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Abstract The ImageNet Large Scale Visual Recognition

Challenge is a benchmark in object category classification

and detection on hundreds of object categories and millions

of images. The challenge has been run annually from 2010

to present, attracting participation from more than fifty insti-

tutions. This paper describes the creation of this benchmark

dataset and the advances in object recognition that have been

possible as a result. We discuss the challenges of collecting

large-scale ground truth annotation, highlight key break-

throughs in categorical object recognition, provide a detailed

analysis of the current state of the field of large-scale image

classification and object detection, and compare the state-of-

the-art computer vision accuracy with human accuracy. We

conclude with lessons learned in the 5 years of the challenge,

and propose future directions and improvements.

Keywords Dataset · Large-scale · Benchmark · Object

recognition · Object detection

1 Introduction

Overview The ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) has been running annually for 5 years
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(since 2010) and has become the standard benchmark for

large-scale object recognition.1 ILSVRC follows in the foot-

steps of the PASCAL VOC challenge (Everingham et al.

2012), established in 2005, which set the precedent for stan-

dardized evaluation of recognition algorithms in the form of

yearly competitions. As in PASCAL VOC, ILSVRC consists

of two components: (1) a publically available dataset, and

(2) an annual competition and corresponding workshop. The

dataset allows for the development and comparison of cat-

egorical object recognition algorithms, and the competition

and workshop provide a way to track the progress and discuss

the lessons learned from the most successful and innovative

entries each year.

The publically released dataset contains a set of manu-

ally annotated training images. A set of test images is also

released, with the manual annotations withheld.2 Partici-

pants train their algorithms using the training images and

then automatically annotate the test images. These predicted

annotations are submitted to the evaluation server. Results

of the evaluation are revealed at the end of the competi-

tion period and authors are invited to share insights at the

workshop held at the International Conference on Computer

Vision (ICCV) or European Conference on Computer Vision

(ECCV) in alternate years.

ILSVRC annotations fall into one of two categories: (1)

image-level annotation of a binary label for the presence or

absence of an object class in the image, e.g., “there are cars

in this image” but “there are no tigers,” and (2) object-level

1 In this paper, we will be using the term object recognition broadly to

encompass both image classification (a task requiring an algorithm to

determine what object classes are present in the image) as well as object

detection (a task requiring an algorithm to localize all objects present

in the image).

2 In 2010, the test annotations were later released publicly; since then

the test annotation have been kept hidden.
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annotation of a tight bounding box and class label around

an object instance in the image, e.g., “there is a screwdriver

centered at position (20,25) with width of 50 pixels and height

of 30 pixels”.

Large-Scale Challenges and Innovations In creating the

dataset, several challenges had to be addressed. Scaling up

from 19,737 images in PASCAL VOC 2010 to 1,461,406

in ILSVRC 2010 and from 20 object classes to 1000 object

classes brings with it several challenges. It is no longer feasi-

ble for a small group of annotators to annotate the data as is

done for other datasets (Fei-Fei et al. 2004; Criminisi 2004;

Everingham et al. 2012; Xiao et al. 2010). Instead we turn

to designing novel crowdsourcing approaches for collecting

large-scale annotations (Su et al. 2012; Deng et al. 2009,

2014).

Some of the 1000 object classes may not be as easy to

annotate as the 20 categories of PASCAL VOC: e.g., bananas

which appear in bunches may not be as easy to delineate as

the basic-level categories of aeroplanes or cars. Having more

than a million images makes it infeasible to annotate the

locations of all objects (much less with object segmentations,

human body parts, and other detailed annotations that subsets

of PASCAL VOC contain). New evaluation criteria have to

be defined to take into account the facts that obtaining perfect

manual annotations in this setting may be infeasible.

Once the challenge dataset was collected, its scale allowed

for unprecedented opportunities both in evaluation of object

recognition algorithms and in developing new techniques.

Novel algorithmic innovations emerge with the availability

of large-scale training data. The broad spectrum of object cat-

egories motivated the need for algorithms that are even able to

distinguish classes which are visually very similar. We high-

light the most successful of these algorithms in this paper,

and compare their performance with human-level accuracy.

Finally, the large variety of object classes in ILSVRC

allows us to perform an analysis of statistical properties of

objects and their impact on recognition algorithms. This type

of analysis allows for a deeper understanding of object recog-

nition, and for designing the next generation of general object

recognition algorithms.

Goals This paper has three key goals:

(1) To discuss the challenges of creating this large-scale

object recognition benchmark dataset,

(2) To highlight the developments in object classification

and detection that have resulted from this effort, and

(3) To take a closer look at the current state of the field of

categorical object recognition.

The paper may be of interest to researchers working on cre-

ating large-scale datasets, as well as to anybody interested

in better understanding the history and the current state of

large-scale object recognition.

The collected dataset and additional information about

ILSVRC can be found at:

http://image-net.org/challenges/LSVRC/.

1.1 Related Work

We briefly discuss some prior work in constructing bench-

mark image datasets.

Image Classification Datasets Caltech 101 (Fei-Fei et al.

2004) was among the first standardized datasets for multi-

category image classification, with 101 object classes and

commonly 15–30 training images per class. Caltech 256

(Griffin et al. 2007) increased the number of object classes

to 256 and added images with greater scale and background

variability. The TinyImages dataset (Torralba et al. 2008)

contains 80 million 32 × 32 low resolution images collected

from the internet using synsets in WordNet (Miller 1995)

as queries. However, since this data has not been manually

verified, there are many errors, making it less suitable for

algorithm evaluation. Datasets such as 15 Scenes (Oliva and

Torralba 2001; Fei-Fei and Perona 2005; Lazebnik et al.

2006) or recent Places (Zhou et al. 2014) provide a single

scene category label (as opposed to an object category).

The ImageNet dataset (Deng et al. 2009) is the backbone

of ILSVRC. ImageNet is an image dataset organized accord-

ing to the WordNet hierarchy (Miller 1995). Each concept

in WordNet, possibly described by multiple words or word

phrases, is called a “synonym set” or “synset”. ImageNet

populates 21,841 synsets of WordNet with an average of 650

manually verified and full resolution images. As a result,

ImageNet contains 14,197,122 annotated images organized

by the semantic hierarchy of WordNet (as of August 2014).

ImageNet is larger in scale and diversity than the other image

classification datasets. ILSVRC uses a subset of ImageNet

images for training the algorithms and some of ImageNet’s

image collection protocols for annotating additional images

for testing the algorithms.

Image Parsing Datasets Many datasets aim to provide richer

image annotations beyond image-category labels. LabelMe

(Russell et al. 2007) contains general photographs with mul-

tiple objects per image. It has bounding polygon annotations

around objects, but the object names are not standardized:

annotators are free to choose which objects to label and what

to name each object. The SUN2012 (Xiao et al. 2010) dataset

contains 16,873 manually cleaned up and fully annotated

images more suitable for standard object detection training

and evaluation. SIFT Flow (Liu et al. 2011) contains 2,688

images labeled using the LabelMe system. The LotusHill

dataset (Yao et al. 2007) contains very detailed annotations
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of objects in 636,748 images and video frames, but it is not

available for free. Several datasets provide pixel-level seg-

mentations: for example, MSRC dataset (Criminisi 2004)

with 591 images and 23 object classes, Stanford Background

Dataset (Gould et al. 2009) with 715 images and 8 classes,

and the Berkeley Segmentation dataset (Arbelaez et al. 2011)

with 500 images annotated with object boundaries. Open-

Surfaces segments surfaces from consumer photographs and

annotates them with surface properties, including material,

texture, and contextual information (Bell et al. 2013).

The closest to ILSVRC is the PASCAL VOC dataset

(Everingham et al. 2010, 2014), which provides a standard-

ized test bed for object detection, image classification, object

segmentation, person layout, and action classification. Much

of the design choices in ILSVRC have been inspired by

PASCAL VOC and the similarities and differences between

the datasets are discussed at length throughout the paper.

ILSVRC scales up PASCAL VOC’s goal of standardized

training and evaluation of recognition algorithms by more

than an order of magnitude in number of object classes

and images: PASCAL VOC 2012 has 20 object classes and

21,738 images compared to ILSVRC2012 with 1000 object

classes and 1,431,167 annotated images.

The recently released COCO dataset (Lin et al. 2014b)

contains more than 328,000 images with 2.5 million object

instances manually segmented. It has fewer object categories

than ILSVRC (91 in COCO versus 200 in ILSVRC object

detection) but more instances per category (27K on average

compared to about 1K in ILSVRC object detection). Further,

it contains object segmentation annotations which are not

currently available in ILSVRC. COCO is likely to become

another important large-scale benchmark.

Large-Scale Annotation ILSVRC makes extensive use of

Amazon Mechanical Turk to obtain accurate annotations

(Sorokin and Forsyth 2008). Works such as (Welinder et al.

2010; Sheng et al. 2008; Vittayakorn and Hays 2011) describe

quality control mechanisms for this marketplace. Vondrick

et al. (2012) provides a detailed overview of crowdsourc-

ing video annotation. A related line of work is to obtain

annotations through well-designed games, e.g. (von Ahn

and Dabbish 2005). Our novel approaches to crowdsourc-

ing accurate image annotations are in Sects. 3.1.3, 3.2.1

and 3.3.3.

Standardized Challenges There are several datasets with

standardized online evaluation similar to ILSVRC: the afore-

mentioned PASCAL VOC (Everingham et al. 2012), Labeled

Faces in the Wild (Huang et al. 2007) for unconstrained

face recognition, Reconstruction meets Recognition (Urta-

sun et al. 2014) for 3D reconstruction and KITTI (Geiger

et al. 2013) for computer vision in autonomous driving. These

datasets along with ILSVRC help benchmark progress in dif-

ferent areas of computer vision. Works such as (Torralba and

Efros 2011) emphasize the importance of examining the bias

inherent in any standardized dataset.

1.2 Paper Layout

We begin with a brief overview of ILSVRC challenge tasks

in Sect. 2. Dataset collection and annotation are described at

length in Sect. 3. Section 4 discusses the evaluation criteria

of algorithms in the large-scale recognition setting. Section 5

provides an overview of the methods developed by ILSVRC

participants.

Section 6 contains an in-depth analysis of ILSVRC results:

Sect. 6.1 documents the progress of large-scale recognition

over the years, Sect. 6.2 concludes that ILSVRC results are

statistically significant, Sect. 6.3 thoroughly analyzes the cur-

rent state of the field of object recognition, and Sect. 6.4

compares state-of-the-art computer vision accuracy with

human accuracy. We conclude and discuss lessons learned

from ILSVRC in Sect. 7.

2 Challenge Tasks

The goal of ILSVRC is to estimate the content of photographs

for the purpose of retrieval and automatic annotation. Test

images are presented with no initial annotation, and algo-

rithms have to produce labelings specifying what objects are

present in the images. New test images are collected and

labeled especially for this competition and are not part of the

previously published ImageNet dataset (Deng et al. 2009).

ILSVRC over the years has consisted of one or more of

the following tasks (years in parentheses):3

(1) Image classification (2010–2014): Algorithms produce a

list of object categories present in the image.

(2) Single-object localization (2011–2014): Algorithms pro-

duce a list of object categories present in the image, along

with an axis-aligned bounding box indicating the position

and scale of one instance of each object category.

(3) Object detection (2013–2014): Algorithms produce a list

of object categories present in the image along with an

axis-aligned bounding box indicating the position and

scale of every instance of each object category.

This section provides an overview and history of each of the

three tasks. Table 1 shows summary statistics.

3 In addition, ILSVRC in 2012 also included a taster fine-grained clas-

sification task, where algorithms would classify dog photographs into

one of 120 dog breeds (Khosla et al. 2011). Fine-grained classification

has evolved into its own Fine-Grained classification challenge in 2013

(Berg et al. 2013), which is outside the scope of this paper.
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Table 1 Overview of the

provided annotations for each of

the tasks in ILSVRC

Task Image

classification

Single-object

localization

Object detection

Manual labeling

on training set

Number of object classes

annotated per image

1 1 1 or More

Locations of annotated

classes

– All instances on

some images

All instances on

all images

Manual labeling

on validation

and test sets

Number of object classes

annotated per image

1 1 All target classes

Locations of annotated

classes

– All instances on

all images

All instances on

all images

2.1 Image Classification Task

Data for the image classification task consists of photographs

collected from Flickr4 and other search engines, manually

labeled with the presence of one of 1000 object categories.

Each image contains one ground truth label.

For each image, algorithms produce a list of object cat-

egories present in the image. The quality of a labeling is

evaluated based on the label that best matches the ground

truth label for the image (see Sect. 4.1).

Constructing ImageNet was an effort to scale up an image

classification dataset to cover most nouns in English using

tens of millions of manually verified photographs (Deng et al.

2009). The image classification task of ILSVRC came as a

direct extension of this effort. A subset of categories and

images was chosen and fixed to provide a standardized bench-

mark while the rest of ImageNet continued to grow.

2.2 Single-Object Localization Task

The single-object localization task, introduced in 2011, built

off of the image classification task to evaluate the ability of

algorithms to learn the appearance of the target object itself

rather than its image context.

Data for the single-object localization task consists of

the same photographs collected for the image classification

task, hand labeled with the presence of one of 1000 object

categories. Each image contains one ground truth label. Addi-

tionally, every instance of this category is annotated with an

axis-aligned bounding box.

For each image, algorithms produce a list of object cat-

egories present in the image, along with a bounding box

indicating the position and scale of one instance of each

object category. The quality of a labeling is evaluated based

on the object category label that best matches the ground

truth label, with the additional requirement that the location

of the predicted instance is also accurate (see Sect. 4.2).

4 www.flickr.com.

2.3 Object Detection Task

The object detection task went a step beyond single-object

localization and tackled the problem of localizing multiple

object categories in the image. This task has been a part of

the PASCAL VOC for many years on the scale of 20 object

categories and tens of thousands of images, but scaling it up

by an order of magnitude in object categories and in images

proved to be very challenging from a dataset collection and

annotation point of view (see Sect. 3.3).

Data for the detection tasks consists of new photographs

collected from Flickr using scene-level queries. The images

are annotated with axis-aligned bounding boxes indicating

the position and scale of every instance of each target object

category. The training set is additionally supplemented with

(a) data from the single-object localization task, which con-

tains annotations for all instances of just one object category,

and (b) negative images known not to contain any instance

of some object categories.

For each image, algorithms produce bounding boxes indi-

cating the position and scale of all instances of all target

object categories. The quality of labeling is evaluated by

recall, or number of target object instances detected, and

precision, or the number of spurious detections produced by

the algorithm (see Sect. 4.3).

3 Dataset Construction at Large Scale

Our process of constructing large-scale object recognition

image datasets consists of three key steps.

The first step is defining the set of target object cat-

egories. To do this, we select from among the existing

ImageNet (Deng et al. 2009) categories. By using WordNet

as a backbone (Miller 1995), ImageNet already takes care of

disambiguating word meanings and of combining together

synonyms into the same object category. Since the selection

of object categories needs to be done only once per chal-

lenge task, we use a combination of automatic heuristics and

manual post-processing to create the list of target categories

appropriate for each task. For example, for image classifica-
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tion we may include broader scene categories such as a type

of beach, but for single-object localization and object detec-

tion we want to focus only on object categories which can be

unambiguously localized in images (Sects. 3.1.1, 3.3.1).

The second step is collecting a diverse set of candidate

images to represent the selected categories. We use both

automatic and manual strategies on multiple search engines

to do the image collection. The process is modified for the

different ILSVRC tasks. For example, for object detection

we focus our efforts on collecting scene-like images using

generic queries such as “African safari” to find pictures likely

to contain multiple animals in one scene (Sect. 3.3.2).

The third (and most challenging) step is annotating the

millions of collected images to obtain a clean dataset. We

carefully design crowdsourcing strategies targeted to each

individual ILSVRC task. For example, the bounding box

annotation system used for localization and detection tasks

consists of three distinct parts in order to include auto-

matic crowdsourced quality control (Sect. 3.2.1). Annotating

images fully with all target object categories (on a reasonable

budget) for object detection requires an additional hierarchi-

cal image labeling system (Sect. 3.3.3).

We describe the data collection and annotation procedure

for each of the ILSVRC tasks in order: image classification

(Sect. 3.1), single-object localization (Sect. 3.2), and object

detection (Sect. 3.3), focusing on the three key steps for each

dataset.

3.1 Image Classification Dataset Construction

The image classification task tests the ability of an algorithm

to name the objects present in the image, without necessarily

localizing them.

We describe the choices we made in constructing the

ILSVRC image classification dataset: selecting the target

object categories from ImageNet (Sect. 3.1.1), collecting a

diverse set of candidate images by using multiple search

engines and an expanded set of queries in multiple languages

(Sect. 3.1.2), and finally filtering the millions of collected

images using the carefully designed crowdsourcing strategy

of ImageNet (Deng et al. 2009) (Sect. 3.1.3).

3.1.1 Defining Object Categories for the Image

Classification Dataset

The 1000 categories used for the image classification task

were selected from the ImageNet (Deng et al. 2009) cate-

gories. The 1000 synsets are selected such that there is no

overlap between synsets: for any synsets i and j , i is not

an ancestor of j in the ImageNet hierarchy. These synsets

are part of the larger hierarchy and may have children in

ImageNet; however, for ILSVRC we do not consider their

child subcategories. The synset hierarchy of ILSVRC can

be thought of as a “trimmed” version of the complete Ima-

geNet hierarchy. Figure 1 visualizes the diversity of the

ILSVRC2012 object categories.

The exact 1000 synsets used for the image classification

and single-object localization tasks have changed over the

years. There are 639 synsets which have been used in all

five ILSVRC challenges so far. In the first year of the chal-

lenge synsets were selected randomly from the available

ImageNet synsets at the time, followed by manual filter-

ing to make sure the object categories were not too obscure.

With the introduction of the object localization challenge in

2011 there were 321 synsets that changed: categories such

as “New Zealand beach” which were inherently difficult to

localize were removed, and some new categories from Ima-

geNet containing object localization annotations were added.

In ILSVRC2012, 90 synsets were replaced with categories

corresponding to dog breeds to allow for evaluation of more

fine-grained object classification, as shown in Fig. 2. The

synsets have remained consistent since year 2012. Appen-

dix 1 provides the complete list of object categories used in

ILSVRC2012-2014.

3.1.2 Collecting Candidate Images for the Image

Classification Dataset

Image collection for ILSVRC classification task is the same

as the strategy employed for constructing ImageNet (Deng

et al. 2009). Training images are taken directly from Ima-

geNet. Additional images are collected for the ILSVRC using

this strategy and randomly partitioned into the validation and

test sets.

We briefly summarize the process; (Deng et al. 2009) con-

tains further details. Candidate images are collected from the

Internet by querying several image search engines. For each

synset, the queries are the set of WordNet synonyms. Search

engines typically limit the number of retrievable images (on

the order of a few hundred to a thousand). To obtain as many

images as possible, we expand the query set by appending

the queries with the word from parent synsets, if the same

word appears in the glossary of the target synset. For example,

when querying “whippet”, according to WordNet’s glossary a

“small slender dog of greyhound type developed in England”,

we also use “whippet dog” and “whippet greyhound.” To

further enlarge and diversify the candidate pool, we translate

the queries into other languages, including Chinese, Span-

ish, Dutch and Italian. We obtain accurate translations using

WordNets in those languages.

3.1.3 Image Classification Dataset Annotation

Annotating images with corresponding object classes follows

the strategy employed by ImageNet (Deng et al. 2009). We

summarize it briefly here.
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Fig. 1 The diversity of data in

the ILSVRC image

classification and single-object

localization tasks. For each of

the eight dimensions, we show

example object categories along

the range of that property.

Object scale, number of

instances and image clutter for

each object category are

computed using the metrics

defined in Sect. 3.2.2 and in

Appendix 1. The other

properties were computed by

asking human subjects to

annotate each of the 1000 object

categories (Russakovsky et al.

2013)

To collect a highly accurate dataset, we rely on humans to

verify each candidate image collected in the previous step for

a given synset. This is achieved by using Amazon Mechan-

ical Turk (AMT), an online platform on which one can put

up tasks for users for a monetary reward. With a global user

base, AMT is particularly suitable for large scale labeling.

In each of our labeling tasks, we present the users with a set

of candidate images and the definition of the target synset

(including a link to Wikipedia). We then ask the users to

verify whether each image contains objects of the synset.

We encourage users to select images regardless of occlu-

sions, number of objects and clutter in the scene to ensure

diversity.

While users are instructed to make accurate judgment, we

need to set up a quality control system to ensure this accu-

racy. There are two issues to consider. First, human users

make mistakes and not all users follow the instructions. Sec-

ond, users do not always agree with each other, especially

for more subtle or confusing synsets, typically at the deeper

levels of the tree. The solution to these issues is to have mul-

tiple users independently label the same image. An image

is considered positive only if it gets a convincing majority

of the votes. We observe, however, that different categories

require different levels of consensus among users. For exam-

ple, while five users might be necessary for obtaining a good

consensus on Burmese cat images, a much smaller number

123



Int J Comput Vis (2015) 115:211–252 217

Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark; for example, instead

of the PASCAL “dog” category there are 120 different breeds of dogs in ILSVRC2012-2014 classification and single-object localization tasks

is needed for cat images. We develop a simple algorithm to

dynamically determine the number of agreements needed for

different categories of images. For each synset, we first ran-

domly sample an initial subset of images. At least 10 users

are asked to vote on each of these images. We then obtain a

confidence score table, indicating the probability of an image

being a good image given the consensus among user votes.

For each of the remaining candidate images in this synset, we

proceed with the AMT user labeling until a pre-determined

confidence score threshold is reached.

Empirical Evaluation Evaluation of the accuracy of the

large-scale crowdsourced image annotation system was done

on the entire ImageNet (Deng et al. 2009). A total of 80

synsets were randomly sampled at every tree depth of the

mammal and vehicle subtrees. An independent group of

subjects verified the correctness of each of the images. An

average of 99.7 % precision is achieved across the synsets.

We expect similar accuracy on ILSVRC image classification

dataset since the image annotation pipeline has remained the

same. To verify, we manually checked 1500 ILSVRC2012-

2014 image classification test set images (the test set has

remained unchanged in these 3 years). We found 5 annota-

tion errors, corresponding as expected to 99.7 % precision.

3.1.4 Image Classification Dataset Statistics

Using the image collection and annotation procedure

described in previous sections, we collected a large-scale

dataset used for ILSVRC classification task. There are 1000

object classes and approximately 1.2 million training images,

50 thousand validation images and 100 thousand test images.

Table 2 documents the size of the dataset over the years of

the challenge.

3.2 Single-Object Localization Dataset Construction

The single-object localization task evaluates the ability of an

algorithm to localize one instance of an object category. It

was introduced as a taster task in ILSVRC 2011, and became

an official part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-

sourcing method for object bounding box annotation. Our

three-step self-verifying pipeline is described in Sect. 3.2.1.

Having the dataset collected, we perform detailed analysis in

Sect. 3.2.2 to ensure that the dataset is sufficiently varied to

be suitable for evaluation of object localization algorithms.

Object Classes and Candidate Images The object classes

for single-object localization task are the same as the object

classes for image classification task described above in

Sect. 3.1. The training images for localization task are a sub-

set of the training images used for image classification task,

and the validation and test images are the same between both

tasks.

Bounding Box Annotation Recall that for the image classifi-

cation task every image was annotated with one object class

label, corresponding to one object that is present in an image.

For the single-object localization task, every validation and
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Table 2 Scale of ILSVRC image classification task (minimum per class - maximum per class)

Year Train images

(per class)

Val images

(per class)

Test images

(per class)

Image classification annotations (1000 object classes)

ILSVRC2010 1,261,406 (668–3047) 50,000 (50) 150,000 (150)

ILSVRC2011 1,229,413 (384–1300) 50,000 (50) 100,000 (100)

ILSVRC2012-14 1,281,167 (732–1300) 50,000 (50) 100,000 (100)

The numbers in parentheses correspond to (minimum per class–maximum per class). The 1000 classes change from year to year but are consistent

between image classification and single-object localization tasks in the same year. All images from the image classification task may be used for

single-object localization

Table 3 Scale of additional annotations for the ILSVRC single-object localization task (minimum per class - maximum per class)

Year Train images

with bbox

annotations

(per class)

Train bboxes

annotated (per

class)

Val images

with bbox

annotations

(per class)

Val bboxes

annotated

(per class)

Test images

with bbox

annotations

Additional annotations for single-object localization (1000 object classes)

ILSVRC2011 315,525 (104–1256) 344,233 (114–1502) 50,000 (50) 55,388 (50–118) 100,000

ILSVRC2012-14 523,966 (91–1268) 593,173 (92–1418) 50,000 (50) 64,058 (50–189) 100,000

The numbers in parentheses correspond to (minimum per class–maximum per class). The 1000 classes change from year to year but are consistent

between image classification and single-object localization tasks in the same year. All images from the image classification task may be used for

single-object localization

test image and a subset of the training images are annotated

with axis-aligned bounding boxes around every instance of

this object.

Every bounding box is required to be as small as possi-

ble while including all visible parts of the object instance.

An alternate annotation procedure could be to annotate the

full (estimated) extent of the object: e.g., if a person’s legs

are occluded and only the torso is visible, the bounding box

could be drawn to include the likely location of the legs. How-

ever, this alternative procedure is inherently ambiguous and

ill-defined, leading to disagreement among annotators and

among researchers (what is the true “most likely” extent of

this object?). We follow the standard protocol of only anno-

tating visible object parts (Russell et al. 2007; Everingham

et al. 2010).5

3.2.1 Bounding Box Object Annotation System

We summarize the crowdsourced bounding box annotation

system described in detail in Su et al. (2012). The goal is

to build a system that is fully automated, highly accurate,

and cost-effective. Given a collection of images where the

5 Some datasets such as PASCAL VOC (Everingham et al. 2010)

and LabelMe (Russell et al. 2007) are able to provide more detailed

annotations: for example, marking individual object instances as being

truncated. We chose not to provide this level of detail in favor of anno-

tating more images and more object instances.

object of interest has been verified to exist, for each image

the system collects a tight bounding box for every instance

of the object.

There are two requirements:

– Quality Each bounding box needs to be tight, i.e. the

smallest among all bounding boxes that contains all visi-

ble parts of the object. This facilitates the object detection

learning algorithms by providing the precise location of

each object instance;

– Coverage Every object instance needs to have a bounding

box. This is important for training localization algorithms

because it tells the learning algorithms with certainty

what is not the object.

The core challenge of building such a system is effectively

controlling the data quality with minimal cost. Our key obser-

vation is that drawing a bounding box is significantly more

difficult and time consuming than giving answers to multi-

ple choice questions. Thus quality control through additional

verification tasks is more cost-effective than consensus-based

algorithms. This leads to the following workflow with simple

basic subtasks:

(1) Drawing A worker draws one bounding box around one

instance of an object on the given image.
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(2) Quality verification A second worker checks if the bound-

ing box is correctly drawn.

(3) Coverage verification A third worker checks if all object

instances have bounding boxes.

The sub-tasks are designed following two principles. First,

the tasks are made as simple as possible. For example, instead

of asking the worker to draw all bounding boxes on the same

image, we ask the worker to draw only one. This reduces

the complexity of the task. Second, each task has a fixed and

predictable amount of work. For example, assuming that the

input images are clean (object presence is correctly verified)

and the coverage verification tasks give correct results, the

amount of work of the drawing task is always that of provid-

ing exactly one bounding box.

Quality control on Tasks 2 and 3 is implemented by

embedding “gold standard” images where the correct answer

is known. Worker training for each of these subtasks is

described in detail in Su et al. (2012).

Empirical Evaluation The system is evaluated on 10 cate-

gories with ImageNet (Deng et al. 2009): balloon, bear, bed,

bench, beach, bird, bookshelf, basketball hoop, bottle, and

people. A subset of 200 images are randomly sampled from

each category. On the image level, our evaluation shows that

97.9 % images are completely covered with bounding boxes.

For the remaining 2.1 %, some bounding boxes are missing.

However, these are all difficult cases: the size is too small,

the boundary is blurry, or there is strong shadow.

On the bounding box level, 99.2 % of all bounding boxes

are accurate (the bounding boxes are visibly tight). The

remaining 0.8 % are somewhat off. No bounding boxes are

found to have less than 50 % intersection over union overlap

with ground truth.

Additional evaluation of the overall cost and an analysis

of quality control can be found in Su et al. (2012).

3.2.2 Single-Object Localization Dataset Statistics

Using the annotation procedure described above, we collect

a large set of bounding box annotations for the ILSVRC

single-object classification task. All 50 thousand images in

the validation set and 100 thousand images in the test set

are annotated with bounding boxes around all instances of

the ground truth object class (one object class per image). In

addition, in ILSVRC2011 25 % of training images are anno-

tated with bounding boxes the same way, yielding more than

310 thousand annotated images with more than 340 thousand

annotated object instances. In ILSVRC2012 40 % of train-

ing images are annotated, yielding more than 520 thousand

annotated images with more than 590 thousand annotated

object instances. Table 3 documents the size of this dataset.

In addition to the size of the dataset, we also ana-

lyze the level of difficulty of object localization in these

images compared to the PASCAL VOC benchmark. We com-

pute statistics on the ILSVRC2012 single-object localization

validation set images compared to PASCAL VOC 2012 val-

idation images.

Real-world scenes are likely to contain multiple instances

of some objects, and nearby object instances are particu-

larly difficult to delineate. The average object category in

ILSVRC has 1.61 target object instances on average per

positive image, with each instance having on average 0.47

neighbors (adjacent instances of the same object category).

This is comparable to 1.69 instances per positive image and

0.52 neighbors per instance for an average object class in

PASCAL.

As described in Hoiem et al. (2012), smaller objects tend

to be significantly more difficult to localize. In the average

object category in PASCAL the object occupies 24.1 % of

the image area, and in ILSVRC 35.8 %. However, PASCAL

has only 20 object categories while ILSVRC has 1000. The

537 object categories of ILSVRC with the smallest objects

on average occupy the same fraction of the image as PAS-

CAL objects: 24.1 %. Thus even though on average the object

instances tend to be bigger in ILSVRC images, there are more

than 25 times more object categories than in PASCAL VOC

with the same average object scale.

Appendix 1 and Russakovsky et al. (2013) have additional

comparisons.

3.3 Object Detection Dataset Construction

The ILSVRC task of object detection evaluates the ability

of an algorithm to name and localize all instances of all

target objects present in an image. It is much more challeng-

ing than object localization because some object instances

may be small/occluded/difficult to accurately localize, and

the algorithm is expected to locate them all, not just the one

it finds easiest.

There are three key challenges in collecting the object

detection dataset. The first challenge is selecting the set

of common objects which tend to appear in cluttered pho-

tographs and are well-suited for benchmarking object detec-

tion performance. Our approach relies on statistics of the

object localization dataset and the tradition of the PASCAL

VOC challenge (Sect. 3.3.1).

The second challenge is obtaining a much more varied

set of scene images than those used for the image classifi-

cation and single-object localization datasets. Section 3.3.2

describes the procedure for utilizing as much data from

the single-object localization dataset as possible and sup-

plementing it with Flickr images queried using hundreds of

manually designed high-level queries.
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The third, and biggest, challenge is completely annotating

this dataset with all the objects. This is done in two parts.

Section 3.3.3 describes the first part: our hierarchical strategy

for obtaining the list of all target objects which occur within

every image. This is necessary since annotating in a straight-

forward way by creating a task for every (image, object class)

pair is no longer feasible at this scale. Appendix 1 describes

the second part: annotating the bounding boxes around these

objects, using the single-object localization bounding box

annotation pipeline of Sect. 3.2.1 along with extra verification

to ensure that every instance of the object is annotated with

exactly one bounding box.

3.3.1 Defining Object Categories for the Object Detection

Dataset

There are 200 object classes hand-selected for the detection

task, eacg corresponding to a synset within ImageNet. These

were chosen to be mostly basic-level object categories that

would be easy for people to identify and label. The ratio-

nale is that the object detection system developed for this

task can later be combined with a fine-grained classification

model to further classify the objects if a finer subdivision is

desired.6 As with the 1000 classification classes, the synsets

are selected such that there is no overlap: for any synsets i

and j , i is not an ancestor of j in the ImageNet hierarchy.

The selection of the 200 object detection classes in 2013

was guided by the ILSVRC 2012 classification and local-

ization dataset. Starting with 1000 object classes and their

bounding box annotations we first eliminated all object

classes which tended to be too “big” in the image (on aver-

age the object area was greater than 50 % of the image area).

These were classes such as T-shirt, spiderweb, or manhole

cover. We then manually eliminated all classes which we

did not feel were well-suited for detection, such as hay,

barbershop, or poncho. This left 494 object classes which

were merged into basic-level categories: for example, differ-

ent species of birds were merged into just the “bird” class.

The classes remained the same in ILSVRC2014. Appen-

dix 1 contains the complete list of object categories used in

ILSVRC2013-2014 (in the context of the hierarchy described

in Sect. 3.3.3).

Staying mindful of the tradition of the PASCAL VOC

dataset we also tried to ensure that the set of 200 classes

contains as many of the 20 PASCAL VOC classes as possi-

ble. Table 4 shows the correspondences. The changes that

were done were to ensure more accurate and consistent

crowdsourced annotations. The object class with the weakest

correspondence is “potted plant” in PASCAL VOC, corre-

6 Some of the training objects are actually annotated with more detailed

classes: for example, one of the 200 object classes is the category “dog,”

and some training instances are annotated with the specific dog breed.

Table 4 Correspondences between the object classes in the PASCAL

VOC (Everingham et al. 2010) and the ILSVRC detection task

Class name in

PASCAL VOC

(20 classes)

Closest class in

ILSVRC-DET

(200 classes)

Average object scale (%)

PASCAL VOC ILSVRC-DET

Aeroplane Airplane 29.7 22.4

Bicycle Bicycle 29.3 14.3

Bird Bird 15.9 20.1

Boat Watercraft 15.2 16.5

Bottle Wine bottle 7.3 10.4

Bus Bus 29.9 22.1

Car Car 14.0 13.4

Cat Domestic cat 46.8 29.8

Chair Chair 12.8 10.1

Cow Cattle 19.3 13.5

Dining table Table 29.1 30.3

Dog Dog 37.0 28.9

Horse Horse 29.5 18.5

Motorbike Motorcyle 32.0 20.7

Person Person 17.5 19.3

Potted plant Flower pot 12.3 8.1

Sheep Sheep 12.2 17.3

Sofa Sofa 41.7 44.4

Train Train 35.4 35.1

TV/monitor TV or monitor 14.6 11.2

Object scale is the fraction of image area (reported in percent) occu-

pied by an object instance. It is computed on the validation sets of

PASCAL VOC 2012 and of ILSVRC-DET. The average object scale is

24.1 % across the 20 PASCAL VOC categories and 20.3 % across the 20

corresponding ILSVRC-DET categories. Sect. 3.3.4 reports additional

dataset statistics

sponding to “flower pot” in ILSVRC. “Potted plant” was

one of the most challenging object classes to annotate con-

sistently among the PASCAL VOC classes, and in order to

obtain accurate annotations using crowdsourcing we had to

restrict the definition to a more concrete object.

3.3.2 Collecting Images for the Object Detection Dataset

Many images for the detection task were collected differ-

ently than the images in ImageNet and the classification

and single-object localization tasks. Figure 3 summarizes

the types of images that were collected. Ideally all of these

images would be scene images fully annotated with all target

categories. However, given budget constraints our goal was

to provide as much suitable detection data as possible, even

if the images were drawn from a few different sources and

distributions.

The validation and test detection set images come from

two sources (percent of images from each source in paren-

theses). The first source (77 %) is images from ILSVRC2012
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Fig. 3 Summary of images collected for the detection task. Images in green (bold) boxes have all instances of all 200 detection object classes fully

annotated. Table 5 lists the complete statistics

single-object localization validation and test sets correspond-

ing to the 200 detection classes (or their children in the

ImageNet hierarchy). Images where the target object occu-

pied more than 50 % of the image area were discarded, since

they were unlikely to contain other objects of interest. The

second source (23 %) is images from Flickr collected specif-

ically for detection task. We queried Flickr using a large set

of manually defined queries, such as “kitchenette” or “Aus-

tralian zoo” to retrieve images of scenes likely to contain

several objects of interest. Appendix 1 contains the full list.

We also added pairwise queries, or queries with two target

object names such as “tiger lion,” which also often returned

cluttered scenes.

Figure 4 shows a random set of both types of validation

images. Images were randomly split, with 33 % going into

the validation set and 67 % into the test set.7

The training set for the detection task comes from three

sources of images (percent of images from each source in

parentheses). The first source (63 %) is all training images

from ILSVRC2012 single-object localization task corre-

sponding to the 200 detection classes (or their children in

the ImageNet hierarchy). We did not filter by object size,

allowing teams to take advantage of all the positive exam-

ples available. The second source (24 %) is negative images

which were part of the original ImageNet collection process

but voted as negative: for example, some of the images were

collected from Flickr and search engines for the ImageNet

synset “animals” but during the manual verification step did

7 The validation/test split is consistent with ILSVRC2012: validation

images of ILSVRC2012 remained in the validation set of ILSVRC2013,

and ILSVRC2012 test images remained in ILSVRC2013 test set.

not collect enough votes to be considered as containing an

“animal.” These images were manually re-verified for the

detection task to ensure that they did not in fact contain the

target objects. The third source (13 %) is images collected

from Flickr specifically for the detection task. These images

were added for ILSVRC2014 following the same protocol

as the second type of images in the validation and test set.

This was done to bring the training and testing distributions

closer together.

3.3.3 Complete Image-Object Annotation for the Object

Detection Dataset

The key challenge in annotating images for the object detec-

tion task is that all objects in all images need to be labeled.

Suppose there are N inputs (images) which need to be anno-

tated with the presence or absence of K labels (objects). A

naïve approach would query humans for each combination of

input and label, requiring N K queries. However, N and K can

be very large and the cost of this exhaustive approach quickly

becomes prohibitive. For example, annotating 60,000 vali-

dation and test images with the presence or absence of 200

object classes for the detection task naïvely would take 80

times more effort than annotating 150,000 validation and

test images with 1 object each for the classification task—

and this is not even counting the additional cost of collecting

bounding box annotations around each object instance. This

quickly becomes infeasible.

In Deng et al. (2014) we study strategies for scalable mul-

tilabel annotation, or for efficiently acquiring multiple labels

from humans for a collection of items. We exploit three key
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Fig. 4 Random selection of images in ILSVRC detection validation set. The images in the top four rows were taken from ILSVRC2012 single-object

localization validation set, and the images in the bottom four rows were collected from Flickr using scene-level queries

observations for labels in real world applications (illustrated

in Fig. 5):

(1) Correlation Subsets of labels are often highly corre-

lated. Objects such as a computer keyboard, mouse and

monitor frequently co-occur in images. Similarly, some

labels tend to all be absent at the same time. For exam-

ple, all objects that require electricity are usually absent

in pictures taken outdoors. This suggests that we could

potentially fill in the values of multiple labels by group-

ing them into only one query for humans. Instead of

checking if dog, cat, rabbit etc. are present in the photo,

we just check about the “animal” group If the answer is

no, then this implies a no for all categories in the group.

(2) Hierarchy The above example of grouping dog, cat, rab-

bit etc. into animal has implicitly assumed that labels can

be grouped together and humans can efficiently answer

queries about the group as a whole. This brings up

our second key observation: humans organize seman-

tic concepts into hierarchies and are able to efficiently
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Fig. 5 Consider the problem of

binary multi-label annotation.

For each input (e.g., image) and

each label (e.g., object), the goal

is to determine the presence or

absense (plus or minus) of the

label (e.g., decide if the object is

present in the image).

Multi-label annotation becomes

much more efficient when

considering real-world structure

of data: correlation between

labels, hierarchical organization

of concepts, and sparsity of

labels

Fig. 6 Our algorithm dynamically selects the next query to efficiently determine the presence or absence of every object in every image. Green

denotes a positive annotation and red denotes a negative annotation. This toy example illustrates a sample progression of the algorithm for one

label (cat) on a set of images

categorize at higher semantic levels (Thorpe et al. 1996),

e.g. humans can determine the presence of an animal in

an image as fast as every type of animal individually.

This leads to substantial cost savings.

(3) Sparsity The values of labels for each image tend to be

sparse, i.e. an image is unlikely to contain more than a

dozen types of objects, a small fraction of the hundreds

of object categories. This enables rapid elimination of

many objects by quickly filling in no. With a high degree

of sparsity, an efficient algorithm can have a cost which

grows logarithmically with the number of objects instead

of linearly.

We propose algorithmic strategies that exploit the above

intuitions. The key is to select a sequence of queries for

humans such that we achieve the same labeling results with

only a fraction of the cost of the naïve approach. The main

challenges include how to measure cost and utility of queries,

how to construct good queries, and how to dynamically order

them. A detailed description of the generic algorithm, along

with theoretical analysis and empirical evaluation, is pre-

sented in Deng et al. (2014).

Application of the Generic Multi-class Labeling Algorithm

to Our Setting The generic algorithm automatically selects

the most informative queries to ask based on object label sta-

tistics learned from the training set. In our case of 200 object

classes, since obtaining the training set was by itself chal-

lenging we chose to design the queries by hand. We created

a hierarchy of queries of the type “is there a... in the image?”

For example, one of the high-level questions was “is there an

animal in the image?” We ask the crowd workers this ques-

tion about every image we want to label. The children of the

“animal” question would correspond to specific examples of

animals: for example, “is there a mammal in the image?” or

“is there an animal with no legs?” To annotate images effi-

ciently, these questions are asked only on images determined

to contain an animal. The 200 leaf node questions correspond

to the 200 target objects, e.g., “is there a cat in the image?”.

A few sample iterations of the algorithm are shown in Fig. 6.

Algorithm 1 is the formal algorithm for labeling an image

with the presence or absence of each target object category.

With this algorithm in mind, the hierarchy of questions was

constructed following the principle that false positives only

add extra cost whereas false negatives can significantly affect

the quality of the labeling. Thus, it is always better to stick

with more general but less ambiguous questions, such as “is

there a mammal in the image?” as opposed to asking overly

specific but potentially ambiguous questions, such as “is

there an animal that can climb trees?” Constructing this hier-

archy was a surprisingly time-consuming process, involving

multiple iterations to ensure high accuracy of labeling and

avoid question ambiguity. Appendix 1 shows the constructed

hierarchy.

123



224 Int J Comput Vis (2015) 115:211–252

Input: Image i , queries Q, directed graph G over Q

Output: Labels L : Q → {“yes”, “no”}

Initialize labels L(q) = ∅ ∀q ∈ Q;

Initialize candidates C = {q: q ∈ Root (G)};

while C not empty do

Obtain answer A to query q∗ ∈ C ;

L(q∗) = A; C = C\{q∗};

if A is “yes” then

Chldr = {q ∈ Children(q∗, G): L(q) = ∅};

C = C ∪ Chldr ;

else

Des = {q ∈ Descendants(q∗, G): L(q) = ∅};

L(q) = “no′′ ∀q ∈ Des;

C = C\Des;

end

end

Algorithm 1: The algorithm for complete multi-class anno-

tation. This is a special case of the algorithm described in

Deng et al. (2014). A hierarchy of questions G is manually

constructed. All root questions are asked on every image. If

the answer to query q∗ on image i is “no” then the answer is

assumed to be “no” for all queries q such that q is a descen-

dant of q∗ in the hierarchy. We continue asking the queries

until all queries are answered. For images taken from the

single-object localization task we used the known object

label to initialize L .

Bounding Box Annotation Once all images are labeled with

the presence or absence of all object categories we use the

bounding box system described in Sect. 3.2.1 along with

some additional modifications of Appendix 1 to annotate the

location of every instance of every present object category.

3.3.4 Object Detection Dataset Statistics

Using the procedure described above, we collect a large-

scale dataset for ILSVRC object detection task. There are 200

object classes and approximately 450K training images, 20K

validation images and 40K test images. Table 5 documents

the size of the dataset over the years of the challenge. The

major change between ILSVRC2013 and ILSVRC2014 was

the addition of 60,658 fully annotated training images.

Prior to ILSVRC, the object detection benchmark was the

PASCAL VOC challenge (Everingham et al. 2010). ILSVRC

has 10 times more object classes than PASCAL VOC (200 vs

20), 10.6 times more fully annotated training images (60,658

vs 5,717), 35.2 times more training objects (478,807 vs

13,609), 3.5 times more validation images (20,121 vs 5823)

and 3.5 times more validation objects (55,501 vs 15,787).

ILSVRC has 2.8 annotated objects per image on the vali-

dation set, compared to 2.7 in PASCAL VOC. The average

object in ILSVRC takes up 17.0 % of the image area and in

PASCAL VOC takes up 20.7 %; Table 4 contains per-class

comparisons. Additionally, ILSVRC contains a wide variety

of objects, including tiny objects such as sunglasses (1.3 %

of image area on average), ping-pong balls (1.5 % of image

area on average) and basketballs (2.0 % of image area on

average).

4 Evaluation at Large Scale

Once the dataset has been collected, we need to define

a standardized evaluation procedure for algorithms. Some

measures have already been established by datasets such as

the Caltech 101 (Fei-Fei et al. 2004) for image classifica-

tion and PASCAL VOC (Everingham et al. 2012) for both

image classification and object detection. To adapt these pro-

cedures to the large-scale setting we had to address three

key challenges. First, for the image classification and single-

object localization tasks only one object category could be

labeled in each image due to the scale of the dataset. This

created potential ambiguity during evaluation (addressed in

Sect. 4.1). Second, evaluating localization of object instances

is inherently difficult in some images which contain a cluster

of objects (addressed in Sect. 4.2). Third, evaluating local-

ization of object instances which occupy few pixels in the

image is challenging (addressed in Sect. 4.3).

In this section we describe the standardized evaluation cri-

teria for each of the three ILSVRC tasks. We elaborate further

on these and other more minor challenges with large-scale

evaluation. Appendix 1 describes the submission protocol

and other details of running the competition itself.

Table 5 Scale of ILSVRC object detection task

Year Train images (per class) Train bboxes annotated

(per class)

Val images (per class) Val bboxes annotated

(per class)

Test images

Object detection annotations (200 object classes)

ILSVRC2013 395909 (417-561-66911

pos, 185-4130-10073 neg)

345854

(438-660-73799)

21121 (23-58-5791 pos,

rest neg)

55501 (31-111-12824) 40152

ILSVRC2014 456567 (461-823-67513

pos, 42945-64614-70626

neg)

478807

(502-1008-74517)

21121 (23-58-5791 pos,

rest neg)

55501 (31-111-12824) 40152

Numbers in parentheses correspond to (minimum per class–median per class–maximum per class)
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Fig. 7 Tasks in ILSVRC. The first column shows the ground truth labeling on an example image, and the next three show three sample outputs

with the corresponding evaluation score

4.1 Image Classification

The scale of ILSVRC classification task (1000 categories and

more than a million of images) makes it very expensive to

label every instance of every object in every image. There-

fore, on this dataset only one object category is labeled in

each image. This creates ambiguity in evaluation. For exam-

ple, an image might be labeled as a “strawberry” but contain

both a strawberry and an apple. Then an algorithm would not

know which one of the two objects to name. For the image

classification task we allowed an algorithm to identify mul-

tiple (up to 5) objects in an image and not be penalized as

long as one of the objects indeed corresponded to the ground

truth label. Figure 7 (top row) shows some examples.

Concretely, each image i has a single class label Ci . An

algorithm is allowed to return 5 labels ci1, . . . ci5, and is con-

sidered correct if ci j = Ci for some j .

Let the error of a prediction di j = d(ci j , Ci ) be 1 if ci j 	=

Ci and 0 otherwise. The error of an algorithm is the fraction

of test images on which the algorithm makes a mistake:

error =
1

N

N
∑

i=1

min
j

di j (1)

We used two additional measures of error. First, we evalu-

ated top-1 error. In this case algorithms were penalized if their

highest-confidence output label ci1 did not match ground

truth class Ci . Second, we evaluated hierarchical error. The

intuition is that confusing two nearby classes (such as two

different breeds of dogs) is not as harmful as confusing a dog

for a container ship. For the hierarchical criteria, the cost of

one misclassification, d(ci j , Ci ), is defined as the height of

the lowest common ancestor of ci j and Ci in the ImageNet

hierarchy. The height of a node is the length of the longest

path to a leaf node (leaf nodes have height zero).

However, in practice we found that all three measures

of error (top-5, top-1, and hierarchical) produced the same

ordering of results. Thus, since ILSVRC2012 we have been

exclusively using the top-5 metric which is the simplest and

most suitable to the dataset.
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Fig. 8 Images marked as “difficult” in the ILSVRC2012 single-object localization validation set. Please refer to Sect. 4.2 for details

4.2 Single-Object Localization

The evaluation for single-object localization is similar to

object classification, again using a top-5 criteria to allow

the algorithm to return unannotated object classes without

penalty. However, now the algorithm is considered correct

only if it both correctly identifies the target class Ci and

accurately localizes one of its instances. Figure 7 (middle

row) shows some examples.

Concretely, an image is associated with object class Ci ,

with all instances of this object class annotated with bounding

boxes Bik . An algorithm returns {(ci j , bi j )}
5
j=1 of class labels

ci j and associated locations bi j . The error of a prediction j

is:

di j = max(d(ci j , Ci ), min
k

d(bi j , Bik)) (2)

Here d(bi j , Bik) is the error of localization, defined as 0 if the

area of intersection of boxes bi j and Bik divided by the areas

of their union is greater than 0.5, and 1 otherwise (Evering-

ham et al. 2010). The error of an algorithm is computed as

in Eq. 1.

Evaluating localization is inherently difficult in some

images. Consider a picture of a bunch of bananas or a carton

of apples. It is easy to classify these images as contain-

ing bananas or apples, and even possible to localize a few

instances of each fruit. However, in order for evaluation

to be accurate every instance of banana or apple needs to

be annotated, and that may be impossible. To handle the

images where localizing individual object instances is inher-

ently ambiguous we manually discarded 3.5 % of images

since ILSVRC2012. Some examples of discarded images are

shown in Fig. 8.

4.3 Object Detection

The criteria for object detection was adopted from PASCAL

VOC (Everingham et al. 2010). It is designed to penalize

the algorithm for missing object instances, for duplicate

detections of one instance, and for false positive detections.

Figure 7(bottom row) shows examples.

For each object class and each image Ii , an algorithm

returns predicted detections (bi j , si j ) of predicted locations

Input: Bounding box predictions with confidence scores

{(b j , s j )}
M
j=1 and ground truth boxes B on image I for a

given object class.

Output: Binary results {z j }
M
j=1 of whether or not prediction j is

a true positive detection

Let U = B be the set of unmatched objects;

Order {(b j , s j )}
M
j=1 in descending order of s j ;

for j=1 …M do

Let C = {Bk ∈ U : IOU(Bk , b j ) ≥ thr(Bk)};

if C 	= ∅ then

Let k∗ = arg max{k : Bk∈C} IOU(Bk , b j );

Set U = U\Bk∗;

Set z j = 1 since true positive detection;

else

Set z j = 0 since false positive detection;

end

end

Algorithm 2: The algorithm for greedily matching object

detection outputs to ground truth labels. The standard

thr(Bk) = 0.5 (Everingham et al. 2010). ILSVRC com-

putes thr(Bk) using Eq. 5 to better handle low-resolution

objects.

bi j with confidence scores si j . These detections are greedily

matched to the ground truth boxes {Bik} using Algorithm 2.

For every detection j on image i the algorithm returns zi j = 1

if the detection is matched to a ground truth box according

to the threshold criteria, and 0 otherwise. For a given object

class, let N be the total number of ground truth instances

across all images. Given a threshold t , define recall as the

fraction of the N objects detected by the algorithm, and pre-

cision as the fraction of correct detections out of the total

detections returned by the algorithm. Concretely,

Recall(t) =

∑

i j 1[si j ≥ t]zi j

N
(3)

Precision(t) =

∑

i j 1[si j ≥ t]zi j
∑

i j 1[si j ≥ t]
(4)

The final metric for evaluating an algorithm on a given

object class is average precision over the different levels of

recall achieved by varying the threshold t . The winner of

each object class is then the team with the highest average
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precision, and then winner of the challenge is the team that

wins on the most object classes.8

Difference with PASCAL VOC Evaluating localization of

object instances which occupy very few pixels in the image

is challenging. The PASCAL VOC approach was to label

such instances as “difficult” and ignore them during evalua-

tion. However, since ILSVRC contains a more diverse set of

object classes including, for example, “nail” and “ping pong

ball” which have many very small instances, it is important

to include even very small object instances in evaluation.

In Algorithm 2, a predicted bounding box b is considered

to have properly localized by a ground truth bounding box

B if I OU (b, B) ≥ thr(B). The PASCAL VOC metric uses

the threshold thr(B) = 0.5. However, for small objects even

deviations of a few pixels would be unacceptable according

to this threshold. For example, consider an object B of size

10 × 10 pixels, with a detection window of 20 × 20 pixels

which fully contains that object. This would be an error of

approximately 5 pixels on each dimension, which is average

human annotation error. However, the IOU in this case would

be 100/400 = 0.25, far below the threshold of 0.5. Thus for

smaller objects we loosen the threshold in ILSVRC to allow

for the annotation to extend up to 5 pixels on average in each

direction around the object. Concretely, if the ground truth

box B is of dimensions w × h then

thr(B) = min

(

0.5,
wh

(w + 10)(h + 10)

)

(5)

In practice, this changes the threshold only on objects which

are smaller than approximately 25 × 25 pixels, and affects

5.5 % of objects in the detection validation set.

Practical Consideration One additional practical consider-

ation for ILSVRC detection evaluation is subtle and comes

directly as a result of the scale of ILSVRC. In PASCAL,

algorithms would often return many detections per class on

the test set, including ones with low confidence scores. This

allowed the algorithms to reach the level of high recall at

least in the realm of very low precision. On ILSVRC detec-

tion test set if an algorithm returns 10 bounding boxes per

object per image this would result in 10×200×40K = 80M

detections. Each detection contains an image index, a class

index, 4 bounding box coordinates, and the confidence score,

so it takes on the order of 28 bytes. The full set of detections

would then require 2.24Gb to store and submit to the evalua-

tion server, which is impractical. This means that algorithms

8 In this paper we focus on the mean average precision across all

categories as the measure of a team’s performance. This is done for

simplicity and is justified since the ordering of teams by mean average

precision was always the same as the ordering by object categories won.

are implicitly required to limit their predictions to only the

most confident locations.

5 Methods

The ILSVRC dataset and the competition has allowed signif-

icant algorithmic advances in large-scale image recognition

and retrieval.

5.1 Challenge Entries

This section is organized chronologically, highlighting the

particularly innovative and successful methods which partic-

ipated in the ILSVRC each year. Tables 6, 7 and 8 list all the

participating teams. We see a turning point in 2012 with the

development of large-scale convolutional neural networks.

ILSVRC2010 The first year the challenge consisted of just

the classification task. The winning entry from NEC team

(Lin et al. 2011) used SIFT (Lowe 2004) and LBP (Ahonen

et al. 2006) features with two non-linear coding representa-

tions (Zhou et al. 2010; Wang et al. 2010) and a stochastic

SVM. The honorable mention XRCE team (Perronnin et al.

2010) used an improved Fisher vector representation (Per-

ronnin and Dance 2007) along with PCA dimensionality

reduction and data compression followed by a linear SVM.

Fisher vector-based methods have evolved over 5 years of

the challenge and continued performing strongly in every

ILSVRC from 2010 to 2014.

ILSVRC2011 The winning classification entry in 2011 was

the 2010 runner-up team XRCE, applying high-dimensional

image signatures (Perronnin et al. 2010) with compression

using product quantization (Sanchez and Perronnin 2011)

and one-vs-all linear SVMs. The single-object localization

competition was held for the first time, with two brave entries.

The winner was the UvA team using a selective search

approach to generate class-independent object hypothesis

regions (van de Sande et al. 2011b), followed by dense sam-

pling and vector quantization of several color SIFT features

(van de Sande et al. 2010), pooling with spatial pyramid

matching (Lazebnik et al. 2006), and classifying with a

histogram intersection kernel SVM (Maji and Malik 2009)

trained on a GPU (van de Sande et al. 2011a).

ILSVRC2012 This was a turning point for large-scale object

recognition, when large-scale deep neural networks entered

the scene. The undisputed winner of both the classification

and localization tasks in 2012 was the SuperVision team.

They trained a large, deep convolutional neural network on

RGB values, with 60 million parameters using an efficient

GPU implementation and a novel hidden-unit dropout trick
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Table 6 Teams participating in ILSVRC2010-2012, ordered alphabetically

Codename CLS LOC Insitutions Contributors and references

ILSVRC 2010

Hminmax 54.4 Massachusetts Institute of Technology Jim Mutch, Sharat Chikkerur, Hristo Paskov, Ruslan

Salakhutdinov, Stan Bileschi, Hueihan Jhuang

IBM 70.1 IBM research†, Georgia Tech‡ Lexing Xie†, Hua Ouyang‡, Apostol Natsev†

ISIL 44.6 Intelligent Systems and Informatics Lab., The

University of Tokyo

Tatsuya Harada, Hideki Nakayama, Yoshitaka

Ushiku, Yuya Yamashita, Jun Imura, Yasuo

Kuniyoshi

ITNLP 78.7 Harbin Institute of Technology Deyuan Zhang, Wenfeng Xuan, Xiaolong Wang,

Bingquan Liu, Chengjie Sun

LIG 60.7 Laboratoire d’Informatique de Grenoble Georges Quénot

NEC 28.2 NEC Labs America†, University of Illinois at

Urbana-Champaign‡, Rutgers∓
Yuanqing Lin†, Fengjun Lv†, Shenghuo Zhu†, Ming

Yang†, Timothee Cour†, Kai Yu†, LiangLiang

Cao‡, Zhen Li‡, Min-Hsuan Tsai‡, Xi Zhou‡,

Thomas Huang‡, Tong Zhang∓(Lin et al. 2011)

NII 74.2 National Institute of Informatics,

Tokyo,Japan†, Hefei Normal Univ. Heifei,

China‡

Cai-Zhi Zhu†, Xiao Zhou‡, Shiníchi Satoh†

NTU 58.3 CeMNet, SCE, NTU, Singapore Zhengxiang Wang, Liang-Tien Chia

UCI 46.6 University of California Irvine Hamed Pirsiavash, Deva Ramanan, Charless Fowlkes

XRCE 33.6 Xerox Research Centre Europe Jorge Sanchez, Florent Perronnin, Thomas Mensink

(Perronnin et al. 2010)

ILSVRC 2011

ISI 36.0 – Intelligent Systems and Informatics lab,

University of Tokyo

Tatsuya Harada, Asako Kanezaki, Yoshitaka Ushiku,

Yuya Yamashita, Sho Inaba, Hiroshi Muraoka,

Yasuo Kuniyoshi

NII 50.5 – National Institute of Informatics, Japan Duy-Dinh Le, Shiníchi Satoh

UvA 31.0 42.5 University of Amsterdam†, University of

Trento‡
Koen E. A. van de Sande†, Jasper R. R. Uijlings‡,

Arnold W. M. Smeulders†, Theo Gevers†, Nicu

Sebe‡, Cees Snoek†(van de Sande et al. 2011b)

XRCE 25.8 56.5 Xerox Research Centre Europe†, CIII‡ Florent Perronnin†, Jorge Sanchez†‡(Sanchez and

Perronnin 2011)

ILSVRC 2012

ISI 26.2 53.6 University of Tokyo†, JST PRESTO‡ Naoyuki Gunji†, Takayuki Higuchi†, Koki

Yasumoto†, Hiroshi Muraoka†, Yoshitaka Ushiku†,

Tatsuya Harada†‡, Yasuo Kuniyoshi†(Harada and

Kuniyoshi 2012)

LEAR 34.5 – LEAR INRIA Grenoble†, TVPA Xerox

Research Centre Europe‡
Thomas Mensink†‡, Jakob Verbeek†, Florent

Perronnin‡, Gabriela Csurka‡(Mensink et al. 2012)

VGG 27.0 50.0 University of Oxford Karen Simonyan, Yusuf Aytar, Andrea Vedaldi,

Andrew Zisserman (Arandjelovic and Zisserman

2012; Sanchez et al. 2012)

SuperVision 16.4 34.2 University of Toronto Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton

(Krizhevsky et al. 2012)

UvA 29.6 – University of Amsterdam Koen E. A. van de Sande, Amir Habibian, Cees G.

M. Snoek (Sanchez and Perronnin 2011; Scheirer

et al. 2012)

XRCE 27.1 – Xerox Research Centre Europe†, LEAR

INRIA ‡
Florent Perronnin†, Zeynep Akata†‡, Zaid

Harchaoui‡, Cordelia Schmid‡(Perronnin et al.

2012)

Each method is identified with a codename used in the text. We report flat top-5 classification and single-object localization error, in percents (lower

is better). For teams which submitted multiple entries we report the best score. In 2012, SuperVision also submitted entries trained with the extra

data from the ImageNet Fall 2011 release, and obtained 15.3 % classification error and 33.5 % localization error. Key references are provided where

available. More details about the winning entries can be found in Sect. 5.1
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Table 7 Teams participating in ILSVRC2013, ordered alphabetically

Codename CLS LOC DET Insitutions Contributors and references

ILSVRC 2013

Adobe 15.2 – – Adobe†, University of Illinois at

Urbana-Champaign‡
Hailin Jin†, Zhe Lin†, Jianchao Yang†, Tom

Paine‡(Krizhevsky et al. 2012)

AHoward 13.6 – – Andrew Howard Consulting Andrew Howard

BUPT 25.2 – – Beijing University of Posts and

Telecommunications†, Orange Labs

International Center Beijing‡

Chong Huang†, Yunlong Bian†, Hongliang Bai‡, Bo

Liu†, Yanchao Feng†, Yuan Dong†

Clarifai 11.7 – – Clarifai Matthew Zeiler (Zeiler and Fergus 2013; Zeiler et al.

2011)

CogVision 16.1 – – Microsoft Research†, Harbin Institute of

Technology‡
Kuiyuan Yang†, Yalong Bai†, Yong Rui‡

decaf 19.2 – – University of California Berkeley Yangqing Jia, Jeff Donahue, Trevor Darrell

(Donahue et al. 2013)

Deep Punx 20.9 – – Saint Petersburg State University Evgeny Smirnov, Denis Timoshenko, Alexey

Korolev (Krizhevsky et al. 2012; Wan et al. 2013;

Tang 2013)

Delta – – 6.1 National Tsing Hua University Che-Rung Lee, Hwann-Tzong Chen, Hao-Ping

Kang, Tzu-Wei Huang, Ci-Hong Deng, Hao-Che

Kao

IBM 20.7 – – University of Illinois at Urbana-Champaign†,

IBM Watson Research Center‡, IBM Haifa

Research Center∓

Zhicheng Yan†, Liangliang Cao‡, John R Smith‡,

Noel Codella‡,Michele Merler‡, Sharath

Pankanti‡, Sharon Alpert∓, Yochay Tzur∓,

MIL 24.4 – – University of Tokyo Masatoshi Hidaka, Chie Kamada, Yusuke Mukuta,

Naoyuki Gunji, Yoshitaka Ushiku, Tatsuya Harada

Minerva 21.7 Peking University†, Microsoft Research‡,

Shanghai Jiao Tong University∓, XiDian

University§, Harbin Institute of

Technologyς

Tianjun Xiao†‡, Minjie Wang∓‡, Jianpeng Li§‡,

Yalong Baiς ‡, Jiaxing Zhang‡, Kuiyuan Yang‡,

Chuntao Hong‡, Zheng Zhang‡(Wang et al. 2014)

NEC – – 19.6 NEC Labs America†, University of Missouri ‡ Xiaoyu Wang†, Miao Sun‡, Tianbao Yang†,

Yuanqing Lin†, Tony X. Han‡, Shenghuo

Zhu†(Wang et al. 2013)

NUS 13.0 National University of Singapore Min Lin*, Qiang Chen*, Jian Dong, Junshi Huang,

Wei Xia, Shuicheng Yan (* = equal contribution)

(Krizhevsky et al. 2012)

Orange 25.2 Orange Labs International Center Beijing†,

Beijing University of Posts and

Telecommunications‡

Hongliang BAI†, Lezi Wang‡, Shusheng Cen‡,

YiNan Liu‡, Kun Tao†, Wei Liu†, Peng Li†, Yuan

Dong†

OverFeat 14.2 30.0 (19.4) New York University Pierre Sermanet, David Eigen, Michael Mathieu,

Xiang Zhang, Rob Fergus, Yann LeCun (Sermanet

et al. 2013)

Quantum 82.0 – – Self-employed†, Student in Troy High

School, Fullerton, CA‡
Henry Shu†, Jerry Shu‡(Batra et al. 2013)

SYSU – – 10.5 Sun Yat-Sen University, China. Xiaolong Wang (Felzenszwalb et al. 2010)

Toronto – – 11.5 University of Toronto Yichuan Tang*, Nitish Srivastava*, Ruslan

Salakhutdinov (* = equal contribution)

Trimps 26.2 – – The Third Research Institute of the Ministry

of Public Security, P.R. China

Jie Shao, Xiaoteng Zhang, Yanfeng Shang, Wenfei

Wang, Lin Mei, Chuanping Hu

UCLA – – 9.8 University of California Los Angeles Yukun Zhu, Jun Zhu, Alan Yuille

UIUC – – 1.0 University of Illinois at Urbana-Champaign Thomas Paine, Kevin Shih, Thomas Huang

(Krizhevsky et al. 2012)
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Table 7 continued

Codename CLS LOC DET Insitutions Contributors and references

UvA 14.3 – 22.6 University of Amsterdam, Euvision

Technologies

Koen E. A. van de Sande, Daniel H. F. Fontijne,

Cees G. M. Snoek, Harro M. G. Stokman, Arnold

W. M. Smeulders (van de Sande et al. 2014)

VGG 15.2 46.4 – Visual Geometry Group, University of Oxford Karen Simonyan, Andrea Vedaldi, Andrew

Zisserman (Simonyan et al. 2013)

ZF 13.5 – – New York University Matthew D Zeiler, Rob Fergus (Zeiler and Fergus

2013; Zeiler et al. 2011)

Each method is identified with a codename used in the text. For classificaton and single-object localization we report flat top-5 error, in percents

(lower is better). For detection we report mean average precision, in percents (higher is better). Even though the winner of the challenge was

determined by the number of object categories won, this correlated strongly with mAP. Parentheses indicate the team used outside training data and

was not part of the official competition. Some competing teams also submitted entries trained with outside data: Clarifai with 11.2 % classification

error, NEC with 20.9 % detection mAP. Key references are provided where available. More details about the winning entries can be found in Sect. 5.1

Table 8 Teams participating in ILSVRC2014, ordered alphabetically

Codename CLS CLSo LOC LOCo DET DETo Insitutions Contributors and references

ILSVRC 2014

Adobe – 11.6 – 30.1 – – Adobe†, UIUC‡ Hailin Jin†, Zhaowen Wang‡, Jianchao

Yang†, Zhe Lin†

AHoward 8.1 – ◦ – – – Howard Vision Technologies Andrew Howard (Howard 2014)

BDC 11.3 – ◦ – – – Institute for Infocomm

Research†, Universit Pierre et

Marie Curie‡

Olivier Morre†‡, Hanlin Goh†, Antoine

Veillard‡, Vijay

Chandrasekhar†(Krizhevsky et al. 2012)

Berkeley – – – – – 34.5 UC Berkeley Ross Girshick, Jeff Donahue, Sergio

Guadarrama, Trevor Darrell, Jitendra Malik

(Girshick et al. 2013, 2014)

BREIL 16.0 – ◦ – – – KAIST department of EE Jun-Cheol Park, Yunhun Jang, Hyungwon

Choi, JaeYoung Jun (Chatfield et al. 2014;

Jia 2013)

Brno 17.6 – 52.0 – – – Brno University of Technology Martin Kolář, Michal Hradiš, Pavel Svoboda

(Krizhevsky et al. 2012; Mikolov et al.

2013; Jia 2013)

CASIA-2 – – – – 28.6 – Chinese Academy of Science†,

Southeast University‡
Peihao Huang†, Yongzhen Huang†, Feng

Liu‡, Zifeng Wu†, Fang Zhao†, Liang

Wang†, Tieniu Tan†(Girshick et al. 2014)

CASIAWS – 11.4 – ◦ – – CRIPAC, CASIA Weiqiang Ren, Chong Wang, Yanhua Chen,

Kaiqi Huang, Tieniu Tan (Arbeláez et al.

2014)

Cldi 13.9 – 46.9 – – – KAIST†, Cldi Inc.‡ Kyunghyun Paeng†, Donggeun Yoo†,

Sunggyun Park†, Jungin Lee‡, Anthony S.

Paek‡, In So Kweon†, Seong Dae

Kim†(Krizhevsky et al. 2012; Perronnin

et al. 2010)

CUHK – – – – – 40.7 The Chinese University of Hong

Kong

Wanli Ouyang, Ping Luo, Xingyu Zeng, Shi

Qiu, Yonglong Tian, Hongsheng Li, Shuo

Yang, Zhe Wang, Yuanjun Xiong, Chen

Qian, Zhenyao Zhu, Ruohui Wang,

Chen-Change Loy, Xiaogang Wang, Xiaoou

Tang (Ouyang et al. 2014; Ouyang and

Wang 2013)

DeepCNet 17.5 – ◦ – – – University of Warwick Ben Graham (Graham 2013; Schmidhuber

2012)
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Table 8 continued

Codename CLS CLSo LOC LOCo DET DETo Insitutions Contributors and references

DeepInsight – – – – – 40.5 NLPR†, HKUST‡ Junjie Yan†, Naiyan Wang‡, Stan Z. Li†,

Dit-Yan Yeung‡(Girshick et al. 2014)

FengjunLv 17.4 – ◦ – – – Fengjun Lv Consulting Fengjun Lv (Krizhevsky et al. 2012; Harel

et al. 2007)

GoogLeNet 6.7 – 26.4 – – 43.9 Google Christian Szegedy, Wei Liu, Yangqing Jia,

Pierre Sermanet, Scott Reed, Drago

Anguelov, Dumitru Erhan, Andrew

Rabinovich (Szegedy et al. 2014)

HKUST – – – – 28.9 – Hong Kong U. of Science

and Tech.†, Chinese U. of

H. K.‡, Stanford U.∓

Cewu Lu†, Hei Law*†, Hao Chen*‡,

Qifeng Chen*∓, Yao Xiao*†Chi Keung

Tang†(Uijlings et al. 2013; Girshick

et al. 2013; Perronnin et al. 2010;

Felzenszwalb et al. 2010)

libccv 16.0 – ◦ – – – libccv.org Liu Liu (Zeiler and Fergus 2013)

MIL 18.3 – 33.7 – – 30.4 The University of Tokyo†,

IIT Guwahati‡
Senthil Purushwalkam†‡, Yuichiro

Tsuchiya†, Atsushi Kanehira†, Asako

Kanezaki†, Tatsuya Harada†(Kanezaki

et al. 2014; Girshick et al. 2013)

MPG_UT – – – – – 26.4 The University of Tokyo Riku Togashi, Keita Iwamoto, Tomoaki

Iwase, Hideki Nakayama (Girshick et al.

2014)

MSRA 8.1 – 35.5 – 35.1 – Microsoft Research†, Xi’an

Jiaotong U.‡, U. of

Science and Tech. of

China∓

Kaiming He†, Xiangyu Zhang‡, Shaoqing

Ren∓, Jian Sun†(He et al. 2014)

NUS – – – – 37.2 – National University of

Singapore†, IBM

Research Australia‡

Jian Dong†, Yunchao Wei†, Min Lin†,

Qiang Chen‡, Wei Xia†, Shuicheng

Yan†(Lin et al. 2014a; Chen et al. 2014)

NUS-BST 9.8 – ◦ – – – National Univ. of

Singapore†, Beijing

Samsung Telecom R&D

Center†

Min Lin†, Jian Dong†, Hanjiang Lai†,

Junjun Xiong‡, Shuicheng Yan†(Lin

et al. 2014a; Howard 2014; Krizhevsky

et al. 2012)

Orange 15.2 14.8 42.8 42.7 – 27.7 Orange Labs Beijing†,

BUPT China‡
Hongliang Bai†, Yinan Liu†, Bo Liu‡,

Yanchao Feng‡, Kun Tao†, Yuan

Dong†(Girshick et al. 2014)

PassBy 16.7 – ◦ – – – LENOVO†, HKUST‡, U. of

Macao∓
Lin Sun†‡, Zhanghui Kuang†, Cong

Zhao†, Kui Jia∓, Oscar C.Au‡(Jia 2013;

Krizhevsky et al. 2012)

SCUT 18.8 – ◦ – – – South China Univ. of

Technology

Guo Lihua, Liao Qijun, Ma Qianli, Lin

Junbin

Southeast – – – – 30.5 – Southeast U.†, Chinese A.

of Sciences‡
Feng Liu†, Zifeng Wu‡, Yongzhen

Huang‡

SYSU 14.4 – 31.9 – – – Sun Yat-Sen University Liliang Zhang, Tianshui Chen, Shuye

Zhang, Wanglan He, Liang Lin,

Dengguang Pang, Lingbo Liu

Trimps – 11.5 – 42.2 – 33.7 The Third Research

Institute of the Ministry of

Public Security

Jie Shao, Xiaoteng Zhang, JianYing Zhou,

Jian Wang, Jian Chen, Yanfeng Shang,

Wenfei Wang, Lin Mei, Chuanping Hu

(Girshick et al. 2014; Manen et al. 2013;

Howard 2014)

TTIC 10.2 – 48.3 – – – Toyota Technological

Institute at Chicago†,

Ecole Centrale Paris‡

George Papandreou†, Iasonas

Kokkinos‡(Papandreou 2014;

Papandreou et al. 2014; Jojic et al. 2003;

Krizhevsky et al. 2012; Sermanet et al.

2013; Dubout and Fleuret 2012; Iandola

et al. 2014)
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Table 8 continued

Codename CLS CLSo LOC LOCo DET DETo Insitutions Contributors and references

UI 99.5 – ◦ – – – University of Isfahan Fatemeh Shafizadegan, Elham Shabaninia

(Yang et al. 2009)

UvA 12.1 – ◦ – 32.0 35.4 U. of Amsterdam and

Euvision Tech.

Koen van de Sande, Daniel Fontijne, Cees

Snoek, Harro Stokman, Arnold

Smeulders (van de Sande et al. 2014)

VGG 7.3 – 25.3 – – – University of Oxford Karen Simonyan, Andrew Zisserman

(Simonyan and Zisserman 2014)

XYZ 11.2 – ◦ – – – The University of

Queensland

Zhongwen Xu and Yi Yang (Krizhevsky

et al. 2012; Jia 2013; Zeiler and Fergus

2013; Lin et al. 2014a)

Each method is identified with a codename used in the text. For classificaton and single-object localization we report flat top-5 error, in percents

(lower is better). For detection we report mean average precision, in percents (higher is better). CLSo,LOCo,DETo corresponds to entries using

outside training data (officially allowed in ILSVRC2014). ◦means localization error greater than 60 % (localization submission was required with

every classification submission). Key references are provided where available. More details about the winning entries can be found in Sect. 5.1

(Krizhevsky et al. 2012; Hinton et al. 2012). The second

place in image classification went to the ISI team, which

used Fisher vectors (Sanchez and Perronnin 2011) and a

streamlined version of Graphical Gaussian Vectors (Harada

and Kuniyoshi 2012), along with linear classifiers using

Passive-Aggressive (PA) algorithm (Crammer et al. 2006).

The second place in single-object localization went to the

VGG, with an image classification system including dense

SIFT features and color statistics (Lowe 2004), a Fisher

vector representation (Sanchez and Perronnin 2011), and a

linear SVM classifier, plus additional insights from (Arand-

jelovic and Zisserman 2012; Sanchez et al. 2012). Both

ISI and VGG used (Felzenszwalb et al. 2010) for object

localization; SuperVision used a regression model trained

to predict bounding box locations. Despite the weaker detec-

tion model, SuperVision handily won the object localization

task. A detailed analysis and comparison of the SuperVision

and VGG submissions on the single-object localization task

can be found in Russakovsky et al. (2013). The influence of

the success of the SuperVision model can be clearly seen in

ILSVRC2013 and ILSVRC2014.

ILSVRC2013 There were 24 teams participating in the

ILSVRC2013 competition, compared to 21 in the previous

3 years combined. Following the success of the deep learning-

based method in 2012, the vast majority of entries in 2013

used deep convolutional neural networks in their submission.

The winner of the classification task was Clarifai, with sev-

eral large deep convolutional networks averaged together.

The network architectures were chosen using the visualiza-

tion technique of (Zeiler and Fergus 2013), and they were

trained on the GPU following (Zeiler et al. 2011) using the

dropout technique (Krizhevsky et al. 2012).

The winning single-object localization OverFeat submis-

sion was based on an integrated framework for using convolu-

tional networks for classification, localization and detection

with a multiscale sliding window approach (Sermanet et al.

2013). They were the only team tackling all three tasks.

The winner of object detection task was UvA team, which

utilized a new way of efficient encoding (van de Sande et al.

2014) densely sampled color descriptors (van de Sande et al.

2010) pooled using a multi-level spatial pyramid in a selec-

tive search framework (Uijlings et al. 2013). The detection

results were rescored using a full-image convolutional net-

work classifier.

ILSVRC2014 2014 attracted the most submissions, with 36

teams submitting 123 entries compared to just 24 teams in

2013—a 1.5× increase in participation.9 As in 2013 almost

all teams used convolutional neural networks as the basis for

their submission. Significant progress has been made in just

1 year: image classification error was almost halved since

ILSVRC2013 and object detection mean average precision

almost doubled compared to ILSVRC2013. Please refer to

Sect. 6.1 for details.

In 2014 teams were allowed to use outside data for training

their models in the competition, so there were six tracks: pro-

vided and outside data tracks in each of image classification,

single-object localization, and object detection tasks.

The winning image classification with provided data team

was GoogLeNet, which explored an improved convolutional

neural network architecture combining the multi-scale idea

with intuitions gained from the Hebbian principle. Addi-

tional dimension reduction layers allowed them to increase

both the depth and the width of the network significantly

without incurring significant computational overhead. In the

image classification with external data track, CASIAWS won

by using weakly supervised object localization from only

classification labels to improve image classification. MCG

9 Table 8 omits 4 teams which submitted results but chose not to offi-

cially participate in the challenge.
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Fig. 9 Performance of winning entries in the ILSVRC2010-2014 com-

petitions in each of the three tasks (details about the entries and

numerical results are in Sect. 5.1). There is a steady reduction of error

every year in object classification and single-object localization tasks,

and a 1.9× improvement in mean average precision in object detection.

There are two considerations in making these comparisons. (1) The

object categories used in ISLVRC changed between years 2010 and

2011, and between 2011 and 2012. However, the large scale of the data

(1000 object categories, 1.2 million training images) has remained the

same, making it possible to compare results. Image classification and

single-object localization entries shown here use only provided train-

ing data. (2) The size of the object detection training data has increased

significantly between years 2013 and 2014 (Sect. 3.3). Section 6.1 dis-

cusses the relative effects of training data increase versus algorithmic

improvements

region proposals (Arbeláez et al. 2014) pretrained on PAS-

CAL VOC 2012 data are used to extract region proposals,

regions are represented using convolutional networks, and a

multiple instance learning strategy is used to learn weakly

supervised object detectors to represent the image.

In the single-object localization with provided data track,

the winning team was VGG, which explored the effect of

convolutional neural network depth on its accuracy by using

three different architectures with up to 19 weight layers with

rectified linear unit non-linearity, building off of the imple-

mentation of Caffe (Jia 2013). For localization they used

per-class bounding box regression similar to OverFeat (Ser-

manet et al. 2013). In the single-object localization with

external data track, Adobe used 2000 additional ImageNet

classes to train the classifiers in an integrated convolutional

neural network framework for both classification and local-

ization, with bounding box regression. At test time they used

k-means to find bounding box clusters and rank the clusters

according to the classification scores.

In the object detection with provided data track, the win-

ning team NUS used the RCNN framework (Girshick et al.

2013) with the network-in-network method (Lin et al. 2014a)

and improvements of (Howard 2014). Global context infor-

mation was incorporated following (Chen et al. 2014). In the

object detection with external data track, the winning team

was GoogLeNet (which also won image classification with

provided data). It is truly remarkable that the same team was

able to win at both image classification and object detection,

indicating that their methods are able to not only classify the

image based on scene information but also accurately localize

multiple object instances. Just like most teams participating

in this track, GoogLeNet used the image classification dataset

as extra training data.

5.2 Large Scale Algorithmic Innovations

ILSVRC over the past 5 years has paved the way for several

breakthroughs in computer vision.

The field of categorical object recognition has dramati-

cally evolved in the large-scale setting. Section 5.1 docu-

ments the progress, starting from coded SIFT features and

evolving to large-scale convolutional neural networks domi-

nating at all three tasks of image classification, single-object

localization, and object detection. With the availability of so

much training data (along with an efficient algorithmic imple-

mentation and GPU computing resources) it became possible

to learn neural networks directly from the image data, with-

out needing to create multi-stage hand-tuned pipelines of

extracted features and discriminative classifiers. The major

breakthrough came in 2012 with the win of the SuperVision

team on image classification and single-object localization

tasks (Krizhevsky et al. 2012), and by 2014 all of the top

contestants were relying heavily on convolutional neural net-

works.

Further, over the past few years there has been a lot of

focus on large-scale recognition in the computer vision com-

munity . Best paper awards at top vision conferences in

2013 were awarded to large-scale recognition methods: at

CVPR 2013 to “Fast, Accurate Detection of 100,000 Object

Classes on a Single Machine” (Dean et al. 2013) and at

ICCV 2013 to “From Large Scale Image Categorization to

Entry-Level Categories” (Ordonez et al. 2013). Additionally,

several influential lines of research have emerged, such as

large-scale weakly supervised localization work of (Kuet-

tel et al. 2012) which was awarded the best paper award in

ECCV 2012 and large-scale zero-shot learning, e.g., (Frome

et al. 2013).
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6 Results and Analysis

6.1 Improvements over the Years

State-of-the-art accuracy has improved significantly from

ILSVRC2010 to ILSVRC2014, showcasing the massive

progress that has been made in large-scale object recogni-

tion over the past 5 years. The performance of the winning

ILSVRC entries for each task and each year are shown in

Fig. 9. The improvement over the years is clearly visible. In

this section we quantify and analyze this improvement.

6.1.1 Image Classification and Single-Object Localization

Improvement over the Years

There has been a 4.2× reduction in image classification error

(from 28.2 to 6.7 %) and a 1.7× reduction in single-object

localization error (from 42.5 to 25.3 %) since the beginning

of the challenge. For consistency, here we consider only

teams that use the provided training data. Even though the

exact object categories have changed (Sect. 3.1.1), the large

scale of the dataset has remained the same (Table 3), making

the results comparable across the years. The dataset has not

changed since 2012, and there has been a 2.4× reduction in

image classification error (from 16.4 to 6.7 %) and a 1.3× in

single-object localization error (from 33.5 to 25.3 %) in the

past 3 years.

6.1.2 Object Detection Improvement over the Years

Object detection accuracy as measured by the mean average

precision (mAP) has increased 1.9× since the introduction of

this task, from 22.6 % mAP in ILSVRC2013 to 43.9 % mAP

in ILSVRC2014. However, these results are not directly com-

parable for two reasons. First, the size of the object detection

training data has increased significantly from 2013 to 2014

(Sect. 3.3). Second, the 43.9 % mAP result was obtained

with the addition of the image classification and single-object

localization training data. Here we attempt to understand the

relative effects of the training set size increase versus algo-

rithmic improvements. All models are evaluated on the same

ILSVRC2013-2014 object detection test set.

First, we quantify the effects of increasing detection train-

ing data between the two challenges by comparing the

same model trained on ILSVRC2013 detection data versus

ILSVRC2014 detection data. The UvA team’s framework

from 2013 achieved 22.6 % with ILSVRC2013 data (Table 7)

and 26.3 % with ILSVRC2014 data and no other modifica-

tions.10 The absolute increase in mAP was 3.7 %. The RCNN

model achieved 31.4 % mAP with ILSVRC2013 detection

plus image classification data (Girshick et al. 2013) and

10 Personal communication with members of the UvA team.

34.5 % mAP with ILSVRC2014 detection plus image clas-

sification data (Berkeley team in Table 8). The absolute

increase in mAP by expanding ILSVRC2013 detection data

to ILSVRC2014 was 3.1 %.

Second, we quantify the effects of adding in the external

data for training object detection models. The NEC model in

2013 achieved 19.6 % mAP trained on ILSVRC2013 detec-

tion data alone and 20.9 % mAP trained on ILSVRC2013

detection plus classification data (Table 7). The absolute

increase in mAP was 1.3 %. The UvA team’s best entry in

2014 achieved 32.0 % mAP trained on ILSVRC2014 detec-

tion data and 35.4 % mAP trained on ILSVRC2014 detection

plus classification data. The absolute increase in mAP was

3.4 %.

Thus, we conclude based on the evidence so far that

expanding the ILSVRC2013 detection set to the ILSVRC2014

set, as well as adding in additional training data from the

classification task, all account for approximately 1–4 % in

absolute mAP improvement for the models. For comparison,

we can also attempt to quantify the effect of algorithmic inno-

vation. The UvA team’s 2013 framework achieved 26.3 %

mAP on ILSVRC2014 data as mentioned above, and their

improved method in 2014 obtained 32.0 % mAP (Table 8).

This is 5.8 % absolute increase in mAP over just 1 year from

algorithmic innovation alone.

In summary, we conclude that the absolute 21.3 % increase

in mAP between winning entries of ILSVRC2013 (22.6 %

mAP) and of ILSVRC2014 (43.9 % mAP) is the result

of impressive algorithmic innovation and not just a con-

sequence of increased training data. However, increasing

the ISLVRC2014 object detection training dataset further is

likely to produce additional improvements in detection accu-

racy for current algorithms.

6.2 Statistical Significance

One important question to ask is whether results of different

submissions to ILSVRC are statistically significantly differ-

ent from each other. Given the large scale, it is no surprise

that even minor differences in accuracy are statistically sig-

nificant; we seek to quantify exactly how much of a difference

is enough.

Following the strategy employed by PASCAL VOC (Ever-

ingham et al. 2014), for each method we obtain a confidence

interval of its score using bootstrap sampling. During each

bootstrap round, we sample N images with replacement from

all the available N test images and evaluate the performance

of the algorithm on those sampled images. This can be done

very efficiently by precomputing the accuracy on each image.

Given the results of all the bootstrapping rounds we discard

the lower and the upper α fraction. The range of the remain-

ing results represents the 1 − 2α confidence interval. We run

a large number of bootstrapping rounds (from 20,000 until
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Table 9 We use bootstrapping to construct 99.9 each ILSVRC task in

2012–2014

Year Codename Error (%) 99.9 % Conf Int

Image classification

2014 GoogLeNet 6.66 6.40–6.92

2014 VGG 7.32 7.05–7.60

2014 MSRA 8.06 7.78–8.34

2014 AHoward 8.11 7.83–8.39

2014 DeeperVision 9.51 9.21–9.82

2013 Clarifai† 11.20 10.87–11.53

2014 CASIAWS† 11.36 11.03–11.69

2014 Trimps† 11.46 11.13–11.80

2014 Adobe† 11.58 11.25–11.91

2013 Clarifai 11.74 11.41–12.08

2013 NUS 12.95 12.60–13.30

2013 ZF 13.51 13.14–13.87

2013 AHoward 13.55 13.20–13.91

2013 OverFeat 14.18 13.83–14.54

2014 Orange† 14.80 14.43–15.17

2012 SuperVision† 15.32 14.94–15.69

2012 SuperVision 16.42 16.04–16.80

2012 ISI 26.17 25.71–26.65

2012 VGG 26.98 26.53–27.43

2012 XRCE 27.06 26.60–27.52

2012 UvA 29.58 29.09–30.04

Single-object localization

2014 VGG 25.32 24.87–25.78

2014 GoogLeNet 26.44 25.98 – 26.92

2013 OverFeat 29.88 29.38–30.35

2014 Adobe† 30.10 29.61–30.58

2014 SYSU 31.90 31.40–32.40

2012 SuperVision† 33.55 33.05–34.04

2014 MIL 33.74 33.24–34.25

2012 SuperVision 34.19 33.67–34.69

2014 MSRA 35.48 34.97–35.99

2014 Trimps† 42.22 41.69–42.75

2014 Orange† 42.70 42.18–43.24

2013 VGG 46.42 45.90–46.95

2012 VGG 50.03 49.50–50.57

2012 ISI 53.65 53.10–54.17

2014 CASIAWS† 61.96 61.44–62.48

Object detection

2014 GoogLeNet† 43.93 42.92–45.65

2014 CUHK† 40.67 39.68–42.30

2014 DeepInsight† 40.45 39.49–42.06

2014 NUS 37.21 36.29–38.80

2014 UvA† 35.42 34.63–36.92

2014 MSRA 35.11 34.36–36.70

Table 9 continued

Year Codename AP (%) 99.9 % Conf Int

2014 Berkeley† 34.52 33.67–36.12

2014 UvA 32.03 31.28–33.49

2014 Southeast 30.48 29.70–31.93

2014 HKUST 28.87 28.03–30.20

2013 UvA 22.58 22.00–23.82

2013 NEC† 20.90 20.40–22.15

2013 NEC 19.62 19.14–20.85

2013 OverFeat† 19.40 18.82–20.61

2013 Toronto 11.46 10.98–12.34

2013 SYSU 10.45 10.04–11.32

2013 UCLA 9.83 9.48–10.77

† Means the entry used external training data. The winners using the

provided data for each track and each year are bolded. The difference

between the winning method and the runner-up each year is significant

even at the 99.9 % level

convergence). Table 9 shows the results of the top entries to

each task of ILSVRC2012-2014. The winning methods are

statistically significantly different from the other methods,

even at the 99.9 % level.

6.3 Current State of Categorical Object Recognition

Besides looking at just the average accuracy across hundreds

of object categories and tens of thousands of images, we can

also delve deeper to understand where mistakes are being

made and where researchers’ efforts should be focused to

expedite progress.

To do so, in this section we will be analyzing an

“optimistic” measurement of state-of-the-art recognition

performance instead of focusing on the differences in indi-

vidual algorithms. For each task and each object class, we

compute the best performance of any entry submitted to

any ILSVRC2012-2014, including methods using additional

training data. Since the test sets have remained the same, we

can directly compare all the entries in the past 3 years to

obtain the most “optimistic” measurement of state-of-the-art

accuracy on each category.

For consistency with the object detection metric (higher

is better), in this section we will be using image classifica-

tion and single-object localization accuracy instead of error,

where accuracy = 1 − error .

6.3.1 Range of Accuracy Across Object Classes

Figure 10 shows the distribution of accuracy achieved by the

“optimistic” models across the object categories. The image

classification model achieves 94.6 % accuracy on average
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Fig. 10 For each object class, we consider the best performance of any

entry submitted to ILSVRC2012-2014, including entries using addi-

tional training data. The plots show the distribution of these “optimistic”

per-class results. Performance is measured as accuracy for image classi-

fication (left) and for single-object localization (middle), and as average

precision for object detection (right). While the results are very promis-

ing in image classification, the ILSVRC datasets are far from saturated:

many object classes continue to be challenging for current algorithms

(or 5.4 % error), but there remains a 41.0 % absolute differ-

ence inaccuracy between the most and least accurate object

class. The single-object localization model achieves 81.5 %

accuracy on average (or 18.5 % error), with a 77.0 % range

in accuracy across the object classes. The object detection

model achieves 44.7 % average precision, with an 84.7 %

range across the object classes. It is clear that the ILSVRC

dataset is far from saturated: performance on many categories

has remained poor despite the strong overall performance of

the models.

6.3.2 Qualitative Examples of Easy and Hard Classes

Figures 11 and 12 show the easiest and hardest classes for

each task, i.e., classes with the best and worst results obtained

with the “optimistic” models.

For image classification, 121 out of 1000 object classes

have 100 % image classification accuracy according to the

optimistic estimate. Figure 11 (top) shows a random set of 10

of them. They contain a variety of classes, such as mammals

like “red fox” and animals with distinctive structures like

“stingray”. The hardest classes in the image classification

task, with accuracy as low as 59.0 %, include metallic and

see-through man-made objects, such as “hook” and “water

bottle,” the material “velvet” and the highly varied scene class

“restaurant.”

For single-object localization, the 10 easiest classes with

99.0–100 % accuracy are all mammals and birds. The hard-

est classes include metallic man-made objects such as “letter

opener” and “ladle”, plus thin structures such as “pole” and

“spacebar” and highly varied classes such as “wing”. The

most challenging class “spacebar” has a only 23.0 % local-

ization accuracy.

Object detection results are shown in Fig. 12. The easi-

est classes are living organisms such as “dog” and “tiger”,

plus “basketball” and “volleyball” with distinctive shape and

color, and a somewhat surprising “snowplow.” The easiest

class “butterfly” is not yet perfectly detected but is very close

with 92.7 % AP. The hardest classes are as expected small

thin objects such as “flute” and “nail”, and the highly var-

ied “lamp” and “backpack” classes, with as low as 8.0 %

AP.

6.3.3 Per-Class Accuracy as a Function of Image

Properties

We now take a closer look at the image properties to try to

understand why current algorithms perform well on some

object classes but not others. One hypothesis is that variation

in accuracy comes from the fact that instances of some classes

tend to be much smaller in images than instances of other

classes, and smaller objects may be harder for computers to

recognize. In this section we argue that while accuracy is

correlated with object scale in the image, not all variation in

accuracy can be accounted for by scale alone.

For every object class, we compute its average scale, or

the average fraction of image area occupied by an instance

of the object class on the ILSVRC2012-2014 validation set.

Since the images and object classes in the image classification

and single-object localization tasks are the same, we use the

bounding box annotations of the single-object localization

dataset for both tasks. In that dataset the object classes range

from “swimming trunks” with scale of 1.5 % to “spider web”

with scale of 85.6 %. In the object detection validation dataset

the object classes range from “sunglasses” with scale of 1.3 %

to “sofa” with scale of 44.4 %.

Figure 13 shows the performance of the “optimistic”

method as a function of the average scale of the object in the

image. Each dot corresponds to one object class. We observe

a very weak positive correlation between object scale and

image classification accuracy: ρ = 0.14. For single-object

localization and object detection the correlation is stronger,
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Fig. 11 For each object

category, we take the best

performance of any entry

submitted to

ILSVRC2012-2014 (including

entries using additional training

data). Given these “optimistic”

results we show the easiest and

harder classes for each task. The

numbers in parentheses indicate

classification and localization

accuracy. For image

classification the 10 easiest

classes are randomly selected

from among 121 object classes

with 100 % accuracy. Object

detection results are shown in

Fig. 12

at ρ = 0.40 and ρ = 0.41 respectively. It is clear that

not all variation in accuracy can be accounted for by scale

alone. Nevertheless, in the next section we will normalize

for object scale to ensure that this factor is not affecting our

conclusions.

6.3.4 Per-Class Accuracy as a Function of Object

Properties

Besides considering image-level properties we can also

observe how accuracy changes as a function of intrinsic
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Fig. 12 For each object

category, we take the best

performance of any entry

submitted to ILSVRC2012-2014

(including entries using

additional training data). Given

these “optimistic” results we

show the easiest and harder

classes for the object detection

task, i.e., classes with best and

worst results. The numbers in

parentheses indicate average

precision. Image classification

and single-object localization

results are shown in Fig. 11

Fig. 13 Performance of the “optimistic” method as a function of object

scale in the image, on each task. Each dot corresponds to one object

class. Average scale (x-axis) is computed as the average fraction of

the image area occupied by an instance of that object class on the

ILSVRC2014 validation set. “Optimistic” performance (y-axis) cor-

responds to the best performance on the test set of any entry submitted

to ILSVRC2012-2014 (including entries with additional training data).

The test set has remained the same over these 3 years. We see that accu-

racy tends to increase as the objects get bigger in the image. However,

it is clear that far from all the variation in accuracy on these classes can

be accounted for by scale alone

object properties. We define three properties inspired by

human vision: the real-world size of the object, whether it’s

deformable within instance, and how textured it is. For each

property, the object classes are assigned to one of a few bins

(listed below). These properties are illustrated in Fig. 1.

Human subjects annotated each of the 1000 image clas-

sification and single-object localization object classes from

ILSVRC2012-2014 with these properties (Russakovsky et al.

2013). By construction (see Sect. 3.3.1), each of the 200

object detection classes is either also one of 1000 object

classes or is an ancestor of one or more of the 1000 classes in

the ImageNet hierarchy. To compute the values of the prop-

erties for each object detection class, we simply average the

annotated values of the descendant classes.
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In this section we draw the following conclusions about

state-of-the-art recognition accuracy as a function of these

object properties:

– Real-world size XS for extra small (e.g. nail), small (e.g.

fox), medium (e.g. bookcase), large (e.g. car) or XL for

extra large (e.g. church)

The image classification and single-object localization

“optimistic” models performs better on large and extra

large real-world objects than on smaller ones. The “opti-

mistic” object detection model surprisingly performs bet-

ter on extra small objects than on small or medium ones.

– Deformability within instance Rigid (e.g., mug) or

deformable (e.g., water snake)

The “optimistic” model on each of the three tasks per-

forms statistically significantly better on deformable

objects compared to rigid ones. However, this effect dis-

appears when analyzing natural objects separately from

man-made objects.

– Amount of texture none (e.g. punching bag), low (e.g.

horse), medium (e.g. sheep) or high (e.g. honeycomb)

The “optimistic” model on each of the three tasks is

significantly better on objects with at least low level of

texture compared to untextured objects.

These and other findings are justified and discussed in

detail below.

Experimental Setup We observed in Sect. 6.3.3 that objects

that occupy a larger area in the image tend to be somewhat

easier to recognize. To make sure that differences in object

scale are not influencing results in this section, we normal-

ize each bin by object scale. We discard object classes with

the largest scales from each bin as needed until the average

object scale of object classes in each bin across one prop-

erty is the same (or as close as possible). For real-world size

property for example, the resulting average object scale in

each of the five bins is 31.6–31.7 % in the image classifica-

tion and single-object localization tasks, and 12.9–13.4 % in

the object detection task.11

Figure 14 shows the average performance of the “opti-

mistic” model on the object classes that fall into each bin for

each property. We analyze the results in detail below. Unless

otherwise specified, the reported accuracies below are after

the scale normalization step.

To evaluate statistical significance, we compute the 95 %

confidence interval for accuracy using bootstrapping: we

repeatedly sample the object classes within the bin with

11 For rigid versus deformable objects, the average scale in each bin

is 34.1–34.2 % for classification and localization, and 13.5–13.7 % for

detection. For texture, the average scale in each of the four bins is 31.1–

31.3 % for classification and localization, and 12.7–12.8 % for detection.

replacement, discard some as needed to normalize by scale,

and compute the average accuracy of the “optimistic” model

on the remaining classes. We report the 95 % confidence

intervals (CI) in parentheses.

Real-World Size In Fig. 14 (top, left) we observe that in the

image classification task the “optimistic” model tends to per-

form significantly better on objects which are larger in the

real-world. The classification accuracy is 93.6–93.9 % on XS,

S and M objects compared to 97.0 % on L and 96.4 % on XL

objects. Since this is after normalizing for scale and thus

can’t be explained by the objects’ size in the image, we con-

clude that either (1) larger real-world objects are easier for the

model to recognize, or (2) larger real-world objects usually

occur in images with very distinctive backgrounds.

To distinguish between the two cases we look Fig. 14 (top,

middle). We see that in the single-object localization task,

the L objects are easy to localize at 82.4 % localization accu-

racy. XL objects, however, tend to be the hardest to localize

with only 73.4 % localization accuracy. We conclude that the

appearance of L objects must be easier for the model to learn,

while XL objects tend to appear in distinctive backgrounds.

The image background make these XL classes easier for the

image-level classifier, but the individual instances are diffi-

cult to accurately localize. Some examples of L objects are

“killer whale,” “schooner,” and “lion,” and some examples of

XL objects are “boathouse,” “mosque,” “toyshop” and “steel

arch bridge.”

In Fig. 14 (top,right) corresponding to the object detec-

tion task, the influence of real-world object size is not as

apparent. One of the key reasons is that many of the XL and

L object classes of the image classification and single-object

localization datasets were removed in constructing the detec-

tion dataset (Sect. 3.3.1) since they were not basic categories

well-suited for detection. There were only 3 XL object classes

remaining in the dataset (“train,” “airplane” and “bus”), and

none after scale normalization.We omit them from the analy-

sis. The average precision of XS, S, M objects (44.5, 39.0,

and 38.5 % mAP respectively) is statistically insignificant

from average precision on L objects: 95 % confidence inter-

val of L objects is 37.5–59.5 %. This may be due to the fact

that there are only 6 L object classes remaining after scale

normalization; all other real-world size bins have at least 18

object classes.

Finally, it is interesting that performance on XS objects

of 44.5 mAP (CI 40.5–47.6 %) is statistically significantly

better than performance on S or M objects with 39.0 and

38.5 % mAP respectively. Some examples of XS objects are

“strawberry,” “bow tie” and “rugby ball.”

Deformability Within Instance In Fig. 14(second row) it is

clear that the “optimistic” model performs statistically sig-

nificantly worse on rigid objects than on deformable objects.

123



240 Int J Comput Vis (2015) 115:211–252

Fig. 14 Performance of the

“optimistic” computer vision

model as a function of object

properties. The x-axis

corresponds to object properties

annotated by human labelers for

each object class (Russakovsky

et al. 2013) and illustrated in

Fig. 1. The y-axis is the average

accuracy of the “optimistic”

model. Note that the range of the

y-axis is different for each task

to make the trends more visible.

The black circle is the average

accuracy of the model on all

object classes that fall into each

bin. We control for the effects of

object scale by normalizing the

object scale within each bin

(details in Sect. 6.3.4). The

color bars show the model

accuracy averaged across the

remaining classes. Error bars

show the 95 % confidence

interval obtained with

bootstrapping. Some bins are

missing color bars because less

than 5 object classes remained

in the bin after scale

normalization. For example, the

bar for XL real-world object

detection classes is missing

because that bin has only 3

object classes (airplane, bus,

train) and after normalizing by

scale no classes remain
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Image classification accuracy is 93.2 % on rigid objects (CI

92.6–93.8 %), much smaller than 95.7 % on deformable ones.

Single-object localization accuracy is 76.2 % on rigid objects

(CI 74.9–77.4 %), much smaller than 84.7 % on deformable

ones. Object detection mAP is 40.1 % on rigid objects (CI

37.2–42.9 %), much smaller than 44.8 % on deformable ones.

We can further analyze the effects of deformability after

separating object classes into “natural” and “man-made” bins

based on the ImageNet hierarchy. Deformability is highly

correlated with whether the object is natural or man-made:

0.72 correlation for image classification and single-object

localization classes, and 0.61 for object detection classes.

Figure 14(third row) shows the effect of deformability on

performance of the model for man-made and natural objects

separately.

Man-made classes are significantly harder than natural

classes: classification accuracy 92.8 % (CI 92.3–93.3 %) for

man-made versus 97.0 % for natural, localization accuracy

75.5 % (CI 74.3–76.5 %) for man-made versus 88.5 % for

natural, and detection mAP 38.7 % (CI 35.6–41.3 %) for

man-made versus 50.9 % for natural. However, whether the

classes are rigid or deformable within this subdivision is no

longer significant in most cases. For example, the image clas-

sification accuracy is 92.3 % (CI 91.4–93.1 %) on man-made

rigid objects and 91.8 % on man-made deformable objects—

not statistically significantly different.

There are two cases where the differences in performance

are statistically significant. First, for single-object localiza-

tion, natural deformable objects are easier than natural rigid

objects: localization accuracy of 87.9 % (CI 85.9–90.1 %) on

natural deformable objects is higher than 85.8 % on natural

rigid objects—falling slightly outside the 95 % confidence

interval. This difference in performance is likely because

deformable natural animals tend to be easier to localize than

rigid natural fruit.

Second, for object detection, man-made rigid objects

are easier than man-made deformable objects: 38.5 % mAP

(CI 35.2–41.7 %) on man-made rigid objects is higher than

33.0 % mAP on man-made deformable objects. This is

because man-made rigid objects include classes like “traf-

fic light” or “car” whereas the man-made deformable objects

contain challenging classes like “plastic bag,” “swimming

trunks” or “stethoscope.”

Amount of Texture Finally, we analyze the effect that object

texture has on the accuracy of the “optimistic” model. Fig-

ure 14(fourth row) demonstrates that the model performs

better as the amount of texture on the object increases.

The most significant difference is between the performance

on untextured objects and the performance on objects with

low texture. Image classification accuracy is 90.5 % on

untextured objects (CI 89.3–91.6 %), lower than 94.6 % on

low-textured objects. Single-object localization accuracy is

71.4 % on untextured objects (CI 69.1–73.3 %), lower than

80.2 % on low-textured objects. Object detection mAP is

33.2 % on untextured objects (CI 29.5–35.9 %), lower than

42.9 % on low-textured objects.

Texture is correlated with whether the object is natural or

man-made, at 0.35 correlation for image classification and

single-object localization, and 0.46 correlation for object

detection. To determine if this is a contributing factor, in

Fig. 14(bottom row) we break up the object classes into nat-

ural and man-made and show the accuracy on objects with no

texture versus objects with low texture. We observe that the

model is still statistically significantly better on low-textured

object classes than on untextured ones, both on man-made

and natural object classes independently.12

6.4 Human Accuracy on Large-Scale Image

Classification

Recent improvements in state-of-the-art accuracy on the

ILSVRC dataset are easier to put in perspective when com-

pared to human-level accuracy. In this section we compare

the performance of the leading large-scale image classi-

fication method with the performance of humans on this

task.

To support this comparison, we developed an interface

that allowed a human labeler to annotate images with up

to five ILSVRC target classes. We compare human errors to

those of the winning ILSRC2014 image classification model,

GoogLeNet (Sect. 5.1). For this analysis we use a random

sample of 1500 ILSVRC2012-2014 image classification test

set images.

Annotation Interface Our web-based annotation interface

consists of one test set image and a list of 1000 ILSVRC cate-

gories on the side. Each category is described by its title, such

as “cowboy boot.” The categories are sorted in the topological

order of the ImageNet hierarchy, which places semantically

similar concepts nearby in the list. For example, all motor

vehicle-related classes are arranged contiguously in the list.

Every class category is additionally accompanied by a row of

13 examples images from the training set to allow for faster

visual scanning. The user of the interface selects 5 categories

from the list by clicking on the desired items. Since our inter-

face is web-based, it allows for natural scrolling through the

list, and also search by text.

Annotation Protocol We found the task of annotating images

with one of 1000 categories to be an extremely challenging

12 Natural object detection classes are removed from this analysis

because there are only 3 and 13 natural untextured and low-textured

classes respectively, and none remain after scale normalization. All

other bins contain at least 9 object classes after scale normalization.
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Table 10 Human classification results on the ILSVRC2012-2014 clas-

sification test set, for two expert annotators A1 and A2

Relative confusion A1 A2

Human succeeds, GoogLeNet succeeds 1352 219

Human succeeds, GoogLeNet fails 72 8

Human fails, GoogLeNet succeeds 46 24

Human fails, GoogLeNet fails 30 7

Total number of images 1500 258

Estimated GoogLeNet classification error 6.8 % 5.8 %

Estimated human classification error 5.1 % 12.0 %

We report top-5 classification error

task for an untrained annotator. The most common error that

an untrained annotator is susceptible to is a failure to consider

a relevant class as a possible label because they are unaware

of its existence.

Therefore, in evaluating the human accuracy we relied

primarily on expert annotators who learned to recognize a

large portion of the 1000 ILSVRC classes. During training,

the annotators labeled a few hundred validation images for

practice and later switched to the test set images.

6.4.1 Quantitative Comparison of Human and Computer

Accuracy on Large-Scale Image Classification

We report results based on experiments with two expert

annotators. The first annotator (A1) trained on 500 images

and annotated 1500 test images. The second annotator (A2)

trained on 100 images and then annotated 258 test images.

The average pace of labeling was approximately 1 image per

minute, but the distribution is strongly bimodal: some images

are quickly recognized, while some images (such as those of

fine-grained breeds of dogs, birds, or monkeys) may require

multiple minutes of concentrated effort.

The results are reported in Table 10.

Annotator 1 Annotator A1 evaluated a total of 1500 test set

images. The GoogLeNet classification error on this sample

was estimated to be 6.8 % (recall that the error on full test

set of 100,000 images is 6.7 %, as shown in Table 8). The

human error was estimated to be 5.1 %. Thus, annotator A1

achieves a performance superior to GoogLeNet, by approx-

imately 1.7 %. We can analyze the statistical significance of

this result under the null hypothesis that they are from the

same distribution. In particular, comparing the two propor-

tions with a z-test yields a one-sided p-value of p = 0.022.

Thus, we can conclude that this result is statistically signifi-

cant at the 95 % confidence level.

Annotator 2 Our second annotator (A2) trained on a smaller

sample of only 100 images and then labeled 258 test set

images. As seen in Table 10, the final classification error

is significantly worse, at approximately 12.0 % Top-5 error.

The majority of these errors (48.8 %) can be attributed to the

annotator failing to spot and consider the ground truth label

as an option.

Thus, we conclude that a significant amount of training

time is necessary for a human to achieve competitive per-

formance on ILSVRC. However, with a sufficient amount of

training, a human annotator is still able to outperform the

GoogLeNet result (p = 0.022) by approximately 1.7 %.

Annotator Comparison We also compare the prediction

accuracy of the two annotators. Of a total of 204 images that

both A1 and A2 labeled, 174 (85 %) were correctly labeled

by both A1 and A2, 19 (9 %) were correctly labeled by A1

but not A2, 6 (3 %) were correctly labeled by A2 but not A1,

and 5 (2 %) were incorrectly labeled by both. These include

2 images that we consider to be incorrectly labeled in the

ground truth.

In particular, our results suggest that the human annota-

tors do not exhibit strong overlap in their predictions. We

can approximate the performance of an “optimistic” human

classifier by assuming an image to be correct if at least one

of A1 or A2 correctly labeled the image. On this sample of

204 images, we approximate the error rate of an “optimistic”

human annotator at 2.4 %, compared to the GoogLeNet error

rate of 4.9 %.

6.4.2 Analysis of Human and Computer Errors

on Large-Scale Image Classification

We manually inspected both human and GoogLeNet errors to

gain an understanding of common error types and how they

compare. For purposes of this section, we only discuss results

based on the larger sample of 1500 images that were labeled

by annotator A1. Examples of representative mistakes are

in Fig. 15. The analysis and insights below were derived

specifically from GoogLeNet predictions, but we suspect that

many of the same errors may be present in other methods.

Types of Errors in Both Computer and Human Annotations

(1) Multiple objects Both GoogLeNet and humans strug-

gle with images that contain multiple ILSVRC classes

(usually many more than five), with little indication of

which object is the focus of the image. This error is only

present in the Classification setting, since every image is

constrained to have exactly one correct label. In total, we

attribute 24 (24 %) of GoogLeNet errors and 12 (16 %)

of human errors to this category. It is worth noting that

humans can have a slight advantage in this error type,

since it can sometimes be easy to identify the most salient

object in the image.
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Fig. 15 Representative validation images that highlight common

sources of error. For each image, we display the ground truth in blue,

and top 5 predictions from GoogLeNet follow (red wrong, green right).

GoogLeNet predictions on the validation set images were graciously

provided by members of the GoogLeNet team. From left to right:

Images that contain multiple objects, images of extreme closeups and

uncharacteristic views, images with filters, images that significantly

benefit from the ability to read text, images that contain very small

and thin objects, images with abstract representations, and example of

a fine-grained image that GoogLeNet correctly identifies but a human

would have significant difficulty with

(2) Incorrect annotations We found that approximately 5

out of 1500 images (0.3 %) were incorrectly annotated in

the ground truth. This introduces an approximately equal

number of errors for both humans and GoogLeNet.

Types of Errors that the Computer is More Susceptible to

than the Human

(1) Object small or thin GoogLeNet struggles with recog-

nizing objects that are very small or thin in the image,

even if that object is the only object present. Examples of

this include an image of a standing person wearing sun-

glasses, a person holding a quill in their hand, or a small

ant on a stem of a flower. We estimate that approximately

22 (21 %) of GoogLeNet errors fall into this category,

while none of the human errors do. In other words, in our

sample of images, no image was mislabeled by a human

because they were unable to identify a very small or thin

object. This discrepancy can be attributed to the fact that

a human can very effectively leverage context and affor-

dances to accurately infer the identity of small objects

(for example, a few barely visible feathers near person’s

hand as very likely belonging to a mostly occluded quill).

(2) Image filters Many people enhance their photos with

filters that distort the contrast and color distributions

of the image. We found that 13 (13 %) of the images

that GoogLeNet incorrectly classified contained a filter.

Thus, we posit that GoogLeNet is not very robust to these

distortions. In comparison, only one image among the

human errors contained a filter, but we do not attribute

the source of the error to the filter.

(3) Abstract representations. GoogLeNet struggles with

images that depict objects of interest in an abstract form,

such as 3D-rendered images, paintings, sketches, plush

toys, or statues. An example is the abstract shape of a bow

drawn with a light source in night photography, a 3D-

rendered robotic scorpion, or a shadow on the ground, of

a child on a swing. We attribute approximately 6 (6 %)

of GoogLeNet errors to this type of error and believe

that humans are significantly more robust, with no such

errors seen in our sample.

(4) Miscellaneous sources Additional sources of error that

occur relatively infrequently include extreme closeups

of parts of an object, unconventional viewpoints such

as a rotated image, images that can significantly benefit

from the ability to read text (e.g. a featureless container

identifying itself as “face powder”), objects with heavy

occlusions, and images that depict a collage of multi-

ple images. In general, we found that humans are more

robust to all of these types of error.

Types of Errors that the Human is More Susceptible to than

the Computer

(1) Fine-grained recognition We found that humans are

noticeably worse at fine-grained recognition (e.g. dogs,

monkeys, snakes, birds), even when they are in clear view.

To understand the difficulty, consider that there are more

than 120 species of dogs in the dataset. We estimate that

28 (37 %) of the human errors fall into this category, while

only 7 (7 %) of GoogLeNet errors do.

(2) Class unawareness The annotator may sometimes be

unaware of the ground truth class present as a label option.

When pointed out as an ILSVRC class, it is usually clear

that the label applies to the image. These errors get pro-

gressively less frequent as the annotator becomes more

familiar with ILSVRC classes. Approximately 18 (24 %)

of the human errors fall into this category.

(3) Insufficient training data Recall that the annotator is

only presented with 13 examples of a class under every
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category name. However, 13 images are not always

enough to adequately convey the allowed class variations.

For example, a brown dog can be incorrectly dismissed as

a “Kelpie” if all examples of a “Kelpie” feature a dog with

black coat. However, if more than 13 images were listed

it would have become clear that a “Kelpie” may have

brown coat. Approximately 4 (5 %) of human errors fall

into this category.

6.4.3 Conclusions from Human Image Classification

Experiments

We investigated the performance of trained human annota-

tors on a sample of 1500 ILSVRC test set images. Our results

indicate that a trained human annotator is capable of out-

performing the best model (GoogLeNet) by approximately

1.7 % (p = 0.022).

We expect that some sources of error may be relatively eas-

ily eliminated (e.g. robustness to filters, rotations, collages,

effectively reasoning over multiple scales), while others may

prove more elusive (e.g. identifying abstract representations

of objects). On the other hand, a large majority of human

errors come from fine-grained categories and class unaware-

ness. We expect that the former can be significantly reduced

with fine-grained expert annotators, while the latter could

be reduced with more practice and greater familiarity with

ILSVRC classes. Our results also hint that human errors are

not strongly correlated and that human ensembles may fur-

ther reduce human error rate.

It is clear that humans will soon outperform state-of-

the-art ILSVRC image classification models only by use of

significant effort, expertise, and time. One interesting follow-

up question for future investigation is how computer-level

accuracy compares with human-level accuracy on more com-

plex image understanding tasks.

7 Conclusions

In this paper we described the large-scale data collection

process of ILSVRC, provided a summary of the most suc-

cessful algorithms on this data, and analyzed the success and

failure modes of these algorithms. In this section we dis-

cuss some of the key lessons we learned over the years of

ILSVRC, strive to address the key criticisms of the datasets

and the challenges we encountered over the years, and con-

clude by looking forward into the future.

7.1 Lessons Learned

The key lesson of collecting the datasets and running the chal-

lenges for 5 years is this: All human intelligence tasks need

to be exceptionally well-designed. We learned this lesson

both when annotating the dataset using Amazon Mechanical

Turk workers (Sect. 3) and even when trying to evalu-

ate human-level image classification accuracy using expert

labelers (Sect. 6.4). The first iteration of the labeling interface

was always bad—generally meaning completely unusable. If

there was any inherent ambiguity in the questions posed (and

there almost always was), workers found it and accuracy suf-

fered. If there is one piece of advice we can offer to future

research, it is to very carefully design, continuously monitor,

and extensively sanity-check all crowdsourcing tasks.

The other lesson, already well-known to large-scale

researchers, is this: Scaling up the dataset always reveals

unexpected challenges. From designing complicated multi-

step annotation strategies (Sect. 3.2.1) to having to modify the

evaluation procedure (Sect. 4), we had to continuously adjust

to the large-scale setting. On the plus side, of course, the

major breakthroughs in object recognition accuracy (Sect. 5)

and the analysis of the strength and weaknesses of current

algorithms as a function of object class properties (Sect. 6.3)

would never have been possible on a smaller scale.

7.2 Criticism

In the past 5 years, we encountered three major criticisms

of the ILSVRC dataset and the corresponding challenge:

(1) the ILSVRC dataset is insufficiently challenging, (2) the

ILSVRC dataset contains annotation errors, and (3) the rules

of ILSVRC competition are too restrictive. We discuss these

in order.

The first criticism is that the objects in the dataset tend

to be large and centered in the images, making the dataset

insufficiently challenging. In Sect. 3.2.2 and 3.3.4 we tried

to put those concerns to rest by analyzing the statistics of

the ILSVRC dataset and concluding that it is comparable

with, and in many cases much more challenging than, the

long-standing PASCAL VOC benchmark (Everingham et al.

2010).

The second is regarding the errors in ground truth labeling.

We went through several rounds of in-house post-processing

of the annotations obtained using crowdsourcing, and cor-

rected many common sources of errors (e.g., Appendix 1).

The major remaining source of annotation errors stem from

fine-grained object classes, e.g., labelers failing to distin-

guish different species of birds. This is a tradeoff that had

to be made: in order to annotate data at this scale on a rea-

sonable budget, we had to rely on non-expert crowd labelers.

However, overall the dataset is encouragingly clean. By our

estimates, 99.7 % precision is achieved in the image classi-

fication dataset (Sects. 3.1.3, 6.4) and 97.9 % of images that

went through the bounding box annotation system have all

instances of the target object class labeled with bounding

boxes (Sect. 3.2.1).
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The third criticism we encountered is over the rules of

the competition regarding using external training data. In

ILSVRC2010-2013, algorithms had to only use the provided

training and validation set images and annotations for train-

ing their models. With the growth of the field of large-scale

unsupervised feature learning, however, questions began to

arise about what exactly constitutes “outside” data: for exam-

ple, are image features trained on a large pool of “outside”

images in an unsupervised fashion allowed in the competi-

tion? After much discussion, in ILSVRC2014 we took the

first step towards addressing this problem. We followed the

PASCAL VOC strategy and created two tracks in the com-

petition: entries using only “provided” data and entries using

“outside” data, meaning any images or annotations not pro-

vided as part of ILSVRC training or validation sets. However,

in the future this strategy will likely need to be further revised

as the computer vision field evolves. For example, compe-

titions can consider allowing the use of any image features

which are publically available, even if these features were

learned on an external source of data.

7.3 The Future

Given the massive algorithmic breakthroughs over the past

5 years, we are very eager to see what will happen in the next

5 years. There are many potential directions of improvement

and growth for ILSVRC and other large-scale image datasets.

First, continuing the trend of moving towards richer image

understanding (from image classification to single-object

localization to object detection), the next challenge would

be to tackle pixel-level object segmentation. The recently

released large-scale COCO dataset (Lin et al. 2014b) is

already taking a step in that direction.

Second, as datasets grow even larger in scale, it may

become impossible to fully annotate them manually. The

scale of ILSVRC is already imposing limits on the manual

annotations that are feasible to obtain: for example, we had to

restrict the number of objects labeled per image in the image

classification and single-object localization datasets. In the

future, with billions of images, it will become impossible to

obtain even one clean label for every image. Datasets such

as Yahoo’s Flickr Creative Commons 100M,13 released with

weak human tags but no centralized annotation, will become

more common.

The growth of unlabeled or only partially labeled large-

scale datasets implies two things. First, algorithms will have

to rely more on weakly supervised training data. Second,

even evaluation might have to be done after the algorithms

make predictions, not before. This means that rather than

evaluating accuracy (how many of the test images or objects

13 http://webscope.sandbox.yahoo.com/catalog.php?

datatype=i\&did=67.

did the algorithm get right) or recall (how many of the desired

images or objects did the algorithm manage to find), both of

which require a fully annotated test set, we will be focusing

more on precision: of the predictions that the algorithm made,

how many were deemed correct by humans.

We are eagerly awaiting the future development of object

recognition datasets and algorithms, and are grateful that

ILSVRC served as a stepping stone along this path.
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Appendix 1: ILSVRC2012-2014 Image

Classification and Single-Object Localization

Object Categories

abacus, abaya, academic gown, accordion, acorn, acorn squash, acoustic guitar, admiral, affenpinscher, Afghan hound,

African chameleon, African crocodile, African elephant, African grey, African hunting dog, agama, agaric, aircraft carrier,

Airedale, airliner, airship, albatross, alligator lizard, alp, altar, ambulance, American alligator, American black bear, Amer-

ican chameleon, American coot, American egret, American lobster, American Staffordshire terrier, amphibian, analog

clock, anemone fish, Angora, ant, apiary, Appenzeller, apron, Arabian camel, Arctic fox, armadillo, artichoke, ashcan,

assault rifle, Australian terrier, axolotl, baboon, backpack, badger, bagel, bakery, balance beam, bald eagle, balloon,

ballplayer, ballpoint, banana, Band Aid, banded gecko, banjo, bannister, barbell, barber chair, barbershop, barn, barn spi-

der, barometer, barracouta, barrel, barrow, baseball, basenji, basketball, basset, bassinet, bassoon, bath towel, bathing cap,

bathtub, beach wagon, beacon, beagle, beaker, bearskin, beaver, Bedlington terrier, bee, bee eater, beer bottle, beer glass,

bell cote, bell pepper, Bernese mountain dog, bib, bicycle-built-for-two, bighorn, bikini, binder, binoculars, birdhouse,

bison, bittern, black and gold garden spider, black grouse, black stork, black swan, black widow, black-and-tan coonhound,

black-footed ferret, Blenheim spaniel, bloodhound, bluetick, boa constrictor, boathouse, bobsled, bolete, bolo tie, bonnet,

book jacket, bookcase, bookshop, Border collie, Border terrier, borzoi, Boston bull, bottlecap, Bouvier des Flandres, bow,

bow tie, box turtle, boxer, Brabancon griffon, brain coral, brambling, brass, brassiere, breakwater, breastplate, briard, Brit-

tany spaniel, broccoli, broom, brown bear, bubble, bucket, buckeye, buckle, bulbul, bull mastiff, bullet train, bulletproof

vest, bullfrog, burrito, bustard, butcher shop, butternut squash, cab, cabbage butterfly, cairn, caldron, can opener, candle,

cannon, canoe, capuchin, car mirror, car wheel, carbonara, Cardigan, cardigan, cardoon, carousel, carpenter’s kit, carton,

cash machine, cassette, cassette player, castle, catamaran, cauliflower, CD player, cello, cellular telephone, centipede,

chain, chain mail, chain saw, chainlink fence, chambered nautilus, cheeseburger, cheetah, Chesapeake Bay retriever, chest,

chickadee, chiffonier, Chihuahua, chime, chimpanzee, china cabinet, chiton, chocolate sauce, chow, Christmas stock-

ing, church, cicada, cinema, cleaver, cliff, cliff dwelling, cloak, clog, clumber, cock, cocker spaniel, cockroach, cocktail

shaker, coffee mug, coffeepot, coho, coil, collie, colobus, combination lock, comic book, common iguana, common newt,

computer keyboard, conch, confectionery, consomme, container ship, convertible, coral fungus, coral reef, corkscrew,

corn, cornet, coucal, cougar, cowboy boot, cowboy hat, coyote, cradle, crane, crane, crash helmet, crate, crayfish, crib,

cricket, Crock Pot, croquet ball, crossword puzzle, crutch, cucumber, cuirass, cup, curly-coated retriever, custard apple,

daisy, dalmatian, dam, damselfly, Dandie Dinmont, desk, desktop computer, dhole, dial telephone, diamondback, diaper,

digital clock, digital watch, dingo, dining table, dishrag, dishwasher, disk brake, Doberman, dock, dogsled, dome, door-

mat, dough, dowitcher, dragonfly, drake, drilling platform, drum, drumstick, dugong, dumbbell, dung beetle, Dungeness

crab, Dutch oven, ear, earthstar, echidna, eel, eft, eggnog, Egyptian cat, electric fan, electric guitar, electric locomotive,

electric ray, English foxhound, English setter, English springer, entertainment center, EntleBucher, envelope, Eskimo dog,

espresso, espresso maker, European fire salamander, European gallinule, face powder, feather boa, fiddler crab, fig, file,

fire engine, fire screen, fireboat, flagpole, flamingo, flat-coated retriever, flatworm, flute, fly, folding chair, football helmet,

forklift, fountain, fountain pen, four-poster, fox squirrel, freight car, French bulldog, French horn, French loaf, frilled

lizard, frying pan, fur coat, gar, garbage truck, garden spider, garter snake, gas pump, gasmask, gazelle, German shepherd,

German short-haired pointer, geyser, giant panda, giant schnauzer, gibbon, Gila monster, go-kart, goblet, golden retriever,

goldfinch, goldfish, golf ball, golfcart, gondola, gong, goose, Gordon setter, gorilla, gown, grand piano, Granny Smith,

grasshopper, Great Dane, great grey owl, Great Pyrenees, great white shark, Greater Swiss Mountain dog, green lizard,

green mamba, green snake, greenhouse, grey fox, grey whale, grille, grocery store, groenendael, groom, ground beetle,

guacamole, guenon, guillotine, guinea pig, gyromitra, hair slide, hair spray, half track, hammer, hammerhead, hamper,

hamster, hand blower, hand-held computer, handkerchief, hard disc, hare, harmonica, harp, hartebeest, harvester, harvest-

man, hatchet, hay, head cabbage, hen, hen-of-the-woods, hermit crab, hip, hippopotamus, hog, hognose snake, holster,

home theater, honeycomb, hook, hoopskirt, horizontal bar, hornbill, horned viper, horse cart, hot pot, hotdog, hourglass,

house finch, howler monkey, hummingbird, hyena, ibex, Ibizan hound, ice bear, ice cream, ice lolly, impala, Indian cobra,

Indian elephant, indigo bunting, indri, iPod, Irish setter, Irish terrier, Irish water spaniel, Irish wolfhound, iron, isopod,

Italian greyhound, jacamar, jack-o’-lantern, jackfruit, jaguar, Japanese spaniel, jay, jean, jeep, jellyfish, jersey, jigsaw

puzzle, jinrikisha, joystick, junco, keeshond, kelpie, Kerry blue terrier, killer whale, kimono, king crab, king penguin,

king snake, kit fox, kite, knee pad, knot, koala, Komodo dragon, komondor, kuvasz, lab coat, Labrador retriever, lacewing,

ladle, ladybug, Lakeland terrier, lakeside, lampshade, langur, laptop, lawn mower, leaf beetle, leafhopper, leatherback

turtle, lemon, lens cap, Leonberg, leopard, lesser panda, letter opener, Lhasa, library, lifeboat, lighter, limousine, limpkin,

liner, lion, lionfish, lipstick, little blue heron, llama, Loafer, loggerhead, long-horned beetle, lorikeet, lotion, loudspeaker,

loupe, lumbermill, lycaenid, lynx, macaque, macaw, Madagascar cat, magnetic compass, magpie, mailbag, mailbox, mail-

lot, maillot, malamute, malinois, Maltese dog, manhole cover, mantis, maraca, marimba, marmoset, marmot, mashed

potato, mask, matchstick, maypole, maze, measuring cup, meat loaf, medicine chest, meerkat, megalith, menu, Mexican

hairless, microphone, microwave, military uniform, milk can, miniature pinscher, miniature poodle, miniature schnauzer,

minibus, miniskirt, minivan, mink, missile, mitten, mixing bowl, mobile home, Model T, modem, monarch, monastery,

mongoose, monitor, moped, mortar, mortarboard, mosque, mosquito net, motor scooter, mountain bike, mountain tent,
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mouse, mousetrap, moving van, mud turtle, mushroom, muzzle, nail, neck brace, necklace, nematode, Newfoundland,

night snake, nipple, Norfolk terrier, Norwegian elkhound, Norwich terrier, notebook, obelisk, oboe, ocarina, odometer,

oil filter, Old English sheepdog, orange, orangutan, organ, oscilloscope, ostrich, otter, otterhound, overskirt, ox, oxcart,

oxygen mask, oystercatcher, packet, paddle, paddlewheel, padlock, paintbrush, pajama, palace, panpipe, paper towel,

papillon, parachute, parallel bars, park bench, parking meter, partridge, passenger car, patas, patio, pay-phone, peacock,

pedestal, Pekinese, pelican, Pembroke, pencil box, pencil sharpener, perfume, Persian cat, Petri dish, photocopier, pick,

pickelhaube, picket fence, pickup, pier, piggy bank, pill bottle, pillow, pineapple, ping-pong ball, pinwheel, pirate, pitcher,

pizza, plane, planetarium, plastic bag, plate, plate rack, platypus, plow, plunger, Polaroid camera, pole, polecat, police

van, pomegranate, Pomeranian, poncho, pool table, pop bottle, porcupine, pot, potpie, potter’s wheel, power drill, prairie

chicken, prayer rug, pretzel, printer, prison, proboscis monkey, projectile, projector, promontory, ptarmigan, puck, puffer,

pug, punching bag, purse, quail, quill, quilt, racer, racket, radiator, radio, radio telescope, rain barrel, ram, rapeseed, recre-

ational vehicle, red fox, red wine, red wolf, red-backed sandpiper, red-breasted merganser, redbone, redshank, reel, reflex

camera, refrigerator, remote control, restaurant, revolver, rhinoceros beetle, Rhodesian ridgeback, rifle, ringlet, ringneck

snake, robin, rock beauty, rock crab, rock python, rocking chair, rotisserie, Rottweiler, rubber eraser, ruddy turnstone,

ruffed grouse, rugby ball, rule, running shoe, safe, safety pin, Saint Bernard, saltshaker, Saluki, Samoyed, sandal, sandbar,

sarong, sax, scabbard, scale, schipperke, school bus, schooner, scoreboard, scorpion, Scotch terrier, Scottish deerhound,

screen, screw, screwdriver, scuba diver, sea anemone, sea cucumber, sea lion, sea slug, sea snake, sea urchin, Sealyham

terrier, seashore, seat belt, sewing machine, Shetland sheepdog, shield, Shih-Tzu, shoe shop, shoji, shopping basket,

shopping cart, shovel, shower cap, shower curtain, siamang, Siamese cat, Siberian husky, sidewinder, silky terrier, ski,

ski mask, skunk, sleeping bag, slide rule, sliding door, slot, sloth bear, slug, snail, snorkel, snow leopard, snowmobile,

snowplow, soap dispenser, soccer ball, sock, soft-coated wheaten terrier, solar dish, sombrero, sorrel, soup bowl, space

bar, space heater, space shuttle, spaghetti squash, spatula, speedboat, spider monkey, spider web, spindle, spiny lobster,

spoonbill, sports car, spotlight, spotted salamander, squirrel monkey, Staffordshire bullterrier, stage, standard poodle,

standard schnauzer, starfish, steam locomotive, steel arch bridge, steel drum, stethoscope, stingray, stinkhorn, stole, stone

wall, stopwatch, stove, strainer, strawberry, street sign, streetcar, stretcher, studio couch, stupa, sturgeon, submarine, suit,

sulphur butterfly, sulphur-crested cockatoo, sundial, sunglass, sunglasses, sunscreen, suspension bridge, Sussex spaniel,

swab, sweatshirt, swimming trunks, swing, switch, syringe, tabby, table lamp, tailed frog, tank, tape player, tarantula,

teapot, teddy, television, tench, tennis ball, terrapin, thatch, theater curtain, thimble, three-toed sloth, thresher, throne,

thunder snake, Tibetan mastiff, Tibetan terrier, tick, tiger, tiger beetle, tiger cat, tiger shark, tile roof, timber wolf, titi,

toaster, tobacco shop, toilet seat, toilet tissue, torch, totem pole, toucan, tow truck, toy poodle, toy terrier, toyshop, tractor,

traffic light, trailer truck, tray, tree frog, trench coat, triceratops, tricycle, trifle, trilobite, trimaran, tripod, triumphal arch,

trolleybus, trombone, tub, turnstile, tusker, typewriter keyboard, umbrella, unicycle, upright, vacuum, valley, vase, vault,

velvet, vending machine, vestment, viaduct, vine snake, violin, vizsla, volcano, volleyball, vulture, waffle iron, Walker

hound, walking stick, wall clock, wallaby, wallet, wardrobe, warplane, warthog, washbasin, washer, water bottle, water

buffalo, water jug, water ouzel, water snake, water tower, weasel, web site, weevil, Weimaraner, Welsh springer spaniel,

West Highland white terrier, whippet, whiptail, whiskey jug, whistle, white stork, white wolf, wig, wild boar, window

screen, window shade, Windsor tie, wine bottle, wing, wire-haired fox terrier, wok, wolf spider, wombat, wood rabbit,

wooden spoon, wool, worm fence, wreck, yawl, yellow lady’s slipper, Yorkshire terrier, yurt, zebra, zucchini

Appendix 2: Additional Single-Object Localization

Dataset Statistics

We consider two additional metrics of object localization dif-

ficulty: chance performance of localization and the level of

clutter. We use these metrics to compare ILSVRC2012-2014

single-object localization dataset to the PASCAL VOC 2012

object detection benchmark. The measures of localization

difficulty are computed on the validation set of both datasets.

According to both of these measures of difficulty there is

a subset of ILSVRC which is as challenging as PASCAL

but more than an order of magnitude greater in size. Fig-

ure 16 shows the distributions of different properties (object

scale, chance performance of localization and level of clutter)

across the different classes in the two datasets.

Chance Performance of Localization (CPL) Chance perfor-

mance on a dataset is a common metric to consider. We define

the CPL measure as the expected accuracy of a detector which

first randomly samples an object instance of that class and

then uses its bounding box directly as the proposed localiza-

tion window on all other images (after rescaling the images

to the same size). Concretely, let B1, B2, . . . , BN be all the

bounding boxes of the object instances within a class, then

CPL =

∑

i

∑

j 	=i I OU (Bi , B j ) ≥ 0.5

N (N − 1)
(6)

Some of the most difficult ILSVRC categories to localize

according to this metric are basketball, swimming trunks,

ping pong ball and rubber eraser, all with less than 0.2 %

CPL. This measure correlates strongly (ρ = 0.9) with the

average scale of the object (fraction of image occupied by

object). The average CPL across the 1000 ILSVRC cate-

gories is 20.8 %. The 20 PASCAL categories have an average

CPL of 8.7 %, which is the same as the CPL of the 562 most

difficult categories of ILSVRC.

Clutter Intuitively, even small objects are easy to localize

on a plain background. To quantify clutter we employ the

objectness measure of (Alexe et al. 2012), which is a class-

generic object detector evaluating how likely a window in the

image contains a coherent object (of any class) as opposed to

background (sky, water, grass). For every image m contain-

ing target object instances at positions Bm
1 , Bm

2 , . . . , we use

the publicly available objectness software to sample 1000

windows W m
1 , W m

2 , . . . W m
1000, in order of decreasing prob-

ability of the window containing any generic object. Let

obj(m) be the number of generic object-looking windows

sampled before localizing an instance of the target category,

i.e., obj(m) = min{k : maxi iou(W m
k , Bm

i ) ≥ 0.5}. For

a category containing M images, we compute the average

number of such windows per image and define

Clutter = log2

(

1

M

∑

m

Obj(m)

)

(7)

The higher the clutter of a category, the harder the objects

are to localize according to generic cues. If an object can’t

be localized with the first 1000 windows (as is the case for

1 % of images on average per category in ILSVRC and 5 %

in PASCAL), we set obj(m) = 1001. The fact that more than

95 % of objects can be localized with these windows imply

that the objectness cue is already quite strong, so objects that

require many windows on average will be extremely difficult

to detect: e.g., ping pong ball (clutter of 9.57, or 758 win-

dows on average), basketball (clutter of 9.21), puck (clutter

of 9.17) in ILSVRC. The most difficult object in PASCAL

is bottle with clutter score of 8.47. On average, ILSVRC has

clutter score of 3.59. The most difficult subset of ILSVRC

with 250 object categories has an order of magnitude more

categories and the same average amount of clutter (of 5.90)

as the PASCAL dataset.

Appendix 3: Manually Curated Queries

for Obtaining Object Detection Scene Images

In Sect. 3.3.2 we discussed three types of queries we used

for collecting the object detection images: (1) single object

category name or a synonym; (2) a pair of object category

names; (3) a manual query, typically targetting one or more
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Fig. 16 Distribution of various measures of localization difficulty

on the ILSVRC2012-2014 single-object localization (dark green) and

PASCAL VOC 2012 (light blue) validation sets. Object scale is fraction

of image area occupied by an average object instance. Chance perfor-

mance of localization and level of clutter are defined in Appendix 1. The

plots on top contain the full ILSVRC validation set with 1000 classes;

the plots on the bottom contain 200 ILSVRC classes with the lowest

chance performance of localization. All plots contain all 20 classes of

PASCAL VOC

object categories with insufficient data. Here we provide a

list of the 129 manually curated queries:

afternoon tea, ant bridge building, armadillo race, armadillo yard, artist studio, auscultation, baby room, banjo orchestra,

banjo rehersal, banjo show, califone headphones & media player sets, camel dessert, camel tourist, carpenter drilling,

carpentry, centipede wild, coffee shop, continental breakfast toaster, continental breakfast waffles, crutch walking, desert

scorpion, diner, dining room, dining table, dinner, dragonfly friendly, dragonfly kid, dragonfly pond, dragonfly wild,

drying hair, dumbbell curl, fan blow wind, fast food, fast food restaurant, firewood chopping, flu shot, goldfish aquarium,

goldfish tank, golf cart on golf course, gym dumbbell, hamster drinking water, harmonica orchestra, harmonica rehersal,

harmonica show, harp ensemble, harp orchestra, harp rehersal, harp show, hedgehog cute, hedgehog floor, hedgehog

hidden, hippo bird, hippo friendly, home improvement diy drill, horseback riding, hotel coffee machine, hotel coffee

maker, hotel waffle maker, jellyfish scuba, jellyfish snorkling, kitchen, kitchen counter coffee maker, kitchen counter

toaster, kitchenette, koala feed, koala tree, ladybug flower, ladybug yard, laundromat, lion zebra friendly, lunch, mailman,

making breakfast, making waffles, mexican food, motorcycle racing, office, office fan, opossum on tree branch, orchestra,

panda play, panda tree, pizzeria, pomegranate tree, porcupine climbing trees, power drill carpenter, purse shop, red panda

tree, riding competition, riding motor scooters, school supplies, scuba starfish, sea lion beach, sea otter, sea urchin habitat,

shopping for school supplies, sitting in front of a fan, skunk and cat, skunk park, skunk wild, skunk yard, snail flower,

snorkling starfish, snowplow cleanup, snowplow pile, snowplow winter, soccer game, south american zoo, starfish sea

world, starts shopping, steamed artichoke, stethoscope doctor, strainer pasta, strainer tea, syringe doctor, table with food,

tape player, tiger circus, tiger pet, using a can opener, using power drill, waffle iron breakfast, wild lion savana, wildlife

preserve animals, wiping dishes, wombat petting zoo, zebra savana, zoo feeding, zoo in australia

Appendix 4: Hierarchy of Questions for Full Image

Annotation

The following is a hierarchy of questions manually con-

structed for crowdsourcing full annotation of images with

the presence or absence of 200 object detection categories

in ILSVRC2013 and ILSVRC2014. All questions are of the

form “is there a ... in the image?” Questions marked with •

are asked on every image. If the answer to a question is deter-

mined to be “no” then the answer to all descendant questions

is assumed to be “no”. The 200 numbered leaf nodes corre-

spond to the 200 object detection categories.

The goal in the hierarchy construction is to save cost (by

asking as few questions as possible on every image) while

avoiding any ambiguity in questions which would lead to

false negatives during annotation. This hierarchy is not tree-

structured; some questions have multiple parents.

Hierarchy of questions • first aid/ medical items

◦ (1) stethoscope

◦ (2) syringe

◦ (3) neck brace

◦ (4) crutch

◦ (5) stretcher

◦ (6) band aid: an adhesive bandage to cover small cuts or blisters

• musical instruments

◦ (7) accordion (a portable box-shaped free-reed instrument; the reeds are made to vibrate by air from the bellows

controlled by the player)

◦ (8) piano, pianoforte, forte-piano

◦ percussion instruments: chimes, maraccas, drums, etc

◦ (9) chime: a percussion instrument consisting of a set of tuned bells that are struck with a hammer; used as an

orchestral instrument

◦ (10) maraca

◦ (11) drum

◦ stringed instrument

◦ (12) banjo, the body of a banjo is round. please do not confuse with guitar

◦ (13) cello: a large stringed instrument; seated player holds it upright while playing

◦ (14) violin: bowed stringed instrument that has four strings, a hollow body, an unfretted fingerboard and is

played with a bow. please do not confuse with cello, which is held upright while playing

◦ (15) harp

◦ (16) guitar, please do not confuse with banjo. the body of a banjo is round
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◦ wind instrument: a musical instrument in which the sound is produced by an enclosed column of air that is moved

by the breath (such as trumpet, french horn, harmonica, flute, etc)

◦ (17) trumpet: a brass musical instrument with a narrow tube and a flared bell, which is played by means of

valves. often has 3 keys on top

◦ (18) french horn: a brass musical instrument consisting of a conical tube that is coiled into a spiral, with a flared

bell at the end

◦ (19) trombone: a brass instrument consisting of a long tube whose length can be varied by a u-shaped slide

◦ (20) harmonica

◦ (21) flute: a high-pitched musical instrument that looks like a straight tube and is usually played sideways (please

do not confuse with oboes, which have a distinctive straw-like mouth piece and a slightly flared end)

◦ (22) oboe: a slender musical instrument roughly 65cm long with metal keys, a distinctive straw-like mouthpiece

and often a slightly flared end (please do not confuse with flutes)

◦ (23) saxophone: a musical instrument consisting of a brass conical tube, often with a u-bend at the end

• food: something you can eat or drink (includes growing fruit, vegetables and mushrooms, but does not include living

animals)

◦ food with bread or crust: pretzel, bagel, pizza, hotdog, hamburgers, etc

◦ (24) pretzel

◦ (25) bagel, beigel

◦ (26) pizza, pizza pie

◦ (27) hotdog, hot dog, red hot

◦ (28) hamburger, beefburger, burger

◦ (29) guacamole

◦ (30) burrito

◦ (31) popsicle (ice cream or water ice on a small wooden stick)

◦ fruit

◦ (32) fig

◦ (33) pineapple, ananas

◦ (34) banana

◦ (35) pomegranate

◦ (36) apple

◦ (37) strawberry

◦ (38) orange

◦ (39) lemon

◦ vegetables

◦ (40) cucumber, cuke

◦ (41) artichoke, globe artichoke

◦ (42) bell pepper

◦ (43) head cabbage

◦ (44) mushroom

• items that run on electricity (plugged in or using batteries); including clocks, microphones, traffic lights, computers,

etc

◦ (45) remote control, remote

◦ electronics that blow air

◦ (46) hair dryer, blow dryer

◦ (47) electric fan: a device for creating a current of air by movement of a surface or surfaces (please do not

consider hair dryers)

◦ electronics that can play music or amplify sound

◦ (48) tape player

◦ (49) iPod

◦ (50) microphone, mike

◦ computer and computer peripherals: mouse, laptop, printer, keyboard, etc

◦ (51) computer mouse

◦ (52) laptop, laptop computer

◦ (53) printer (please do not consider typewriters to be printers)

◦ (54) computer keyboard

◦ (55) lamp

◦ electric cooking appliance (an appliance which generates heat to cook food or boil water)

◦ (56) microwave, microwave oven

◦ (57) toaster

◦ (58) waffle iron

◦ (59) coffee maker: a kitchen appliance used for brewing coffee automatically

◦ (60) vacuum, vacuum cleaner

◦ (61) dishwasher, dish washer, dishwashing machine

◦ (62) washer, washing machine: an electric appliance for washing clothes

◦ (63) traffic light, traffic signal, stoplight

◦ (64) tv or monitor: an electronic device that represents information in visual form

◦ (65) digital clock: a clock that displays the time of day digitally

• kitchen items: tools,utensils and appliances usually found in the kitchen

◦ electric cooking appliance (an appliance which generates heat to cook food or boil water)

◦ (56) microwave, microwave oven

◦ (57) toaster

◦ (58) waffle iron

◦ (59) coffee maker: a kitchen appliance used for brewing coffee automatically

◦ (61) dishwasher, dish washer, dishwashing machine

◦ (66) stove

◦ things used to open cans/bottles: can opener or corkscrew

◦ (67) can opener (tin opener)

◦ (68) corkscrew

◦ (69) cocktail shaker

◦ non-electric item commonly found in the kitchen: pot, pan, utensil, bowl, etc

◦ (70) strainer

◦ (71) frying pan (skillet)

◦ (72) bowl: a dish for serving food that is round, open at the top, and has no handles (please do not confuse with

a cup, which usually has a handle and is used for serving drinks)

◦ (73) salt or pepper shaker: a shaker with a perforated top for sprinkling salt or pepper

◦ (74) plate rack

◦ (75) spatula: a turner with a narrow flexible blade

◦ (76) ladle: a spoon-shaped vessel with a long handle; frequently used to transfer liquids from one container to

another

◦ (77) refrigerator, icebox

• furniture (including benches)

◦ (78) bookshelf: a shelf on which to keep books

◦ (79) baby bed: small bed for babies, enclosed by sides to prevent baby from falling

◦ (80) filing cabinet: office furniture consisting of a container for keeping papers in order

◦ (81) bench (a long seat for several people, typically made of wood or stone)

◦ (82) chair: a raised piece of furniture for one person to sit on; please do not confuse with benches or sofas, which

are made for more people

◦ (83) sofa, couch: upholstered seat for more than one person; please do not confuse with benches (which are made

of wood or stone) or with chairs (which are for just one person)

◦ (84) table

• clothing, article of clothing: a covering designed to be worn on a person’s body

◦ (85) diaper: Garment consisting of a folded cloth drawn up between the legs and fastened at the waist; worn by

infants to catch excrement

◦ swimming attire: clothes used for swimming or bathing (swim suits, swim trunks, bathing caps)

◦ (86) swimming trunks: swimsuit worn by men while swimming

◦ (87) bathing cap, swimming cap: a cap worn to keep hair dry while swimming or showering

◦ (88) maillot: a woman’s one-piece bathing suit

◦ necktie: a man’s formal article of clothing worn around the neck (including bow ties)

◦ (89) bow tie: a man’s tie that ties in a bow

◦ (90) tie: a long piece of cloth worn for decorative purposes around the neck or shoulders, resting under the shirt

collar and knotted at the throat (NOT a bow tie)

◦ headdress, headgear: clothing for the head (hats, helmets, bathing caps, etc)

◦ (87) bathing cap, swimming cap: a cap worn to keep hair dry while swimming or showering

◦ (91) hat with a wide brim

◦ (92) helmet: protective headgear made of hard material to resist blows

◦ (93) miniskirt, mini: a very short skirt

◦ (94) brassiere, bra: an undergarment worn by women to support their breasts

◦ (95) sunglasses

• living organism (other than people): dogs, snakes, fish, insects, sea urchins, starfish, etc.

◦ living organism which can fly

◦ (96) bee

◦ (97) dragonfly

◦ (98) ladybug

◦ (99) butterfly

◦ (100) bird

◦ living organism which cannot fly (please don’t include humans)

◦ living organism with 2 or 4 legs (please don’t include humans):

◦ mammals (but please do not include humans)

◦ feline (cat-like) animal: cat, tiger or lion

◦ (101) domestic cat

◦ (102) tiger

◦ (103) lion

◦ canine (dog-like animal): dog, hyena, fox or wolf

◦ (104) dog, domestic dog, canis familiaris

◦ (105) fox: wild carnivorous mammal with pointed muzzle and ears and a bushy tail (please do not

confuse with dogs)

◦ animals with hooves: camels, elephants, hippos, pigs, sheep, etc

◦ (106) elephant

◦ (107) hippopotamus, hippo

◦ (108) camel

◦ (109) swine: pig or boar

◦ (110) sheep: woolly animal, males have large spiraling horns (please do not confuse with antelope

which have long legs)

◦ (111) cattle: cows or oxen (domestic bovine animals)

◦ (112) zebra

◦ (113) horse

◦ (114) antelope: a graceful animal with long legs and horns directed upward and backward

◦ (115) squirrel

◦ (116) hamster: short-tailed burrowing rodent with large cheek pouches

◦ (117) otter

◦ (118) monkey

◦ (119) koala bear

◦ (120) bear (other than pandas)

◦ (121) skunk (mammal known for its ability fo spray a liquid with a strong odor; they may have a single

thick stripe across back and tail, two thinner stripes, or a series of white spots and broken stripes

◦ (122) rabbit

◦ (123) giant panda: an animal characterized by its distinct black and white markings

◦ (124) red panda: Reddish-brown Old World raccoon-like carnivore

◦ (125) frog, toad

◦ (126) lizard: please do not confuse with snake (lizards have legs)

◦ (127) turtle

◦ (128) armadillo

◦ (129) porcupine, hedgehog

◦ living organism with 6 or more legs: lobster, scorpion, insects, etc.

◦ (130) lobster: large marine crustaceans with long bodies and muscular tails; three of their five pairs of legs

have claws

◦ (131) scorpion

◦ (132) centipede: an arthropod having a flattened body of 15 to 173 segments each with a pair of legs, the

foremost pair being modified as prehensors

◦ (133) tick (a small creature with 4 pairs of legs which lives on the blood of mammals and birds)

◦ (134) isopod: a small crustacean with seven pairs of legs adapted for crawling

◦ (135) ant

◦ living organism without legs: fish, snake, seal, etc. (please don’t include plants)

◦ living organism that lives in water: seal, whale, fish, sea cucumber, etc.

◦ (136) jellyfish

◦ (137) starfish, sea star

◦ (138) seal

◦ (139) whale

◦ (140) ray: a marine animal with a horizontally flattened body and enlarged winglike pectoral fins with

gills on the underside

◦ (141) goldfish: small golden or orange-red fishes

◦ living organism that slides on land: worm, snail, snake

◦ (142) snail

◦ (143) snake: please do not confuse with lizard (snakes do not have legs)

• vehicle: any object used to move people or objects from place to place

◦ a vehicle with wheels

◦ (144) golfcart, golf cart

◦ (145) snowplow: a vehicle used to push snow from roads

◦ (146) motorcycle (or moped)

◦ (147) car, automobile (not a golf cart or a bus)

◦ (148) bus: a vehicle carrying many passengers; used for public transport

◦ (149) train

◦ (150) cart: a heavy open wagon usually having two wheels and drawn by an animal

◦ (151) bicycle, bike: a two wheeled vehicle moved by foot pedals

◦ (152) unicycle, monocycle

◦ a vehicle without wheels (snowmobile, sleighs)

◦ (153) snowmobile: tracked vehicle for travel on snow

◦ (154) watercraft (such as ship or boat): a craft designed for water transportation

◦ (155) airplane: an aircraft powered by propellers or jets

• cosmetics: toiletry designed to beautify the body

◦ (156) face powder

◦ (157) perfume, essence (usually comes in a smaller bottle than hair spray

◦ (158) hair spray

◦ (159) cream, ointment, lotion

◦ (160) lipstick, lip rouge

• carpentry items: items used in carpentry, including nails, hammers, axes, screwdrivers, drills, chain saws, etc

◦ (161) chain saw, chainsaw

◦ (162) nail: pin-shaped with a head on one end and a point on the other

◦ (163) axe: a sharp tool often used to cut trees/ logs

◦ (164) hammer: a blunt hand tool used to drive nails in or break things apart (please do not confuse with axe, which

is sharp)

◦ (165) screwdriver

◦ (166) power drill: a power tool for drilling holes into hard materials

• school supplies: rulers, erasers, pencil sharpeners, pencil boxes, binders

◦ (167) ruler,rule: measuring stick consisting of a strip of wood or metal or plastic with a straight edge that is used

for drawing straight lines and measuring lengths

◦ (168) rubber eraser, rubber, pencil eraser
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◦ (169) pencil sharpener

◦ (170) pencil box, pencil case

◦ (171) binder, ring-binder

• sports items: items used to play sports or in the gym (such as skis, raquets, gymnastics bars, bows, punching bags,

balls)

◦ (172) bow: weapon for shooting arrows, composed of a curved piece of resilient wood with a taut cord to propel

the arrow

◦ (173) puck, hockey puck: vulcanized rubber disk 3 inches in diameter that is used instead of a ball in ice hockey

◦ (174) ski

◦ (175) racket, racquet

◦ gymnastic equipment: parallel bars, high beam, etc

◦ (176) balance beam: a horizontal bar used for gymnastics which is raised from the floor and wide enough to

walk on

◦ (177) horizontal bar, high bar: used for gymnastics; gymnasts grip it with their hands (please do not confuse

with balance beam, which is wide enough to walk on)

◦ ball

◦ (178) golf ball

◦ (179) baseball

◦ (180) basketball

◦ (181) croquet ball

◦ (182) soccer ball

◦ (183) ping-pong ball

◦ (184) rugby ball

◦ (185) volleyball

◦ (186) tennis ball

◦ (187) punching bag, punch bag, punching ball, punchball

◦ (188) dumbbell: An exercising weight; two spheres connected by a short bar that serves as a handle

• liquid container: vessels which commonly contain liquids such as bottles, cans, etc.

◦ (189) pitcher: a vessel with a handle and a spout for pouring

◦ (190) beaker: a flatbottomed jar made of glass or plastic; used for chemistry

◦ (191) milk can

◦ (192) soap dispenser

◦ (193) wine bottle

◦ (194) water bottle

◦ (195) cup or mug (usually with a handle and usually cylindrical)

• bag

◦ (196) backpack: a bag carried by a strap on your back or shoulder

◦ (197) purse: a small bag for carrying money

◦ (198) plastic bag

• (199) person

• (200) flower pot: a container in which plants are cultivated

Appendix 5: Modification to Bounding Box System

for Object Detection

The bounding box annotation system described in Sect. 3.2.1

is used for annotating images for both the single-object local-

ization dataset and the object detection dataset. However, two

additional manual post-processing are needed to ensure accu-

racy in the object detection scenario:

Ambiguous Objects The first common source of error was

that workers were not able to accurately differentiate some

object classes during annotation. Some commonly confused

labels were seal and sea otter, backpack and purse, banjo and

guitar, violin and cello, brass instruments (trumpet, trom-

bone, french horn and brass), flute and oboe, ladle and

spatula. Despite our best efforts (providing positive and neg-

ative example images in the annotation task, adding text

explanations to alert the user to the distinction between these

categories) these errors persisted.

In the single-object localization setting, this problem was

not as prominent for two reasons. First, the way the data was

collected imposed a strong prior on the object class which

was present. Second, since only one object category needed

to be annotated per image, ambiguous images could be dis-

carded: for example, if workers couldn’t agree on whether or

not a trumpet was in fact present, this image could simply be

removed. In contrast, for the object detection setting consen-

sus had to be reached for all target categories on all images.

To fix this problem, once bounding box annotations were

collected we manually looked through all cases where the

bounding boxes for two different object classes had signif-

icant overlap with each other (about 3 % of the collected

boxes). About a quarter of these boxes were found to corre-

spond to incorrect objects and were removed. Crowdsourcing

this post-processing step (with very stringent accuracy con-

straints) would be possible but it occurred in few enough

cases that it was faster (and more accurate) to do this in-house.

Duplicate Annotations The second common source of error

were duplicate bounding boxes drawn on the same object

instance. Despite instructions not to draw more than one

bounding box around the same object instance and con-

straints in the annotation UI enforcing at least a 5 pixel

difference between different bounding boxes, these errors

persisted. One reason was that sometimes the initial bounding

box was not perfect and subsequent labelers drew a slightly

improved alternative.

This type of error was also present in the single-object

localization scenario but was not a major cause for concern.

A duplicate bounding box is a slightly perturbed but still

correct positive example, and single-object localization is

only concerned with correctly localizing one object instance.

For the detection task algorithms are evaluated on the ability

to localize every object instance, and penalized for duplicate

detections, so it is imperative that these labeling errors are

corrected (even if they only appear in about 0.6 % of cases).

Approximately 1 % of bounding boxes were found to have

significant overlap of more than 50 % with another bounding

box of the same object class.We again manually verified all

of these cases in-house. In approximately 40 % of the cases

the two bounding boxes correctly corresponded to different

people in a crowd, to stacked plates, or to musical instruments

nearby in an orchestra. In the other 60 % of cases one of the

boxes was randomly removed.

These verification steps complete the annotation proce-

dure of bounding boxes around every instance of every object

class in validation, test and a subset of training images for

the detection task.

Training Set Annotation With the optimized algorithm of

Sect. 3.3.3 we fully annotated the validation and test sets.

However, annotating all training images with all target object

classes was still a budget challenge. Positive training images

taken from the single-object localization dataset already had

bounding box annotations of all instances of one object class

on each image. We extended the existing annotations to the

detection dataset by making two modification. First, we cor-

rected any bounding box omissions resulting from merging

fine-grained categories: i.e., if an image belonged to the

“dalmatian” category and all instances of “dalmatian” were

annotated with bounding boxes for single-object localiza-

tion, we ensured that all remaining “dog” instances are also

annotated for the object detection task. Second, we collected

significantly more training data for the person class because
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the existing annotation set was not diverse enough to be rep-

resentative (the only people categories in the single-object

localization task are scuba diver, groom, and ballplayer). To

compensate, we additionally annotated people in a large frac-

tion of the existing training set images.

Appendix 6: Competition Protocol

Competition Format At the beginning of the competition

period each year we release the new training/validation/test

images, training/validation annotations, and competition

specification for the year. We then specify a deadline for sub-

mission, usually approximately 4 months after the release of

data. Teams are asked to upload a text file of their predicted

annotations on test images by this deadline to a provided

server. We then evaluate all submissions and release the

results.

For every task we released code that takes a text file of

automatically generated image annotations and compares it

with the ground truth annotations to return a quantitative

measure of algorithm accuracy. Teams can use this code to

evaluate their performance on the validation data.

As described in Everingham et al. (2014), there are three

options for measuring performance on test data: (i) Release

test images and annotations, and allow participants to assess

performance themselves; (ii) Release test images but not

test annotations—participants submit results and organizers

assess performance; (iii) Neither test images nor annotations

are released—participants submit software and organizers

run it on new data and assess performance. In line with the

PASCAL VOC choice, we opted for option (ii). Option (i)

allows too much leeway in overfitting to the test data; option

(iii) is infeasible, especially given the scale of our test set

(40K–100K images).

We released ILSVRC2010 test annotations for the image

classification task, but all other test annotations have remained

hidden to discourage fine-tuning results on the test data.

Evaluation Protocol After the Challenge After the chal-

lenge period we set up an automatic evaluation server that

researchers can use throughout the year to continue evaluat-

ing their algorithms against the ground truth test annotations.

We limit teams to 2 submissions per week to discourage para-

meter tuning on the test data, and in practice we have never

had a problem with researchers abusing the system.
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