

ImageNet Classification with Deep
Convolutional Neural Networks

Alex Krizhevsky
Ilya Sutskever

Geoffrey Hinton

University of Toronto
Canada

Paper with same name to appear in NIPS 2012

Main idea
Architecture

Technical details

Neural networks

● A neuron ● A neural network

f(x)

w
1

w
2

w
3

f(z
1
) f(z

2
) f(z

3
)

x is called the total input
to the neuron, and f(x)
is its output

Output

Hidden

Data

x = w
1
f(z

1
) + w

2
f(z

2
) + w

3
f(z

3
)

A neural network computes a differentiable
function of its input. For example, ours computes:
p(label | an input image)

Convolutional neural networks

Output

Hidden

Data

● Here's a one-dimensional convolutional neural
network

● Each hidden neuron applies the same
localized, linear filter to the input

Convolution in 2D

Input “image” Filter bank

Output map

Local pooling

Max

Overview of our model

● Deep: 7 hidden “weight” layers

● Learned: all feature extractors initialized at
white Gaussian noise and learned from the
data

● Entirely supervised

● More data = good

Image

Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

Overview of our model

● Trained with stochastic gradient descent on
two NVIDIA GPUs for about a week

● 650,000 neurons

● 60,000,000 parameters

● 630,000,000 connections

● Final feature layer: 4096-dimensional

Image

Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

96 learned low-level filters

Main idea

Architecture
Technical details

Training
F

o
rw

a
rd

 p
a
s
s

Local convolutional filters

Fully-connected filters

B
a
c
k
w

a
rd

 p
a
s
s

Using stochastic gradient descent and the
backpropagation algorithm (just repeated application
of the chain rule)

Image Image

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

Main idea
Architecture

Technical details

Input representation

● Centered (0-mean) RGB values.

An input image (256x256) The mean input imageMinus sign

Neurons

f(x) = tanh(x) f(x) = max(0, x)

Very bad (slow to train) Very good (quick to train)

f(x)

w
1

w
2

w
3

f(z
1
) f(z

2
) f(z

3
)

x = w
1
f(z

1
) + w

2
f(z

2
) + w

3
f(z

3
)

x is called the total input
to the neuron, and f(x)
is its output

Data augmentation

● Our neural net has 60M real-valued
parameters and 650,000 neurons

● It overfits a lot. Therefore we train on 224x224
patches extracted randomly from 256x256
images, and also their horizontal reflections.

Testing

● Average predictions made at five 224x224
patches and their horizontal reflections (four
corner patches and center patch)

● Logistic regression has the nice property that it
outputs a probability distribution over the class
labels

● Therefore no score normalization or calibration
is necessary to combine the predictions of
different models (or the same model on
different patches), as would be necessary with
an SVM.

Dropout

● Independently set each hidden unit activity to
zero with 0.5 probability

● We do this in the two globally-connected
hidden layers at the net's output

A hidden unit
turned off by
dropout

A hidden unit
unchanged

A hidden layer's activity on a given training image

Implementation

● The only thing that needs to be stored on disk
is the raw image data

● We stored it in JPEG format. It can be loaded
and decoded entirely in parallel with training.

● Therefore only 27GB of disk storage is needed
to train this system.

● Uses about 2GB of RAM on each GPU, and
around 5GB of system memory during
training.

Implementation

● Written in Python/C++/CUDA

● Sort of like an instruction pipeline, with the
following 4 instructions happening in parallel:

– Train on batch n (on GPUs)

– Copy batch n+1 to GPU memory

– Transform batch n+2 (on CPU)

– Load batch n+3 from disk (on CPU)

Validation classification

Validation classification

Validation classification

Validation localizations

Validation localizations

Retrieval experiments
First column contains query images from ILSVRC-2010 test set, remaining
columns contain retrieved images from training set.

Retrieval experiments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

