

where . A fixed-point condition is a natural indicator of

successful shape adaptation. More generally, a fixed-point con-

dition reflects the fact that the shape of the smoothing kernel

agrees with the shape of the image structure [27]. Since the fixed
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Fig. 2. (a), (b) Scale-space Harris points detected from the original and the
nonisotropically scaled and rotated image respectively. (c), (d) Shape of the
converged Gaussian kernels from the original and the nonisotropically scaled
and rotated image, respectively. The radius of the circles in (a) and (b) and the
major and minor axes of the ellipses in (c) and (d) are five times that of the
original value.

point is preserved under linear transformations as shown above,

regions invariant against the linear transformations can be de-

rived from the converged second-moment matrix in (13) and

(14). Baumberg [36] transforms an image to a normalized do-

main using the square root of the second-moment matrix. The

normalized images and of and , respectively, are given

by

(15)

where is the square root matrix of . From the trans-

formation property in (12), the second-moment matrices and

of and , respectively, are given by

(16)

where is the 2 2 identity matrix. In this normalized do-

main, the second-moment matrix calculated using the uniform

Gaussian smoothing kernel is the identity for both images [36].

Thus, the shape adaptation process is iteratively performed until

the second-moment matrix of the normalized frame converges

to the identity. The details of the iteration can be found in [28].

Fig. 2 shows an example of shape adaptation. For both the orig-

inal and the affine-transformed image, the initial scale-space

Harris points converge to the ellipses (the shape of the Gaussian

kernel) that cover nearly identical regions.

D. Feature-Point Sets

Scale-space feature points have been used for image matching

and recognition [25], [26], [32] thanks to the high repeatability

[45], [34] against various image processing steps. Assuming

Fig. 3. (a), (b), (c) Invariant regions from two-point set, three-point set and
four-point set, respectively; the original image (the first column) is subjected
to rotation (the second column), nonisotropic scaling and rotation (the third
column), and projective transformation (the fourth column).

that the feature points are highly repeatable, grouping the fea-

ture points into feature-point sets can provide geometrically in-

variant regions. The relative positions of all the pixels in the

image to the points in the feature-point set are invariant against

geometric transformations. This means that the points in the fea-

ture-point set are sufficient in defining a basis when an image is

allowed to undergo geometric transformations [31]. This con-

cept has been utilized in extracting geometric invariants of an

image [30], [46], [37], [29]. A detailed survey on the geometric

invariance from point sets can be found in [47], [31]. By using

a feature-point set, the following invariance can be obtained for

2-D images [30], [29]:

• one-point basis: translation;

• two-point basis: similarity transformation (translation, ro-

tation, and aspect-ratio preserving scaling);

• three-point basis: affine transformation;

• four-point basis: projective transformation.

Fig. 3 shows the invariant regions obtained from the fea-

ture-point sets consisting of two, three and four Harris points

of an image, respectively. Some selected geometric transforma-

tions are applied to an image to show the invariance of the fea-

ture-point sets. The distortion to the checkerboard helps to vi-

sualize the applied geometric transformations. After the simi-

larity transformation, the squares in the checkerboard remain as

square. After the affine transformation, the parallelism of the

checkerboard is preserved. After the projective transformation,

the parallel lines in the checkerboard are changed to converging

lines. In the case of a two-point set, a square with the two points

at the opposite corners is used as an invariant region. In the case

of a three-point set, a triangle with the three points as its cor-

ners is used as an invariant region. In the case of a four-point

set, a quadrangle with the four points as its corners is used as

an invariant region (we only consider convex quadrangles). The

scale-space Harris points of an image are used for constructing

feature-point sets. Since the scale-space Harris points are highly
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TABLE I
SHAPE OF THE WATERMARK AND THE GEOMETRIC INVARIANCE [31]

repeatable for most image processing steps, the invariant regions

obtained from the feature-point sets of the scale-space Harris

points are also highly repeatable. At each scale , the Harris

points are grouped into feature-point sets whose cardinality is

. We considered two, three, and four cases ( , re-

spectively). Since grouping the Harris points of an image into all

possible feature-point sets is computationally demanding, the

Harris points with the locally largest SHCS measure in (3) are

only considered based on the assumption that the Harris point

with larger SHCS measure is more likely to be repeatable. In

other words, if the Harris point has the largest SHCS measure

at its neighborhood (disk of radius ), it survives; otherwise,

it is erased. From the neighborhood of each surviving Harris

point (disk of radius ), we select up to Harris points (typi-

cally ) with the largest SHCS measures. By selecting

points from the points, we can construct feature-point

sets with cardinality (including the one in the center of the

disk). Then the number of possible invariant regions for each

surviving Harris point is given as .

III. PROPOSED WATERMARKING SCHEME

One of the major difficulties for watermarking is that wa-

termark embedding and detection should be performed over

the same regions of an image. In this respect, the watermark

synchronization problem can be regarded as finding correspon-

dences between the original and the processed image in which

there are various image processing steps, including geometric

transformations, filtering and compression. Finding correspon-

dences between images in which there are large changes in

scale, viewpoint, and illumination has been a difficult problem.

In an attempt to solve the problem, local invariant matching

has been introduced. The idea is to extract invariant regions

of an image, which are then used for feature matching [48],

[26], [29]. In this paper, we apply the same idea to watermark

synchronization. The watermark is shaped adaptively based

on the invariant regions of an image. We considered three

invariant-region detection methods for watermarking. By using

the local invariant regions of an image, the proposed method

achieves resilience against both removal and geometric attacks.

A. Watermark Embedding

The Harris points appropriate for watermarking as stated in

Section II-A are extracted from the scale-space representation of

an image. Invariant regions are generated at each scale based on

characteristic scale, shape adaptation of the Gaussian kernel,

and feature-point sets. As shown in Table I, the invariant re-

gions represent circle, ellipse, triangle, and quadrangle respec-

tively. In (1), the scale refers to the standard deviation of the

associated Gaussian kernel. The scale range, which was con-

sidered in this paper, is between 2.2 and 12.5. In general, the

size of the watermark is greater than the scale values. To com-

pensate for this mismatch, the radius of a circle is set to be

eight times the characteristic scale of the Harris point, and the

major and minor axes of an ellipse are set to be 11 times that

of the original value. To select nonoverlapping invariant regions

for watermark embedding out of many invariant regions avail-

able throughout the scale space, it is assumed that the Harris

point with larger SHCS measure is more likely to be repeat-

able. In (3), the determinant and the trace of the scale-normal-

ized second-moment matrix [24], [36] are used in cal-

culating . This means that corner strengths can be com-

pared across different scales using the value of the SHCS mea-

sure [36]. The repeatability of invariant regions depends

on the repeatability of the Harris points. For an invariant region

from either the characteristic scale or the shape adaptation of
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the Gaussian kernel, the repeatability measure is assumed to be

the SHCS measure of the Harris point. For an invariant region

from the feature-point set, the repeatability measure is assumed

to be the minimum of the SHCS measures of the Harris points

in the feature-point set. Since the watermarked image can be

scaled up or down, we first consider the invariant regions in

the middle-scale band . When a number of in-

variant regions are overlapping, only the one with the largest

repeatability measure survives. By repeating the same process

for all the invariant regions in the middle-scale band, we can se-

lect invariant regions that have the largest repeatability measure

in their neighborhood. While retaining the selected invariant re-

gions in the middle-scale band, the same process is performed

in the high-scale and the low-scale

band, respectively. In other words, when the invariant re-

gions in the low-scale and the high-scale band are overlapping

with the selected invariant regions in the middle-scale band, they

are not considered. Otherwise, the same selection process used

in the middle-scale band is applied to both the low-scale and the

high-scale band. Fig. 4 shows the surviving invariant regions for

Lena image. The watermark is embedded additively inside the

surviving invariant regions in Fig. 4.

The circular and elliptical regions lack the invariance against

rotation [28], [36]. The characteristic orientation of these re-

gions can be decided by the principal axes moments [49]. The

watermark should be synchronized by the characteristic orien-

tation to achieve resilience against rotation. In case of an el-

liptical region, the characteristic orientation is calculated after

transforming the region to a circular region of a fixed size. After

rotating a circular region by an angle , the th moment

of the circular region, is changed to as follows:

(17)

The principal axis is obtained by rotating the axis of the mo-

ments until is zero. Then the characteristic orientation ,

measured from the original axis, is defined by

(18)

More details of the principal axes moments can be found in [49].

Table I shows the geometric invariance related to the shape of

the watermark in terms of homography1 matrix of the geometric

transformations [31]. If we want to detect the watermark after

geometric transformation, the degree of freedom of the water-

mark shape should correspond to that of the geometric transfor-

mation.

The watermark is embedded in the selected invariant re-

gions after geometric normalization according to the shape

of the regions. A binary zero-mean pseudorandom sequence

is generated by a secure key. The con-

struction of a circular and an elliptical watermark is shown

1Homography refers to an invertible point-to-point mapping that maps lines
to lines and is synonymous with the projective transformation [31].

Fig. 4. (a) Scale-space Harris points. Finally selected invariant regions for
watermarking using (b) characteristic scale, (c) shape adaptation of the Gaussian
kernel, (d) feature-point set with Q = 2, (e) feature-point set with Q = 3,
(f) feature-point set with Q = 4. The radius of the circles in (b) is eight times
the characteristic scale of the Harris point. The major and minor axes of the
ellipses in (c) are 11 times that of the original value.

in Fig. 5. The watermark sequence is spread over the first

quadrant. The quadrant is rotated and copied into the other

quadrants, and then the circular prototype watermark pattern

is obtained. From the circular watermark, the elliptical wa-

termark can be obtained by the affine transformation according

to the shape of the ellipse. The construction of a triangular and

a quadrangular watermark is shown in Fig. 5. We divide the

invariant regions into three and four equi-areal regions for the

triangle and the quadrangle respectively. The two-dimensional

(2-D) square prototype watermark ( by pattern)

from the watermark sequence is transformed to each invariant

region as shown in Fig. 5. By embedding the same watermark

redundantly at each vertex of the triangle and the quadrangle,

the watermark detector need not consider the orientation of

them. However, we note that the simple redundant embedding

does not guarantee robustness against mirroring of an image,

for which the vertices need to be ordered by either the mag-

nitude of the angles [8] or the moment normalization [49].

In the spatial domain, the watermark is embedded additively
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Fig. 5. Construction of the prototype watermark W from one-dimensional
binary random sequence C and embeddingW to invariant regions; white, gray
and black refer to 1, 0 and�1 respectively. G refers to the center of mass of the
triangle and the quadrangle.

after geometric normalization according to the invariant region.

Mathematically it can be written as follows:

(19)

where is the local masking function calculated from the

Human Visual System (HVS) [50] to make the embedded wa-

termark imperceptible, and is the mapping matrix [31] rep-

resenting the homography between the prototype watermark

and the invariant region.

The watermark embedding procedure is summarized as fol-

lows:

1) construct invariant regions at each scale from the scale-

space Harris points of an image;

2) select invariant regions for watermarking, considering the

spatial positions and the repeatability measures;

3) embed the watermark additively into the selected regions

after geometric normalization according to the shape of

the regions as shown in Fig. 5.

B. Watermark Detection

It is assumed that the watermark exists at the invariant re-

gions with the locally largest repeatability measure as the wa-

termark was embedded. After extracting invariant regions from

an image, the same region-selection process used in the water-

mark embedding is performed. Since the selection process after

watermark embedding and attacks may not be repeatable, the

region-selection process is performed iteratively after excluding

the already selected regions until regions are selected (typi-

cally 50). At each selected region, the detection mask

is obtained by mapping the invariant region to the watermark

coordinate as follows:

(20)

where is the estimated watermark from an image by using

Wiener filter [8]. Note that for each invariant region the same

watermark is embedded four times for circular, elliptical

and quadrangular regions and three times for triangular re-

gions as shown in Fig. 5. The redundantly embedded parts

of a mask are added and then converted into the sequence

. Watermark detection is based on nor-

malized correlation [51] between the original watermark and

the estimated watermark as follows:

(21)

where is the mean value

of and . Using the normalized correlation

, the watermark detection problem can be formulated as the

following hypothesis testing:

• : an image is watermarked by if ;

• : an image is not watermarked by if

where is the watermark detection threshold. We will discuss

how to determine the threshold in Section IV-A.

The watermark detection procedure is summarized as fol-

lows:

1) construct invariant regions at each scale from the scale-

space Harris points of an image;

2) find most probably watermarked candidate invariant

regions across the scale space;

3) apply the normalized correlation detector to each candi-

date invariant region after geometric normalization ac-

cording to the shape of the regions;

4) make a decision whether the image is watermarked or not

by testing hypothesis with a threshold .

IV. EXPERIMENTAL RESULTS

In the experiments, we have used 1024-length watermark pat-

tern and only 50 invariant regions 50 in

the watermark detection. For the characteristic-scale selection

and the shape adaptation of the Gaussian kernel, we have used

scale-space representation with 36 scale levels (initial scale: 2.3

and the scale factor between two levels of resolution: 1.05). For

the feature-point set, we have used scale-space representation

with 15 scale levels (initial scale: 3.1 and the scale factor be-

tween two levels of resolution: 1.1). The scale-space represen-

tation and Harris points can be computed within a minute on a

2.4-GHz Pentium 4 processor for 512 by 512 images. As stated

in Section II-D, feature-point sets with cardinality

are constructed by selecting -1 points out of the 12

strongest Harris points at the neighborhood of each

locally strongest Harris point.

Since the watermark pattern is pseudorandomly generated,

watermark correlation detector is highly sensitive to the syn-

chronization errors. The pseudorandom watermark pattern

was vulnerable to geometric distortions involving more than

0.5 pixel translation, 5% of the characteristic scale and 3 of

characteristic orientation. However, the feature-point detector

cannot have such a high accuracy since we are dealing with

sampled spatial (digital images) and scale spaces. To resolve

this mismatch, we performed correlation detection times by

changing the position, the characteristic scale, and orientation

of each invariant region in the amount of pixel,
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of a scale, and , respectively. We call this process local

search. The two neighborhoods of one-dimensional (1-D) pa-

rameters, such as the radius of circles, the tilt angle of ellipses,

and the characteristic orientation, and the four neighborhoods

of 2-D parameters, such as the position of feature points and

the axes (major and minor) of ellipses, are considered in

the search. For the circle and ellipse, the local search space

amounts, respectively, to 45 (5, 3 and 3 for position, radius, and

characteristic orientation, respectively) and 225 (5, 5, 3 and

3 for position, axes, tilt angle, and characteristic orientation,

respectively). For the two-, three-, and four-point set, the local

search space amounts to 25, 125, and 625 (5 for position of

each feature point), respectively. The execution time for the

local search was a few minutes for the 50 invariant regions on

a 2.4-GHz Pentium 4 processor.

A. False Alarm Analysis

To determine the watermark detection threshold , the false

alarm rate and the false rejection rate should be con-

sidered. The false alarm rate is the probability to declare an

unmarked image as marked. The false rejection rate is the

probability to declare a marked image as unmarked. There is a

tradeoff between the two probabilities in selecting threshold .

In practice is difficult to analyze since there are plenty of

image processing steps of those we do not know the exact char-

acteristics. Thus, it is common to select a threshold of mini-

mizing subject to a fixed . First we examine the false

alarm rate of each invariant region. By assuming that the water-

mark has zero mean and unit variance and is independent with

the image, the mean and the standard deviation of the nor-

malized correlation for unmarked images are given by [51]

(22)

By the Gaussian assumption of , the false alarm rate of the

correlation output is given for a certain value of the

threshold as follows:

(23)

To compensate for the inaccuracy of the position, the character-

istic scale and orientation of the feature point after attacks, the

correlation detection is performed at each invariant region

times (local search). If at least one out of the correlation out-

puts is greater than the threshold , the region is claimed to be

watermarked. Thus, the false alarm rate of each region

is given by

(24)

By viewing all the watermarked regions as independent com-

munication channels, we claim the existence of the watermark

Fig. 6. P (in log scale) versus watermark detection threshold T for
N = 50;M = 1024, and � = 1; 2; 3; solid line:K = 25; dashed line : K =
125.

Fig. 7. Examples of attacks on watermarking. (a) Shearing (5% both in x and y
directions). (b) Stirmark random-bending attack. (c) Scaling (x�0:5; y�0:5).
(d) Nonisotropic scaling (x� 0:7; y � 0:9). (e) Projective transformation H .
(f) Projective transformation H .

if the same watermark is detected from at least number of the

invariant regions [22]. Then the false alarm probability for an

image is given by

(25)

where is the number of invariant regions used in the water-

mark detection. In our case, we choose 50 most probably water-

marked candidate regions based on the SHCS measure through

the scale space as in the watermark embedding and try to de-

tect watermark. All the tests in Section IV-B are done with the

threshold at . In practice, many invariant
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TABLE II
WATERMARK DETECTION RESULTS UNDER NONGEOMETRIC ATTACKS, CROPPING, AND STIRMARK RANDOM-BENDING ATTACK. THE THREE NUMBERS IN THE

TABLES INDICATE THE NUMBER OF THE INVARIANT REGIONS, WHERE THE WATERMARK WAS DETECTED, FOR � = 1; 2; 3, RESPECTIVELY.
THE NUMBER IN THE PARENTHESES REFERS TO THE NUMBER OF WATERMARKED REGIONS

regions are overlapping. If we detect watermark at regions sig-

nificantly overlapping one another, that is counted one. Thus,

we can expect that the actual is lower than that in

(25). Fig. 6 shows versus for various values of

and . With larger , the threshold is smaller for the same

. As the local search space grows, the threshold

of watermark detection for the same increases.

B. Robustness Test

The proposed watermarking scheme is tested on the six

popular test images: 512 512 Airplane, Baboon, Boat, Lake,

Lena, and Peppers. The test images can be downloaded at

USC-SIPI Image Database.2 The original watermark pattern

is prepared as a zero-mean pseudorandom 1024-length pattern.

The peak signal-to-noise ratio (PSNR) of the watermarked

regions was between 34 and 43 dB after masking [50]. Then

the resulting PSNRs of the watermarked test images were

between 38 and 45 dB. Through the masking, the embedded

watermark is hardly perceptible. To test the robustness of the

proposed method, all the watermarked images were subjected

to various kinds of image processing steps (see [23] for the

2http://sipi.usc.edu/database/

detailed description of the processing steps). We considered the

following two projective transformations and

(26)

Examples of the processed images are illustrated in Fig. 7. The

effects of the geometric transformations can be easily visualized

by the grid in the image.

Watermark detection results for various signal processing

steps are shown in Tables II and III. The three numbers in

the Tables indicate the number of the invariant regions where

the watermark was detected with the three values of threshold

(obtained from Fig. 6 for ) corresponding

to , respectively. We note that only detected

regions are needed for claiming watermark existence. For

most of the attacks, the detection results were best at .

However, for uniform noise, JPEG compression, and shearing,

the detection results at 2 or 3 were better than those at
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TABLE III
WATERMARK DETECTION RESULTS UNDER AFFINE AND PROJECTIVE TRANSFORMATIONS. THE THREE NUMBERS IN THE TABLES INDICATE THE NUMBER OF THE

INVARIANT REGIONS, WHERE WATERMARK WAS DETECTED, FOR � = 1; 2; 3, RESPECTIVELY. NOTE THAT AUTOCROP REFERS TO CROPPING TO ORIGINAL

SIZE AFTER ROTATION. THE NUMBER IN THE PARENTHESES REFERS TO THE NUMBER OF WATERMARKED REGIONS

1. In practice, employing multiple values of rather than

one is beneficial in reducing false rejection rate with a nominal

increase in computation (i.e., comparison with multiple thresh-

olds). Among the three invariant-region detection methods,

the shape adaptation of the Gaussian kernel showed the worst

performance. The iteration process in the shape adaptation

was not stable enough to withstand most attacks. Thus, the

other two methods, which do not rely on iteration, showed

better robustness. As shown in Table I, the watermark shape

should correspond to the expected geometric transformations.

In general, the regions with lower degree of freedom have

higher repeatability. Thus, the watermark of simple geometric

shapes, such as circle and square, is more robust against

nongeometric signal processing steps and similarity transfor-

mations. However, if we want to make the watermark robust

against nonisotropic scaling and projective transformations,

the watermark of complex geometric shapes, such as ellipse,

triangle, and quadrangle, should be used. In practice, the water-

mark-detection performance strongly depends on the location

and the image characteristics of the watermarked regions. If a

region is located at the border of an image, it might be removed

after cropping. The watermarked regions in the textured areas

are less robust since many new feature points may show up,

and the feature points of the watermarked regions may shift

considerably (more than several pixels) after either geometric

distortions or noise-like signal processing attacks [8], [22]. The

feature points in the intersection of strong edges show higher

repeatability. These facts are reflected in the results, and the

textured images Baboon and Lake showed less robustness than

the other images. The robustness of the proposed method based

on the scale-space representation was compared with that of

the previous watermarking method based on the tessellation

of the Harris points [8]. We tried to detect the watermark at

each triangle obtained through the tessellation of the Harris

points of an image. For a fair comparison, the same amount of

local search was performed at each vertex of the triangles as

used in the testing of the proposed method. Even without the

scale-space representation, the method in [8] showed notable

robustness against most attacks. However, as we expected, the

method was susceptible to the scaling attack. In this paper, we

show that this problem can be resolved using the scale-space

Harris points. We note that watermarking methods based on

the characteristic scale and the two-point set are robust against

scale changes due to the scale-space representation. The price
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paid for the improved performance is the increased complexity

in computing the scale-space representation. However, note

that there exists an efficient way to compute the scale-space

representation of an image [26].

V. CONCLUSION

This paper shows that the resilience of the watermark against

geometric distortions can be significantly improved by synchro-

nizing watermarking with the invariant regions of the scale-

space representation of an image. The robustness against geo-

metric distortions is essential because it is quite easy to im-

pose geometric distortions to images with modern computers.

The original image is not needed at the watermark detector.

Two limitations are commonly quoted on the content-based wa-

termarking methods: the inaccuracy of feature point detector

[8], [22] and the added computational complexity [20]. In this

paper, the inaccuracy was overcome by using the local search.

Obviously, the proposed method is computationally more de-

manding than watermarking methods that do not consider geo-

metric distortions. However, only 50 invariant regions, selected

based on the SHCS measure, are used in the watermark detector.

It is noticeably less burdensome than exhaustive search. The

experimental results show that the robustness of the proposed

content-based watermarking method, especially to scaling and

cropping, is improved by using the invariant regions of the scale-

space Harris points. This implies that there may be room for

improvement of watermarking performance by using refined

pattern recognition techniques. The watermark of simple geo-

metric shapes, such as circle and square, is certainly more ro-

bust against both the nongeometric signal processing steps and

the similarity transformations than that of complex geometric

shapes, such as ellipse, triangle and quadrangle. Moreover, the

complex geometric shapes require more computation in both the

invariant-region detection and the local search for watermark

detection. However, the watermarks with complex geometric

shapes perform better for the nonisotropic scaling and the pro-

jective transformations. Future work includes the development

of more robust and computationally efficient invariant-region

detector, especially on textured areas, and the extension of the

proposed method to video.
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