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Abstract—We present a semiautomatic image editing framework dedicated to individual structured object replacement from groups.

The major technical difficulty is element separation with irregular spatial distribution, hampering previous texture, and image synthesis

methods from easily producing visually compelling results. Our method uses the object-level operations and finds grouped elements

based on appearance similarity and curvilinear features. This framework enables a number of image editing applications, including

natural image mixing, structure preserving appearance transfer, and texture mixing.

Index Terms—Natural image, structure analysis, texture, image processing

Ç

1 INTRODUCTION

IMAGE analysis and editing provide an important approach
to producing new content in computer graphics. We

propose here a dedicated system for users to replace
structured objects selected from groups while preserving
element integrity and providing visual compatibility. It
proffers an unconventional way to create new image
content with structured objects, even when they are
irregularly arranged. The objects are allowed to be dissim-
ilar in appearance and structure, as shown in Fig. 1.

Image and texture synthesis from multiple exemplars
have been explored in previous work. Pixel-level texture
approaches make use of similar statistical properties to
generate new results [4], [9], [45]. Patch-based texture
synthesis [14] is another set of powerful tools to selectively
combine patches from different sources [23]. Recently,
Risser et al. [35] employed multiscale neighborhood
information to extend texture synthesis to structured image
hybrids. They are useful for creating new image or texture
results based on examples.

These methods are general; but in the context of object
replacement within groups, they may not be able to
produce visually plausible effects without extensive user
interaction. Grouped elements can be rapidly and integrally
perceived by the human visual system (HVS) [21], which
indicates only considering pixel- or patch-level operations
may not be enough to understand the individual structured
element properties. Our system is composed of object-level
editing algorithms and does not assume any particular
texture form or near-regular patterns. Our major objective is

to deal with natural images containing piled or stacked
objects, which are common in real scenes, from the
individual perspective.

The naturalness of element replacement depends on the
compatibility of input and the result structures. It is
measured in our system by the element-separability scores,
combining curvilinear features and multiscale appearance
similarity. Objects are extracted based on these metrics,
with initial center detection followed by a Dilate-Trim
algorithm to form complete shapes. Our method also finds
suitable candidates for element replacement to ensure the
result quality. Our main contribution lies in an object-level
manipulation method without regularity assumption and
on a new scheme to measure object structure compatibility.

2 RELATED WORK

Image composition is a well-studied problem in computer
graphics. Early work of Porter and Duff [33] used an alpha
matte to composite transparent objects. Recent advance in
alpha matting [41], [42] made it possible to generate natural
and visually plausible image composite with global or local
operation. For our problem, directly apply alpha matting to
replace one object by another can generate visual artifacts
when illumination conditions vary. Poisson blending [32]
and its variations reduce color mismatching by computa-
tion in the gradient domain. Farbman et al. [16] achieved
similar composition results efficiently. Research efforts have
also been made to select candidates for composition from
image database [25] or internet images [10], which was
applied to create a fantastic artform called Arcimboldo-like
collage in [11]. Such methods minimize composition
artifacts while keeping the original object shape complete.
In our problem, it is essential to seek proper image content
to replace items in groups via compatible structures. We
also do not simply copy the whole region to the target
image for blending. There are procedures to refine
boundaries to improve the visual quality of the results
when in common situations that the found source and
target objects are diverse in structure.
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Our work is also related to example-based texture
synthesis. Efros and Leung [15] proposed a nonparametric
pixel-wise method to synthesize new texture from a user
provided example, trying to preserve as much local
structures as possible. The efficiency and capability were
improved by tree-structured vector quantization [44], global
optimization [22], and multiscale synthesis [17], [26]. Patch-
based approaches [14], [23] form another important line for
texture synthesis with the main idea being to find an
optimal seam between adjacent patches. Mask images [31],
[47] and feature maps [37], [46] can be used to guide texture
synthesis. These methods provide a powerful tool for
creating visually similar content from a few examples [43],
but none of them can be applied directly to natural images
for separating grouped elements, and then replacing objects
in a visually plausible way. The main challenge is that the
underlying structured element regions may be changed in
this process, as demonstrated in Fig. 1.

Synthesis and analysis may also be done at the texel level
[34]. Dischler et al. [13] manually segmented texture into
particles. Automatic methods [1], [40] extracted texels based
on subtree matching in low-level segmentation. They can
extract texels that are significantly occluded. It is, however,
time-consuming and can fail when segmentation is unreli-
able for grouped elements. Ijiri et al. [20] showed how to
manipulate elements which are distributed near-regularly.

Combining features or visually meaningful content from
different samples, i.e., image/texture mixing, allows users
to produce results with large variation. In prior work such
as image hybrids [35], Risser et al. synthesized image
hybrids from exemplars. Other methods [4], [9], [45]
generated new texture from multiple examples. The mixed
area produced by these methods tends to have similar

statistics or visual characteristics to the source. In RepFinder
[12], although element replacement can be conceptually
achieved, strict shape similarity has to be enforced and
there is no consideration of object consistency. In contrast,
our work places elements from different groups, where the
visual characteristics are allowed to be greatly different.
Recently, Ma et al. [30] mixed objects by modeling the
combination of individual elements and their distributions.
However, this method cannot solve our problem and
requires users to manually produce the source elements.

3 GROUPED ELEMENTS ANALYSIS

Replacing content within groups of objects is challenging,
since our human vision system (HVS) is sensitive to scene
integrity, shape compatibility, illumination consistency, etc.
Our method first finds separable objects in the target image
based on element-separability analysis, which captures the
global distribution of grouped elements. An element-separ-
ability map is then generated, indicating where to find
individual elements. We use a Dilate-Trim method to
extract element boundaries.

3.1 Multiscale Appearance Similarity

The first stage of our method is to detect inherent
appearance similarity in the given target group, which
helps analyze element distribution. The necessity of doing
this has been observed in other texel analysis work [8], [18],
[28], [48].

Our system requires the user to choose a point p0 to
specify a key appearance feature of the objects to be
extracted, as shown in Fig. 2a. We use multiscale descrip-
tors [35] to measure how this point (together with its
neighbors at different scales) matches other parts of the
given image, which eventually lets us know the possible
distribution of elements in the group. We build a Gaussian
pyramid. The finest level is the original image. Each coarser
level is smoothed and down-sampled by a factor of 2. The
descriptor vector of pixel p at each level has 75D after
stacking all pixels in a 5� 5 square neighborhood window
in a vector considering three colors. The vector at each level
is projected to only 6D by principal component analysis
(PCA). If the total number of levels is L, concatenating all
6D vectors in the pyramid yields a 6L-D final descriptor.
Our experiments show that L ¼ 4 is generally a good
choice. Using a larger L can capture a wider range of visual
features with higher computational costs.

We measure the euclidean distances between the
descriptor vector for p0 and those for other pixels, which
yield an appearance similarity map Sa with the same size as
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Fig. 1. A mixture created by our approach. Cookies are replaced by
plums while maintaining a visually plausible structure.

Fig. 2. Framework: (a) the user selects one point, and our system generates an appearance similarity map (b), informative for finding objects in
groups. After curvilinear feature refinement, we obtain the separability map (c). In (d), yellow dots represent elements detected by our method, with
their core regions marked in blue. A replacement result is shown in (e).



image I. For each pixel p, its value is denoted as Saðp; p0Þ.
An example is shown in Fig. 2b. Dark pixels are with high
similarity with p0 with respect to multiscale neighbors.

3.2 Robust Curvilinear Features

Curvilinear features [46], such as edges and ridges, which
primarily describe object boundaries in natural images,
provide strong evidence for finding similar objects. As
shown in Fig. 3b, curve magnitudes in natural images are
influenced by object occlusion, illumination variation, local
appearance change, etc. The curve detection method [39]
depends on local curve magnitudes and may find it difficult
to maintain boundary continuity.

Perception study shows that long coherent curves are
perceptually salient to HVS [6]. Bhat et al. [7] employed a
message passing scheme to find such curves. Albeit
effective, it occasionally breaks object boundaries, hindering
object extraction and transplantation.

We propose a simple method to define curve saliency
according to curve length and average local curve magni-
tude. Our approach starts by finding curvilinear structures
[39], which link confident curve points using orientation
matching. This procedure yields local curve magnitude mp

for each pixel p (shown in Fig. 3b), the length lC of each
curve C, and corresponding curve points. Based on these,
we define saliency for each curve C as

ScðCÞ ¼ N
1

jCj

X

p2C

mp

 !

� N ðlCÞ; ð1Þ

where 1
jCj

P

p2C mp is the average gradient magnitude along

C, as jCj is the number of pixels in C. Nð�Þ is a Gaussian

normalization function [2], keeping 99 percent of the values

in range ½0; 1� after conversion. ScðCÞ has two terms, so that

a long curve with large saliency is favored. Combining

ScðCÞ for all curves C, we form a curve saliency map Sc.

Each pixel p has a value denoted ScðpÞ.
As shown in Fig. 3d, our curve saliency map ScðIÞ

contains more informative structures than those of Bhat et al.

[7], and exhibits coherent curvilinear features. In addition,
our saliency definition is suitable for user interaction because
it only takes a few milliseconds of computation for a typical
natural image, while in [7], tens of seconds are needed.

3.3 Separation of Structured Objects

The position of each element in the target group is a
potential place to put a new item. Both the appearance
similarity and curvilinear features are important cues for
the HVS. We estimate an element separability map (ES-map
for short) to identify element centers, defined as

SðpÞ ¼ ScðpÞ � !Saðp; p0Þ; ð2Þ

where ScðpÞ and Saðp; p0Þ are the curve saliency and
appearance similarity values for p, respectively. The weight
! is set to 1 in experiments. A smaller !makes the curvilinear
features more readily separate neighboring elements, under
the risk of partitioning one element into two.

The simple ES map is vital for understanding the global
distribution of all elements. Regions with high-similarity of
appearance will present local peaks in the map, while still
being outlined by the curvilinear features. With this map,
elements close to each other can be quickly separated, as
shown in Fig. 2c.

We perform clustering-based segmentation in the ES
map, by thresholding the map and taking each connected
region as an individual segmented component. The default
threshold is set to 0.5. If the threshold is too small,
neighboring elements with unclear boundaries could be
recognized as one. In the segment map Ms, each region is
basically an element’s core body. The region centroids can
thus be found, highlighted in yellow in Fig. 2d. The region
boundaries are, however, coarsely determined, and will be
refined in the next step.

3.3.1 Comparison with Other Methods

2.1D-texels. The element extraction result of 2.1D-texels [1]
is shown in Fig. 4a for comparison. This method applies
matching in the segmentation tree to achieve unsupervised
element extraction. As the elements may not have similar
subtrees, missing objects and false detection can be more
seriously resulted for this challenging example.

Region of dominance (RoD). Region of Dominance was
employed in [27] to extract texels in near-regular textures
based on normalized cross correlation (NCC). RoD is
defined as the largest circle centered at the candidate peak
of NCC. Due to search for dominant peaks, if two elements
are very close, separation cannot be achieved, as shown in
Fig. 4b. Further, RoD does not provide the boundary
information, which is nonetheless critical for our object
transplantation in groups.

RepFinder. RepFinder was proposed in [12] to detect
approximately repeated elements in natural scenes. A
Boundary Band Map (BBM) was employed to extract objects.
However, because RepFinder relies on the shape similarity
to extract objects, it fails when the grouped elements have
different shapes, as shown in Fig. 4c.

Note that our method does not assume that the
elements are regular in distribution and in appearance.
The element-separability analysis is applicable to examples
that are challenging for near-regular texture methods, and
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Fig. 3. Comparison of curvilinear feature detection methods. The local
curve magnitude method [39] and the message-passing-based curve
saliency map [7] are shown in (b) and (c). Our result is shown in (d).



provides a reliable object separation scheme in general.

More results are shown in later sections.

3.3.2 Element Extraction by Dilate-Trim

Given the computed element centers, i.e., yellow dots in
Fig. 4, we now refine each element’s boundary L by
requiring it to have large gradient magnitude and small
irregularity. The active contour model provides one way to
solve this problem. The summed external energy term of
every contour point is

EL ¼

Z

L

ScðpÞ

DðpÞSaðp; p0Þ þ �
ds ¼

X

p2L

ScðpÞ

DðpÞSaðp; p0Þ þ �
; ð3Þ

where � is a small value to avoid division by zero and DðpÞ
is the distance from pixel p to the corresponding center
point. However, as Fig. 5 shows, because the active contour
method trades off between the contour smoothness and
external energy distribution, it cannot cover all the details.

We thus use a Dilate-Trim method, sketched in
Algorithm 1, to solve the problem progressively. Specifi-
cally, it iteratively dilates regions and then trims them

until the added pixels are less than an adaptive threshold
tðpÞ ¼ SðpÞ=DðpÞ. tðpÞ makes dilation be stopped for pixels
with high separation confidence or distant enough from
the center. The border gradually expands from the element
center, and can evolve differently for various objects,
suitable for forming irregular shapes. As Fig. 5 shows, in
comparison with the active contours, our method can
adaptively and more accurately update object boundaries,
fitting our pursuit.

Algorithm 1. Extract an elementary region R by

Dilate-Trim

Initialize R as one region in Ms in Section 3.3;

Initialize R0 ¼ ;;
while R�R0 > �, where � is a stopping value do

R0  R; R Dilate(R);

for every pixel p 2 R do

remove p from R, when ScðpÞ < tðpÞ;
end for

R largest connected region of R;

end while

Another popular choice for multilabel segmentation in
element groups is by global optimization, such as graph
cuts and watershed, taking the element centers as seeds.
This scheme cannot handle pixels that do not belong to any
of the elements. One example is shown in Fig. 6a. Our
method, on the contrary, considers individual elements
starting from their centers, and thus can produce better
shapes as shown in Fig. 6b. Pixels are allowed to be not in
any of the elements.

3.3.3 Choosing Suitable Elements

We perform Dilate-Trim for each element in the target
image, exemplified in Fig. 2a, containing a group of objects.
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Fig. 5. Comparison of the active contour method and our Dilate-Trim.
(a) Separable elements with their core regions. (b) Mask from active
contour. The external energy is calculated by (3). (c) Our automatically
produced result.

Fig. 4. Comparison of 2.1D texels [1], Region of Dominance after NCC [18], RepFinder [12] and our method. Yellow dots are the detected element
centers.



Based on the results, our system allows the user to choose
the element region to replace. Our method then finds a
candidate region from the secondary image with similar
curvilinear feature and compatible with the target gradient
change.

The similarity between the two images is measured by
cross-correlation. We expand the target object boundary by
a few pixels, creating a boundary band map [12]. Then we
calculate cross correlation values between the target
element and all regions in the secondary image on the
bands. The two regions that yield the largest value are
regarded as most compatible. If there are multiple objects to
be processed, we repeat this selection process.

4 ELEMENT REPLACEMENT

To replace an element RA in image A by RB obtained from
the secondary image B, object shape needs to be maintained
with natural visual appearance change. This goal cannot
always be achieved successfully when using gradient-
domain image blending. We instead propose a patch
searching strategy to retain visually compatible borders.
The luminance is then transferred to produce final results.

Poisson blending and tone mapping are useful tools in
image composition. The need to keep object appearance in
our problem, however, is beyond their capability. First,
these methods can drastically change the object color when
the source and target images are quite different. Second,
they cannot create natural boundaries for each replaced
object, as shown in Fig. 1.

4.1 Boundary Replacement

With the candidate region RB found in the secondary image
B, as described in Section 3.3, we initially replace RA by RB,

as shown in Fig. 7b. RB, by definition, contains the most
similar curvilinear feature as RA near boundary. Note that
directly copyingRB still causes visual artifacts. One intuitive
way to improve it is by employing the nearest neighbor
search, like PatchMatch [5], to refine the boundary of RB.
However, as shown in Fig. 7d, this method does not perform
well enough when A and B do not have similar structures.

We alternatively look for large intensity variation near
boundaries of RB and RA. The updated region, denoted as
RA0 , is produced as

RA0

p ¼
RB

argminqDðp;qÞ
p 2 �ðRAÞ

T

�

�rB
p �r

A
p

�

� > T

RB
p otherwise;

(

ð4Þ

where �ðRA0Þ is the 5-pixel width boundary band of RA0 , as
shown in Fig. 8. q can be any pixel in RB, and krB

p �r
A
q k

measures difference in gradient. T is a threshold, set to 0.25
by default; our algorithm is insensitive to this value. Dðp; qÞ
is the distance between p and q, defined as

Dðp; qÞ ¼
�

�NB
q �NA

p

�

�þ �
�

�rB
q �r

A
p

�

�; ð5Þ

where NB
q and NA

p are masked local windows centered at q
and p, respectively. We use � ¼ 1 in all our experiments to
equally weight the two factors. Pixels p and q have to be
close in both appearance and gradient to yield a small
Dðp; qÞ along the region’s boundary �ðRA0Þ.

To design NB
q and NA

p , square windows [36], [45] used in
traditional texture synthesis are not appropriate when
irregular boundaries exist. In our method, we only include
pixels that are in region RA for reliable appearance
matching, as illustrated in Fig. 8.

So the overall object replacement can be summarized as a
two-step process, which first copies pixels from RB to RA.
Then part of the boundary (shown in orange on the left of
Fig. 8a) is adjusted according to (4) to improve appearance
compatibility. Fig. 7c shows a result.

In (4), to obtain q w.r.t. minqDðp; qÞ, we avoid time-
consuming brute-force search in B and only keep candidate
patches in RB that have small mean-color differences to NA

p .
We maintain the top 20 percent candidate patches for
detailed comparison in (4).

4.2 Luminance Transfer

Finally, we approximate luminance from the original image,
and transfer it to the result. Existing luminance transfer
methods [24] mainly consider features and image structure.
Since we already have the appearance similarity value
Saðp; p0Þ for every pixel indicating the difference between p
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Fig. 6. Global segmentation versus dilate-trim. (a) Result of multilabel
segmentation. (b) Our result of dilate-trim on each element starting from
its center.

Fig. 7. Element replacement. (a) Region extracted by Dilate-Trim.
(b) Initially replacingRA byRB. (c) Our finalRA0 with boundary refinement
on (b). (d) Boundary refinement by patch-based nearest neighbor search
and replacement, which is visually less pleasing than (c).

Fig. 8. Three different areas in an object (left). In the boundary band to
be refined, the mask only contain pixels inside the object (right).



and the user selected pixel p0, we define a luminance score
function LðpÞ for every pixel p:

LðpÞ ¼ Saðp; p0Þ �
�

�INA
p
� �INA

p0

�

; ð6Þ

where NA
p denotes the masked neighborhood of p in image

A, and �INA
p
is the average intensity of pixels in NA

p . LðpÞ can
be either positive or negative, and is useful to change the
pixel brightness depending on its sign. The final luminance
transfer is performed for each pixel p using

P 0ðpÞ ¼ P ðpÞ þ �LðpÞ; ð7Þ

where P ðpÞ and P 0ðpÞ denote the pixel values before and
after luminance transfer, respectively, and � controls the
level of modification. Large � yields strong highlight or
shadow. We use � ¼ 0:75 in all our experiments. Results
before and after luminance transfer are shown in Fig. 10.

5 APPLICATIONS AND RESULTS

In our algorithm implementation, the regions to operate
on in the input images are segmented by grab-cut [38] if
necessary. Then the target objects are separated as
described in Section 3. The specified objects are replaced
one by one using the method given in Section 4. On a PC
with a CPU at 2.5 GHz and 4 GB RAM, the computation
time is around 0.2 seconds for element analysis on a
640� 480 image, and is about 20 milliseconds to replace
each element.

5.1 Natural Image Examples

In real scenes, it is ubiquitous to see grouped elements with
similar appearance. Our method is able to produce high-
quality element replacement results, as shown in Fig. 9.
Unlike image composition techniques, our approach
focuses on mixing visual features into the target area, while
keeping the original structures, rather than overwriting
them. Our image mixture approach is a complement to
current image editing techniques.

5.2 Structure Preserving Appearance Transfer

Our method can also be applied to structure preserving
appearance transfer in textured images. We only separate
elements in the target image group using the boundary
band map [12] to search for most compatible structures in
the secondary texture image for replacement. Thereupon,
the secondary image is not limited to grouped elements.
One example is shown in Fig. 11, where we use a lichen
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Fig. 9. Mixing elements. (a) Target image. (b) ES-map. (c) Detected elements. (d) Secondary image. (e) Mixing result.

Fig. 10. Results before and after luminance transfer.

Fig. 11. Structure preserving texture transfer: (left) target image and
novel source texture; (right) texture transfer result.

Fig. 12. Texture mixing result. The user inputs two different images,
based on which we produce a mixing result. A larger texture can be
synthesized from the result.

Fig. 13. Failure cases: (left) grouped objects with complicated 3D
structure and layers; (right) object groups with incompatible structure.



texture to replace bricks, accomplishing the appearance
transfer effect. The major difference between our approach
and texture transfer [14], [19], [29] is that we can preserve
the appearance and local structure of the original objects
that remain in the admixture result. In Fig. 11, lichen
appears to be growing on bricks.

5.3 Texture Mixing

To blend texture, prior methods require input samples to
have similar appearance or weak structural features [4], [9],
[45]. Our approach is an alternative to this end. We first mix
the two exemplars to create a new texture sample using the
steps described in the paper. Each texton in the two textures
is regarded as an atomic element. Then, we perform the
texture synthesis approach of Lefebvre and Hoppe [26] to
generate a bigger image. One example is shown in Fig. 12,
our method spatially blends two different kinds of texels in
an element-wise manner, rather than providing a statisti-
cally uniform result similar to both inputs. More results of
the above applications are shown in Fig. 14.

5.4 Limitations

There are a few difficulties that might influence the final
result quality. First, since we do not estimate any depth or
layer information, our system cannot separate group objects
well when this set of information is needed. We show an
example in the left of Fig. 13, in which leaves overlay,
destroying the latent integrity. The lack of depth informa-
tion may also make object replacement not visually very
pleasing when the 3D structure significantly varies in the
two input images.

Secondly, we require objects in the secondary image to
have curvilinear compatible content to replace the original
elementary region. As shown in the right of Fig. 13, when
we replace the rectangular blocks by hexagonal stones, even
considering the most compatible regions cannot preserve
the visual integrity. The incomplete rocks inserted into the
wall do not retain their correct geometric features. Finally,
challenging objects like transparent or translucent glasses,

cannot be properly handled in our system. Involving

matting and image recognition will be our future work.

6 CONCLUSION

In this paper, we have proposed a dedicated system to

substitute structured elements within groups by others even

though they are dissimilar in appearance. Different levels of

mixture are allowed in our system, preserving local

structures. Our method requires a very small amount of user

interaction. The analysis and other operations to separate

objects are automatic. The drawback is that we do not

consider layers and depth, which may be problem in some

cases. But overall our method is powerful enough to handle

many examples that are challenging for other approaches.
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[23] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut
Textures: Image and Video Synthesis Using Graph Cuts,” ACM
Trans Graphics, vol. 22, pp. 277-286, 2003.

[24] J.-F. Lalonde, A. Efros, and S. Narasimhan, “Estimating Natural
Illumination from a Single Outdoor Image,” Proc. IEEE 12th Int’l
Conf. Computer Vision (ICCV), pp. 183-190, 2009.

[25] J.-F. Lalonde, D. Hoiem, A.A. Efros, C. Rother, J. Winn, and A.
Criminisi, “Photo Clip Art,” ACM Trans Graphics, vol. 26, 2007.

[26] S. Lefebvre and H. Hoppe, “Parallel Controllable Texture
Synthesis,” ACM Trans Graphics, vol. 24, pp. 777-786, 2005.

[27] Y. Liu, R. Collins, and Y. Tsin, “A Computational Model for
Periodic Pattern Perception Based on Frieze and Wallpaper
Groups,” IEEE Trans Pattern Analysis and Machine Intelligence,
vol. 26, no. 3, pp. 354-371, Mar. 2004.

[28] Y. Liu, J. Wang, S. Xue, X. Tong, S. Kang, and B. Guo, “Texture
Splicing,” Computer Graphics Forum, vol. 28, no. 7, pp. 1907-1915,
2009.

[29] Y. Liu, W.-C. Lin, and J. Hays, “Near-Regular Texture Analysis
and Manipulation,” ACM Trans Graphics, vol. 23, pp. 368-376,
2004.

[30] C. Ma, L.-Y. Wei, and X. Tong, “Discrete Element Textures,” ACM
Trans Graphics, vol. 30, pp. 62:1-62:10, Aug. 2011.

[31] W. Matusik, M. Zwicker, and F. Durand, “Texture Design Using a
Simplicial Complex of Morphable Textures,” ACM Trans Graphics,
vol. 24, no. 3, pp. 787-794, 2005.
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