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Abstract. We extend the geometric framework introduced in Sochen et al. (IEEE Trans. on Image Processing,

7(3):310–318, 1998) for image enhancement. We analyze and propose enhancement techniques that selectively

smooth images while preserving either the multi-channel edges or the orientation-dependent texture features in

them. Images are treated as manifolds in a feature-space. This geometrical interpretation lead to a general way for

grey level, color, movies, volumetric medical data, and color-texture image enhancement.

We first review our framework in which the Polyakov action from high-energy physics is used to develop a

minimization procedure through a geometric flow for images. Here we show that the geometric flow, based on

manifold volume minimization, yields a novel enhancement procedure for color images. We apply the geometric

framework and the general Beltrami flow to feature-preserving denoising of images in various spaces.

Next, we introduce a new method for color and texture enhancement. Motivated by Gabor’s geometric image

sharpening method (Gabor, Laboratory Investigation, 14(6):801–807, 1965), we present a geometric sharpening

procedure for color images with texture. It is based on inverse diffusion across the multi-channel edge, and diffusion

along the edge.
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1. Introduction

We extend in this paper the geometric framework pre-

sented in Sochen et al. (1996) both in scope and in ap-

plications. It is applied to volumetric images, movies,

texture analysis and color images. We study in detail

the structure of the different norms suggested for color

processing and show that our area norm satisfies ba-

sic requirements of Lambertian color images.We show

∗Readers may view the figures in color at 〈http:www.cs.technion.
ac.il/∼ron/belt.html〉.
∗∗N. Sochen was previously with the Electrical Engineering Depart-
ment, Technion, Haifa 32000, Israel.

further that recent enhancement techniques ofWeickert

(1994, 1997) for grey level and color images are another

example of a PDE technique that fits our framework and

suggest a new enhancement technique that transcends

Riemannian geometry.

The framework is based on geometrical ideas bor-

rowed from high-energy physics. The essence of the

method is summarized in two steps: (a) Represent-

ing an image as a Riemannian manifold embedded

in a higher dimensional spatial-feature manifold. E.g.

a three-dimensional manifold embedded in a four-

dimensional space for volumetric medical images and

movies. (b) A non-linear scale-space equation applied

to images, derived as a gradient descent of a norm



112 Kimmel, Malladi and Sochen

functional (the Polyakov action) that weights embed-

ding maps in a geometrical way.

The explicit form of the scale-space PDE (or the

coupled PDEs) depends on the choice of dynamic co-

ordinates and the geometry of the image manifold, i.e.,

its metric. We work in this paper with Euclidean space-

feature manifold. One can also choose to work with a

non-Euclidean embedding space, see Sochen andZeevi

(1998).

The importance of edges in scale space construction

is obvious. We would like to build our minimization

schemes such that boundaries between objects survive

along the scale space, while homogeneous regions are

simplified and flattened in amore rapid way. An impor-

tant question, for which there are only partial answers,

is how to treat multi-valued images in a geometric way.

Acolor image is a good example since one actually con-

siders 3 images (Red, Green, Blue) that are composed

into one. The geometric framework attempts to answer

this question. An edge-preserving enhancement pro-

cedure is a result of minimizing the Polyakov action

norm with respect to the feature coordinates with the

induced metric and is expressed via a geometric flow

for images that we named Beltrami flow.

Texture plays an important role in the understand-

ing process of many images, specially those that in-

volve natural scenes. Therefore, it became an impor-

tant research subject in the fields of psychophysics and

computer vision. The study of texture starts from the

pre-image that describes the physics and optics that

transform the 3D world into an image. It tracks hu-

man perception from the image formation on the retina

and its interpretation at the first perception steps in the

brain.

Preserving the orientation information while dif-

fusing a given texture image is important in cer-

tain cases, say in denoising a fingerprint image. We

imagine a procedure that preserves domains of con-

stant/homogeneous texture, enhances the texture in

each domain, and thereby enhances the boundaries be-

tween neighboring domains with different textures. In

this paper, we apply the geometrical framework to im-

prove and enhance color and texture based images.

A popular method for texture analysis is to decom-

pose a given image into a set of sub-band images using

the 2D Gabor/Morlet-wavelet transform. Some nice

mathematical properties and the relation of this trans-

form to the physiological behavior were studied in Lee

(1996) and Porat and Zeevi (1988). This model was

later used for the segmentation, interpretation and anal-

ysis of texture (Bovik et al., 1990; Lee et al., 1992),

and for texture-based browsing (Manjunath and Ma,

1996). In Section 4, we use the Gabor/Morlet-wavelet

transform to split a given image into a set of sub-band

images. We then show that an enhancement proce-

dure can be constructed based on a flow in the trans-

formed space, i.e. the transform coefficients are treated

as higher dimensional manifolds. Other flows in sim-

ilar feature spaces were recently proposed in Sapiro

(1996), Rubner and Tomasi (1996), Chambolle (1994),

Sapiro and Ringach (1996), and Whitaker and Gerig

(1994); see also Weickert (1997) for orientation pre-

serving flows. These approaches begin with a flat met-

ric, or singular structures (Di Zenzo, 1986), that do not

necessarily yield a meaningful minimization process

when going to more than one channel. The main dif-

ference between these schemes and the one we pro-

pose is the geometric interpretation of the informa-

tion as a manifold flowing in a special way so as to

minimize its volume. Our geometric perspective of

a color image as a surface embedded in a higher di-

mensional space enabled us to define coupling in the

multi-channel color space. Other schemes have also

considered image as a surface (Blake and Zisserman,

1987; El-Fallah et al., 1994; El-Fallah and Ford, 1998;

Yanowitz and Bruckstein, 1989; Malladi and Sethian,

1996), some even used the image information to build

a Riemannian metric for segmentation (Caselles et al.,

1995; Kichenassamy et al., 1995; Shah, 1996a). How-

ever, these methods were not generalized to feature

space or any co-dimension higher than one.

The geometric framework has the following prop-

erties: (1) It is a general way of writing the geo-

metrical scale-space and enhancement algorithms for

grey-scale, color, volumetric, time-varying, and texture

images, (2) it unifies many existing partial differential

equation based schemes for image processing, (3) it

leads to feature-preserving schemes that are suitable for

enhancement and segmentation tasks, and (4) it offers a

general coupling between channels in a multi-channel

image processing.

The remainder of this paper is organized as follows:

We start with a short review of the geometrical frame-

work in order to be as self contained as possible and

to fix ideas and notations. The next sections are or-

dered according to increasing codimension. Section 3

deals with the simple cases of grey-level images, 3D

images andmovieswhich can be described as hypersur-

faces i.e. embedding map with codimension 1. Texture

analysis is the focus of Section 4 where the problem is
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formulated as parallel processing of different subbands

each of which described as a 3-dimensional manifold

embedded in a 5-dimensional space, i.e. a codimen-

sion 2 problem. We next move to a codimension 3

problem: Color. The understanding, processing and en-

hancement of colored images are an active fields of re-

search for more then a century. We motivate the metric

and the resulting edge-enhancing flow for color images

via a simple color image formation model. In Section 6

we link the Beltrami flow to some recent coherence en-

hancing flows. Finally, we extend our geometric frame-

work and introduce a new sharpening flow that is based

on inverse diffusion across the edge.We finish with our

concluding remarks.

2. The Geometric Framework

Let us first review the geometrical framework in which

images are considered as Riemannian manifolds. We

limit our discussion to variational methods in non-

linear scale space imageprocessing, andwhile our anal-

ysis in the following sections assumes Euclidean em-

bedding space, we leave the discussion in this section

in its full generality.

Suppose we have an n-dimensional manifold !

with coordinates σ 1, σ 2, . . . , σ n embedded in an m-

dimensionalmanifoldM with coordinates X1, X2, . . . ,

Xm, where m > n. The embedding map X :! → M

is given explicitly by the m functions of n variables

X : (σ 1, . . . , σ n)

→ (X1(σ 1, . . . , σ n), . . . , Xm(σ 1, . . . , σ n)).

This map is an embedding if the map is an injection

and the rank of the Jacobian is n.

If we denote the length of an image by σ 1 and the

width by σ 2 then a possible embedding map of a grey-

level image is

(X1(σ 1, σ 2) = σ 1, X2(σ 1, σ 2)

= σ 2, X3(σ 1, σ 2) = I (σ 1, σ 2))

where I (σ 1, σ 2) is the intensity. If we further denote

X1 ≡ x and X2 ≡ y then it can be written with a slight

abuse of notations as (x, y, I (x, y)).

Up to now we discussed coordinates only with no

mention of the geometry of themanifolds. In order to do

that we introduce Riemannian structure i.e. a metric (in

some cases pseudo-Riemannian structure is needed).

The metric at a given point on the manifold describes

thewaywemeasure distanceswithout being dependent

on the coordinates, i.e. themetric on!measures locally

the distances at a point as follows

ds2 = gµν dσµ dσ ν µ, ν ∈ {1, . . . , n}

and summation is implied on identical indices. Simi-

larly on M

ds2 = hi j dX
i dX j i, j ∈ {1, . . . ,m}.

In an isometric embedding, i.e. one that preserves

length these two line elements are equal, applying the

chain rule dX i = ∂µX
idσµ, where ∂µ ≡ ∂

∂σµ and there

is a sum over µ, gives the induced metric formula

gµν = hi j ∂µX
i ∂νX

j .

For the embedding of a grey level image in a Euclidean

3-dimensional space we obtain the following metric

gµν =

(

1+ I 2x Ix Iy

Ix Iy 1+ I 2y

)

.

Denote by (!, g) the image manifold and its metric

and by (M, h) the space-feature manifold and its met-

ric, then the Polyakov action (Polyakov, 1981) provides

a convenient measure on the space of embedding maps

X :! → M . It reads as follows

S[X i , gµν, hi j ] =

∫

dmσ
√
ggµν∂µX

i∂νX
jhi j (X),

(1)

where m is the dimension of !, g is the determinant

of the image metric, gµν is the inverse of the image

metric, the range of indices is µ, ν = 1, . . . , dim!,

and i, j = 1, . . . , dimM , and hi j is the metric of the

embedding space. For more details see Sochen et al.

(1998). This is a natural generalization of the L2 norm

to manifolds.

Many scale-spacemethods, linear andnon-linear can

be shown to be gradient descent flows of this functional

with appropriately chosen metric of the image mani-

fold. The gradient descent equation is

X i
t = − 1√

g

δS

δX i
,

where we limit ourselves above, and from now on to

Euclidean embedding space.
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The metric is a free “parameter” of the frame-

work and different choices lead to different scale-space

schemes as shown in Sochen et al. (1996). For the

choice of the metric as the induced metric the norm

becomes simply the area or the volume of the image

manifold, and the flow is towards a minimal surface so-

lution. Minimizing the area action with respect to the

feature coordinate (fixing the x and y coordinates), we

obtain the area minimization direction given by apply-

ing the second order differential operator of Beltrami

on the feature coordinates. Filtering the image based

on this result, yields an efficient geometric flow for

smoothing the image while preserving the edges. It is

written as

It = &gI, (2)

where, for color I = (R,G, B). The Beltrami operator,

denoted by&g , that is acting on I is a generalization of

the Laplacian from flat spaces. It is defined by

&gI ≡ 1√
g
∂µ

(√
ggµν∂νI

)

. (3)

For 2D images grey-level or color, the flow is given by

I it =
1

g
(∂x p

i + ∂yq
i ) − 1

2g2
(pi (∂xg) + q i (∂yg)) (4)

where gµν = δµν +
∑

i (∂µ I
i )(∂ν I

i ), g = g11g22−g212,

and

pi = g22∂x I
i − g12∂y I

i , and

q i = −g12∂x I i + g11∂y I
i . (5)

For the gray level case, the above evolution equa-

tion is the mean curvature flow of the image surface

divided by the induced metric g = det(gµν). It is the

evolution via the I components of the mean curvature

vector H. I.e. for the surface (x(σ1, σ2), I(σ1, σ2)) in

the Euclidean space (x, I), the curvature vector is given

by H = &g(x(σ1, σ2), I(σ1, σ2)). If we identify x with

σ then &g I
i (x) = H · Î i . Where, this direct com-

putation applies for co-dimensions >1. The determi-

nant of the induced metric matrix g= det(gµν)may be

considered as a generalized form of an edge indicator.

Therefore, the flow (2) is a selective smoothing mech-

anism that preserves edges and can be generalized to

any dimension. In Sochen et al. (1998) and Kimmel

et al. (1997), methods for constraining the evolution

and the construction of convergent schemes based on

the knowledge of the noise variance, were reported.

Let us consider the simple gray level case, in which

the image is considered as the surface (x, y, I (x, y))

in the (x, y, I ) Euclidean space. If we set the aspect

ratio such that d I + dx , then the principle curvatures

can be approximated by the iso-contour curvature, and

the flow line curvature which vanishes for this selec-

tion of the aspect ratio. Then, the mean curvature of

the surface which is a sum of the principle curvatures

may be approximated by the iso-contour curvature, and

the Beltrami flow becomes the TV flow (Rudin et al.,

1992) up to a factor.

3. Movies and Volumetric Medical Images

Traditionally, MRI volumetric data is referred to as 3D

medical image. Following our framework, a more ap-

propriate definition is of a 3D surface in 4D (x, y, z, I ).

In a very similar manner we will consider gray level

movies as a 3D surfaces in 4D, where all we need to do

is the mental exercise of replacing z of the volumetric

medical images by the sequence (time) axis. In Fig. 1,

the first row shows images at different z locations and

the second row shows the corresponding denoised im-

ages. This is a relatively simple case, since now we

have co-dimension equal to one.

The line element is

ds2 = dx2 + dy2 + dz2 + d I 2.

The induced metric in this case is given by

(gµν) =







1+ I 2x Ix Iy Ix Iz

Ix Iy 1+ I 2y Iy Iz

Ix Iz Iy Iz 1+ I 2z






, (6)

and the Beltrami flow is:

It =
1√
g
div

( ∇ I√
g

)

, (7)

where now∇ I ≡ (Ix , Iy, Iz) and g = 1+ I 2x + I 2y + I 2z .

The meaning of edge preserving in movies is as fol-

lows: In a shot where things stay more or less in the

same place the algorithmwill tend to flatten the bound-

aries i.e. it is an “anti shake” or “steady shot” filter. Yet

it does not have an impact on an adjacent different scene

since it preserves sharp changes along the time axis.
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Figure 1. Movie or volumetric data; see text.
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4. 2D Gabor/Morlet-Wavelets as a Space

for Texture Images

In this section, we apply the Beltrami flow in a decom-

position space for the enhancement of texture images.

In Lee (1996) Lee argues that the 2D Gabor/Morlet

wavelet transform with specific coefficients is an ap-

propriate mathematical description for images. Hemo-

tivated his model by recent neurophysiological evi-

dence based on experiments on the visual cortex of

mammalian brains. These experiments indicate that

a good model for the filter response of simple cells

are self-similar 2D Gabor/Morlet wavelets, see also

Olshausen and Field (1996). We refer the interested

reader to Masters (1996) for implementation consider-

ations, and to the rich literature on wavelet theory, e.g.

(Daubechies, 1990).

Following Lee (1996), we briefly describe the

2D Gabor/Morlet wavelets that model the simple

cells while satisfying Daubechies’ wavelet theory

(Daubechies, 1990). The 2D wavelet transform on an

image I (x, y) is defined as

(Twav I )(x0, y0, θ, a)

= ‖a‖−1
∫ ∫

dx dy I (x, y)ψθ

(

x − x0

a
,
y − y0

a

)

,

(8)

where a is a dilation parameter, x0 and y0 are the spatial

translations, and θ is the wavelet orientation parameter.

ψ(x, y, x0, y0, θ, a) = ‖a‖−1ψθ

(

x − x0

a
,
y − y0

a

)

,

(9)

is the 2D elementary wavelet function rotated by θ

Based on neurophysiological experiments, a specific

Gabor elementary function is used as the mother

wavelet to generate the 2D Gabor/Morlet wavelet fam-

ily by convolving the image with

ψ(x, y) =
1√
2π

e− 1
8
(4x2+y2)

(

eikx − e− k2

2

)

, (10)

andψθ (x, y) = ψ(x̃, ỹ) is defined by rotation of (x, y)

via

{

x̃ = x cos θ + y sin θ

ỹ = −x sin θ + y cos θ .
(11)

The discretization of Eq. (8) is given by

Wp,q,l,m =
(

Twav
p,q,l,m I

)

= a−m
∫ ∫

dx dy I (x, y)ψl&θ

× (a−m(x − p&x), A−m(y− q&x)), (12)

where&x is the basic sampling interval, and the angles

are given by &θ = 2πl/L , l = 0, . . . , L − 1, L being

the total number of orientations; p, q and m are inte-

gers determining the position and scaling. Note that as

m increases the sample intervals get larger forming a

pyramidal structure. Equation (12) can be interpreted

as a projection onto a discrete set of basis functions,

namely

Wp,q,l,m = 〈I, ψp,q,l,m〉. (13)

The real number k determines the frequency band-

width of the filters in octaves via the approximation

k =
aφ + 1

aφ − 1

√

2 ln 2, (14)

where φ is the bandwidth in octaves, e.g. for a= 2 and

φ = 1.5we get k ≈ 2.5. In the above approximation the

DC normalization term e−k2/2 that is required to make
awavelet basis out of the Gabor basis is ignored andwe

consider a = k/ω0. So the peaks of the scaled mother

wavelets in the frequency domain are (approximately)

at the locations a−mω0.

For our application we have chosen L = 16 (16 ori-

entations), a= 2, &x = 1, k= 2.5, and 5 scales, i.e.

∈ {0, . . . , 4}. This selection results in a ‘tight frame’

(Duffin and Schaeffer, 1952) that allows simple sum-

mation reconstruction.

4.1. Beltrami Flow for Texture Enhancement

We denote the 2D Gabor/Morlet-wavelet transform as

W (x, y, θ, σ ), where for the discrete case σ = am and

θ = l&θ . Let R = Real(W ) and J = Imag(W ) be its

real and imaginary part. The response of a simple cell

is then modeled by the projection of the image onto a

specific Gabor/Morlet wavelet.

The Gabor/Morlet-wavelet transform of an image

in our framework is a mapping W : (x, y, θ, σ ) →
(x, y, θ, σ, R, J ), i.e. a 4D manifold embedded in 6D.

The Beltrami operator is not limited to act on gray level

images (2D surfaces in 3D) as we show in Section 5 for
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color. First, the metric gµν is “pulled back” from the

relevant arclength definition in the spatial-orientation

complex space, namely

ds2 = dx2 + dy2 + dθ2 + dσ 2 + d J 2 + dR2.

For practical implementation we consider each scale

as a separate space. This is in contrast to writing the

arclength for the full transform. Therefore, the ar-

clength for a given scale σ is ds2 = dx2+dy2+dθ2+

d J 2 + dR2, and the induced metric for each scale is

given by

(gµν)

=









1+ R2x + J 2x Rx Ry + Jx Jy Rx Rθ + Jx Jθ

Rx Ry + Jx Jy 1+ R2y + J 2y RyRθ + Jy Jθ

Rx Rθ + Jx Jθ RyRθ + Jy Jθ 1+ R2θ + J 2θ









.

(15)

As we have seen before, the above result can be un-

derstood from the arclength definition and applying the

chain rule dR = Rxdx + Rydy + Rθdθ , and similarly

for d J to obtain the desired bilinear structure.

Finally, the area-minimizing and feature-preserv-

ing Beltrami flow that operates on the Gabor/Morlet-

wavelet transform of a texture image can be compactly

written as

Rt = &gR

Jt = &g J.
(16)

The main difference from nonlinear diffusion in the

image plane, is the freedom to work separately on each

scale subspace. There is also a newmeaning to the term

‘edge’ in the decomposion space, since edge is now

defined as the spatial difference in orientation rather

than an explicit change in the gray level.

As a by product of the wavelet decomposition,

at each scale σ we now have the complex function

Wσ (x, y, θ) = Rσ (x, y, θ) + i Jσ (x, y, θ). It defines

a 3D manifold in the 5D space (x, y, θ, Rσ , Jσ ). The

extra coordinate θ that describes the behavior of the

image along a specific direction enables us to smooth

the image while keeping the meaningful orientation

structure of the texture. Moreover, we have the free-

dom to apply different filters to the different scales.

This enables us to preserve the nature of texture im-

ages by processing them only at significant scales. In

other words, we can sharpen a specific scale without

Figure 2. Top Row: Original image 128×128 is on the left. Result
of Beltrami flow for 70 numerical iterations of each sub-scale in the

decomposition space is on the right. Second and Third Rows: Two

steps along the evolution for two different texture images, Left is the

original image 64× 64.

effecting the rest of the sub-band images. The first row

is Fig. 2 presents the original image and the result of

applying the Beltrami flow in the decomposition space

to filter out non-oriented structures in a gray level im-

age. More examples are shown in the second and third

rows of Fig. 2.

5. Color Processing

We show in this section that the geometric framework

results in a meaningful operator for enhancing color

images, following the presentation in Kimmel (1998).

The area functional, or “norm”, captures the way we

would like the smoothing process to act on the different

color channels while exploring the coupling between

them. Next, the steepest descent flow associated with

the first variation of this functional is shown to be a

proper selective smoothing filter for the color case. In

this section we briefly review the geometric framework

and justify the usage of the area norm and the Beltrami

steepest descent flow in the color case. We list the re-

quirements, compare to other recent norms, and relate

to line element theories in color.
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In Sochen et al. (1996, 1998) and Kimmel et al.

(1997), the geometrical framework for image diffu-

sion was introduced. Minimizing the area of the image

surface was claimed to yield a proper filter for color

image enhancement. The area norm may serve for in-

termediate asymptotic analysis in low level vision, that

is referred to as scale space in the computer vision

community (ter Haar Romeny, 1994). The norm may

be coupled with variance constraints that are imple-

mented via projection methods that were used for con-

vergence based denoising (Rudin et al., 1992) for image

processing. Another popular option is to combine the

norm with lower dimensional measures to create vari-

ational segmentation procedures, like the Mumford-

Shah (Richardson and Mitter, 1994; Mumford and

Shah, 1985; Kimmel and Sochen, 1999). In this sec-

tion we justify the usage of the area norm for color

images obtained by the geometric framework and the

Beltrami flow as an appropriate scale-space.

Here we limit our discussion to variational meth-

ods in non-linear scale space image processing, and to

Euclidean color space. Given other significant groups

of transformations in color, one could design the in-

variant flow with respect to that group based on the

philosophy of images as surfaces in the hybrid space

(x, y, R,G, B) through an arclength definition.

Let us first briefly review the geometric framework

and the Beltrami flow and explore its relation to line

element theory in color. Next we list the coupling re-

quirements for the color case. A simple ‘color image

formation’ model defines a ‘proper’ order of events for

a desired enhancement. It is shown that this sequence

of events is captured by the area norm.

5.1. The Geometric Framework

and Color Processing

According to the geometric framework, images are

considered as surfaces rather than functions. The area

of the image surface minimized in a special way yields

filters for texture, volume, movie, and color image

enhancement.

Usually, a color image is considered as 3 images

Red, Green, andBlue, that are composed into one. How

should we treat such a composition? To answer this

question, we view color images as embedding maps,

that flow towards minimal surfaces. See Yezzi (1998)

for a non-variational related effort.

At this point we would like to go back more than a

hundred years, when physicists started to describe the

human color perception as simple geometric space. von

Helmholtz (1896)was the first to define a ‘line element’

(arclength) in color space. He first used a Euclidean

R,G, B space defined by the arclength

ds2 = (d log R)2 + (d logG)2 + (d log B)2. (17)

His first model failed to represent empirical data

of human color perception. Schrödinger (1920) tried

to improve Helmholtz’s model by introducing the

arclength

ds2 =
1

lRR + lGG + lBB

×
(

lR(dR)2

R
+
lG(dG)2

G
+
lB(dB)2

B

)

, (18)

where lR, lG, lB are constants. Schrödinger’s model

was later found to be inconsistent with findings on

threshold data of color discrimination.

If we summarize the existingmodels for color space,

we have twomain cases: 1. The inductive line elements

that derive the arclength by simple assumptions on the

visual response mechanisms. For example, we can as-

sume that the color space can be simplified and rep-

resented as a Riemannian space with zero Gaussian

curvature, e.g. von Helmholtz (1896) or Stiles (1946)

and Wyszecki and Stiles (1982) models. Another pos-

sibility for inductive line elements is to consider color

arclengths like Schrödinger, or Vos and Walraven

(1972). These models define color spaces with non-

zero curvature (‘effective’ arclength). 2. The empir-

ical line elements, in which the metric coefficients

are determined to fit empirical data. Some of these

models describe a Euclidean space like the CIELAB

(CIE 1976 (L∗a∗b∗)) (Wyszecki and Stiles, 1982),
recently used in Sapiro and Ringach (1996). Others,

like MacAdam (1942, 1943), are based on an effective

arclength.

The geometric framework is not limited to zero cur-

vature spaces, and can incorporate any inductive or em-

pirical color line element. See for example Sochen and

Zeevi (1998).

In case we want to perform any meaningful process-

ing operation on a given image, we need to define a

spatial relation between the points in the image plane

x. As a first step define the image plane to be Euclidean,

which is a straightforward assumption for 2D images,
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that is

ds2x = dx2 + dy2. (19)

In order to construct a valuable geometric measure

for color images we need to combine the spatial and

color measures. The simplest combination of this hy-

brid spatial-color space is given by

ds2 = ds2x + β2 ds2c . (20)

The parameter β has dimensions [distance/intensity]

and fixes the relative scale between the intensity of

colors and the spatial distances. For a large β it defines

a regularization of the color space.

Given the above arclength for color images, we

pose the following question: How should a given im-

age be simplified? In other words: What is the mea-

sure/norm/functional that is meaningful? What kind of

variational method should be applied in this case?

The next geometricalmeasure after arclength is area.

Minimization of area is a well known and studied phys-

ical phenomena. We will show, that for the right aspect

ratio β the area is a meaningful measure for our color

case. Once the minimization measure is determined,

one still needs to determine the parameterization for the

steepest decent flow. A geometric flow for area mini-

mization, that preserves edges is given by the Beltrami

flow.

Let x and y be the spatial coordinates and the in-

tensity R,G, B the feature coordinates, and describe

color images as 2D surfaces in the 5D (x, y, R,G, B)

space. The arclength is given by

ds2 = dx2 + dy2 + dR2 + dG2 + dB2. (21)

As an introduction we have chosen the over simplified

Euclidean color space, and for the time being assume

β = 1. Next, we pull back the image surface induced

metric from the arclength definition. By applying the

chain rule dR = Rxdx+ Rydy, and rearranging terms,

we obtain a distancemeasure on the surface defined via

ds2 = g11 dx
2 + 2g12 dx dy + g22 dy

2,

where gµν = δµν +
∑

i (∂µ I
i )(∂ν I

i ) are the induced

metric coefficients, i ∈ {1, 2, 3} indicates the differ-

ent color channels: I 1 = R, I 2 = G and I 3 = B.

For the Euclidean color casewith the inducedmetric,

the norm is the area
∫

d2σ
√
g. Here g is the determi-

nant of the metric matrix g = det(gi j ) = g11g22 − g212

given by its components gµν = δµν +
∑

i (∂µ I
i )(∂ν I

i ).

Ifwemultiply the intensities by a constantβ, this action

functional is given explicitly by

S =
∫

√

1+ β2
∑

i

|∇ I i |2 + β4
1

2

∑

i j

(∇ I i , ∇ I j )2 dx dy.

(22)

where (∇R, ∇G) ≡ RxG y − RyGx is the magnitude

of the cross product of the vectors ∇R and ∇G. The
action in Eq. (22) is the area of the image as a surface.

This functional obviously depends on the scalar β.

For β + 1 it practically means mapping the intensity

values that usually range between 0 and 255 to, let us

say, [0, 1000]. Roughly speaking, for this limit of β,

the order of events along the scale of the flow is as

follows: First the different colors align together, then

starts the selective smoothing geometric flow (similar

to the single channel TV-L1). On the other limit, where

β2 0 1, the smoothing tends to occur uniformly as a

multi-channel heat equation (L2).

5.2. Color Image Formation and Coupling

Requirements

Let us elaborate on the selection of area as a proper

measure for color images. The question we try to an-

swer is how should we link between the different spec-

tral channels. Let us assume that each color is ‘equally

important’ and thus the measure we define should be

symmetric.Within the scale space philosophy, wewant

the different spectral channels to get smoother in scale.

This requirement leads to the minimization of the dif-

ferent color channels’ gradient magnitudes combined

in one way or another.

Next we argue that an important demand for color

image processing is the alignment requirement of the

different color channels. That is, we want the color

channels to align together as they become smoother

in scale. Figure 3 shows one level set of the Red and

Green colors and their corresponding gradient vectors

at one point along the level set. The requirement that the

color channels align together as they evolve, amounts to

minimizing the cross products between their gradient

vectors.

A simplified color image formation model is a re-

sult of viewing Lambertian surface patches (not nec-

essarily flat). Such a scene is a generalization of a
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Figure 3. The cross product between ∇R and ∇G,
(∇G,∇R)

2
displayed as the area of the gray triangle, measures the alignment between them.

‘Mondriaan world’. Each channel is considered as the

projection of the real 3D world surface normal N̂(x)

onto the light source direction 1l, multiplied by the
albedo ρ(x, y). The albedo captures the characteris-

tics of the 3D object’s material, and is different for

each spectral channel. The 3 color channels may then

be written as

I i (x) = ρi (x)N̂(x) · 1l, (23)

see Fig. 4. Which means that the different colors cap-

ture the change in material via the albedo that mul-

tiplies the normalized shading image Ĩ (x) = N̂(x) ·
1l.
Let us also assume that the material, and therefore

the albedo, are the same within a given object in the

image, e.g. ρi (x) = ci , where ci is a given constant.

The intensity gradient for each channel within a given

object is then given by

∇ I i (x) = Ĩ (x)∇ρi (x) + ρi (x)∇ Ĩ (x)
= Ĩ (x)∇ci + ci∇ Ĩ (x)
= ci∇ Ĩ (x). (24)

Figure 4. A simplified Lambertian color image formation model (left), leads to spectral channel alignment (right), see text.

Under the above assumptions, all color channels should

have the same gradient direction within a given object.

Moreover, the gradient direction should be orthogonal

to the boundary for each color, since both the normal-

ized shading image Ĩ and the albedo ρi change across

the boundaries. Our Lambertian world, without inter-

reflections and specularities, is an oversimplifiedmodel

for color image formation. Yet, its simplicity and lo-

cality direct us to a proper order of events we expect

our local differential filters to follow. The Lambertian

shading model is indeed the simplest image synthesis

method in computer graphics. We can thus conclude

that a first step in color processing should be the align-

ment of the colors so that their gradients agree. Only

next should come the diffusion of all the colors simul-

taneously. Aswe show, the areaminimization approach

takes care for the gradients alignment, and solves the

undesired twist between the channels.

For a large enough β, Eq. (22) follows exactly these

requirements and the area norm is a regularization form

of

∫ √

∑

i

|∇ I i |2 + β2
∑

i j

(∇ I i , ∇ I j )2 dx dy, (25)
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that captures the order of events described above. For

an even larger β it can be considered as a regularization

of the affine invariant norm

∫ √

∑

i j

(∇ I i , ∇ I j )2 dx dy. (26)

If we also add the demand that edges should be pre-

served and search for the simplest geometric param-

eterization for the flow, we end up with the Beltrami

flow as an appropriate selection.

Figure 5 shows snapshots from the Beltrami scale

space in color for 3 images. Next, the flow is used to

selectively smooth the JPEG compression distortions

Figure 5. Three snapshots along the scale space (left most is the original image).

in Fig. 6. Observe how the color perturbations are

smoothed: The cross correlation between the colors

holds the edges while selectively smoothing the un-

correlated data. In Fig. 7, we deal with multiplicative

noise. The Beltrami flow is used again as a denoising

filter, now in the log domain to selectively smooth the

image. The L2 difference between the noisy and fil-

tered images, is assumed to be known, and serves as a

stopping criteria.

5.3. Previous Norms for Color Images

Let us review recent norms suggested for color process-

ing.We startwith two non-variationalmethods thatwill
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Figure 6. Three snapshots along the scale space for selectively

smoothing JPEG lossy effects. The three channels are rendered as

surfaces. The original image is on the left.

lead us to the variational norms: Chambolle (1994),

suggested a flow by the second derivative in the di-

rection of minimal change with respect to the spectral

channel with the largest gradient. Sapiro and Ringach

(1996) considered geometric diffusion in the direction

of maximal L2 change, see Weickert (1994, 1997) for

a related effort. They used the eigenvalues, λ±, of the

matrix (though not a metric) gµν =
∑

i (∂µ I
i )(∂ν I

i ) as

a generalised edge detector to preserve edges.

Figure 7. Original benchmark image 128× 128 is on the left. A random noise, n, with zero mean, uniformly distributed over 10% of the log2
intensity scale is added to the image log2 intensity, log2 Ĩ = log2 I + n, which is a multiplicative noise. Result of Beltrami flow as a selective

smoothing denoising in color is on the right.

In Sapiro (1996) Sapiro suggested to consider the

variational method of the general form
∫

f (λ−, λ+).

Blomgren and Chan reported in Blomgren and Chan

(1996, 1998), that from the class of all possible norms

of the form f (λ+, λ−), the f (λ+, λ−) is the most

natural one. This brings us to Shah’s multi-channel

model (Shah, 1996b), that is based on the norm
∫ √

∑

i=1 |∇ I i |2 as part of a generalized Mumford-
Shah functional.

Blomgren andChan (1996) defined a different “color

TV” norm

TVm =

√

√

√

√

m
∑

i=1

(∫

|∇ I i |
)2

,

with a constraint. In this case the coupling between the

colors is only by the constraint. Actually, without the

constraint theminimization yields a channel by channel

curvature flow.

In order to preserve the edge and resolve color fluc-

tuations one needs to use the cross alignment within

the definition of the norm. While none of the previous

norms included the cross-alignment terms in a proper

way, the geometric framework of images as surfaces

lead us to the norm that resolves the twist (torsion)

between the channels via the cross-alignment term.

We have thereby shown that the geometric framework

yields a proper norm with respect to recent norms, and

with respect to a list of objective requirements and

considerations of color image formation. Next we ap-

ply the Beltrami operator to construct an orientation-

preserving flow for texture images.
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6. The Metric as a Structure Tensor

In Gabor (1965) and Lindenbaum et al. (1994), Gabor

considered an image enhancement procedure based on

a single numerical step along a directional flow. It

is based on the anisotropic flow via the inverse sec-

ond directional derivative in the ‘edge’ direction (∇ I
direction) and the geometric heat equation (second

derivative in the direction parallel to the edge). The

same idea of steering the diffusion direction motivated

many recent works. Cottet and Germain (1993) used a

smoothed version of the image to direct the diffusion,

while Weickert (1995, 1998) smoothed also the struc-

ture tensor ∇ I∇ I T and then manipulated its eigenval-
ues to steer the smoothing direction. Eliminating one

eigenvalue from a structure tensor, first proposed as a

color tensor inDi Zenzo (1986), was used in Sapiro and

Ringach (1996a, 1996b), in which the tensors are not

necessarily positive definite. While in Weickert (1994,

1997), the eigenvalues are manipulated to result in a

positive definite tensor. See also Chambolle (1994),

where the diffusion is in the direction perpendicular to

the maximal gradient of the three color channels (this

direction is different than that of Sapiro and Ringach

(1996b)).

6.1. Relation to Weickert’s Coherence

Enhancement Scheme

Motivated by these results we follow (Kimmel et al.,

1998) and first link the anisotropic orientation diffusion

(coherence enhancement (Weickert, 1998)) to the geo-

metric framework, and then invert the diffusion direc-

tion across the edge. Let us first show that the diffusion

directions can be deduced from the smoothed metric

coefficients gµν and may thus be included within the

Beltrami framework under the right choice of direc-

tional diffusion coefficients.

The induced metric (gµν) is a symmetric uniformly

positive definite matrix that captures the geometry of

the image surface. Let λ1 and λ2 be the largest and

the smallest eigenvalues of (gµν), respectively. Since

(gµν) is a symmetric positive matrix its corresponding

eigenvectors u1 and u2 can be chosen orthonormal. The

diagonalizingmatrix beU ≡ (u1|u2) is Hermitian, and

/ ≡ (
λ1 0

0 λ2
), then we readily have the equality

(gµν) = U/U T . (27)

Note also that

(gµν) ≡ (gµν)
−1U/−1U T = U

(

1/λ1 0

0 1/λ2

)

U T ,

(28)

and that

g ≡ det(gµν) = λ1λ2. (29)

We will use the image metric as a control on the

amount and direction of the diffusion, i.e., as a structure

tensor. The coherence enhancement Beltrami flow It =

&ĝI for color-texture images is then given as follows:

1. Compute the metric coefficients gµν . For the N

channel case (for color N = 3) we have

gµν = δµν +

N
∑

k=1

(∂µ I
k)(∂ν I

k). (30)

2. Diffuse the gµν coefficients by convolving with a

Gaussian of variance ρ, thereby

g̃µν = Gρ ∗ gµν . (31)

For 2D images Gρ = 1
πρ2

e−(x2+y2)/ρ2 .

3. Change the eigenvalues,λ1, λ2, λ1 > λ2, of (g̃µν) so

that λ1 = α−1 and λ2 = α, for some given positive

scalar α 0 1. This yields a new metric ĝµν that is

given by

(ĝµν) = Ũ

(

α−1 0

0 α

)

Ũ T = Ũ/αŨ
T . (32)

4. Evolve the k-th channel via Beltrami flow, that by

the selection ĝ ≡ det(ĝµν) = λ1λ2 = α−1α = 1

now reads

I kt = &ĝ I
k ≡ 1

√

ĝ
∂µ

√

ĝĝµν∂ν I
k = ∂µĝ

µν∂ν I
k

= div

(

Ũ

(

α 0

0 α−1

)

Ũ T∇ I k
)

= div
(

Ũ/αŨ
T∇ I k

)

. (33)

Note again that both for gray level and color images

the above flow is similar to the coherence-enhancing

anisotropic diffusion with the important property of
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Figure 8. Motivated by the geometric framework and Gabor’s

sharpening algorithm we steer the diffusion directions and invert the

diffusion direction across the edge. The edge direction is extracted

by ‘sensing’ the multi-channel structure after smoothing the metric.

a uniformly positive definite diffusion tensor. For

color images, (gµν) = I +
∑

i ∇ I i∇ I i
T

, where I is

the identity matrix, and I i are the color channels

((I r , I g, I b) ≡ (I 1, I 2, I 3)). In this case all that is done

is the identity added to the structure tensors ∇ I∇ I T
for gray and

∑

i ∇ I i∇ I i
T

for color. This addition does

not change the eigenvectors and thus the above flow is

equivalent toWeickert schemes (Weickert, 1994, 1995,

1997, 1998). Next, we introduce a new inverse/direct

diffusion model.

6.2. Inverse Diffusion Across the Edge

Let us take one step further, and exit our Rieman-

nian framework by defining (gµν) to be a non-singular

symmetric matrix with one positive and one negative

eigenvalues, i.e., a pseudo-Riemannian metric. That is,

instead of a small diffusion we introduce an inverse

diffusion across the edge. Here we extend Gabor’s idea

Figure 9. Left: Original fingerprint image 128×128.Middle: Result of the diffusion flowwith smoothedmetric (ρ = 6) and steered eigenvalues

(α = 10−5) after 4 numerical iterations. Right: Result of the inverse/direct diffusion flow with smoothed metric (ρ = 2), steered eigenvalues

and negative eigenvalue in the gradient direction (inverse/direct diffusion) after 4 numerical iterations (α = 0.55).

(Gabor, 1965; Lindenbaum et al., 1994) of inverting

the diffusion along the gradient direction.

Inverting the heat equation is an inherently unstable

process, see for example Steiner et al. (1998). If we

keep smoothing the metric coefficients, and apply the

heat operator in the perpendicular direction we get a

coherence-enhancing flow with sharper edges that is

stable for a short duration of time. Obviously, the sta-

bility here is an empirical observation, since an inverse

second order sharpening of a given sharp image yields

visible artifacts. Nevertheless, a one numerical step of

inverse diffusion is the classical sharpening technique

in image processing.

Our idea is to change the sign of one of the modified

eigenvalues in the algorithm described in the previous

section, see Fig. 8.

We change steps 3 and 4 of the previous scheme that

now reads:

1. Compute the metric coefficients gµν = δµν +
∑N

k=1

(

∂µ I
k
)(

∂ν I
k
)

.

2. Diffuse the gµν coefficients by convolving with a

Gaussian of variance ρ.

3. Change the eigenvalues of (g̃µν) such that the largest

eigenvalue λ1 is now λ1 = −α−1 and λ2 = α, for

some given positive scalar α < 1. This yields a new

matrix ĝµν that is given by:

(ĝµν) = Ũ

(−α−1 0

0 α

)

Ũ T = Ũ/αŨ
T . (34)

We have used a single scalar α for simplicity of

the presentation. Different eigenvalues can be cho-

sen, one example are eigenvalues that depend on the

original ones and bring us back to the Beltrami flow.

By manipulating the eigenvalues we control the di-

rection as well the intensity of the diffusion that can



Figure 10. Top: Original picture “Femme à l’ombrelle tournée vers la gauche,” by Claude Monet (1875) (“woman with umbrella turning left”)

521× 784 (left), and the result of the inverse/direct diffusion flow (ρ = 4) after 8 numerical iterations (right). Bottom: Orientation preserving

diffusion for 8 (left) and 128 (right) iterations.
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Figure 11. Color and texture: Top Row: Original ‘Shells’ image 242×184 (left), and the result of the color and texture inverse/direct diffusion.
Flow for 4 (middle) and 8 (right) numerical iterations, α = 0.55. Second Row: Original (left), and the result of the orientation preserving

diffusion flow (smoothed metric and steered eigenvalues α = 10−5, ρ = 2) for 2 (middle) and 16 (right) numerical iterations.

just as well be edge dependent. In this application

the key idea is to modify the largest eigenvalue to

be negative. This modification inverts the diffusion

direction across the multi-spectral edge and thereby

enhance it.

4. Evolve the k-th channel via the flow, that by the se-

lection |ĝ| ≡ |det(ĝµν)| = |λ1λ2| = |−α−1α| = 1,

reads

I kt =
1

√

|ĝ|
∂µ

√

|ĝ|ĝµν∂ν I
k = ∂µĝ

µν∂ν I
k

= div

(

Ũ

(−α 0

0 α−1

)

Ũ T∇ I k
)

. (35)

For the gray level case with ρ = 0 it simplifies to

highly unstable inverse heat equation. However, as ρ

increases the smoothing along the edges becomes fun-

damental and the scheme is similar in its spirit to that

of Gabor (1965). Different control methods can be ap-

plied. One example is an additional regularization term
λ
2
(I (0) − I (t))2 that penalizes the departure from the

original image, similar to the ideas explored in Steiner

et al. (1998). Another example is location dependent

modification of the eigenvalues with local sensitivity

to the image metric.

Gabor’s (Gabor, 1965) comment on the inverse dif-

fusion operation in the gradient direction is that ‘It is

very similar to the operation which the human eye car-

ries out automatically, and it is not surprising that even

the first steps in imitating the human eye by mechani-

cal means lead to rather complicated operations’. It is

important to note that the idea of stabilizing the inverse

heat equation is extensively used in image processing.

Exploring this area is beyond the scope of this paper.

However,we like to refer the reader to the ‘shockfilters’

introduced by Osher and Rudin in (Osher and Rudin,

1990) for gray level images, and the extension of Al-

varez and Mazorra (1994) who apply geometrical in-

verse diffusion in the gradient direction combined with

a directional smoothing in the orthogonal direction for

gray level images.

6.3. Color Orientation-Enhancing Results

For completeness of the exposition we first repeat the

gray level case as inWeickert (1995, 1998) and present

an example of a fingerprint enhancement in gray level

in Fig. 9.

InWeickert (1999) the coherence enhancement flow

was applied on several colormasterpieces by vanGogh,

which resulted in a ‘coherence enhancement of expres-

sionism’. In the next example we have chosen to ‘en-

hance and sharpen impressionism’. We apply first the

anisotropic oriented diffusion flow and then the new
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Figure 12. Color and texture: Diffusion flow with smoothed metric and steered eigenvalues (α = 10−5); Top Row: Original ‘mandrill’ image
512×512 (left), and the result of orientation-preserving flow and negative eigenvalue (inverse diffusion) in gradient direction, α = 0.39. Second

Row: Two steps along an orientation-preserving diffusion flow.

oriented diffusion along/inverse diffusion across the

edge on a color painting by Claude Monet, see Fig. 10.

Next, we apply the color-oriented diffusion, and the

oriented inverse/direct diffusion algorithms to a stan-

dard color-texture test image. Figure 11 compares again

the flow with and without the inverse heat operator

across the edge direction.

In the last example, we use the standard ‘mandrill’

color test image Fig. 12. Again, for comparison, the

second row presents two steps along the color oriented

diffusion flow.

7. Concluding Remarks

We applied the geometric framework and used it to de-

sign novel procedures for enhancement of color and

texture images. These procedures are based on the in-

terpretation of the image as a surface and a heat flow

with respect to a given metric (Beltrami operator) as a

filter.

We dealt with image enhancement and reconstruc-

tion of color and orientation based texture. These two

different spaces were linked by a geometrical measure.
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The proposed filters align the color channels without

un-coupling disturbances while enhancing the orienta-

tion based texture features and/or preserving the edges.

Lee’s (Lee, 1996) decomposition space was used for

texture processing via the geometric framework.

We linked the geometric framework to recent color

and texture enhancement algorithms and introduced a

new sharpening procedure that extends the geometric

framework. It is based on inverse diffusion across the

edge for better sharpening results.

Adirect application of the proposedmethods is to en-

hance selectively smooth, or sharpen color-texture and

volumetric images. It can also be used to reduce the im-

age entropy prior to compression and enhance its coher-

ence in the reconstruction process, e.g. image restora-

tion and denoising of lossy compression effects. It was

shown that the geometrical framework can be applied

to color, movies, and volumetric medical data, as well

as non-trivial decomposition spaces.
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Notes

1. In case the embedding space is chosen non-Euclidean there is an

extra term. See Sochen et al. (1998).

2. This definition of anisotropic flow differs from the Perona-Malik

(1990) framework, that is locally isotropic. See Proesmans et al.

(1994) for many interesting extensions and applications of the

locally isotropic flow.

References

Alvarez, L. and Mazorra, L. 1994. Signal and image restoration us-

ing shock filters and anisotropic diffusion. SIAM J. Numer. Anal,

31:590–605.

Blake,A. andZisserman,A. 1987.Visual Reconstruction.MITPress:

Cambridge, Massachusetts.

Blomgren, P. and Chan, T.F. 1996. Color TV: Total variationmethods

for restoration of vector valued images. Cam TR, UCLA.

Blomgren, P. and Chan, T.F. 1998. Color TV: Total variationmethods

for restoration of vector valued images. IEEE Trans. on Image

Processing, 7(3):304–309.

Bovik, A.C., Clark, M., and Geisler, W.S. 1990. Multichannel tex-

ture analysis using localized spatial filters. IEEE Trans. on PAMI,

12(1):55–73.

Caselles, V., Kimmel, R., and Sapiro, G. 1995. Geodesic active

contours. In Proceedings ICCV’95, Boston, Massachusetts, June

1995, pp. 694–699.

Chambolle, A. 1994. Partial differential equations and image pro-

cessing. In Proceedings IEEE ICIP, Austin, Texas, Nov. 1994,

Vol. 1, pp. 16–20.

Cottet, G.H. and Germain, L. 1993. Image processing through re-

action combined with nonlinear diffusion.Math. Comp., 61:659–

673.

Daubechies, I. 1990. The wavelet transform, time frequency lo-

calization and signal analysis. IEEE Trans. Information Theory,

36(5):961–1004.

Di Zenzo, S. 1986. A note on the gradient of amulti image.Computer

Vision, Graphics, and Image Processing, 33:116–125.

Duffin, R.J. and Schaeffer, A.C. 1952. A class of nonharmonic

Fourier series. Trans. Am. Math. Soc., 72:341–366.

El-Fallah, A.I. and Ford, G.E. 1998. On mean curvature diffusion in

nonlinear image filtering. Pattern Rec. Letters, 19:433–437.

El-Fallah, A.I., Ford, G.E., Algazi V.R., and Estes, R.R. 1994. The

invariance of edges and corners under mean curvature diffusions

of images. In Processing III SPIE, Vol. 2421, pp. 2–14.

Gabor, D. 1965. Information theory in electron microscopy. Labo-

ratory Investigation, 14(6):801–807.

von Helmholtz, H. 1896. Handbuch der Psychologischen Optik.

Voss: Hamburg.

Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi,

A. 1995. Gradient flows and geometric active contour mod-

els. In Proceedings ICCV’95, Boston, Massachusetts, June 1995,

pp. 810–815.

Kimmel, R. 1998. A natural norm for color processing. In Proc. of 3-

rd Asian Conf. on Computer Vision, Hong Kong, Springer-Verlag,

LNCS 1351. Jan. 1998, pp. 88–95.

Kimmel, R., Malladi, R., and Sochen, N. 1998. Image processing

via the beltrami operator. In Proc. of 3-rd Asian Conf. on Com-

puter Vision, HongKong, Jan. 1998. Springer-Verlag, LNCS1351,

pp. 574–581.

Kimmel, R. and Sochen, N. 1999. Geometric-variational approach

for color image enhancement and segmentation. In Proc. 2nd Int.

Conference on Scale-Space Theories in Computer Vision Geomet-

ric Image Flows, Nonlinear Diffusion, Functional Minimisation,

and Linear Scale-Space, Corfu, Sept. 1999.

Kimmel, R., Sochen, N., and Malladi, R. 1997. From high energy

physics to low level vision. In Lecture Notes in Computer Sci-

ence: First International Conference on Scale-Space Theory in

Computer Vision. Springer-Verlag, Vol. 1252, pp. 236–247.

Lee, T.S. 1996. Image representation using 2DGabor-wavelets. IEEE

Trans. on PAMI, 18(10):959–971.

Lee, T.S., Mumford, D., and Yuille, A.L. 1992. Texture segmenta-

tion by minimizing vector valued energy functionals: the couple-

membrane model. In Lecture Notes in Computer Science, 588,

Computer Vision: ECCV’92, G. Sandini (Ed.). Springer-Verlag,

pp. 165–173.



Images as Embedded Maps and Minimal Surfaces 129

Lindenbaum, M., Fischer, M., and Bruckstein, A.M. 1994. On

Gabor’s contribution to image enhancement. Pattern Recognition,

27(1):1–8.

MacAdam, D.L. 1942. Visual sensitivity to color differences in day-

light. J. Opt. Soc. Am., 32:247.

MacAdam, D.L. 1943. Specification of small chromaticity differ-

ences, J. Opt. Soc. Am., 33:18.

Malladi, R. and Sethian, J.A. 1996. Image processing: Flows under

min/max curvature and mean curvature. Graphical Models and

Image Processing, 58(2):127–141, March 1996.

Manjunath, B.S. and Ma, W.Y. 1996. Texture features for browsing

and retrieval of image data. IEEE Trans. on PAMI, 18(8):837–841.

Masters, T. 1996. Signal and Image Processing with Neural Net-

works: A C++ Sourcebook. Wiley: New York.

Mumford, D. and Shah, J. 1985. Boundary detection by minimiz-

ing functionals. In Proceedings of CVPR, Computer Vision and

Pattern Recognition, San Francisco, pp. 22–26.

Olshausen, B.A. and Field, D.J. 1996. Emergence of simple-cell

receptive field properties by learning a sparse code for natural

images. Nature, 381:607–609.

Osher, S.J. and Rudin, L.I. 1990. Feature-oriented image enhance-

ment using shock filters. SIAM J. Numer. Analy., 27(4):919–940,

August 1990.

Perona, P. and Malik, J. 1990. Scale-space and edge detection using

anisotropic diffusion. IEEE-PAMI, 12:629–639.

Polyakov,A.M. 1981.Quantumgeometry of bosonic strings.Physics

Letters B, 103B(3):207–210.

Porat,M. andZeevi, Y.Y. 1988. The generalizedGabor scheme of im-

age representation in biological and machine vision. IEEE Trans.

on PAMI, 10(4):452–468.

Proesmans, M., Pauwels, E., and van Gool, L. 1994. Coupled

geometry-driven diffusion equations for low level vision. In

Geometric-Driven Diffusion in Computer Vision, B.M. ter Haar

Romeny (Ed.). Kluwer Academic Publishers: The Netherlands.

pp. 191–228.

Richardson,T. andMitter, S. 1994.Approximation, computation, and

distoration in the variational formulation. In Geometric-Driven

Diffusion in Computer Vision, B.M. ter Haar Romeny (Ed.).

Kluwer Academic Publishers: The Netherlands.

ter Haar Romeny, B.M. (Ed.). 1994. Geometric Driven Diffusion in

Computer Vision. Kluwer Academic Publishers: The Netherlands.

Rubner, Y. and Tomasi, C. 1996. Coalescing texture descriptors.

In Proceedings of the ARPA Image Understanding Workshop,

Feb. 1996, pp. 927–936.

Rudin, L., Osher, S., and Fatemi, E. 1992. Nonlinear total variation

based noise removal algorithms. Physica D, 60:259–268.

Sapiro, G. 1996. Vector-valued active contours. InProceedings IEEE

CVPR’96, pp. 680–685.

Sapiro, G. and Ringach, D. 1996a. Anisotropic diffusion of multi-

valued images. In 12th Int. Conf. on Analysis and Optimization of

Systems: Images, Wavelets and PDE’S, London Springer, Lecture

Notes in Control and Information Sciences, Vol. 219, pp. 134–

140.

Sapiro, G. and Ringach, D.L. 1996b. Anisotropic diffusion of mul-

tivalued images with applications to color filtering. IEEE Trans.

Image Proc., 5:1582–1586.

Schrödinger, E. 1920. Grundlinien einer theorie der farbenmetrik in

tagessehen. Ann. Physik, 63:481.

Shah, J. 1996a. A common framework for curve evolution, segmen-

tation and anisotropic diffusion. In Proceedings IEEE CVPR’96,

pp. 136–142.

Shah, J. 1996b. Curve evolution and segmentation functionals: Ap-

plication to color images. In Proceedings IEEE ICIP’96, pp. 461–

464.

Sochen, N., Kimmel, R., and Malladi, R. 1996. From high energy

physics to low level vision. Report LBNL 39243, LBNL, UC

Berkeley, CA 94720, August 1996. Presented in ONR workshop,

UCLA, Sept. 5, 1996.

Sochen, N., Kimmel, R., andMalladi, R. 1998. A general framework

for low level vision. IEEE Trans. on Image Processing, 7(3):310–

318.

Sochen, N. and Zeevi, Y.Y. 1998. Images as manifolds embedded in

a spatial feature non-Euclidean space. In IEEE ICIP’98, Chicago,

IL, pp. 166–170.

Steiner, A., Kimmel, R., and Bruckstein, A.M. 1998. Shape enhance-

ment and exaggeration.Graphical Models and Image Processing,

60(2):112–124.

Stiles, W.S. 1946. A modified Helmholtz line element in brightness-

colour space. Proc. Phys. Soc. (London), 58:41.

Vos, J.J. and Walraven, P.L. 1972. An analytical desription of the

line element in the zonefluctuation model of color vision II. The

derivative of the line element. Vision Research, 12:1345–1365.

Weickert, J. 1994. Scale-space properties of nonlinear diffusion fil-

teringwith diffusion tensor. Report no. 110, Laboratory of Techno-

mathematics, University of Kaiserslautern, P.O. Box 3049, 67653

Kaiserslautern, Germany.

Weickert, J. 1995. Multiscale texture enhancement. In Lecture Notes

in Computer Science, Vol. 970: Computer Analysis of Images and

Patterns, Springer, pp. 230–237.

Weickert, J. 1997. Coherence-enhancing diffusion of colour images.

InProc. VII National Symposium on Pattern Rec. and Image Anal-

ysis, Barcelona, Vol. 1, pp. 239–244.

Weickert, J. 1998. Anisotropic Diffusion in Image Processing. Teub-

ner: Stuttgart. ISBN 3-519-02606-6.

Weickert, J. 1999. Coherence-enhancing diffusion in color images.

Image and Vision Computing, 17(3/4):199–210.

Whitaker, R. and Gerig, G. 1994. Vector-valued diffusion. In

Geometric-Driven Diffusion in Computer Vision, B.M. ter Haar

Romeny (Ed.). Kluwer Academic Publishers: The Netherlands,

pp. 93–134.

Wyszecki, G. and Stiles, W.S. 1982. Color Science: Concepts and

Methods, Qualitative Data and Formulae (2nd ed.). John Wiley

& Sons.

Yanowitz, S.D. and Bruckstein, A.M. 1989. A newmethod for image

segmentation.Computer Vision, Graphics, and Image Processing,

46:82–95.

Yezzi, A. 1998. Modified curvature motion for image smoothing and

enhancement. IEEE Trans. IP, 7(3):345–352.


