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Abstract

The explosion of image data on the Internet has the po-

tential to foster more sophisticated and robust models and

algorithms to index, retrieve, organize and interact with im-

ages and multimedia data. But exactly how such data can

be harnessed and organized remains a critical problem. We

introduce here a new database called “ImageNet”, a large-

scale ontology of images built upon the backbone of the

WordNet structure. ImageNet aims to populate the majority

of the 80,000 synsets of WordNet with an average of 500-

1000 clean and full resolution images. This will result in

tens of millions of annotated images organized by the se-

mantic hierarchy of WordNet. This paper offers a detailed

analysis of ImageNet in its current state: 12 subtrees with

5247 synsets and 3.2 million images in total. We show that

ImageNet is much larger in scale and diversity and much

more accurate than the current image datasets. Construct-

ing such a large-scale database is a challenging task. We

describe the data collection scheme with Amazon Mechan-

ical Turk. Lastly, we illustrate the usefulness of ImageNet

through three simple applications in object recognition, im-

age classification and automatic object clustering. We hope

that the scale, accuracy, diversity and hierarchical struc-

ture of ImageNet can offer unparalleled opportunities to re-

searchers in the computer vision community and beyond.

1. Introduction

The digital era has brought with it an enormous explo-

sion of data. The latest estimations put a number of more

than 3 billion photos on Flickr, a similar number of video

clips on YouTube and an even larger number for images in

the Google Image Search database. More sophisticated and

robust models and algorithms can be proposed by exploit-

ing these images, resulting in better applications for users

to index, retrieve, organize and interact with these data. But

exactly how such data can be utilized and organized is a

problem yet to be solved. In this paper, we introduce a new

image database called “ImageNet”, a large-scale ontology

of images. We believe that a large-scale ontology of images

is a critical resource for developing advanced, large-scale

content-based image search and image understanding algo-

rithms, as well as for providing critical training and bench-

marking data for such algorithms.

ImageNet uses the hierarchical structure of WordNet [9].

Each meaningful concept in WordNet, possibly described

by multiple words or word phrases, is called a “synonym

set” or “synset”. There are around 80, 000 noun synsets

in WordNet. In ImageNet, we aim to provide on aver-

age 500-1000 images to illustrate each synset. Images of

each concept are quality-controlled and human-annotated

as described in Sec. 3.2. ImageNet, therefore, will offer

tens of millions of cleanly sorted images. In this paper,

we report the current version of ImageNet, consisting of 12
“subtrees”: mammal, bird, fish, reptile, amphibian, vehicle,

furniture, musical instrument, geological formation, tool,

flower, fruit. These subtrees contain 5247 synsets and 3.2
million images. Fig. 1 shows a snapshot of two branches of

the mammal and vehicle subtrees. The database is publicly

available at http://www.image-net.org.

The rest of the paper is organized as follows: We first

show that ImageNet is a large-scale, accurate and diverse

image database (Section 2). In Section 4, we present a few

simple application examples by exploiting the current Ima-

geNet, mostly the mammal and vehicle subtrees. Our goal

is to show that ImageNet can serve as a useful resource for

visual recognition applications such as object recognition,

image classification and object localization. In addition, the

construction of such a large-scale and high-quality database

can no longer rely on traditional data collection methods.

Sec. 3 describes how ImageNet is constructed by leverag-

ing Amazon Mechanical Turk.

2. Properties of ImageNet

ImageNet is built upon the hierarchical structure pro-

vided by WordNet. In its completion, ImageNet aims to

contain in the order of 50 million cleanly labeled full reso-

lution images (500-1000 per synset). At the time this paper

is written, ImageNet consists of 12 subtrees. Most analysis

will be based on the mammal and vehicle subtrees.

Scale ImageNet aims to provide the most comprehensive

and diverse coverage of the image world. The current 12
subtrees consist of a total of 3.2 million cleanly annotated
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mammal placental carnivore canine dog working dog husky

vehicle craft watercraft sailing vessel sailboat trimaran

Figure 1: A snapshot of two root-to-leaf branches of ImageNet: the top row is from the mammal subtree; the bottom row is from the

vehicle subtree. For each synset, 9 randomly sampled images are presented.
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Figure 2: Scale of ImageNet. Red curve: Histogram of number

of images per synset. About 20% of the synsets have very few

images. Over 50% synsets have more than 500 images. Table:

Summary of selected subtrees. For complete and up-to-date statis-

tics visit http://www.image-net.org/about-stats.

images spread over 5247 categories (Fig. 2). On average

over 600 images are collected for each synset. Fig. 2 shows

the distributions of the number of images per synset for the

current ImageNet 1. To our knowledge this is already the

largest clean image dataset available to the vision research

community, in terms of the total number of images, number

of images per category as well as the number of categories 2.

Hierarchy ImageNet organizes the different classes of

images in a densely populated semantic hierarchy. The

main asset of WordNet [9] lies in its semantic structure, i.e.

its ontology of concepts. Similarly to WordNet, synsets of

images in ImageNet are interlinked by several types of re-

lations, the “IS-A” relation being the most comprehensive

and useful. Although one can map any dataset with cate-

1About 20% of the synsets have very few images, because either there

are very few web images available, e.g. “vespertilian bat”, or the synset by

definition is difficult to be illustrated by images, e.g. “two-year-old horse”.
2It is claimed that the ESP game [25] has labeled a very large number

of images, but only a subset of 60K images are publicly available.

ESP Cattle Subtree Imagenet Cattle Subtree

176

Imagenet Cat SubtreeESP Cat Subtree

1377

376

1830

Figure 3: Comparison of the “cat” and “cattle” subtrees between

ESP [25] and ImageNet. Within each tree, the size of a node is

proportional to the number of images it contains. The number of

images for the largest node is shown for each tree. Shared nodes

between an ESP tree and an ImageNet tree are colored in red.

gory labels into a semantic hierarchy by using WordNet, the

density of ImageNet is unmatched by others. For example,

to our knowledge no existing vision dataset offers images of

147 dog categories. Fig. 3 compares the “cat” and “cattle”

subtrees of ImageNet and the ESP dataset [25]. We observe

that ImageNet offers much denser and larger trees.

Accuracy We would like to offer a clean dataset at all

levels of the WordNet hierarchy. Fig. 4 demonstrates the

labeling precision on a total of 80 synsets randomly sam-

pled at different tree depths. An average of 99.7% preci-

sion is achieved on average. Achieving a high precision for

all depths of the ImageNet tree is challenging because the

lower in the hierarchy a synset is, the harder it is to classify,

e.g. Siamese cat versus Burmese cat.

Diversity ImageNet is constructed with the goal that ob-

jects in images should have variable appearances, positions,

http://www.image-net.org/about-stats
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Figure 4: Percent of clean images at different tree depth levels in

ImageNet. A total of 80 synsets are randomly sampled at every

tree depth of the mammal and vehicle subtrees. An independent

group of subjects verified the correctness of each of the images.

An average of 99.7% precision is achieved for each synset.

ImageNet TinyImage LabelMe ESP LHill

LabelDisam Y Y N N Y

Clean Y N Y Y Y

DenseHie Y Y N N N

FullRes Y N Y Y Y

PublicAvail Y Y Y N N

Segmented N N Y N Y

Table 1: Comparison of some of the properties of ImageNet ver-

sus other existing datasets. ImageNet offers disambiguated la-

bels (LabelDisam), clean annotations (Clean), a dense hierarchy

(DenseHie), full resolution images (FullRes) and is publicly avail-

able (PublicAvail). ImageNet currently does not provide segmen-

tation annotations.

view points, poses as well as background clutter and occlu-

sions. In an attempt to tackle the difficult problem of quan-

tifying image diversity, we compute the average image of

each synset and measure lossless JPG file size which reflects

the amount of information in an image. Our idea is that a

synset containing diverse images will result in a blurrier av-

erage image, the extreme being a gray image, whereas a

synset with little diversity will result in a more structured,

sharper average image. We therefore expect to see a smaller

JPG file size of the average image of a more diverse synset.

Fig. 5 compares the image diversity in four randomly sam-

pled synsets in Caltech101 [8] 3 and the mammal subtree of

ImageNet.

2.1. ImageNet and Related Datasets

We compare ImageNet with other datasets and summa-

rize the differences in Table 1 4.

Small image datasets A number of well labeled small

datasets (Caltech101/256 [8, 12], MSRC [22], PASCAL [7]

etc.) have served as training and evaluation benchmarks

for most of today’s computer vision algorithms. As com-

puter vision research advances, larger and more challenging

3We also compare with Caltech256 [12]. The result indicates the diver-

sity of ImageNet is comparable, which is reassuring since Caltech256 was

specifically designed to be more diverse.
4We focus our comparisons on datasets of generic objects. Special pur-

pose datasets, such as FERET faces [19], Labeled faces in the Wild [13]

and the Mammal Benchmark by Fink and Ullman [11] are not included.

datasets are needed for the next generation of algorithms.

The current ImageNet offers 20× the number of categories,

and 100× the number of total images than these datasets.

TinyImage TinyImage [24] is a dataset of 80 million

32 × 32 low resolution images, collected from the Inter-

net by sending all words in WordNet as queries to image

search engines. Each synset in the TinyImage dataset con-

tains an average of 1000 images, among which 10-25% are

possibly clean images. Although the TinyImage dataset has

had success with certain applications, the high level of noise

and low resolution images make it less suitable for gen-

eral purpose algorithm development, training, and evalua-

tion. Compared to the TinyImage dataset, ImageNet con-

tains high quality synsets (∼ 99% precision) and full reso-

lution images with an average size of around 400 × 350.

ESP dataset The ESP dataset is acquired through an on-

line game [25]. Two players independently propose labels

to one image with the goal of matching as many words as

possible in a certain time limit. Millions of images are la-

beled through this game, but its speeded nature also poses a

major drawback. Rosch and Lloyd [20] have demonstrated

that humans tend to label visual objects at an easily acces-

sible semantic level termed as “basic level” (e.g. bird), as

opposed to more specific level (“sub-ordinate level”, e.g.

sparrow), or more general level (“super-ordinate level”, e.g.

vertebrate). Labels collected from the ESP game largely

concentrate at the “basic level” of the semantic hierarchy

as illustrated by the color bars in Fig. 6. ImageNet, how-

ever, demonstrates a much more balanced distribution of

images across the semantic hierarchy. Another critical dif-

ference between ESP and ImageNet is sense disambigua-

tion. When human players input the word “bank”, it is un-

clear whether it means “a river bank” or a “financial insti-

tution”. At this large scale, disambiguation becomes a non-

trivial task. Without it, the accuracy and usefulness of the

ESP data could be affected. ImageNet, on the other hand,

does not have this problem by construction. See section 3.2

for more details. Lastly, most of the ESP dataset is not pub-

licly available. Only 60K images and their labels can be

accessed [1].

LabelMe and Lotus Hill datasets LabelMe [21] and the

Lotus Hill dataset [27] provide 30k and 50k labeled and seg-

mented images, respectively 5. These two datasets provide

complementary resources for the vision community com-

pared to ImageNet. Both only have around 200 categories,

but the outlines and locations of objects are provided. Im-

ageNet in its current form does not provide detailed object

outlines (see potential extensions in Sec. 5.1), but the num-

ber of categories and the number of images per category

5All statistics are from [21, 27]. In addition to the 50k images, the

Lotus Hill dataset also includes 587k video frames.
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Figure 5: ImageNet provides diversified images. (a) Comparison of the lossless JPG file sizes of average images for four different synsets

in ImageNet ( the mammal subtree ) and Caltech101. Average images are downsampled to 32×32 and sizes are measured in byte. A more

diverse set of images results in a smaller lossless JPG file size. (b) Example images from ImageNet and average images for each synset

indicated by (a). (c) Examples images from Caltech101 and average images. For each category shown, the average image is computed

using all images from Caltech101 and an equal number of randomly sampled images from ImageNet.
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Figure 6: Comparison of the distribution of “mammal” labels

over tree depth levels between ImageNet and ESP game. The y-

axis indicates the percentage of the labels of the corresponding

dataset. ImageNet demonstrates a much more balanced distribu-

tion, offering substantially more labels at deeper tree depth levels.

The actual number of images corresponding to the highest bar is

also given for each dataset.

already far exceeds these two datasets. In addition, images

in these two datasets are largely uploaded or provided by

users or researchers of the dataset, whereas ImageNet con-

tains images crawled from the entire Internet. The Lotus

Hill dataset is only available through purchase.

3. Constructing ImageNet

ImageNet is an ambitious project. Thus far, we have

constructed 12 subtrees containing 3.2 million images. Our

goal is to complete the construction of around 50 million

images in the next two years. We describe here the method

we use to construct ImageNet, shedding light on how prop-

erties of Sec. 2 can be ensured in this process.

3.1. Collecting Candidate Images

The first stage of the construction of ImageNet involves

collecting candidate images for each synset. The average

accuracy of image search results from the Internet is around

10% [24]. ImageNet aims to eventually offer 500-1000
clean images per synset. We therefore collect a large set

of candidate images. After intra-synset duplicate removal,

each synset has over 10K images on average.

We collect candidate images from the Internet by query-

ing several image search engines. For each synset, the

queries are the set of WordNet synonyms. Search engines

typically limit the number of images retrievable (in the or-

der of a few hundred to a thousand). To obtain as many im-

ages as possible, we expand the query set by appending the

queries with the word from parent synsets, if the same word

appears in the gloss of the target synset. For example, when

querying “whippet”, according to WordNet’s gloss a “small

slender dog of greyhound type developed in England”, we

also use “whippet dog” and “whippet greyhound”.

To further enlarge and diversify the candidate pool, we

translate the queries into other languages [10], including

Chinese, Spanish, Dutch and Italian. We obtain accurate

translations by WordNets in those languages [3, 2, 4, 26].

3.2. Cleaning Candidate Images

To collect a highly accurate dataset, we rely on humans

to verify each candidate image collected in the previous step

for a given synset. This is achieved by using the service of

Amazon Mechanical Turk (AMT), an online platform on

which one can put up tasks for users to complete and to

get paid. AMT has been used for labeling vision data [23].

With a global user base, AMT is particularly suitable for

large scale labeling.

In each of our labeling tasks, we present the users with

a set of candidate images and the definition of the target

synset (including a link to Wikipedia). We then ask the

users to verify whether each image contains objects of the

synset. We encourage users to select images regardless of

occlusions, number of objects and clutter in the scene to
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Figure 7: Left: Is there a Burmese cat in the images? Six ran-

domly sampled users have different answers. Right: The confi-

dence score table for “Cat” and “Burmese cat”. More votes are

needed to reach the same degree of confidence for “Burmese cat”

images.

ensure diversity.

While users are instructed to make accurate judgment,

we need to set up a quality control system to ensure this

accuracy. There are two issues to consider. First, human

users make mistakes and not all users follow the instruc-

tions. Second, users do not always agree with each other,

especially for more subtle or confusing synsets, typically at

the deeper levels of the tree. Fig. 7(left) shows an example

of how users’ judgments differ for “Burmese cat”.

The solution to these issues is to have multiple users in-

dependently label the same image. An image is considered

positive only if it gets a convincing majority of the votes.

We observe, however, that different categories require dif-

ferent levels of consensus among users. For example, while

five users might be necessary for obtaining a good consen-

sus on “Burmese cat” images, a much smaller number is

needed for “cat” images. We develop a simple algorithm to

dynamically determine the number of agreements needed

for different categories of images. For each synset, we first

randomly sample an initial subset of images. At least 10
users are asked to vote on each of these images. We then ob-

tain a confidence score table, indicating the probability of an

image being a good image given the user votes (Fig. 7(right)

shows examples for “Burmese cat” and “cat”). For each of

remaining candidate images in this synset, we proceed with

the AMT user labeling until a pre-determined confidence

score threshold is reached. It is worth noting that the con-

fidence table gives a natural measure of the “semantic diffi-

culty” of the synset. For some synsets, users fail to reach a

majority vote for any image, indicating that the synset can-

not be easily illustrated by images 6. Fig. 4 shows that our

algorithm successfully filters the candidate images, result-

ing in a high percentage of clean images per synset.

6An alternative explanation is that we did not obtain enough suitable

candidate images. Given the extensiveness of our crawling scheme, this is

a rare scenario.

4. ImageNet Applications

In this section, we show three applications of ImageNet.

The first set of experiments underline the advantages of hav-

ing clean, full resolution images. The second experiment

exploits the tree structure of ImageNet, whereas the last ex-

periment outlines a possible extension and gives more in-

sights into the data.

4.1. Non-parametric Object Recognition

Given an image containing an unknown object, we

would like to recognize its object class by querying similar

images in ImageNet. Torralba et al. [24] has demonstrated

that, given a large number of images, simple nearest neigh-

bor methods can achieve reasonable performances despite a

high level of noise. We show that with a clean set of full

resolution images, object recognition can be more accurate,

especially by exploiting more feature level information.

We run four different object recognition experiments. In

all experiments, we test on images from the 16 common

categories 7 between Caltech256 and the mammal subtree.

We measure classification performance on each category in

the form of an ROC curve. For each category, the negative

set consists of all images from the other 15 categories. We

now describe in detail our experiments and results(Fig. 8).

1. NN-voting + noisy ImageNet First we replicate one

of the experiments described in [24], which we refer

to as “NN-voting” hereafter. To imitate the TinyIm-

age dataset (i.e. images collected from search engines

without human cleaning), we use the original candi-

date images for each synset (Section 3.1) and down-

sample them to 32 × 32. Given a query image, we re-

trieve 100 of the nearest neighbor images by SSD pixel

distance from the mammal subtree. Then we perform

classification by aggregating votes (number of nearest

neighbors) inside the tree of the target category.

2. NN-voting + clean ImageNet Next we run the same

NN-voting experiment described above on the clean

ImageNet dataset. This result shows that having more

accurate data improves classification performance.

3. NBNN We also implement the Naive Bayesian

Nearest Neighbor (NBNN) method proposed in [5]

to underline the usefulness of full resolution im-

ages. NBNN employs a bag-of-features representa-

tion of images. SIFT [15] descriptors are used in

this experiment. Given a query image Q with de-

scriptors {di}, i = 1, . . . ,M , for each object class

C, we compute the query-class distance DC =

7The categories are bat, bear, camel, chimp, dog, elk, giraffe, goat,

gorilla, greyhound, horse, killer-whale, porcupine, raccoon, skunk, zebra.

Duplicates (∼ 20 per category ) with ImageNet are removed from the test

set.
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Figure 8: (a) Object recognition experiment results plotted in

ROC curves. Each curve is the result of one of the four experi-

ments described in Section 4.1. It is an average of all ROC results

of 16 object categories commonly shared between Caltech256 and

the mammal subtree. Caltech256 images serve as testing images.

(b)(c) The ROC curve for “elk” and “killer-whale”.

∑M

i=1
‖di − dC

i
‖2, where dC

i
is the nearest neighbor of

di from all the image descriptors in class C. We order

all classes by DC and define the classification score

as the minimum rank of the target class and its sub-

classes. The result shows that NBNN gives substan-

tially better performance, demonstrating the advantage

of using a more sophisticated feature representation

available through full resolution images.

4. NBNN-100 Finally, we run the same NBNN experi-

ment, but limit the number of images per category to

100. The result confirms the findings of [24]. Per-

formance can be significantly improved by enlarging

the dataset. It is worth noting that NBNN-100 out-

performs NN-voting with access to the entire dataset,

again demonstrating the benefit of having detailed fea-

ture level information by using full resolution images.

4.2. Tree Based Image Classification

Compared to other available datasets, ImageNet provides

image data in a densely populated hierarchical structure.

Many possible algorithms could be applied to exploit a hi-

erarchical data structure (e.g. [16, 17, 28, 18]).

In this experiment, we choose to illustrate the usefulness

of the ImageNet hierarchy by a simple object classification
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Figure 9: Average AUC at each tree height level. Performance

comparison at different tree height levels between independently

trained classifiers and tree-max classifiers. The tree height of a

node is defined as the length of the longest path to its leaf nodes.

All leaf nodes’ height is 1.

method which we call the “tree-max classifier”. Imagine

you have a classifier at each synset node of the tree and you

want to decide whether an image contains an object of that

synset or not. The idea is to not only consider the classi-

fication score at a node such as “dog”, but also of its child

synsets, such as “German shepherd”, “English terrier”, etc.

The maximum of all the classifier responses in this subtree

becomes the classification score of the query image.

Fig. 9 illustrates the result of our experiment on the

mammal subtree. Note that our algorithm is agnostic to any

method used to learn image classifiers for each synset. In

this case, we use an AdaBoost-based classifier proposed by

[6]. For each synset, we randomly sample 90% of the im-

ages to form the positive training image set, leaving the rest

of the 10% as testing images. We form a common neg-

ative image set by aggregating 10 images randomly sam-

pled from each synset. When training an image classifier

for a particular synset, we use the positive set from this

synset as well as the common negative image set excluding

the images drawn from this synset, and its child and parent

synsets.

We evaluate the classification results by AUC (the area

under ROC curve). Fig. 9 shows the results of AUC for

synsets at different levels of the hierarchy, compared with

an independent classifier that does not exploit the tree struc-

ture of ImageNet. The plot indicates that images are easier

to classify at the bottom of the tree (e.g. star-nosed mole,

minivan, polar bear) as opposed to the top of the tree (e.g.

vehicles, mammal, artifact, etc.). This is most likely due to

stronger visual coherence near the leaf nodes of the tree.

At nearly all levels, the performance of the tree-max

classifier is consistently higher than the independent clas-

sifier. This result shows that a simple way of exploiting

the ImageNet hierarchy can already provide substantial im-

provement for the image classification task without addi-

tional training or model learning.
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Figure 10: Precision and recall of 22 categories from different

levels of the hierarchy. Precision is calculated by dividing the area

of correctly segmented pixels by the area of detected pixels. Recall

is the fraction of relevant pixel area that is successfully detected.

4.3. Automatic Object Localization

ImageNet can be extended to provide additional infor-

mation about each image. One such information is the spa-

tial extent of the objects in each image. Two application

areas come to mind. First, for training a robust object de-

tection algorithm one often needs localized objects in dif-

ferent poses and under different viewpoints. Second, hav-

ing localized objects in cluttered scenes enables users to use

ImageNet as a benchmark dataset for object localization al-

gorithms. In this section we present results of localization

on 22 categories from different depths of the WordNet hier-

archy. The results also throw light on the diversity of images

in each of these categories.

We use the non-parametric graphical model described in

[14] to learn the visual representation of objects against a

global background class. In this model, every input im-

age is represented as a “bag of words”. The output is

a probability for each image patch to belong to the top-

ics zi of a given category (see [14] for details). In or-

der to annotate images with a bounding box we calcu-

late the likelihood of each image patch given a category c:

p(x|c) =
∑

i
p(x|zi, c)p(zi|c). Finally, one bounding box

is put around the region which accumulates the highest like-

lihood.

We annotated 100 images in 22 different categories of

the mammal and vehicle subtrees with bounding boxes

around the objects of that category. Fig. 10 shows precision

and recall values. Note that precision is low due to extreme

variability of the objects and because of small objects which

have hardly any salient regions.

Fig. 11 shows sampled bounding boxes on different

classes. The colored region is the detected bounding box,

while the original image is in light gray.

In order to illustrate the diversity of ImageNet inside

each category, Fig. 12 shows results on running k-means

clustering on the detected bounding boxes after converting

them to grayscale and rescaling them to 32×32. All average

images, including those for the entire cluster, are created

with approximately 40 images. While it is hard to iden-

tify the object in the average image of all bounding boxes

(shown in the center) due to the diversity of ImageNet, the

average images of the single clusters consistently discover

viewpoints or common poses.

Figure 11: Samples of detected bounding boxes around different

objects.

Figure 12: Left: Average images and image samples of the de-

tected bounding boxes from the ‘tusker’ and ‘stealth aircraft’ cate-

gories. Right: Average images and examples of three big clusters

after k-means clustering (see Sec. 4.3 for detail). Different view-

points and poses emerge in the “tusker” category. The first row

shows tuskers in side view, front view and in profile. One cluster

of aircraft images displays mostly planes on the ground.

5. Discussion and Future Work

Our future work has two goals:

5.1. Completing ImageNet

The current ImageNet constitutes ∼ 10% of the Word-

Net synsets. To further speed up the construction process,

we will continue to explore more effective methods to eval-

uate the AMT user labels and optimize the number of repe-

titions needed to accurately verify each image. At the com-

pletion of ImageNet, we aim to (i) have roughly 50 million

clean, diverse and full resolution images spread over ap-

proximately 50K synsets; (ii) deliver ImageNet to research

communities by making it publicly available and readily ac-



cessible online. We plan to use cloud storage to enable effi-

cient distribution of ImageNet data; (iii) extend ImageNet to

include more information such as localization as described

in Sec. 4.3, segmentation, cross-synset referencing of im-

ages, as well as expert annotation for difficult synsets and

(iv) foster an ImageNet community and develop an online

platform where everyone can contribute to and benefit from

ImageNet resources.

5.2. Exploiting ImageNet

We hope ImageNet will become a central resource for a

broad of range of vision related research. For the computer

vision community in particular, we envision the following

possible applications.

A training resource. Most of today’s object recognition

algorithms have focused on a small number of common ob-

jects, such as pedestrians, cars and faces. This is mainly due

to the high availability of images for these categories. Fig. 6

has shown that even the largest datasets today have a strong

bias in their coverage of different types of objects. Ima-

geNet, on the other hand, contains a large number of images

for nearly all object classes including rare ones. One inter-

esting research direction could be to transfer knowledge of

common objects to learn rare object models.

A benchmark dataset. The current benchmark datasets

in computer vision such as Caltech101/256 and PASCAL

have played a critical role in advancing object recognition

and scene classification research. We believe that the high

quality, diversity and large scale of ImageNet will enable

it to become a new and challenging benchmark dataset for

future research.

Introducing new semantic relations for visual modeling.

Because ImageNet is uniquely linked to all concrete nouns

of WordNet whose synsets are richly interconnected, one

could also exploit different semantic relations for instance

to learn part models. To move towards total scene under-

standing, it is also helpful to consider different depths of

the semantic hierarchy.

Human vision research. ImageNet’s rich structure and

dense coverage of the image world may help advance the

understanding of the human visual system. For example,

the question of whether a concept can be illustrated by im-

ages is much more complex than one would expect at first.

Aligning the cognitive hierarchy with the “visual” hierarchy

also remains an unexplored area.
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