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Neural networks

● A neuron ● A neural network
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x is called the total input 
to the neuron, and f(x) 
is its output
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A neural network computes a differentiable 
function of its input. For example, ours computes:
p(label | an input image)



  

Convolutional neural networks
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● Here's a one-dimensional convolutional neural 
network

● Each hidden neuron applies the same 
localized, linear filter to the input



  

Convolution in 2D

Input “image” Filter bank

Output map



  

Local pooling

Max



  

Overview of our model

● Deep: 7 hidden “weight” layers

● Learned: all feature extractors initialized at 
white Gaussian noise and learned from the 
data

● Entirely supervised

● More data = good

Image

Convolutional layer: convolves its input 
with a bank of 3D filters, then applies 
point-wise non-linearity

Fully-connected layer: applies linear 
filters to its input, then applies point-
wise non-linearity



  

Overview of our model

● Trained with stochastic gradient descent on 
two NVIDIA GPUs for about a week

● 650,000 neurons

● 60,000,000 parameters

● 630,000,000 connections

● Final feature layer: 4096-dimensional

Image

Convolutional layer: convolves its input 
with a bank of 3D filters, then applies 
point-wise non-linearity

Fully-connected layer: applies linear 
filters to its input, then applies point-
wise non-linearity



  

96 learned low-level filters
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Training
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Local convolutional filters

Fully-connected filters
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Using stochastic gradient descent and the 
backpropagation algorithm (just repeated application 
of the chain rule)

Image Image



  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000
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Input representation

● Centered (0-mean) RGB values.

An input image (256x256) The mean input imageMinus sign



  

Neurons

f(x) = tanh(x) f(x) = max(0, x)

Very bad (slow to train) Very good (quick to train)
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x is called the total input 
to the neuron, and f(x) 
is its output



  

Data augmentation

● Our neural net has 60M real-valued 
parameters and 650,000 neurons

● It overfits a lot. Therefore we train on 224x224 
patches extracted randomly from 256x256 
images, and also their horizontal reflections.



  

Testing

● Average predictions made at five 224x224 
patches and their horizontal reflections (four 
corner patches and center patch)

● Logistic regression has the nice property that it 
outputs a probability distribution over the class 
labels

● Therefore no score normalization or calibration 
is necessary to combine the predictions of 
different models (or the same model on 
different patches), as would be necessary with 
an SVM. 



  

Dropout

● Independently set each hidden unit activity to 
zero with 0.5 probability

● We do this in the two globally-connected 
hidden layers at the net's output

A hidden unit 
turned off by 
dropout

A hidden unit 
unchanged

A hidden layer's activity on a given training image



  

Implementation

● The only thing that needs to be stored on disk 
is the raw image data

● We stored it in JPEG format. It can be loaded 
and decoded entirely in parallel with training.

● Therefore only 27GB of disk storage is needed 
to train this system.

● Uses about 2GB of RAM on each GPU, and 
around 5GB of system memory during 
training.



  

Implementation

● Written in Python/C++/CUDA

● Sort of like an instruction pipeline, with the 
following 4 instructions happening in parallel:

– Train on batch n (on GPUs)

– Copy batch n+1 to GPU memory

– Transform batch n+2 (on CPU)

– Load batch n+3 from disk (on CPU)



  

Validation classification



  

Validation classification



  

Validation classification



  

Validation localizations



  

Validation localizations



  

Retrieval experiments
First column contains query images from ILSVRC-2010 test set, remaining 
columns contain retrieved images from training set. 



  

Retrieval experiments
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