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Abstract

The widespread availability of digital cameras and ubiq-

uitous Internet access have facilitated the creation of mas-

sive image collections. These collections can be highly

interconnected through implicit links between image pairs

viewing the same or similar objects. We propose building

graphs called Image Webs to represent such connections.

While earlier efforts studied local neighborhoods of such

graphs, we are interested in understanding global structure

and exploiting connectivity at larger scales. We show how

to efficiently construct Image Webs that capture the connec-

tivity in an image collection using spectral graph theory.

Our technique can link together tens of thousands of im-

ages in a few minutes using a computer cluster. We also

demonstrate applications for exploring collections based on

global topological analysis.

1. Introduction

The widespread availability of digital cameras and ubiq-

uitous Internet access have helped create massive personal

and public image collections on sites such as Facebook and

Flickr. Images in these large collections can be highly cor-

related because there are many images of the same or sim-

ilar objects under different viewing conditions. When an

image collection is sufficiently well interlinked by shared

objects, it becomes interesting to study the structure of the

network formed by such links and to exploit the connections

among images.

We propose building graphs called Image Webs to repre-

sent the connections between images in a collection. Each

node in an Image Web corresponds to a region of connected

pixels in an image. Edges in the Image Web connect regions

in different images that are similar under an affine trans-

form. These regions are extracted using a process called

Affine Cosegmentation that we describe in Section 3 to pro-

duce match links. There are also edges connecting distinct

regions that occur in the same image.

Evidence from cognitive neuroscience suggests that the

brain may learn representations of objects as a continuous

Figure 1. Image Webs can connect images of buildings along a

bus route via the moving bus (top row) or images of Calais and

London through casts of the Rodin sculpture “The Burghers of

Calais”, which commemorates a historical connection between the

two cities in the Hundred Years’ War (bottom row).

manifold in a high-dimensional space from a large number

of observations of objects under viewpoint and illumination

changes [7]. We believe Image Webs may be a promising

tool for many vision problems because they provide a sim-

ilar representation – a discrete sampling of an image mani-

fold produced by linking views of an object with sufficiently

similar pose and illumination conditions.

As we briefly survey in Section 2, considerable research

has already been devoted to exploiting match links to de-

tect images of popular landmarks [25] and to annotate

them [11], or for 3-D reconstruction of landmarks [23].

These applications focus on isolated and localized clusters

within an Image Web. Instead, we are interested in relation-

ships between images, which may be visually quite differ-

ent, arising from many transitive connections. For example,

in the top row of Figure 1, images of two different build-

ings at a university are connected by a campus bus that fre-

quently stops near each building. In the bottom row, images

of the town hall of Calais (France) and the Palace of West-

minster (London) are connected because a cast of Rodin’s

sculpture “The Burghers of Calais” appears in front of both

buildings. While prior work has mostly used match links

to connect images of a particular static scene, this small

example shows that transitive “non-local” associations can

also be quite interesting. Non-local connections can be es-

tablished through mobile objects that co-visit static objects,

through objects that have multiple instances in the world

with similar visual appearance, or even through static ob-

jects connecting mobile objects (e.g. people visiting the



same monuments).

The focus of this paper is to study the large-scale con-

nectivity of image collections and the use of this connectiv-

ity in a variety of applications. Our contributions are two-

fold. First, a technique for building Image Webs efficiently

is presented in Section 3. Reliably detecting matching re-

gions between images is an expensive step using current

feature matching techniques. To handle collections of tens

of thousands to millions of images, we simply cannot af-

ford the quadratic cost of directly comparing every pair of

images. Since our applications are concerned with global

connectivity of the Image Web, we want the construction

process to correctly capture the entire structure, and not

spend a disproportionate amount of time inter-connecting

already densely-linked regions. Towards this end, we pro-

pose a novel approach based on spectral graph theory and

Content Based Image Retrieval (CBIR) that chooses to test

image pairs that are likely to globally improve a spectral

measure of graph connectivity. Given a limited budget of

computation time or number of edges that can be stored,

our algorithm will capture significantly more of the global

structure of the Image Web than an approach based on CBIR

scores alone.

Our second contribution consists of several new ways of

exploring image collections by exploiting the connectivity

captured in an Image Web (Section 4). We first present a

visual-hyperlink browser, which allows users to navigate

in the image collection using linked regions between im-

ages like hyperlinks in web pages. Because an Image Web

can be large and complex, a global summary can be use-

ful to visualize its essential structure. Towards this end

we use tools from persistent homology and cohomology in

computational topology to extract junctions (branch points)

and form a global map of the Image Web, as well as to

parametrize images along linear or circular structures —

which together greatly improve the navigation experience

and understanding of the structure of the Image Web. We

also show how computing paths between densely connected

regions of the web can reveal interesting relationships be-

tween images. These paths are usually ignored in previous

clustering-based applications, but are informative because

they summarize how densely connected regions of the web

are inter-related.

2. Related work

The first step of many methods for organizing, anno-

tating, and browsing large image collections is to discover

pairs of matching images using local feature matching tech-

niques such as [17], and to organize these matches into a

graph structure. In this section, we will review some of the

previous methods for constructing and using different im-

age graphs.

An intuitive method for browsing many images of the

same scene was proposed in [23]. This approach uses pair-

wise image matching to construct a graph of images, fol-

lowed by a structure from motion (SfM) computation to re-

cover the camera poses and a sparse 3D reconstruction of

the scene. The user can then browse the collection in in-

teresting ways using the recovered spatial relationships be-

tween images. In [22], subsets of images corresponding to

panoramas and fly-arounds are detected by analyzing the

camera poses and fields of view of all the images of a scene.

Graphs of matching images or image regions are used in

various image clustering and labeling applications. In [21],

clustering is performed in the image graph to choose a set

of representative images for an image collection. The ap-

proach of [4] establishes initial matches between images

using min-hashing, and then uses query expansion to find

clusters of similar images for landmark discovery and 3D

reconstruction. In [11], labels are transferred across match

links in an image graph for landmark identification in hol-

iday photos. A graph structure similar to the Image Webs

we use was proposed in [25]: the graph is built on image re-

gions consisting of groups of matching features, with edges

linking regions that match in different images, as well as

regions that co-appear in a single image. This structure is

then used as an input to a clustering algorithm that clusters

and labels photos of landmarks in a large collection.

Link analysis techniques developed for indexing web

pages have been applied to images. In [14], the PageRank

algorithm is run on a graph built from images returned by

Google Product Search to re-rank and group similar prod-

ucts together. In [15], a lower-level structure is built with

graph nodes corresponding to individual local features, with

edges linking features sharing a similar descriptor and pass-

ing a geometric consistency test. Spectral clustering is then

performed on the graph for unsupervised learning of object

categories.

The Image Web we use is similar to some of the graphs

described above [25, 4], but is built to capture different

structure in the collection. The clustering, labeling, and ob-

ject detection applications mentioned above generally aim

to partition an image graph into components that correspond

to different landmarks, objects, or labels. In this work, we

are instead interested in the global structure of the connec-

tivity of a set of images and long paths in the Image Web. A

related problem of connecting pairs of images through a col-

lection was examined in [22], however, in that work the dis-

covered paths are restricted to paths in the physical space of

camera poses of the same scene. In our work, we use a more

general notion of a path, which connects images through

shared regions and objects and apply tools from computa-

tional topology to summarize the structure. As a result, we

are still able to connect images when the number of views

is insufficient for 3-D reconstruction or, more interestingly,

when the objects are not part of the same scene. Such non-



physical paths can have informative semantic meaning, as

demonstrated by the examples in Figure 1.

For large datasets, the quadratic cost of pairwise im-

age matching is impractical. Content-Based Image Re-

trieval (CBIR) techniques based on Bag-of-Visual-Words

models [13], global image descriptors [16] or geometric

min-hashing [5] have been used to quickly filter out many

images that are unlikely to match. These accelerations may

exclude some potentially relevant images. To mitigate this

problem, query expansion [6] has been used recover miss-

ing matches by re-querying with each of the images re-

turned from an initial query. In [1], Agarwal et al. use

a combination of CBIR, query expansion, and paralleliza-

tion to do 3D reconstruction from image collections with

hundreds of thousands of images. Philbin et al. [20] use

CBIR and geometric consistency checks to build graphs on

very large image collections of urban environments. Their

target application is clustering, so the construction focuses

on densely-connected regions of the graph and the cluster-

ing specifically aims at cutting links that bridge gaps across

clusters. In contrast, our construction and navigation algo-

rithms aim at finding and exploring such links.

We believe that connectivity is an important property for

image graphs that has not been explored in existing work

and would lead to improvements in many of the aforemen-

tioned applications. For example in [1], the authors show

that their 3D reconstruction technique is forced to split a

large 3D model into two smaller ones at a point of low con-

nectivity in the initial image graph. Our graph construction

method specifically aims at improving connectivity around

such bottlenecks.

3. Image Web Construction

The basic entity in an Image Web is a region, which cor-

responds to a connected component of pixels in the image.

We discover corresponding regions between images using

a process called affine cosegmentation (or just cosegmenta-

tion for short), described in the next section.

Match links are added between the matching regions in

different images generated by cosegmentation. Additional

links are introduced between regions in the same image to

represent their co-occurrence in the same scene, or their

shared identity if they overlap.

3.1. Affine Cosegmentation

The affine cosegmentation process takes a pair of im-

ages (Ia, Ib) as input and detects regions of maximal size

in image Ia that correspond under an affine transformation

to regions in Ib. The approach, illustrated in Figure 2, uses

local-feature matching techniques and works as follows.

First, affine covariant local features are extracted from

the images. Harris-affine and Hessian-affine keypoint

a.)

b.)

c.)

Figure 2. Affine cosegmentation is performed by a.) extracting

local features b.) detecting affine consistent feature matches c.)

extracting regions by merging keypoint support regions.

detectors [18] and the Maximally Stable Color Regions

(MSCR) keypoint detector [10] are used in order to detect

keypoints on both smooth and textured image regions. Key-

points are described using the SIFT descriptor. Next, tenta-

tive correspondences between local features are generated

by matching each feature in one image to its approximate

nearest neighbor in the other (in descriptor space). Match-

ing is performed for each of the three keypoint types using

Lowe’s ratio test criterion [17] to select candidate matches.

In practice, most of these tentative correspondences are in-

correct because of variation in the set of selected keypoints,

large changes in viewpoint and lighting, the use of approx-

imate nearest neighbor algorithms to accelerate matching,

and the existence of multiple instances of the same feature

in an image.

To deal with incorrect matches, the RANdom Sam-

ple Consensus algorithm (RANSAC) [9] is iteratively in-

voked to detect sets of geometrically consistent feature

matches. We apply RANSAC to find a maximal set of fea-

ture matches such that features in one image can be mapped

to their corresponding features in the other by an affine

transformation. The features belonging to a maximal set are

removed from consideration and the process is iterated until

no sufficiently large set of features can be found. The geo-

metric constraint is effective at filtering out the large num-

ber of incorrect matches. Finally, the point correspondences

are converted to a region-based representation of the extent

of the shared region in each image. The union of the ellipse-

shaped affine-covariant keypoint regions is computed and

the boundary of its largest connected region is used as a

rough segmentation of the shared region. For all our ex-

amples, we compute cosegmentation on images scaled to

0.3 megapixels and consider a region match successful if it

contains 10 feature matches.

3.2. Efficient construction

Ideally, an Image Web should be built by attempting

cosegmentation on all pairs of images in the collection. In

practice, all-pairs matching is too expensive and also highly

inefficient since only a small fraction of pairs actually match

in a large collection. To address this problem, we have de-

veloped a process for selecting pairs of images for coseg-

mentation so that we can quickly recover the essential struc-

ture that would result from all-pairs matching with a rela-



tively small number of cosegmentation operations.

We define an image-graph to be a graph on images where

an edge (I1, I2) between images indicates that cosegmen-

tation has succeeded in matching regions between the two

images, equivalent to the match-graph used in [1]. A pair of

images (I1, I2) for which cosegmentation has not yet been

performed represents a potential edge in the image-graph

which we call a cosegmentation candidate. The Image Web

construction proceeds in two phases. The goal in the ini-

tial phase is to quickly discover the connected components

of the image-graph that would exist if all-pairs matching

were performed. The goal in the second phase is to add

edges within each connected component to capture the same

global connectivity that would result from all-pairs match-

ing.

Phase 1: Discovering connected components

Cosegmentation candidate selection in Phase 1 is guided by

Content Based Image Retrieval (CBIR) using the Bag-of-

Visual-Words model. Given a query image, CBIR quickly

generates a ranked list of other images that contain similar

local features. We use the CBIR technique of [13].

Our proposed candidate selection strategy in Phase 1 is

as follows. For each image, a CBIR query returns the top

k most similar images and a corresponding similarity score.

Each image is paired with its k most similar images and

all such pairs are sorted by their associated CBIR similar-

ity score. Candidate pairs are considered in order of de-

creasing similarity score so that the candidate pairs most

likely to match are given priority. We impose a further

restriction that candidates with images in the same con-

nected component of the evolving image-graph are skipped.

This condition focuses the exploration process on those

edges that could potentially merge two connected compo-

nents and results in connected components that are trees.

Phase 1 matching proceeds until the frequency of compo-

nent merges falls below a threshold or until a fixed budget

of cosegmentation operations is exceeded.

Phase 2: Increasing connectivity

Since the strategy in Phase 1 results in a very sparse repre-

sentation of the connected components, the goal of Phase 2

is to discover additional edges that would increase the con-

nectivity within the components. A robust notion of con-

nectivity used in spectral graph theory is called algebraic

connectivity and is measured by the second smallest eigen-

value of the graph Laplacian. This eigenvalue is known to

relate to the ability of the graph to diffuse information, the

convergence rate of random walks, and many other mea-

sures of graph connectivity. In our setting, given a con-

nected component discovered in Phase 1, we represent it as

a connected graph G = (V,E) and construct the Laplacian

matrix L as follows:

Li,j =







d(i) if i = j

−1 if (i, j) ∈ E

0 otherwise

,

where d(i) is the degree of vertex i. The algebraic connec-

tivity of G is λ2, the second smallest eigenvalue of L. Note

that L is symmetric and thus has real eigenvalues. In ad-

dition the eigenvalues are always positive, and the smallest

eigenvalue will always be 0 with a corresponding constant

eigenvector. The eigenvector of L that corresponds to λ2 is

called the Fiedler vector, and we denote it by v2.

Ideally, given a graph G we would like to find a fixed

number of additional edges that would lead to the highest

increase in algebraic connectivity. However, this problem

is NP-hard [19]. We adopt an inexpensive greedy strategy

proposed by Wang and Piet [24] which produces excellent

results in practice. We call this procedure EdgeRank, since

it allows us to rank potential edges according to their con-

nectivity importance using a power-iteration method similar

to the PageRank algorithm [3].

We create a set of edge candidates by pairing each im-

age in the component with its top M CBIR matches (we

use M = 25). For every new edge candidate e = (s, t), we

compute its EdgeRank score ce = |v2(s) − v2(t)|, i.e. the

absolute difference of the values of s and t in the Fiedler

vector v2. We consider adding potential edges by attempt-

ing cosegmentation of corresponding images in decreasing

order of ce. Intuitively, this procedure will first suggest

edges between pairs of vertices of G, which are not tightly

connected. This means that connections across different

cliques in the graph will be discovered much quicker than if

the CBIR score was used to rank the edges.

Once a cosegmentation attempt is successful and an edge

is added to the graph, we need to update the Laplacian L and

its Fiedler vector v2. The latter step can be done by using

the previous estimate of v2 as an initial guess for a power

iteration in the subspace orthogonal to the space spanned by

the constant eigenvector. In other words, we update v2 by

iterating over:

v2 =
(2nI − L)v2

‖(2nI − L)v2‖2

, v2 = v2 −
1

n

n
∑

j=1

v2(j) ,

where n is the number of vertices in G and I is the identity

matrix. Note that the first step is simply a sparse matrix-

vector multiplication, which can be easily parallelized. In

the second step we subtract the mean from all elements of

v2. This ensures that v2 remains orthogonal to the constant

eigenvector, and thus the power iteration will converge to

the Fiedler vector. Note that although in general the power

iteration is known to be slow, convergence is fast in our set-



Figure 3. Comparison of Phase 1 strategies on the Pittsburgh col-

lection.

ting since we do not expect the Fiedler vector to change

drastically after one edge addition.

Using this method we obtain a more well-connected

graph using fewer cosegmentation attempts and generate a

smaller number of edges, thus increasing sparsity. We eval-

uate these improvements on real data in Section 3.3.

3.3. Evaluation

To evaluate the proposed image-graph construction

method, we compare our strategy with the strategy in [1].

We briefly review their strategy here. For discovering con-

nected components (Phase 1), their method first matches

each image with all its top k1 CBIR candidates and in a

second stage, it matches each image with its next k2 best

CBIR candidates so long as they lie in different compo-

nents. To increase the density of matches within a com-

ponent (Phase 2), their method performs query expansion

by selecting each image’s 2-hop neighbors as match candi-

dates. In experiments, they set k1 and k2 to 10 images and

performed 4 rounds of query expansion. We use these same

parameters in the following evaluation.

To evaluate Phase 1 construction strategies, we used a

collection of 50,224 Google street-view images from down-

town Pittsburgh, PA. We constructed an Image Web us-

ing our proposed Phase 1 candidate selection strategy (with

k = 25) and the strategy from [1]. The results are shown

in Figure 3. Our proposed strategy converges more quickly

to a small number of components, resulting in 107 (23 non-

singleton) components after 95,075 cosegmentation opera-

tions compared with 2488 (372 non-singleton) components

after 177,671 cosegmentation operations.

To evaluate Phase 2 construction strategies, we used a

smaller collection of 1,257 images of an art museum. We

choose a smaller set so that we can easily visualize the re-

sulting image graphs as shown in Figure 5. The proposed

Phase 1 construction method was used to generate an initial

graph to be refined. Phase 2 construction was performed

with the query expansion strategy from [1] with 4 rounds of

expansion, the proposed EdgeRank strategy with k = 25,

and a related strategy we label CBIR. The CBIR strategy

chooses among the same candidates as EdgeRank but ranks

candidates by CBIR score instead of connectivity score.

Figure 4(a) shows the relationship between the connec-

tivity and computation time for the three strategies. The

(a) Connectivity / Construction Time

(b) Edges / Construction Time

(c) Connectivity / Edges

Figure 4. Comparison of Phase 2 strategies on the Art Museum

collection with respect to construction time, number of edges

added, and algebraic connectivity.

EdgeRank strategy improves the connectivity much more

rapidly than CBIR or query expansion. The CBIR strat-

egy can eventually achieve the same connectivity but re-

quires many more cosegmentation operations. As shown in

this figure, query expansion is not well suited for improv-

ing connectivity because it tends to add links in already

well-connected areas of the graph. Figure 4(b) compares

the strategies in terms of number of edges added to the

component. Query expansion and CBIR add edges rapidly,

successfully adding a new edge for roughly every 1.6 and

3.5 cosegmentation operations respectively. EdgeRank be-

haves very differently, adding very few edges initially while

searching for the edges that are important for connectiv-

ity. Figure 4(c) shows that the EdgeRank strategy gener-

ates an image-graph with good connectivity after adding a

relatively small number of edges compared with the other

strategies. The connection between the algebraic connectiv-

ity and the graph structure can be seen in Figure 5. Edges in

the graph constructed using EdgeRank are more uniformly

distributed than in the graph constructed using query expan-

sion.

3.4. Distributed implementation

Though constructing an Image Web is computationally

expensive, the most expensive steps are independent and

can be easily parallelized on a computer cluster. In our dis-

tributed implementation, a manager node issues feature ex-



(a) Edge Rank (b) Query Expansion

Figure 5. Image-graphs resulting from Phase 2 construction us-

ing EdgeRank (a) and Query Expansion (b) strategies respectively.

The graph in (a) has a connectivity 5.5 times larger than the initial

graph after adding 151 edges. The graph in (b) has a connectivity

only 1.7 times larger after adding 5,212 edges.

(a) Visual hyperlink browser (b) Summary graph browser

Figure 6. In (a), a visual hyperlink browser lets users navigate to

related images by clicking on visual hyperlinks and provides a de-

tailed view of a local neighborhood of the web. In (b), a summary

graph browser provides a global view of the web allowing simple

navigation around the entire web.

traction, CBIR, and cosegmentation jobs to worker nodes

which compute and return the results. Table 1 shows some

summary statistics. The reported construction times are for

a cluster with 500 cores (2.33 GHz, 1GB RAM) and exclude

the preprocessing steps for feature extraction and CBIR in-

dexing.

4. Applications

In this section, we present applications for exploring im-

age collections that exploit the connectivity captured in an

Image Web at multiple resolutions. The first application

provides a local view of the Image Web revealing details

about the regions that link images. The second application

provides a global view of the web that reveals the over-

all structure of the collection. The third application de-

tects interesting relationships between images by identify-

ing certain paths between densely connected regions of the

web. Demonstrations of these applications are available at

http://geometry.stanford.edu/imagewebs.

4.1. Exploration using visual hyperlinks

In this application, shared regions serve as visual-

hyperlinks between images much like the text links between

web documents. Figure 6(a) shows a graphical user inter-

face built on this concept. The browser displays the cur-

rent image in the center, overlaid with the regions that link

it to other images. In a ring around the center image, the

browser shows other images that are related by a shared re-

gion. Hovering above a region highlights it and its corre-

sponding region and draws a line connecting them. Click-

ing on a region follows the visual-hyperlink by selecting a

new center image. The ring of thumbnail images serves as

a summary of the neighborhood of related images while the

visual hyperlinks indicate exactly which parts of the images

are related. In a typical browsing session, a user may follow

visual-hyperlinks associated with a particular object of in-

terest, discover another interesting object, and then switch

focus to explore the new object.

4.2. Exploration using a summary graph

Since Image Webs can be very large and complex, it is

useful to produce a map or summary of the entire web to

facilitate navigation. We have designed a novel algorithm

which uses ideas from persistent homology [8] to compute

a summary graph which captures global structure. In a sum-

mary graph, each image maps to either a vertex or to a

position along an edge. Figure 6(b) shows an Image Web

browser application based on summary graphs. The user

can move forward or backwards along an edge of the sum-

mary graph to quickly flip through a set of connected im-

ages or choose which path to take at an intersection. The

user’s position is shown on the summary graph as she moves

to help her see what part of the collection she is viewing and

what parts she has not yet explored.

Computing a summary graph

Image webs can be viewed as noisy graphs where noise is

introduced by the irregular sampling of views of the world

and the limitations of image matching. Tools from the field

of computational topology are appropriate in such a set-

ting as they can detect persistent structures across multiple

scales and are less sensitive to the exact notion of metric.

We use persistent homology to remove insignificant fea-

tures and to interpret our web as a stratified space consisting

of one-dimensional strata joined at branching nodes. Such a

model is appropriate for image collections captured by en-

tities moving through a structured space like a city or build-

ing, and thus naturally containing long pieces of a linear

character.

To compute a summary graph, we assign weights to the

edges of an image graph by penalizing changes in view-

point reflected in the relative scale and skew parameters of

the affine transformations of matching regions between im-

ages. We then build a topological complex on which we

will compute various topological invariants. The Vietoris-

Rips complex Rδ [12] is created from the image graph by

picking a distance threshold δ and inserting, for all k, a k-



Collection Name (Source) Images Components Largest Construction Time (min)

(size > 1) Component Phase 1 Phase 2 Total

Stanford (Flickr) 193,277 12,505 11,240 173 96 269

Pittsburgh (StreetView) 50,224 23 49,907 7.9 70 78

London (Panoramio) 17,925 902 4,617 7.7 5.9 14

Art Museum (created) 1,257 5 1,217 0.06 0.74 0.8

Table 1. Summary statistics for Image Webs built from 4 different image collections. The construction times are for a computer cluster

with 500 cores and a CBIR prefix of M = 25 in both Phase 1 and Phase 2.

simplex between nodes (images) if all pairwise distances

are at most δ. As δ grows, we create a nested sequence of

complexes, the Rips filtration, on which persistent homol-

ogy can be applied [8]. The parameter δ represents the scale

at which we choose to look at the graph and appropriate val-

ues can be chosen by examining the persistence diagram of

the filtration, recording the lifetimes of topological features.

Next we assign a branching factor to each node N in a

way that captures the local behavior of the graph around that

node. Intuitively, this step works by continuously shrinking

a ball centered at N , and tracking one-dimensional relative

homology groups and their generators for the portion of the

complex inside this ball [2]. We also relativize N with the

boundary of this ball so that the number of one-dimensional

homology classes matches our intuitive notion of the num-

ber of branches or degree at N . If more than two classes,

with persistence at least ρ, die within a distance ε from N ,

we label N as a branch node; otherwise we label it as a

path node. Note that in the absence of noise, the same ef-

fect can be achieved by simply considering the degree of

each vertex. The parameters ρ and ε allow us to control

the sensitivity of the method to noisy connections as well as

short protrusions in the graph. Parameters ρ, ε are chosen

by examining the persistence diagrams of local homology

groups at few sample nodes. Persistent homology (and co-

homology, for parametrizing the summary graph edges) is

computed using the Dionysus C++ library for persistent ho-

mology 1. Figure 7 shows the corresponding persistence

diagram at a node N on a toy graph with unit edge weights.

Finally the branching factors computed for each node are

used to partition the graph into connected components that

correspond either to branching regions or path-like struc-

tures. An example Image Web and its summary graph are

shown in Figure 8.

n

9 8 7 6 5 4 3 2 1 0

Figure 7. The persistence diagram for one-dimensional local ho-

mology groups at N . Birth/death points are colored-coded w.r.t

balls of the corresponding radius.

1Dionysus library: http://www.mrzv.org/software/dionysus

Figure 8. An image graph (above) on 569 images taken on a tour of

a college campus and its corresponding summary graph (below).

Branches and paths are colored red and green respectively.

4.3. Discovering paths between landmarks

In this application we analyze the connectivity of the

graph to identify densely connected subsets of the Image

Web and the paths between them. In many data sets, densely

sampled regions correspond to landmarks or objects people

consider interesting. The paths between such landmarks are

also interesting because they explain how they are related.

To analyze connectivity, we leverage the information

captured by the Fiedler vector which was calculated dur-

ing the construction of the Image Web as discussed in Sec-

tion 3. The Fiedler vector is often used for partitioning ver-

tices of a graph into tightly connected clusters. Here we use

it to compute a connectivity score for edges in the graph via

the same EdgeRank procedure that was used to compute

the connectivity of potential edges in the graph. We iden-

tify the edges with high connectivity score (above a user

adjusted threshold) and delete these edges to induce a par-

tition on the vertices which correspond to landmarks. We

choose the vertex with highest degree in each partition as

the representative for the landmark. Finally, we compute the

shortest paths between these vertices in the original Image

Web. Since these paths must necessarily pass through the

deleted “bottleneck” edges, they represent important con-

nections between the landmarks.

Figure 9 shows the result of the connectivity analysis on

an Image Web computed from a collection of 130 images

taken around an office space. For this small collection, we

can easily visualize the image-graph and highlight the high-

connectivity edges as shown. We partitioned the graph into



desk 1 desk 2

hallway

Figure 9. An image graph overlaid with detected landmarks (or-

ange) and shortest paths between them. Edges marked in red cor-

respond to the bottleneck edges between landmarks. Two paths be-

tween landmarks correspond to physical paths in the office while

one path is caused by a shared object (keyboards on both desks).

three distinct connected components which correspond to

two different workspaces and the hallway between them.

Figure 9 shows the representative landmark images and the

images that lie on shortest paths between the landmarks.

5. Conclusion

In summary, this paper introduces the notion of capturing

and exploiting global connectivity in large and dense image

collections. We link images through image regions discov-

ered by cosegmentation and use a measure of connectivity

from spectral graph theory as a tool for improving the web

construction process. We demonstrated a number of initial

applications that exploit the global connectivity of such an

Image Web. Just as the World Wide Web has established

the value of interlinked text documents and the power of

link analysis techniques, we believe there is value in having

interlinked sets of images and in studying how to exploit

their connectivity structure.
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