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Abstract ImageNet is a large-scale hierarchical database

of object classes with millions of images.We propose to auto-

matically populate it with pixelwise object-background seg-

mentations, by leveraging existing manual annotations in the

form of class labels and bounding-boxes. The key idea is

to recursively exploit images segmented so far to guide the

segmentation of new images. At each stage this propagation

process expands into the images which are easiest to segment

at that point in time, e.g. by moving to the semantically most

related classes to those segmented so far. The propagation of

segmentation occurs both (a) at the image level, by transfer-

ring existing segmentations to estimate the probability of a

pixel to be foreground, and (b) at the class level, by jointly

segmenting images of the same class and by importing the

appearance models of classes that are already segmented.

Through experiments on 577 classes and 500k images we

show that our technique (i) annotates a wide range of classes

with accurate segmentations; (ii) effectively exploits the hier-

archical structure of ImageNet; (iii) scales efficiently, espe-

cially when implemented on superpixels; (iv) outperforms a

baseline GrabCut (Rother et al. 2004) initialized on the image

center, as well as segmentation transfer from a fixed source

pool and run independently on each target image (Kuet-
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1 Introduction

Foreground-background segmentation is the fundamental

task of producing a binary segmentation of an image, sepa-

rating the foreground object from the background (Rother et

al. 2004; Chai et al. 2011). Segmentation is useful in many

higher-level applications such as object recognition, as it pro-

vides a the spatial support for extracting texture and shape

descriptors on objects (Tu et al. 2005; Shotton et al. 2005).

It is also valuable for human pose estimation, where silhou-

ettes have been shown to reliably convey pose (Jiang 2009),

and for 3D reconstruction from silhouettes. However, man-

ually annotating images with segmentations is tedious and

very time consuming. This prevents the above applications

to scale both in the number of training images and the number

of classes. On the other hand, we have witnessed the advent

of very large scale datasets for other computer vision appli-

cations, including image search (Gong and Lazebnik 2011)

and object classification (Torralba et al. 2008).

In this paper, we want to bridge the gap between these

domains by automatically populating the large-scale Ima-

geNet (Deng et al. 2009) database with foreground segmenta-

tions (Fig. 12). ImageNet1 contains millions of images anno-

tated by the class label of the main object. However, only

1 http://www.image-net.org/.
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Fig. 1 Illustration of segmentation propagation on ImageNet. The

stage of propagation is marked by t . Nodes are classes and edges rep-

resent the class hierarchy. Node colors indicate the state of a class:

white “unsegmented”, red “currently being segmented” (Tt ), and black

“already segmented” (St−1). Diagonally split nodes are classes par-

tially annotated with bounding-boxes (bottom-left corner). Segmenta-

tion transfer is shown by arrows (Color figure online)

a small fraction of the images is annotated with bounding-

boxes, and none with foreground segmentation. Our method

leverages these existing annotations while exploiting the

semantic hierarchy of ImageNet to populate its images with

segmentations of their main objects, see Fig. 12. Our work

weaves together and extends several recent developments

including GrabCut (Rother et al. 2004), segmentation trans-

fer (Rosenfeld and Weinshall 2011; Kuettel and Ferrari

2012), efficient binary codes (Gong and Lazebnik 2011),

cosegmentation (Chai et al. 2011; Batra et al. 2011) and

structured output learning (Tsochantaridis et al. 2005; Szum-

mer et al. 2008) into a fully automatic, computationally effi-

cient and reliable large scale segmentation framework. We

jointly segment groups of semantically related images by

sharing appearance models, and help the process by import-

ing appearance models from related classes that were seg-

mented in previous stages of our segmentation propagation

process.

1.1 Overview of Our Approach: Segmentation Propagation

Our goal is to derive a binary segmentation for each image

in ImageNet, accurately delineating its main object. A key

idea is to employ the images segmented so far to help seg-

menting new images. At any stage t , we employ a source

pool St−1 of segmented images to transfer segmentations

to a target set Tt of new unsegmented images. The idea is

to transfer segmentations masks from windows in a sub-

set of St−1 to visually similar windows in Tt and then use

GrabCut to refine the segmentation (Sect. 3). The subset of

St−1 is chosen based on semantic similarity between classes.

The newly segmented images in Tt are then added to the

source pool, forming the pool St , which is used as source

in the next stage. Since no segmented images are available

in ImageNet, we start this recursive process from the PAS-

CAL VOC 2010 segmentation challenge images (S0). The

process is like a wave spreading through ImageNet, grad-

ually segmenting more and more images (Fig. 1). In stage

t = 1, the wave propagates from S0 to ImageNet images

annotated with ground-truth bounding-boxes. We start from

these images because here the segmentation task is the eas-

iest as the bounding-boxes provide a reliable estimate of

the object location. Moreover, we jointly segment images in

the same class by sharing appearance models across them

(Sect. 5). This further improves segmentation accuracy.

Because of all these factors, the output of stage t = 1 are

excellent segmentations for tens of thousands of images,

which can be used as surrogate ground-truth in the next stages

(see Sect. 6.2 for a quantitative evaluation).

After the images in T1 are segmented, they are added to

the source pool S1 =S0 ∪ T1 to support the segmentation of

a larger set of images T2. A key issue is now: which images

should be processed next? All remaining images are anno-

tated only with a class label, no bounding-box is left. In gen-

eral, a good choice for Tt would be unsegmented images

most related to the images in the source pool St−1, in terms

of the kind of objects they contain. Importantly, all images in

ImageNet are labeled by class labels and these are organized

in a semantic hierarchy. Therefore, we exploit the seman-

tic relation between the class labels to define Tt . Our choice

for T2 is the set of unsegmented images with the same class

label as any image in T1 (i.e. 0 semantic distance). Analog to

stage 1, we jointly segment images in a class C to improve

accuracy, using as source the subset of S1 consisting of S0

and the images of C segmented at stage 1.

After stage t = 2, all remaining classes are completely

unsegmented and contain no image with bounding-boxes.

Therefore, we create Tt from batches containing entire

classes. A new class C is included in Tt if it is directly related

to a class C ′ in St−1. Two classes are directly related if they

are connected by an edge in the ImageNet DAG (i.e. they are

parent-child). In addition to jointly segmenting all images in a

new class C , here we also import appearance models from its

related classes C ′, which further helps accuracy (Sect. 5.3).

Over the subsequent stages, the wave progressively spreads

to siblings, then to cousins, and continues until the whole

ImageNet is segmented.

When transferring from St−1 to a class C in Tt , we restrict

the source pool to classes directly related to C and all their

respective sources. Hence, the source pool is tailored to a tar-

get class to be maximally related to it and always contains S0.

When there is no possible confusion, we will simply denote

the source pool as S. Overall, our segmentation propagation

scheme balances two opposing forces. On the one hand, the
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source pool contains perfect, manual foreground-background

segmentations, but of potentially irrevelant object classes

from PASCAL VOC. On the other hand, semantically related

classes are relevant sources for segmentation transfer, but the

corresponding segmentations are automatically generated by

the propagation and are thus imperfect. Our scheme balances

these forces to make segmentation transfer work at every

stage and ultimately produce high quality segmentations for

a large subset of ImageNet.

1.2 Plan of the Paper and Overview of Experiments

We review related work in Sect. 2 and then detail the compo-

nents of our approach in Sects. 3 to 5. In Sect. 3 we describe

the segmentation transfer paradigm and how we extend it to

make it suitable for large-scale applications. Then, Sect. 4

describes how to employ the transferred mask to guide the

segmentation of each image independently by minimizing

an energy function analog to GrabCut. Section 5 extends

the energy function to segment all the images in a class

jointly. This includes sharing appearance models within the

class (Sect. 5.1) and importing appearance models of related

classes from the source pool (Sect. 5.3).

In Sect. 6, we present experimental results. First, we val-

idate the components of our approach on the smaller iCoseg

dataset, we compare it to several existing works (Batra et

al. 2011; Joulin et al. 2010; Vicente et al. 2011; Mukherjee

et al. 2012) and achieve state-of-the-art performance (Sect.

6.1). Next, we show that our process accurately segments

500k images over 577 classes of ImageNet (Sect. 6.2). To

our knowledge, this is the largest segmentation experiment

to date. We compare our results to several relevant alterna-

tives, including: (a) a baseline Rother et al. (2004) initialized

on the image center; this was shown to be a competitive base-

line on several datasets, such as Weizman horses (Alexe et

al. 2010), CalTech 101 (Alexe et al. 2010) and iCoSeg (Sect.

6.1); (b) a simpler segmentation transfer technique based on

global image similarity instead of windows; (c) our recent

segmentation transfer technique (Kuettel and Ferrari 2012)

on which this work is based. It keeps the source pool S0 fixed

to PASCAL VOC 2010 and does not include any propaga-

tion element nor sharing appearance models between images.

Finally, we draw conclusions in Sect. 7.

To promote applications, we have released all our Ima-

geNet segmentations online2. This paper is an extension of

our preliminary works (Kuettel and Ferrari 2012; Kuettel

et al. 2012). It includes an accelerated segmentation model

based on superpixels, additional experimental results for in-

depth analysis, and more detailed explanations of the method.

2 Website: http://www.vision.ee.ethz.ch/~mguillau/imagenet.html?

calvin.

2 Related Work

2.1 Object segmentation

Fully supervised segmentation techniques aim at separat-

ing instances of an object class from their background (e.g.

horses, faces, cars Borenstein et al. 2004; Jojic et al. 2009;

Bertelli et al. 2011). They are supervised in that the training

set shows images of other instances of the class along with

their binary segmentations. Several works have attempted to

reduce the burden of annotating images with ground-truth

segmentations. The degree of supervision is typically reduce

by providing only the class names of the object appearing

in the image (Winn and Jojic 2005; Arora et al. 2007), and

sometimes by annotating only a fraction of the pixels (Ver-

beek and Triggs 2007). Our work is related to this, as most

of the images in ImageNet are only labeled by class names.

Another related recent trend is to guide the segmentation

process with class-generic techniques to propose candidate

regions likely to contain objects of any class (Alexe et al.

2010; Carreira and Sminchisescu 2010; Van de Sande et al.

2011; Endres and Hoiem 2010), as in Kuettel and Ferrari

(2012),Vicente et al. (2011), Li et al. (2010). As spatial sup-

port for our segmentation transfer operations, we use the

candidate windows detected by the ‘objectness’ technique

of Alexe et al. (2010). However, other methods to obtain

such candidates (Van de Sande et al. 2011) could form a

valid alternative, as long as they are fast to compute so they

can be applied at the ImageNet scale.

Interactive segmentation (Rother et al. 2004; Schoene-

mann and Cremers 2007; Bertelli et al. 2004) has been thor-

oughly researched since the very popular GrabCut (Rother et

al. 2004). Most of these approaches minimize a binary pair-

wise energy function whose unary potentials are determined

by appearance models, in the form of pixel color distribution,

estimated based on user input on the test image. Our approach

builds on their energy formulation, but is fully automatic.

Our work is also related to co-segmentation, where the

task is to segment multiple images at the same time (Chai et

al. 2011, 2012; Batra et al. 2011; Vicente et al. 2011; Joulin

et al. 2010; Kim et al. 2011; Mukherjee et al. 2012). Similar

to Chai et al. (2011),Chai et al. (2012),Batra et al. (2011), we

share appearance models when segmenting many images of

the same class. This sharing helps to identify which image

regions belong to the foreground object.

2.2 Annotation Transfer by Nearest Neighbours

Our method transfers segmentation masks from windows in

the source pool to visually similar windows in a new tar-

get image. This is related to works that transfer annotations

between images based on their global similarity, Rosenfeld

and Weinshall (2011), Liu et al. (2009), Guillaumin et al.
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(2009), Hays and Efros (2007), Tighe and Lazebnik (2010),

Russel et al. (2007) as done in inpainting (Hays and Efros

2007), image tagging (Guillaumin et al. 2009), object class

detection (Russel et al. 2007), and scene parsing (Liu et al.

2009; Tighe and Lazebnik 2010). Malisiewicz et al. (2011)

proposes to employ per-exemplar SVMs to find neighbours

for transfer, instead of simply measuring appearance similar-

ity. Rosenfeld and Weinshall (2011), transfers segmentation

masks between images based on their global similarity, for

the task of figure-ground segmentation. Recently Kuettel

and Ferrari (2012) improved on their scheme by transferring

segmentation masks at the level of windows (using Alexe et

al. 2010 to define windows likely to be centered on objects).

We build our work on this segmentation transfer scheme, but

make it computationally much more efficient to scale up to

ImageNet. As we recap in Sect. 3.1, (object) windows offer

better spatial support for segmentation transfer than whole

images.

2.3 Transfer Learning

Our work is related to previous works on transfer learning in

computer vision, where learning a new class (target) is helped

by labeled examples of other related classes (sources) (Aytar

and Zisserman 2011, 2012; Fei-Fei et al. 2004; Lampert et

al. 2009; Ott and Everingham 2011; Quattoni et al. 2008;

Rohrbach et al. 2010; Salakhutdinov et al. 2011; Stark et al.

2009; Tommasi et al. 2010; Deselaers et al. 2010; Guillau-

min and Ferrari 2012). Most of these works try to reduce the

number of examples necessary to learn the target, improv-

ing generalization from a few examples. Many methods use

the parameters of the source classifiers as priors for the tar-

get model (Aytar and Zisserman 2011, 2012; Fei-Fei et al.

2004; Salakhutdinov et al. 2011; Tommasi et al. 2010). Other

works (Lampert et al. 2009; Rohrbach et al. 2010) trans-

fer knowledge through an intermediate attribute layer, which

captures visual qualities shared by many object classes (e.g.

‘striped’, ‘yellow’), or through prototypes (Quattoni et al.

2008). A third family of works transfer object parts between

classes (Aytar and Zisserman 2012; Ott and Everingham

2011; Stark et al. 2009), such as wheels between cars and

bicycles or legs between cows and horses. Finally, Deselaers

et al. (2010) and Guillaumin and Ferrari (2012) employ the

knowledge transferred from the source classes to reduce the

degree of supervision necessary to learn object class detec-

tors from bounding-boxes to just image labels.

The above works aim at image classification or object

detection, not segmentation. For segmentation, we propose

to use appearance models of previously segmented classes

to help segmenting a new class. Moreover, our segmentation

propagation scheme automatically determines which classes

to segment next.

2.4 ImageNet

ImageNet (Deng et al. 2009) is a large-scale hierarchical

database of images. ImageNet forms a directed acyclic graph

(DAG) where the classes are vertices linked by directed edges

that represent parent-child relations: Aircraft is a parent of

Airplane because an airplane is an aircraft, along with heli-

copters, etc. Currently, ImageNet contains about 15 million

images of 22.000 classes. Its large scale, accurate annotation

of all images by the class of the main object they contain,

and the connections in the semantic hierarchy, make Ima-

geNet a great resource for computer vision research and the

ideal playground for experimenting with knowledge transfer

ideas. However, currently only a small fraction of the images

is annotated with bounding-boxes, and none with foreground

segmentation.

There is a growing body of work which uses ImageNet.

Several works tackle image classification (Deng et al. 2010;

Lin et al. 2011; Deng et al. 2011, 2012; Krizhevsky et al.

2012; Deng et al. 2012) or object detection in the fully super-

vised setting (Deng et al. 2012). Deselaers and Ferrari (2011)

study the relation between appearance similarity and seman-

tic similarity. Guillaumin and Ferrari (2012) populate about

500k images of ImageNet with object bounding-boxes auto-

matically derived by transferring knowledge from images

with ground-truth bounding-box annotations. To our knowl-

edge, ours is the first work trying to automatically populate

ImageNet with object segmentations.

3 Large-Scale Segmentation Transfer

We present here the paradigm of segmentation transfer (Kuet-

tel and Ferrari 2012; Rosenfeld and Weinshall 2011), and

explain how to make it computationally very efficient to scale

up to ImageNet. We then describe how the parameters of this

transfer mechanism are learnt.

To segment a new image i , the idea is to transfer segmen-

tation masks from similar images in the source pool S of

pre-segmented images. The transferred masks are then used

to derive the unary potentials of an energy function which is

minimized to refine the segmentation (Sect. 5).

3.1 Window-Level Segmentation Transfer

The basic scheme (Rosenfeld and Weinshall 2011) compares

the image i to the source images S based on global descrip-

tors capturing the image as a whole. The segmentation masks

of the most similar source images are averaged into a mask

for i . However, often the most similar source images have

quite different figure-ground segmentations than i . This hap-

pens because there is too much variability at the level of the

whole image, so typically there are no source images which
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Fig. 2 Two examples of window-level segmentation transfer at stage

3. (a) two out of 100 windows extracted in a target image; (b) the

most similar windows from the source set S2 transfer their segmenta-

tion masks (outlined in red) to the windows of the target image, giving

(c); (d) the 100 individual window masks are aggregated into a single

soft-segmentation mask M for the target image (Color figure online)

are globally similar and have similar objects at the correct

position and size.

Recently, we have improved on the basic scheme by trans-

ferring segmentation masks at the level of windows (Kuettel

and Ferrari 2012) (Fig. 2a). In each image, we first extract 100

candidate windows using the ‘objectness’ technique of Alexe

et al. (2010), and then transfer masks from windows in S

(Fig. 2b) to visually similar windows in i (Fig. 2c). The

objectness sampling tends to return more windows centered

on an object with a well-defined boundary in space, such as

cows and cars, rather than amorphous background elements,

such as grass and sky. These windows make a better spatial

support for segmentation transfer, as they exhibit less vari-

ability than whole images, while at the same time containing

enough distinctive information. This leads to retrieving much

better neighbours, whose segmentation masks better match

the target image. As another important advantage, window-

level segmentation transfer enables to compose novel scenes

using local parts from different source images (e.g. the source

images have either a cow or a dog, while the target image has

a cow and a dog). Finally, as the objectness window sam-

pling is covariant to translation and scale, the segmentation

transfer process can relocate objects to the appropriate posi-

tion in the target image (e.g. all source images have a dog

in the center, while the target image has a dog in the top-left

corner).

After transferring masks for each window independently

(Fig. 2c), they are aligned to their corresponding windows in i

and aggregated into a single mask Mi (Fig. 2d, see Sect. 3.3).

The window masks are first translated and rescaled to their

appropriate image location and then Mi is defined as their

pixelwise mean. Hence, Mi p ∈ [0, 1] estimates the proba-

bility that the pixel p is foreground in image i (Fig. 2d).

Mi is then used in two different ways in our energy mini-

mization framework (Sect. 4). First, they automatically set

the unary potentials based on appearance models by esti-

Fig. 3 An example to demonstrate the advantage of window-level seg-

mentation transfer over global transfer. In both cases the transferred

mask M is used to guide a GrabCut-like segmentation process of Sect.

4.1. The two methods differ in how M is obtained

mating their parameters for the foreground and background

classes. Second, they are used directly as a location prior

unary potential that encourages the final segmentation to

be close to Mi . In this fashion, while segmentation trans-

fer operates on individual windows, the energy minimiza-

tion step integrates local evidence from all windows into

a coherent global segmentation of the target image (Sect.

4.1). Figure 3 shows the benefit of our segmentation trans-

fer based on windows, compared to based on global image

neighbours.

3.2 Efficient Segmentation Transfer

The quality of the output segmentation depends on the source

pool S containing windows with appearance as similar as

possible to windows in i and with segmentation masks truly

reflecting the underlying segmentation of i . In the spirit of

recent work for recognition (Torralba et al. 2008), we aim at

collecting the largest possible pool of segmented windows.

When applying this idea to millions of images that contain

hundreds of windows, a key requirement is efficiency both

in terms of computation and memory.

The first step to reduce computational cost is to describe

windows very quickly. Instead of GIST (Oliva and Torralba
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2001) as used in Rosenfeld and Weinshall (2011), Kuettel

and Ferrari (2012), we use HOG (Dalal and Triggs 2005).

In our experiments, it as accurate while being much faster

to compute. The second step is to speed up the computa-

tion of distances between the descriptors of all windows in

i to all windows in S. This is in theory the most computa-

tionally expensive step in segmentation transfer. With 100

windows per image and a typical source pool S contain-

ing 10k images, 100M distance computations are needed to

segment a single target image! Moreover, storing the HOG

descriptors for all 100M windows in the 1M images in an

ImageNet scale experiment would require 3.1 TB of disk

space. This cannot fit the memory of a computer, and reload-

ing the part of it corresponding to the source pool of each

target image is even slower than computing the distances.

This makes window-level large-scale segmentation transfer

essentially infeasible.

In this paper we employ the efficient binary coding scheme

called “iterative quantization” (ITQ) (Gong and Lazebnik

2011) to circumvent this issue. The key idea of ITQ is to

encode high-dimensional descriptors as short binary vectors

so that points close in L2 distance in the original descrip-

tor space are close for the Hamming distance in the binary

space. Using 128 bits (i.e. 16 bytes) to encode each HOG,

100M windows now account for a mere 1.6 GB, i.e. about

2000× less memory. Moreover, hamming distances are par-

ticularly fast to compute on modern CPUs, which can per-

form a 64-bit XOR in a single operation. Our standard

desktop computer achieved a rate of about 70 million dis-

tances computations per second (on a single core of an Intel

Core i7 CPU 923 2.67 GHz). This is about 350× faster

than directly computing the distance between the original

HOG descriptors. In practice, it takes only about 1.5 s to

do segmentation transfer for a typical target image, which

has 10k images in its source pool. While this is already

fast enough for the large-scale experiments in this paper, it

could be accelerated even further with fast nearest neigh-

bour techniques dedicated to hamming codes (Norouzi et al.

2012).

A natural question is whether the binary encoding causes

any loss in segmentation transfer performance. We investi-

gated this on the PASCAL VOC10 dataset, using as a source

the training subset of the challenge, and as target images the

validation set. Figure 4 shows the intersection-over-union

segmentation performance when describing windows in the

original HOG space, and as a function of the number of bits

in the encoding. As the plot shows, the performance is essen-

tially unchanged when using 1024 bits, and there is only a

very small loss when using 512 bits (−0.5%) or 128 bits

(−1%). Therefore, we can safely use binary encodings with

512 bits and enjoy the tremendous computational and mem-

ory advantages they bring.

HOG 1024 512 256 128 64 32 16 8
44.5

45.0

45.5

46.0

46.5

47.0

47.5

Io
U

bits

Fig. 4 We conducted experiments on the pascal VOC10 challenge with

varying binary code sizes. We measure the IoU score of the final seg-

mentation. Even for relatively short code sizes the score does not suffer

much compared to using the full HOG features

3.3 Aggregating Neighbour Masks

As explained above, the key operation in our scheme is to

transfer segmentations from the K most visually similar win-

dows {s1, s2, . . . , sK } in S to the target window w, where

s1, . . . , sK are sorted from the most similar s1 to the K -th

most similar sK . We then model the mask mw for w as a

weighted sum of the masks msk
of its neighbours:

mw =

K
∑

k=1

λkmsk
, (1)

where λk ≥ 0,
∑

k λk = 1 and all the masks are normalized

to the same size (50 × 50 in our experiments).

Using uniform weights λk would make the transfer

very dependent on K . An excessively large K would sim-

ply average the segmentations in the source pool, ignor-

ing image appearance. At the opposite end of the spec-

trum, K = 1 would only use the segmentation of the

single nearest neighbour, making the transfer process sen-

sitive to errors in individual source segmentations and

reduce the ability to generalize from the source set. With

uniform weights, it is therefore crucial to carefully set

K .

To avoid having to manually set K , we propose instead

to learn λk using training images from PASCAL VOC10

along with their ground-truth segmentations. For each train-

ing window w, we use the ground-truth segmentation of the

full image to derive its ground-truth mask mw. We train the

weights λk by minimizing the sum of the Frobenius norms

|| · ||F of the residuals:
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1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

neighbor

w
e
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h

t

Fig. 5 Weights learned on the PASCAL VOC10 dataset for the first 10

neighbours. The weights rapidly decrease and after neighbour 10 they

are almost zero

min
{λk }

∑

w

∥

∥

∥
mw −

K
∑

k=1

λkmsk

∥

∥

∥

2

F

s.t. ∀k, λk ≥ 0, and

K
∑

k=1

λk = 1. (2)

We reparametrized this constrained convex quadratic pro-

gram using

λk = exp(λ̂k)
/

K
∑

k=1

exp(λ̂k) (3)

to obtain an unconstrained problem in {λ̂k}, which we

then solved using Matlab’sfminunc optimization function,

based on an interior-point algorithm.

Observing the first 10 {λk} in Fig. 5, we see that the weights

decrease rapidly. Learning the weights therefore serves two

purposes. First, it improves the accuracy of segmentation

transfer, over simply using uniform weights, as the residu-

als to ground-truth masks are minimized. Second, it allows to

automatically determine the number K of neighbours needed

to reach good accuracy. Since neighbours beyond rank 10

have near-zero weights, we set K = 10 in the rest of our

experiments. As this K is small, the computation of segmen-

tation transfer by Eq. 1 is also sped up.

4 Models for Image Segmentation

Thanks to the technique of sect. 3, each image i of a class C

in the target set Tt now has a transferred soft-segmentation

mask Mi (Fig. 2). This mask provides a rough initial indica-

tion of the position of the object. The next step is to refine

it into a binary segmentation that delineates the object’s spa-

tial extent accurately. We model this task in an energy mini-

mization framework analog to GrabCut (Rother et al. 2004;

Kuettel and Ferrari 2012), where Mi is used to replace the

user interaction, resulting in a fully automatic process.

In this section we describe how to segment each image

independently, and explore extensions of the traditional

GrabCut energy function (i) to incorporate the information

given by Mi (Sect. 4.1); (ii) to share labels among neigh-

bouring pixels to improve computational and memory effi-

ciency (Sect. 4.2). In Sect. 5, we further extend the frame-

work to segment all the images in a class C jointly. This

includes additional unary potentials for sharing appearance

models between all images in C (Sect. 5.1), and for importing

appearance models from semantically related classes which

have been segmented before in the propagation wave (Sect.

5.3).

4.1 Iterative Graph-Cuts Guided by Segmentation Transfer

Let xi p ∈ {0, 1} be the label and ci p ∈ [0, 1]3 the color of

pixel p in image i . Let xi and ci be the vectors of all xi p and

ci p, respectively. The following energy function evaluates a

binary foreground-background segmentation xi

E(xi ; ci , Mi , Ai ) =
∑

p

E A
ip(xi p; ci p, Ai )

+
∑

p

E L
ip(xi p; Mi p)

+
∑

(p,q)∈G

Ei pq(xi p, xiq) (4)

This function is an extension of the traditional GrabCut

energy (Rother et al. 2004). It consists of two unary potentials

E ·
i p for each pixel and a pairwise term Ei pq for each pair of

neighbouring pixels in a 8-connected grid G. The pairwise

potential is

Ei pq(xi p, xiq) = δ(xi p �= xiq) · d(p, q)−1

· exp(−γ ||ci p − ciq ||2). (5)

Analog to Rother et al. (2004), Bertelli et al. (2004),

Vicente et al. (2008), Shotton et al. (2006) and Boykov and

Jolly (2001), this potential encourages smoothness by penal-

izing neighbouring pixels taking different labels. The penalty

depends on the color contrast ||ci p − ciq ||2 between the pix-

els, being smaller in regions of high contrast (image edges).

It also depends on the distance d(p, q) between the pixel

positions in the image.

The first unary potential E A
ip(xi p; ci p, Ai ) evaluates how

likely a pixel of color ci p is to take the label xi p according

to the image-specific color appearance model Ai . The model

accounts for visual characteristics unique to an image. As

in Rother et al. (2004), the appearance model Ai consists

of two Gaussian mixture models (GMM), one for the fore-

ground (used when xi p = 1) and one for the background

(used when xi p = 0). Each GMM has five components and

each component is a full-covariance Gaussian over the RGB

color space. We take the negative log-likelihood of the GMM

as the potential
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Fig. 6 Our segmentation model uses the transferred mask M in two

ways. The left column uses it only to initialize the appearance models.

The right column uses it also as an additional location prior term. This

improves the final segmentation considerably

E A
ip(xi p; ci p, Ai ) = − log p(xi p; ci p, Ai ). (6)

Many works using analog energy functions (Rother et al.

2006; Batra et al. 2010; Bertelli et al. 2004; Wang et al.

2005) require user interaction to estimate the appearance

model, typically a manually drawn bounding-box or scrib-

bles. In our work instead, the appearance models are auto-

matically estimated from the transferred mask Mi . This is

done by thresholding Mi to obtain an initial binary segmen-

tation, from which foreground and background models are

estimated.

Our energy function (4) also contains an additional unary

term, which plays the role of a location prior preferring seg-

mentations close to Mi . Because of the probabilistic nature

of Mi p, we can directly use the negative log-likelihood of the

corresponding Bernoulli distribution

E L
ip(xi p; Mi p) = −xi p log Mi p − (1 − xi p) log(1 − Mi p)

(7)

as a unary potential (where Mi p is the value of Mi at pixel p).

This second term encourages a foreground segmentation at

regions where Mi has high probability mass, which are quite

reliably on the object of interest (Fig. 2). This has a com-

plementary effect to using Mi to estimate the appearance

models. Even with good appearance models, the segmenta-

tion could be attracted to similarly colored regions elsewhere

in the image (Fig. 6). As a combined effect of using M in

these two ways, the energy minimization becomes a con-

trolled refinement operation, where the appearance models

are used to outline the contours of the object in detail, but at

the same time the segmentation is anchored approximately at

the position indicated by M . Hence, our model fully exploits

the information derived from segmentation transfer (Sect. 3).

Fig. 7 An example to illustrate the advantage of our segmentation

transfer scheme. Left segmentation produced by GrabCut when ini-

tialized by a rectangle in the image center. Right GrabCut guided by

our segmentation transfer scheme of Sect. 4.1

Now that the model is fully defined, we obtain a binary

segmentation by minimizing (4) over all possible xi . Follow-

ing Rother et al. (2006), we now use this segmentation to

update the appearance models, and then iteratively alternate

between these two steps: finding the optimal segmentation

x given the appearance models, and updating the appear-

ance models given the segmentation. The first step is solved

globally optimally using graph-cuts as our pairwise poten-

tials are submodular. The second step fits GMMs to labeled

pixels using the EM algorithm. Note that the segmentation

transfer soft-mask Mi remains fixed during the entire pro-

cedure. Figure 7 illustrates the potential benefit of using our

segmentation transfer scheme to guide GrabCut, compared

to a baseline which initializes its appearance models from a

rectangle in the center of the image.

4.2 Label Sharing with Superpixels

The method described in the previous section has the short-

comings of requiring us to store the full RGB image in

memory and to construct a large graph-cut problem where

every pixel is a variable. Reducing the size of the problem

becomes interesting in our large-scale setting, as we con-

sider the co-segmentation of thousands of images at the same

time (Sect. 5). A simple and widely used technique is to

group pixels into superpixels (Veksler et al. 2010; Ladicky

et al. 2009), and assume that all the pixels inside a super-

pixel share the same label. This results in a simplified energy

function with only one unary term per superpixel and with

pairwise terms only between neighbouring superpixels. We

use the superpixel method of Felzenszwalb and Huttenlocher

(2004), which is readily available online, with parameters

k = 10, σ = 0.5 and a minimum of 50 pixels in each super-

pixel.
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Let xis be the label of superpixel s in image i , and cis

be the vector of pixel colors in s. We denote with Mis the

transferred soft-mask for the image region covered by s. For

simplicity, we overload the notation xi to denote the vector

of all superpixel labels in image i . With these definitions, we

can now rewrite the energy (4) as

E(xi ; ci , Mi , Ai ) =
∑

s

E A
is(xis; cis, Ai )

+
∑

s

E L
is(xis; Mis) +

∑

s,t

Eist (xis, xi t )

(8)

The potentials are simply the sum of their counterparts

in (4) over the pixels p inside a superpixel

E ·
is(xis; ·) =

∑

p∈s

E ·
i p(xis; ·) (9)

Eist (xis, xi t ) =
∑

p∈s, q∈t, (p,q)∈G

Ei pq(xis, xi t ) (10)

This new energy indeed has a reduced set of variables,

substantially speeding-up its minimization. Moreover, as we

assume that all pixels in a superpixel share the same label,

the corresponding pairwise terms vanish (Ei pq(l, l) is 0 for

any label l, see Eq. 5). This greatly reduces the number of

pixel comparisons required to evaluate the pairwise terms.

As a matter of fact, (10) only sums over neighbouring pixels

along the boundary between neighbouring superpixels.

However, there are no real memory benefits so far as we

still need to evaluate the appearance likelihoods at each pixel,

and the GMM apparance models themselves are still esti-

mated using pixel values. In order to greatly reduce memory

consumption and also speed-up the estimation of the appear-

ance GMMs, we derive an accelerated EM algorithm below.

This technique assumes that all the pixels inside a superpixel

s not only share the same label but also the same respon-

sibility zsk towards the components k of the GMMs. This

assumption is reasonable here, as a superpixel contains pix-

els of similar color, by construction (Felzenszwalb and Hut-

tenlocher 2004) (Fig. 8). This makes it likely for those pixels

to have similar responsibilities.

The key idea is to retain only the sufficient statistics of

the color distribution within each superpixel s, i.e. the num-

ber of pixels ns , the color mean µs and covariance �s . With

this information, and similar to Verbeek et al. (2006) for

accelerated EM clustering, we can derive an accelerated EM

algorithm to estimate the parameters (nk, µk, �k) and mix-

ture weight πk of the GMMs. Below, we use N (x |µ,�) to

denote the probability of x under the Gaussian distribution

centered at µ and with covariance �.

Fig. 8 Example images from ImageNet with their superpixel segmen-

tations

E-step: Update the responsibilities zsk using the current

parameters of the GMM.

�−1
sk = �−1

k + �−1
s (11)

ρsk = N (µs |µk, �sk) (12)

zsk =
πkρsk

∑

l πlρsl

. (13)

M-step: Re-estimate the parameters and mixture weight of

each component under fixed responsibilities zsk .

nk =
∑

s

ns zsk (14)

µk =
1

nk

∑

s

ns zskµs (15)

�k =
1

n

∑

s

ns zsk

(

�s + (µs − µk)(µs − µk)
⊤
)

(16)

πk =
nk

n
. (17)

After estimating the appearance models, we can use an

analog trick to also accelerate the computation of the appear-

ance likelihood for all pixels in a superpixel

Eis(xis; ci , Ai ) ≈ Eis(xis; ns, µs, �s, Ai )

≈ −ns log

(

∑

k

πkρsk

)

. (18)

Hence, in order to apply GrabCut on our superpixel model,

we only need to store the second-order statistics of each

superpixel. This amounts to 10 values per superpixel (one

for the number of pixels ns , 3 for the color mean µs , and

6 for the 3 × 3 color covariance matrix �s), compared to 3

per pixel in a standard model. In a typical 500 × 300 image,

the algorithm (Felzenszwalb and Huttenlocher 2004) pro-

duces between 100 and 1000 superpixels, in about 0.1 s.
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Fig. 9 Our joint segmentation model. Left two images i and j of a class

to segment. The location priors Mi and M j are obtained by segmentation

transfer from S (second column). Image models Ai and A j contribute

to an image-specific unary potential (third column). The fourth column

shows the class-wide unary potential (AC ) applied to these two images.

The fifth column uses the appearance model AC ′ of a related class C ′

on these two images. Gray nodes represent fixed models, while white

nodes illustrate models that are updated during the iterations of the

energy minimization. Unary potentials are represented by mapping the

most likely background pixel to blue and the most likely foreground

pixel to red. Rightmost column final segmentations produced by our

model (Color figure online)

This leads to memory savings in the order of 30× to 300×,

at negligible computational overhead. Moreover, our exper-

iments Sect. (6.1) show that the accuracy of this approxi-

mate model is very close to the original one described in

Sect. 4.1.

5 Joint Segmentation of a Set of Images

This section describes how to jointly segment all the images

in a class C . Section 5.1 explains the general joint segmen-

tation scheme, which extends the single-image model (8)

with an additional unary potential carrying a class-wide

appearance model. This scheme is adapted to each stage

of the segmentation propagation to fit the situation (Sect.

1.1). Stages 1 and 2 operate on classes for which some

images with bounding-box annotations are available, so they

can help constraining the segmentation (Sect. 5.2). Later

stages can import appearance models from semantically

related classes that have been segmented in previous stages

(Sect. 5.3). This gives rise to further additional unary poten-

tials. In Sect. 5.4, we explain how to learn the optimal

weights of all potentials so as to maximize segmentation

accuracy on a validation set using structured-output SVMs

(Tsochantaridis et al. 2005).

5.1 Sharing Appearance within a Class

Given the set I of all images in a class C of ImageNet, let x

be the vector of all pixel labels xi p in all images. The energy

function for jointly segmenting all images in I using the

current source pool S is

E(x;A,S) =
∑

i

(

∑

p

Ei p(xi p;A,S)

+
∑

(p,q)∈Gi

Ei pq(xi p, xiq)

⎞

⎠ (19)

The pairwise potential remains unchanged from Eq. 5, but

the unary potential is now a linear combination of several

terms

Ei p(xi p;A,S) = −αI log p(xi p; ci p, Ai )

−αC log p(xi p; ci p, AC )

−αM log Mi p(xi p;S) (20)

Each potential p(xi p; ci p, A) evaluates how likely a pixel

of color ci p is to take label xi p, according to the appearance

model A. The set of appearance models A contains one model

Ai specific to each image (as in Sect. 4.1) and one class

model AC common to all images in I. This class model

enables us to share appearance among the images, so they

are jointly segmented. The image-specific models account for

visual characteristics unique to an image (e.g. the color of a

particular cow), while the class model accounts for classwide

characteristics (e.g. the color of common cow backgrounds,

such as grass and sky). All appearance models, i.e. {Ai }i

and AC , are GMMs with five full-covariance components

for foreground and background. Ai are learnt separately on

their respective images, whereas AC is learnt on the union of

all images. Finally, the last unary term is the image-specific

location prior formed by the transferred soft-mask Mi (as in

Sect. 4.1). Figure 9 illustrates the various unary potentials.
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This joint segmentation model can be seen as a gener-

alization of both GrabCut (Rother et al. 2006) and Batra

et al. (2010). In GrabCut each image is segmented inde-

pendently, based on an appearance model for each image:

A = {Ai }i∈I . Conversely, Batra et al. (2010) uses only a

single model shared among all images: A = {AC }.

The model (19) is used to segment the images I with the

usual iterative optimization scheme which alternates between

finding the optimal segmentation given the appearance mod-

els, and updating the appearance models given the segmen-

tation. Each image model Ai is fitted to the current segmen-

tation of its respective image i , while a single global model

AC is fitted to the segmentations of all images at the same

time. The benefits of having AC can be understood in the

light of this iterative scheme. The class model can be more

robustly estimated from all images, as the errors due to inac-

curate segmentations average out. In turn this more accurate

appearance model helps improving segmentations in the next

iteration. Image models complement the class model with

extra GMM components that finely adapt to the specificities

of each image.

As for the single-image model (Sect. 4.2), we can also

derive an accelerated joint class-level model (19) using super-

pixels. Like the image models, the class appearance model

AC is also learnt from the sufficient statistics of the color dis-

tributions in the superpixels, using the same accelerated EM

algorithm, except we use the union of all foreground (resp.

background) superpixels over all images.

5.2 Stages 1 and 2: Exploiting Bounding-Box Annotations

As mentioned in Sect. 1.1, stage t = 1 consists of segmenting

images annotated with ground-truth bounding-boxes, as they

are easier to segment. Those images are jointly segmented

as presented in Sect. 5.1 while constraining the minimiza-

tion of (19) to the available ground-truth bounding-boxes

(some images have multiple bounding-box annotations). This

is done by imposing an infinite unary cost for foreground for

all pixels outside any bounding-box.

At stage 2, when segmenting unannotated images in the

same classes as stage 1, we include the images of stage 1

in (19) but keep their segmentation fixed to the output of

stage 1. This way they can improve the segmentation of new

images by contributing to the class model AC .

5.3 Later Stages: Importing Appearance from Related

Classes

From stage t =3 onward, the propagation wave reaches new

target classes Tt which are semantically related to the source

classes in St−1 (see Sect. 1.1). As these related classes have

already been segmented in the previous stage, we propose to

import their appearance models to help segmenting the new

classes. This idea is related to knowledge transfer for object

classification (Tommasi et al. 2010), localization (Guillau-

min and Ferrari 2012) and detection (Salakhutdinov et al.

2011), but we believe it is unexplored for segmentation.

More precisely, when segmenting a new class C , we add

to (19) a unary potential for each of its related classes C ′ ∈

R(C), which carries its appearance model AC ′ . Since the

related classes C ′ are already segmented from stage t − 1,

their appearance models can be stored and used at stage t

without any extra computational cost. We therefore extend

the unary potentials in Eq. (20) to

Ei p(xi p;A,R(C)) = −αI log p(xi p; ci p, Ai )

−αC log p(xi p; ci p, AC )

−αM log Mi p(xi p;R(C))

−
αR

|R(C)|

∑

C ′∈R(C)

log p(xi p; ci p, AC ′)

(21)

Note how the related source classes all have the same

weight αR , instead of their own specific weight αC ′ . As

the number of related source classes varies for each target

class, it is very difficult to learn a weight per related model

(Sect. 5.4).

Note how in Eq. (21) we restrict the source pool used for

segmentation transfer to R(C), to make it maximally related

to C (as discussed in Sect. 1.1).

5.4 Learning the Weights α

Many of the models described above combine multiple unary

potentials in a weighted sum. We learn the weights α of the

unary potentials on a small subset of 90 manually segmented

images from ImageNet.

We train two weight vectors α = {αI , αC , αM } specific

to stage 1 and 2 respectively, and one weight vector α =

{αI , αC , αM , αR} common to all later stages.

Let xi be the labeling of all pixels in image i . Given

n training images I with associated ground-truth labelings

x∗ = (x∗
1, . . . , x∗

n), we seek the weights α such that the

energy of the ground-truth labeling x∗
i of each image is lower

than the energy of any other labeling xi of that image, assum-

ing fixed models A and source pool S. This translates to the

following contraints

E(x∗
i |i,α) ≤ E(xi |i,α), ∀xi �= x∗

i , ∀i ∈ I. (22)

where E(x|i,α) is one term in the outermost summation of

Eq. (19), corresponding to only one image. For simplicity, we

omit A and S as they are predetermined by the segmentation

transfer process and cannot change during the minimization

of Eq. (19). To learn the parameters α we solve a structured-
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Table 1 Segmentation accuracy on iCoseg. The results for Vicente et al. (2011) and Joulin et al. (2010) are taken from Table 2 in Vicente et al.

(2011). Columns 3–6 are stripped down versions of our model. The last column is our complete model (see main text)

Accuracy Joulin et al.

(2010)

Vicente et al.

(2011)

Image only ≈GrabCut

(Rother et al. 2004)

Class only ≈Batra

et al. (2010)

Image+

class

Image+transfer

≈Kuettel and

Ferrari (2012)

Image+transfer

+class

Pixel model 78.9 85.4 82.4 83.6 88.2 87.6 91.4

Label sharing – – 82.5 83.4 88.0 88.0 92.2

Complete superpixel model – – 81.3 82.3 87.9 87.8 92.6

output SVM training problem, following (Tsochantaridis et

al. 2005)

min
α,ξ

1

2
‖α‖2 + C

n
∑

j=1

ξi

s.t. ∀xi �= x∗
i ,

E(xi |i,α) − E(x∗
i |i,α) ≥ �i (x

∗
i , xi ) − ξi ,

∀i ∈ I, ξi ≥ 0. (23)

where C > 0 is a constant; ξi is the slack variable for

xi , which is necessary if no α fulfilling all constraints

exists; �i (x
∗
i , x) is a loss function quantifying the difference

between a labeling xi and the ground-truth x∗
i .

Our choice for �i is the average number of mislabelled

pixels, weighted to account for the ratio of foreground and

background pixels in the image

�i (x
∗
i , xi ) =

∑

p∈i

wi p|xi p − x∗
i p|, (24)

where wi p = 1/n+
i if x∗

i p is foreground and wi p = 1/n−
i oth-

erwise; n+
i , n−

i are the number of ground-truth foreground

and background pixels in i , respectively. In essence, this

weighted loss gives equal importance to foreground and

background regions, thus avoiding biases towards the back-

ground which often occupies most of an image. Note how this

is a good proxy to the intersection-over-union (IoU) perfor-

mance measure, on which we base much of our experiments

(see 6 for a discussion). However, IoU cannot be expressed

exactly as a sum over unary potentials.

As each labeling xi corresponds to a constraint, the num-

ber of constraints is exponential in the number of pixels.

Constraint generation (Tsochantaridis et al. 2005) circum-

vents this issue by iteratively solving (23) while updating a

set of most violated constraints. Finding the most violated

constraint for an image i involves minimizing E(xi |i,α) −

�i (x
∗
i , xi ). Since �i can be expressed as a unary potential

over pixels, this problem can be solved exactly using graph-

cut (Szummer et al. 2008).

In the case of models based on superpixels (Sect. 4.2),

we only need to modify �i to reflect the misclassification of

pixels using the shared label xis :

�i (x
∗
i , xi ) =

∑

s∈i

∑

p∈s

wi p|xis − x∗
i p|. (25)

To maximize performance, we learn separate sets of

weights for early and later stages of the segmentation prop-

agation, as the characteristics of the source pool and the role

of the terms might change over stages.

6 Experiments

We validate the components of our approach on the recent

iCoseg dataset (Batra et al. 2010) in Sect. 6.1, and then

present results on ImageNet in Sect. 6.2. We conclude in

Sect. 7.

6.1 Cosegmentation on iCoseg

The iCoseg dataset (Batra et al. 2010) contains 643 images

grouped into 38 classes (e.g. stonehenge, brown bear, gym-

nasts, airplanes). The task, as set out by previous works (Batra

et al. 2010; Joulin et al. 2010; Vicente et al. 2011; Mukher-

jee et al. 2012) is to jointly segment the foreground object

in all images of a class. Following these works, we measure

performance as the percentage of correctly labelled pixels

(accuracy). Additionally, we also report performance as the

area of intersection between the foreground in the output seg-

mentation and the foreground in the ground-truth segmenta-

tion, divided by the area of their union (IoU, as defined by

the PASCAL Visual Object Challenge)

In Table 1 we compare several stripped down versions

of our model (Sect. 5.1). The first three use no segmenta-

tion transfer (Sect. 3) and initialize their appearance models

from a window centered on the image. (1) image only: using

only the image-specific unary potential Ai . This is essentially

GrabCut (Rother et al. 2004), but with the user initialization

replaced by a window in the image center; (2) class only:

using only the class-wide unary potential AC . This is very

similar to (Batra et al. 2010), but again without user initial-

ization; (3) image+class: using both types of unaries; (4)
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Table 2 Breakdown of the computational costs per image

Extract objectness windows 2.0s

HOG features 0.1s

Segmentation transfer 0.2s

Superpixels 0.1s

Segmentation model setup 0.5s

Energy minimization 0.1s

Total per image 3.0s

image+transfer: using the image-specific unary Ai and seg-

mentation transfer (Sect. 3) to initialize the appearance mod-

els and to add a location prior unary potential Mi (Sect. 4).

The source pool is fixed to the PASCAL VOC10 training

set. This is a computationally efficient version of (Kuettel

and Ferrari 2012) using the speedups we proposed in Sect.

3.2. As reported in (Kuettel and Ferrari 2012), it obtains

state-of-the-art figure-ground segmentation performance on

PASCAL VOC10. (5) image+transfer+class: using image-

specific unaries, class-wide unaries, and segmentation trans-

fer with source pool fixed to the VOC10 training set. Note

that here we cannot evaluate the idea of recursively updat-

ing the source pool (Sect. 1.1) nor of importing appearance

models from related classes (Sect. 5.3), as classes in iCoseg

are not organized in a hierarchy.

The size of the initialization window for models (1–3) is

set to 25 % of the image area, which worked best on this

dataset. For the models using multiple unary potentials (3–

5), we use the technique in Sect. 5.4 to learn their weights

α in a leave-one-class-out fashion. When evaluating a class,

we use weights learned from two random images from each

of the other 37 classes.

For each method, in addition to the pixel-level models

(pixel model), we also report the accuracy obtained when

sharing the labels of pixels in each superpixel as described

in Sect. 4.2. The results are obtained without (label sharing)

or with the accelerated EM algorithm (complete superpixel

model).

As the first row of Table 1 shows, the baseline pixel-level

GrabCut model already shows a good performance (82.4 %

accuracy). Using class-wide appearance models proves very

beneficial, because the object instances in different images of

a class have very similar appearance. Class models alone per-

form better than image models (83.6 %), and greatly improve

the performance when combined with other models: +5.8 %

with image models, +3.8 % with image models and segmen-

tation transfer (Fig. 10). Segmentation transfer (Kuettel and

Ferrari 2012) also proves very useful: it improves by +5.2 %

over GrabCut using image models only, and by +3.2 % with

both image and class models. This shows that segmentation

transfer is a very effective way to automatically initialize

GrabCut, confirming what we observed in Kuettel and Fer-

rari (2012) on other datasets (PASCAL VOC10, Graz-02,

Weizmann horses).

The second row of Table 1 shows that sharing labels within

superpixels has an impact on performance around a few tenth

of percent, and is largest for the full model (+0.8 % on

image+transfer+class). The same conclusions as for pixel-

level models remain valid: adding class-wide appearance

models improves over image-specific models (+5.5 % alone,

+4.2 % combined with transfer), and segmentation transfer

provides substantial benefits (+5.5 % on image-only, +4.2 %

on image+class). Interestingly, the approximate speeded-up

EM algorithm to estimate the GMM for superpixel-level

models obtains very similar performance as well (third row

of Table 1). This implies that the approximation described

in Sect. 4.2 is reasonable and that the underlying assump-

tions (notably, that the pixels inside a superpixel share the

same responsibility) are valid. The approximation is tighter

when using more powerful models (+0.4 % on the full model,

−0.1 % on image+class versus −0.8 % on image-only). This

is expected in particular for class models, as their GMMs are

estimated from many more superpixels, and therefore are

less likely to overfit to the statistics of a few superpixels.

Importantly, these models defined completely on superpix-

els are much faster to run (≈15× faster) and use orders of

magnitude less memory (≈100×) than the pixel-level ones.

Therefore, they are a good choice for large-scale image co-

segmentation (Sect. 6.2). Interestingly, these computational

savings come at no loss of performance for the full model,

which in fact improves by a small amount (+1.2 %).

Table 1 also reports the average accuracy of two recent

state-of-the-art works (Vicente et al. 2011; Joulin et al. 2010)

as reported in Vicente et al. (2011). In a comparable setting

using only iCoseg images, our image+class method outper-

forms them both (image+class). Our image+transfer+class

method performs best by a considerable margin. While it

uses manually segmented PASCAL VOC10 images as train-

ing data, we stress that these images contain different classes

than iCoSeg (e.g. there are no elephants in PASCAL VOC10).

Importantly, our method is also computationally much more

efficient than Vicente et al. (2011), Joulin et al. (2010). It takes

only about 60 seconds to segment a typical iCoSeg class con-

taining 20 images, including all processing stages. This is in

contrast to several hours per class reported by Vicente et al.

(2011), Joulin et al. (2010). Hence, we can apply our tech-

nique to the much larger ImageNet dataset. As our method

is roughly linear in the number of images in a class, we

report here a breakdown of the computational cost of each

stage per image: 2s for extracting objectness windows, 0.1s

for the HOG features, 0.2s for segmentation transfer (Sect.

3.2), 0.1s for extracting superpixels (Felzenszwalb and Hut-

tenlocher 2004), 0.5s to setup the segmentation model (i.e.

computing the color models, unary and pairwise potentials)

0.1s for energy minimization (see Table 2). As an additional
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Fig. 10 Top segmentations produced by our image+transfer+class method at the pixel-level on the Elephants class of the iCoseg dataset. Bottom

the same images segmented using complete superpixels models

Fig. 11 From the top left to the bottom right image, the intersection

over union performance (21, 60, 82, 91 %, resp.) better represents the

quality of the segmentation than accuracy (95, 94, 97, 100 %, resp.).

This is particularly true for small objects

remark, our best performance of 92.6 % accuracy is also sim-

ilar to the one reported in the recent work of Mukherjee et al.

(2012) (92.5 %). However, their average is computed over

only 14 of the 38 classes, which makes this comparison only

indicative.

We also computed the performance of the different com-

ponents of our method using the intersection-over-union

measure.3 This is a much more challenging and realistic mea-

sure of performance. It is considered superior to the simpler

percentage of correctly labeled, pixels4 as it is automatically

normalized to the scale of the foreground object and properly

penalizes segmentations which miss the object. An empty

segmentation scores 0 on IoU, but it might still score high

in per-pixel accuracy (especially for small objects, Fig. 11).

Therefore, we expect that what were small differences in

accuracy in 1 can correspond to larger differences in IoU.

This is particularly true beyond 85 % accuracy. Equivalently,

this corresponds to the idea that IoU decreases much more

rapidly than accuracy as the number of incorrect foreground

pixels increases. Table 3 reports the results. The conclusions

are similar to what we observed under the accuracy measure.

Class models now perform considerably better than image

models. Adding either class models or segmentation trans-

fer is always beneficial (e.g. +7.2 % by adding segmenta-

tion transfer to image models). Combining image model,

class models and segmentation transfer leads to the best

results, which are substantially better than the basic image-

only GrabCut (+15 %). Analog to what we observed for the

accuracy measure, using superpixel-level models has only

a minor impact on segmentation performance. The perfor-

3 The pascal visual object classes challenge. http://pascallin.ecs.soton.

ac.uk/challenges/VOC/.

4 Ibid.
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Table 3 Performance of segmentation models on iCoseg as measured by IoU. Columns 1–4 are stripped down versions of our model. The last

column is our complete model (see main text)

IoU Image only ≈GrabCut

(Rother et al. 2004)

Class only ≈Batra

et al. (2010)

Image+class Image+transfer

≈Kuettel and Ferrari

(2012)

Image+transfer

+class

Pixel model 57.3 61.7 62.6 64.5 72.0

Label sharing 57.8 61.4 62.6 64.8 72.7

Complete superpixel

model

55.7 60.2 62.5 64.4 73.2

mance of our full method (image+transfer+class) increases

by 1.2 % compared to the pixel-level models, yielding a final

IoU of 73.2 %.

6.2 Segmentation Propagation on ImageNet

We have run our full segmentation propagation method on

two subtrees (animal and instruments) of ImageNet contain-

ing about 500k images over 577 classes. We selected the

classes automatically to ensure that about half of the classes

have some images annotated by bounding-boxes, while half

of the classes have none. For those classes with bounding-

boxes, only a fraction (typically about 25 %) of the images

indeed have a bounding-box annotation. In total, there are

60k images with bounding-boxes and 440k images with only

class labels. On this subset of ImageNet, segmentation prop-

agation runs for 5 stages to completion.

To quantitatively evaluate our approach, we obtained seg-

mentation annotations via Amazon Mechanical Turk for 10

random images from 446 classes, for a total of 4,460 images.

We requested multiple human annotators per image. Our pre-

liminary results in Kuettel et al. (2012) were based directly

on these segmentations, which included a small amount of

noise. After a manual clean up, 184 images that had no good

quality annotations were discarded.5 We released the remain-

ing 6225 segmentations for 4276 images of 445 classes

online at http://www.vision.ee.ethz.ch/~mguillau/imagenet.

html?calvin. These annotations enable us to reliably estimate

the segmentation performance of our method on a wide range

of classes. Additionally, we have held out a small set of 90

images to estimate α, as discussed in Sect. 5.4.

In the remainder of this section, we evaluate the different

components of our model, and provide in-depth analysis of

the resulting segmentations.

6.3 Spatial Support for Transfer

An important element of our approach is on which spatial

support to perform segmentation transfer (Sect. 3). Hence,

5 Therefore, the numbers reported in Kuettel et al. (2012) are not

directly comparable with the ones in this article.

Table 4 Mean accuracy for different spatial supports for segmentation

transfer on ImageNet

Thresholded mask Mask + GrabCut

Full image 72.7 75.8

Random windows 72.1 78.5

Objectness windows 79.2 82.5

Table 5 Mean IoU for different spatial supports for segmentation trans-

fer on ImageNet

Thresholded mask Mask + GrabCut

Full image 21.4 29.0

Random windows 23.9 40.0

Objectness windows 42.1 52.0

we evaluate the quality of the transferred masks while vary-

ing the kind of spatial support: (1) Full image: transfer masks

based on global similarity at the image level. The mask of the

target image is the weighted sum of the masks of its 10 near-

est neighbours (Sect. 3.3). (2) Random windows: use 100

uniformly sampled windows in the source and target images

to perform window-level mask transfer. (3) Objectness win-

dows: use 100 objectness windows, sampled following Alexe

et al. (2010). This corresponds to our method in Sect. 3.

We present our quantitative evaluation of the transfer

masks in Table 4 for accuracy and in Table 5 for IoU. We

assess the quality of the transfer masks in two ways: (1)

directly, by thresholding them at 0.5 (i.e. keep as foreground

all pixels with probability >0.5, column ‘Thresholded

mask’); (2) refine the segmentation by using the transfer mask

to guide our GrabCut-like segmentation model described in

Sect. 4.1 (column ‘Mask+GrabCut’). We observe that using

local support, either random windows or objectness win-

dows, is always beneficial over the use of global support (full

image). Indeed, using random windows outperforms using

the full image both when thresholding the mask and with

GrabCut. The difference is as big as +11 % (with GrabCut

and under IoU). Interestingly, objectness windows bring a

further improvement over random windows in all settings,
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Table 6 Mean accuracy and mean IoU on ImageNet

Accuracy IoU

GrabCut image center 73.4 24.0

Pixel image+transfer (Kuettel and Ferrari 2012) 82.5 52.0

Superpixel image+transfer 82.2 52.7

Superpixel image+propagation 84.1 57.0

Superpixel image+propagation+class 84.4 57.3

with as much +13 % IoU with GrabCut. This confirms the

observations in Kuettel and Ferrari (2012) that transferring

masks benefits from object-centered spatial support. GrabCut

improves segmentation over thresholding for all spatial sup-

ports and performance measures (+10 % IoU for our method

using objectness windows).

6.4 Segmentation Models

We compare here the segmentation performance of var-

ious baselines and variants of our system on ImageNet:

(a) GrabCut (Rother et al. 2004) image center: run indi-

vidually on every image, using a centered window for ini-

tialization (as in “image only” in iCoseg experiments);

(b) Pixel image+transfer: use the objectness transfer mask

to guide GrabCut. This is the best performing method from

the previous paragraph, and corresponds to our segmen-

tation transfer scheme Kuettel and Ferrari (2012) (with

the modifications detailed in Sect. 3), using VOC10 as

a fixed source pool; (c) Superpixel image+transfer: the

superpixel version of (b), using the accelerated models of

Sect. 4.2; (d) Superpixel image+propagation: now includ-

ing our propagation scheme, where the segmentations out-

put by a stage are added to the source pool of the next

(Sect. 1.1); this also uses ground-truth bounding-boxes at

stage 1; (e) Superpixel image+propagation+class: now

including also class appearance models (Sect. 5.1) and

importing appearance models from related classes seg-

mented in previous stages (Sect. 5.3). This is our full

pipeline.

As reported in Table 6, the performance of GrabCut ini-

tialized from the image center is 73.4 % accuracy and 24.0 %

IoU. When using VOC10 as a fixed source pool for segmen-

tation transfer to guide GrabCut, the performance greatly

increases to 82.5 % accuracy / 52.0 % IoU. Accelerated

superpixel models obtain very similar performance: −0.3 %

accuracy, +0.7 % IoU. This confirms that these faster models

come at no significant loss in performance. Propagating the

segmentation masks between stages further increases perfor-

mance to 84.1 % accuracy and 57.0 % IoU. It is interesting

to analyse the effects of propagation on each stage individu-

ally (Table 7). In stage 1, the large performance improvement

between the first two rows is due to using the ground-truth

bounding-box to guide the segmentation process. Stages 2–

5 are interesting because their source pools contain many

(imperfect) segmentations produced by earlier stages rather

than only the ground-truth masks S0 from VOC10. This

enables to test the effect of the segmentation propagation

idea, compared to segmentation transfer from the fixed S0

pool. As the table shows, propagation improves IoU for all

levels by about 1.8 %.6 This demonstrates the value of recur-

sively employing images segmented before to help segment-

ing new images. Finally, we note how sharing appearance

models between images of a class and importing models

from related classes brings only a minor additional benefit of

+0.3 % IoU on average (third row of Table 7).

Finally, we notice that the visual variability in ImageNet

classes is huge. As a consequence, the weights α learned

on ImageNet are quite different from the ones learned on

iCoseg. Typically, class models in iCoseg perform very well

and have high weight. On the contrary, class and related

models have lower weights in ImageNet. This stresses the

value of learning these weights automatically rather than set-

ting them manually. Comparing the performance of our full

method on iCoseg (92.6 % accuracy and 73.2 % IoU) and

ImageNet 84.4 %/57.3 %, we see that iCoseg is an easier

dataset, and ImageNet provides a much more challenging

setting. We show in Figs. 12 and 13 some examples of the

resulting segmentations.

6.5 Propagation Statistics

A central element of our propagation scheme is that the

source set for mask transfer continuously grows over stages

(Sect. 1.1). This is in contrast to using only PASCAL VOC10

as a fixed source set throughout. If the propagation idea

works, then the fraction of retrieved window neighbours that

come from ImageNet itself should gradually increase as the

stages progress (Sect. 3.1). The fraction of VOC10 neigh-

bours should instead decrease. We investigate this phenom-

enon here.

Naturally, the first level uses 100 % VOC10 neighbours,

as there no ImageNet images have been segmented yet. At

stage 2, 58 % of the neighbours are from VOC10, the others

propagate from level 1. Interestingly, at stage 2, the VOC10

data still makes up for 81 % of the source set. The fraction

of neighbours that are actually from VOC10 is below this

6 This differs from the conclusion we reached in our earlier paper

(Kuettel et al. 2012). The output segmentations were affected by a bug

in our GrabCut implementation, resulting in many erroneous segmen-

tations. These errors were amplified through propagation, leading to

the observation that performance decreased with stages. On average

over all images, in Kuettel et al. (2012), we reported 77.1 % accuracy.

When evaluated using the refined ground-truth, those segmentations

yield 80.0 % accuracy and 37.3 % IoU, clearly below the correct result

we report in this paper (84.4 % accuracy and 57.3 % IoU).
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Table 7 Breakdown of performance per stage, measured in IoU, for “Superpixel image+transfer”, “Superpixel image+propagation”, “Superpixel

image+propagation+class”.

IoU Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Overall

Superpixel image+transfer 50.6 50.3 54.4 54.6 60.9 52.7

Superpixel image+propagation 63.3 52.1 56.3 56.0 62.6 57.0

Superpixel image+propagation+class 63.6 52.7 56.6 56.2 62.4 57.3

Fig. 12 Example segmentation output by our full segmentation propagation scheme. The rightmost column shows some failure cases
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Fig. 13 More example segmentation output by our full segmentation propagation scheme

expected value, which demonstrates that the propagation is

already happening at this stage. Moreover, as propagation

unfolds over levels 3–5, the fraction of neighbours that come

from VOC10 shrinks further. At level 3, 26 % VOC10 neigh-

bours are used, whereas the source set is composed at 39 %

by VOC10 data. At level 4, it is 14 versus 22 %, and at level 5,

10 versus 17 %. As the VOC10 neighbours are always below

the proportion observed in the source set, we can conclude
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that our scheme to choose related classes for transfer in the

propagation scheme is appropriate, as the source set of a stage

truly contains windows that are more visually similar to the

target images in that stage than the default source VOC10.

7 Conclusion

We have presented segmentation propagation: a computa-

tionally efficient technique to recursively segment images

in ImageNet. It successfully combines ideas from segmenta-

tion transfer, cosegmentation, structured output learning, effi-

cient binary codes, and GrabCut. The technique was shown

to segment 500k images over 577 ImageNet classes with

good accuracy. We have shown how accuracy degrades grace-

fully as the propagation waves moves from easier images

with bounding-box annotations, to unannotated images in the

same classes, to images in completely unannotated classes.

We have also demonstrated the value of the various compo-

nents of our method on the smaller iCoseg dataset (Batra et al.

2010) for co-segmentation, where it delivers state-of-the-art

results.

In future work, we plan plan to exploit the fact that classes

in ImageNet are very diverse. Some have more images than

others and some have much larger variations in appearance

than others. This suggests that we should adapt the segmenta-

tion technique to each target class, and to propagate segmen-

tations based on visual similarity between classes, rather than

only based on semantic similarity. To improve robustness

we plan to automatically detect bad segmentations in early

stages, to avoid propagating errors to later stages. This could

be achieved, e.g. by analysing the entropy of the transfer mask

M , as a measure of the confidence of the method (Fig. 2d).
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