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Abstract—We propose a new mathematical and algorithmic
framework for unsupervised image segmentation, which is a
critical step in a wide variety of image processing applications.
We have found that most existing segmentation methods are
not successful on histopathology images, which prompted us to
investigate segmentation of a broader class of images, namely
those without clear edges between the regions to be segmented.
We model these images as occlusions of random images, which we
call textures, and show that local histograms are a useful tool for
segmenting them. Based on our theoretical results, we describe
a flexible segmentation framework that draws on existing work
on non-negative matrix factorization and image deconvolution.
Results on synthetic texture mosaics and real histology images
show the promise of the method.

Index Terms—image segmentation, occlusion models, texture,
local histograms, deconvolution, non-negative matrix factoriza-
tion

I. INTRODUCTION

Image segmentation is the process of locating the bound-

aries between visually distinct regions in an image, thereby

partitioning the pixels. Applications of image segmentation

are numerous: from remote sensing [1] and video process-

ing [2] to non-destructive testing [3]. Within the biomedical

field, segmentation is used with diverse imaging modalities

such as MRI [4], both light microscopy [5]–[7] and electron

microscopy [8], ultrasound [9], and many others to identify

regions at all scales from organelles to organisms.
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A. Previous Work

There exists a wide variety of classic approaches to generic

image segmentation, including graph cuts [10], active contours

[11], level sets [12], Gabor filtering and clustering [13],

random fields [14], watersheds [15], region growing [16],

and mean shift [17]. In addition, there also exist engineered

segmentation systems, such as BlobWorld [18], JSEG [19],

EDISON [20], and CTex [21]. Broadly, these methods vary in

how the segmentation regions are parametrized and whether

edge or region information is used.

Even with this plethora of methods to try, working on a

new segmentation problem is not trivial. Each existing method

makes assumptions about the images it aims to segment.

When these assumptions are met, the method works, and when

they are not, it fails. Because many of these assumptions are

implicit, selecting a method to use on a new segmentation

problem involves educated guessing. When no suitable method

can be found, a new method is designed. This is especially

true for biomedical imaging, where the diversity of imaging

modalities and analysis objectives means that algorithms are

often designed for each specific application. For example, the

active shape models in [22] aim to segment the complex

shapes in CT scans, the active masks in [6] work for the

punctate appearance of fluorescence microscopy images, and

the multiple model approach in [9] handles the problems of

speckle and motion in ultrasound images of the heart.

Fig. 1. Examples of difficult tissue boundaries in teratoma images (black lines
denote tissue boundaries as drawn by a pathologist). The lack of distinct edges
between regions makes automated segmentation difficult, and even experts
cannot reliably localize the boundaries at pixel level.

In this work, we were inspired by the problem of segmenting

tissues in bright field microscopy images of hematoxylin and

eosin (H&E)-stained slices of teratoma tumors (see Figure 1

for examples; more details on this dataset can be found
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in [23]). Other works that address segmentation of histology

images include [24], where the authors use intensity neighbor-

hoods as features to segment bone, cartilage, and fat, and [25],

where the authors use the cooccurrence of different tissue

components to segment cancerous glands specifically in colon

biopsies. Our working hypothesis is that this task is difficult

because tissues are complicated, while tissue boundaries are

sometimes subtle and not marked by edges. Our previous

work [26] began exploring models for these complicated

tissues and proposed a simple supervised segmentation method

for them.

In the current work, we propose a new model for images

formed from multiple tissues. Working from this model, we

design a new unsupervised segmentation method based on

local histograms that is well-suited to a broad class of images

with poorly defined boundaries. We expect this class to include

images such as aerial photos of grass and trees (“Where is

the edge of the forest?”), photographs of crowds (“Where is

the edge of the crowd?”), and, as is our focus in this paper,

histology images (“Where is the edge of the adipose tissue?”).

B. Contributions

The main contributions of this paper are as follows: 1) We

propose a mathematical framework for image segmentation

which models images as occlusions of textures. Given an

image formed according to this model, we prove that its local

value histograms will approximately be convex combinations

of the value distributions of its component textures. 2) Based

on this result, we present a new algorithmic framework for

image segmentation based on histogram factorization and

deconvolution.

C. Outline

The outline of the paper is as follows: In Section II, we

introduce local histograms, occlusions, and necessary notation.

We then describe our proposed model and prove the main

theorem. In Section III, we propose an algorithmic framework

for image segmentation based on this theorem and describe a

possible implementation of one instance of such an algorithm.

We present experimental results of a comparison of our

algorithm to other segmentation algorithms in Section IV and

conclude in Section V.

II. MATHEMATICAL FRAMEWORK

In this section, we introduce necessary notation, then build

the texture model as follows: We first define dependence decay,

which describes how well a texture can be characterized by

its local histograms, show how to construct textures with a

known dependence decay, and explore dependence decay in

real textures. Based on this, we propose modeling images as

occlusions of textures. Under this model, we present and prove

our main result, which describes how the local histograms of

this class of images are mixtures of the value distributions of

their component textures.

A. Notation and Background

Let f be an image, f : X → V where X is a discrete

set of pixel locations and V is a discrete set of pixel values.

For example, for a 512 × 512 8-bit grayscale image, X =
Z512 ×Z512 (we use ZK to denote the set of integers modulo

K) and V = Z256, while for a stack of ten 1600 × 1200 8-

bit RGB color images, X = Z10 × Z1600 × Z1200 and V =
Z256×Z256×Z256. Clearly, the elements of V can be vectors

or scalars; since the set is always discrete, however, without

loss of generality we treat it as a set of integers 0, 1, . . . ,

|V | − 1.

We now define the local histogram and occlusion operators;

our definitions are a slight adjustment of those presented

in [26]. Define first the indicator function,

1A(x) =

{

1, for x ∈ A;

0, for x /∈ A.

Then, the local histogram transform of an image f is

Lwf(x, v) =
∑

x′∈X

1{v}(f(x
′))w(x− x′), (1)

for x ∈ X and v ∈ V , and where w is an averaging filter that

sums to one. For example, with a constant averaging filter w
of size 3 × 3, the local histogram transform Lwf(x, v) gives

the fraction of the pixels in the 3× 3 neighborhood around x
that have value v.

We call a function σ : X → {0, 1, . . . , N − 1} a labeling

function. We define the occlusion of a set of images {fn}N−1
n=0

with respect to a labeling function σ as

Oσ{fn}N−1
i=0 (x) =

N−1
∑

n=0

1{n}(σ(x)) fn(x) (2)

for x ∈ X . In other words, an occlusion of a set of images

is itself an image that matches one of its component images

at each pixel; which image shows through at each pixel is

governed by σ. Note that we use the term occlusion because

we view the set of images as a stack with one image blocking,

or occluding, the others at each pixel.

B. Flat Textures

We now define a texture as we use it in our work; note

that it is simply a random-valued image and that many other

texture definitions exist.

Definition 1 (Texture). A texture F = {F (x)}x∈X is a V -

valued random field indexed by pixel locations, X .

In other words, for each x ∈ X , F (x) is a V -valued random

variable; one realization of a texture is an image. Associated

with each of these random variables is a probability mass

function, pF (x) : V → [0, 1]; the probability that F (x) is

equal to v is pF (x)(v). While each F (x) may have its own

unique probability mass function, we find it useful to consider

only those textures for which these functions are the same,

which we call flat textures.

Definition 2 (Flat texture). A texture F is flat when

pF (xi)(v) = pF (xj)(v) = pF (v), for all xi, xj ∈ X and

v ∈ V .
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In other words, a flat texture is one where the distribution

of values is the same at every pixel. Note that this does not

imply that the random variables F (xi) are independent, only

that they have the same distribution. Flat textures may have

complex and spatially varying patterns of dependence; we will

further explore this dependence in the following sections.

Flatness is not a highly restrictive condition. In fact, it is a

property of most real-world textures. For example, take F to

be the texture for 128×128 color images of grass. Intuitively,

we would assign one color distribution to F , with peaks for

brown, yellow, and green. We would not say that grass images

are more likely to be brown in the bottom right corner or

green at the top. The fact that colors do not appear more or

less frequently in specific areas of the image means that this

texture is flat.

C. Histograms of Flat Textures

Many textures can be distinguished based solely on their

value distribution, pF (v). For example, consider a grass texture

and a sky texture; pgrass(v) would have a peak around green,

while psky(v) would have peaks around blue and white. If our

goal is to classify whether an image is of grass or sky, we

could build a value histogram from the pixels in the image

and compare it to our model of pgrass(v) and psky(v).
We now consider more closely the relationship between the

histograms of a realization of a flat texture and that texture’s

value distribution, pF (v). Let

p̂
{xi}k−1

i=0

f (v) =
1

k

k−1
∑

i=0

1{v}(f(xi)) (3)

be a histogram built from k pixels at arbitrary unique locations

x0, x1, . . . , xk−1 of the image f . If k is large enough, we

expect that p̂
{xi}
f (v) will estimate pF (v); intuitively, sampling

f over a small region will give a worse estimate than sampling

f over a large one. The quality of the estimate will be

determined by the number and position of the pixels and the

way the statistical dependence between pixels of F changes

over space. Moreover, for some textures, such an estimate

may never be good. We quantify how quickly these estimates

improve by introducing the notion of dependence decay.

Definition 3 (Dependence decay). A flat texture F exhibits

dependence decay with complexity a if, with probability 1− δ
and for any v ∈ V and k ≤ |X|,

|p̂{xi}k−1

i=0

f (v)− pF (v)| ≤ ak−1/2,

with 0 < a and 0 < δ ≪ 1.

The value δ is a small positive number so that 1 − δ is our

standard of high probability. If the complexity, a, is small, then

F is simple in the sense that even histograms formed from a

small number of pixels approximate pF well.

D. Constructing Dependence-Decay Textures

Though any texture can exhibit dependence decay with a

very loose bound (for example, select a such that a|X|−1/2 >
1), we focus on the class of textures for which the dependence

between pixels decays sufficiently so that this bound is useful,

that is, ak−1/2 ≪ 1 even when k ≪ |X|; informally, we will

refer to these as dependence-decay textures. At this point, it is

natural to wonder whether there exist any dependence-decay

textures. To find the answer, we explore a property of textures

we call persistence length and show that when a texture’s

persistence length is short enough, it is dependence-decay.

Definition 4 (Persistence length). A texture F has a persis-

tence length ǫ if, for any two pixel locations, xi and xj , the

random variables F (xi) and F (xj) are independent whenever

||xi − xj ||1 > ǫ.

Persistence length is another way of thinking about the scale

of a texture. For example, consider a texture F that generates

images of colored pebbles. If we know that the value of a

sample of this texture at pixel location xi is blue, we can

expect the value at pixel location xj to be blue as well when

xi and xj are close; when these locations are far enough apart,

however, f(xi) no longer gives any predictive information

about f(xj). The distance at which f(xi) stops being helpful

in predicting f(xj) is F ’s persistence length. In this example,

it is the diameter of the pebbles.

Persistence length is related to dependence decay, since

statistically independent samples are the best ones with which

to estimate a texture’s value distribution. We make this re-

lationship explicit with a theorem; the proof is given in

Appendix A.

Theorem 1 (Persistence length and dependence decay). A flat

texture with persistence length ǫ exhibits dependence decay

with complexity a = (−2Aǫ log
1
2 (1 − Aǫ

√
1− δ))1/2, with

Aǫ = 2ǫ2 + 2ǫ+ 1.

If we could create textures with a given persistence length,

this theorem would allow us to establish their dependence

decay properties as well. One straightforward way of doing

this is to use a dead leaves model; that is, generate images by

layering templates of random size, shape, position, and value

on top of each other (see [27] for a more thorough description).

Textures defined in this way have a persistence length equal to

the ℓ1-diameter of their largest template, since pixels separated

by more than this distance cannot belong to the same template

and are therefore independent.

E. Dependence Decay in Real Images

We now discuss how the above theory applies to real

images. As our example textures, we take grayscale images

from the Prague Texture Segmentation Benchmark [28].

For each image in the dataset, we define a corresponding F
that assigns equal probability to this image and all its circular

translates. This means pF (v) is equal to the global histogram

of the image. To show that F is a dependence-decay texture

we must set a probability δ, then for each k = 1, 2, . . ., find

the arrangement of points, x0, x1, . . . , xk−1, that maximizes

|p̂{xi}
f (v) − pF (v)| in at least a fraction δ of the realizations

of F . If this maximum error,

E(k) = max
x0,x1,...,xk−1

|p̂{xi}k−1

i=0

f (v)− pF (v)| (4)
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can be bounded usefully by a function ak−1/2, then F is a

dependence decay texture.

In practice, we cannot check every possible arrangement

of k pixels even for small k, so we make the simplifying

assumption that, in the worst case, the xi will be 8-connected

and perform a greedy search for worst-case arrangements. This

assumption is reasonable for natural images because adjacent

pixels are nearly always more correlated that those that are far

apart. To further speed up the computation, we crop the image

to a size of 100× 100 pixels and quantize it to 8 values.

(a) (b)

E, 2.42k−.5

k

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

(c) (d)

Fig. 2. An example of dependence decay in one texture from the Prague
set [28]. The original texture image (a) is cropped and quantized (b) before
the analysis. The plot in (c) shows how the approximation error (4) (solid line)
is bounded by the function 2.42 k

−1/2 (dashed line). The regions shown in
(d) are four worst-case arrangements (described in Section II-E). When pixels
sampled in these patterns are used to estimate the color distribution of the
texture, they lead to errors of 2

−1, 2−2, 2−3, and, 2−4 (decreasing error
from black to light gray). The corresponding points are marked with circles
in (c).

Our experiments show that many of these images do exhibit

dependence decay, see Figure 2 for an example. This supports

the claim that many real-world textures exhibit dependence

decay. For the periodic textures in the dataset, the complexity

a is large because pixels are highly correlated, see Figure 3 for

an example. If the search were not constrained to contiguous

regions of pixels, the complexity would be even higher. This is

because when the offset between samples matches the period,

the samples are completely dependent on each other. We will

see in the next section that the high a value associated with

periodic textures means that they are not usefully governed

by our main result, Theorem 2. This essentially says that

periodic textures can be combined into pathological images

that are impossible to segment. We will stress here, however,

that periodic textures can still be segmented by the algorithm

we present in Section III, because the worst case error only

happens with very specific corner cases that are unlikely to

occur in practice.

(a) (b)

Fig. 3. An example of dependence decay in a periodic texture from the Prague
set [28], shown cropped and quantized in (a). The regions shown in (b) are
four worst-case arrangements (described in Section II-E), increasing in size
from black to light gray. Sampling pixels in these vertical stripes leads to
very poor estimates of the true color distribution of this texture because the
sample may e.g. contain only black pixels, omitting the lighter pixels in the
image.

F. Occlusions of Dependence-Decay Textures

We now come to the main result of the paper. We

propose modeling images as occlusions of realizations

of textures, Oσ{fn}N−1
n=0 , where the component textures,

F0, F1, . . . , FN−1, and the labeling function, σ, are not known.

Under this model, segmentation is equivalent to recovering σ.

Figure 4 illustrates modeling a natural image as such an

occlusion. Starting with an original image as in Figure 4a,

imagine there exist three textures, Fsky, Fwindow, and Fbrick,

each generating images of the corresponding texture, as in

Figure 4b. We can then use a labeling function σ (Figure 4c)

to create a new image flighthouse = Oσ{fsky, fwindow, fbrick}
(Figure 4d).

If we use occlusions of textures as our model for images,

then we can define segmentation as the problem of taking

an image and recovering the labeling function that was used

to generate it. If the component textures of the image are

dependence-decay, then a reasonable approach is to exam-

ine the local histograms of f , since these histograms well

approximate the true distribution of values in each texture.

For example, in Figure 4a, local histograms taken from the

upper right corner will approximate psky, while those from

the lower left corner will approximate pbrick. Local histograms

taken around the window will be mixtures of pbrick and pwindow.

The following theorem formalizes this process; the proof is

given in Appendix B.

Theorem 2 (Local histograms of occlusions are mixtures of

component value distributions). Given a set of dependence-

decay textures {F0, F1, . . . , FN−1} with complexities a0, a1,

. . . , aN−1, a constant averaging window w, and a labeling

function σ, then with probability (1−δ)N , and for any x ∈ X
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(a) (b)

(c) (d)

Fig. 4. Modeling of an image (a) as an occlusion of realizations of textures
(b) according to a labeling function (c), resulting in (d).

and v ∈ V ,

∣

∣

∣

∣

∣

LwOσ{fn}N−1
n=0 (x, v)−

N−1
∑

n=0

[

w ∗ 1{n}(σ)
]

(x) pFn
(v)

∣

∣

∣

∣

∣

≤ a

( |w|
N

)−1/2

,

(5)

with |w| =∑x∈X 1(0,1](w(x)), a = max{a0, a1, . . . , aN−1},

and δ the threshold for high probability selected in Defini-

tion 3.

Here we use the notation (0, 1] to indicate the interval {x |
0 < x ≤ 1}.

In other words, if an image is formed from the occlusion

of realizations of several dependence-decay textures, then

each of its local histograms will be approximately a convex

combination of the true value distributions of those textures.

The amount that each texture contributes to a histogram

is proportional to how much of that texture exists in the

neighborhood of the local histogram. This theorem offers a

key insight about how to do segmentation because it relates the

local histograms of f , which we can calculate, to the labeling

function σ, which we want to discover.

III. PROPOSED ALGORITHM

Based on our discussion, the task of segmentation can

now be seen as finding the labeling function σ using local

histograms of f , which we can calculate. Thus, based on

Theorem 2, the task of segmenting an image modeled as

occlusions of realizations of textures, f = Oσ{fn}N−1
n=0 , into

N regions can be approached as an optimization

argmin
σ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lwf −
N−1
∑

n=0

[w ∗ 1{n}(σ)] p̂Xn

f

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (6)

where Xn = {x | σ(x) = n} is the set of pixels belonging

to the nth region and p̂Xn

f (v) is a histogram formed from the

pixels in Xn as defined in (3). This optimization finds a la-

beling function, σ, that splits the image into N regions. These

regions are such that for each x ∈ X , the local histogram,

Lwf(x, v), is approximated by a convex combination of the

value histograms of those regions, p̂Xn

f (v), with the weights

of this convex combination determined by the amount of each

label in the neighborhood of the histogram, [w ∗ 1{n}(σ)](x).
Our approach is philosophically similar to the method

in [29], which uses an active contour to separate the image into

a foreground and a background region that have maximally

distinct color distributions. This method differs from ours in

two key ways: First, our method does not find maximally dis-

tinct distributions, rather it finds distributions that are consis-

tent with the local histograms taken inside their corresponding

region. Second, our method does not parametrize the boundary

between regions as a level set, allowing it to more naturally

handle segmentation of more than two regions. In short, though

both methods focus on color distributions rather than edges,

they actually optimize different quantities in different ways.

Rather than solve (6) directly, we approximate it via variable

splitting [30], [31] and relaxation [32] as

argmin
σ,p0,p1,...,pN−1

α0,α1,...,αN−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lwf −
N−1
∑

n=0

αnpn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

N−1
∑

n=0

λn

∣

∣

∣

∣w ∗ 1{n}(σ)− αn

∣

∣

∣

∣ +

N−1
∑

n=0

µn

∣

∣

∣

∣

∣

∣
p̂Xn

f − pn

∣

∣

∣

∣

∣

∣
,

(7)

subject to

∑

v∈V

pn(v) = 1,

N−1
∑

n=0

αn(x) = 1, pn(v), αn(x) ≥ 0,

where {λn} and {µn} are Lagrange multipliers. The first

term of the optimization finds histograms p0, p1, . . . , pN−1

that can be combined with weights α0, α1, . . . , αN−1 to

create the local histograms of f . The second term finds an

indicator function for each region in the image 1{n}(σ(x)),
such that the blurred version of this indicator is similar to the

corresponding weight image αn. The third term keeps the his-

tograms p0, p1, . . . , pN−1 close to the empirical histograms

of the regions p̂Xn

f .

The benefit of working with (7) is that the third term is

straightforward and the first two terms are well-studied prob-

lems, known as non-negative matrix factorization (NMF) [33],

[34] and image deconvolution (deblurring) [35], [36], respec-

tively. To find a local minimum of (7), we draw on the wide

variety of existing approaches for each of these subproblems

to iteratively minimize each of the three terms.

Figure 5 shows the block diagram of our proposed algorithm

and the following pseudocode gives more details:

1: procedure [σ] = SEGMENT(f )

2: compute the local histogram transform of f
3: factor the histograms to initialize {αn} and {pn}
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local histogram
transform

factorization deconvolution

Fig. 5. Block diagram of the proposed algorithm.

4: while not converged do

5: deconvolve {αn} to estimate σ
6: use σ to compute p̂Xn

f

7: set pn = p̂Xn

f

8: use pn and the histograms to calculate {αn}
9: end while

10: end procedure

The following subsections present the details of one possible

implementation of each of these steps; others are possible.

A. Local Histogram Transform

Implementation of the local histogram transform is straight-

forward based on its definition: each level of the local his-

togram can be computed as a single convolution. The size

and shape of the window w over which local histograms are

computed is an important parameter of the method. In general,

when w has small support, the resulting segmentation will have

better-localized boundaries, but may be noisy. Making w larger

smooths the boundaries but also makes the segmentation less

susceptible to noise.

The main challenge in computing the local histogram trans-

form is memory, since an image can have 24 bits of color and

2 million pixels, meaning that the full local histogram of the

image would have 224 × 2 × 106 ≈ 3.4 × 1013 values in it.

Luckily, real-world images rarely make meaningful use of this

color depth. We can therefore safely quantize the image down

to tens of values. The result is a new image, f ′ : X → V ′ with

|V ′| ≪ |V |. The specific quantization method can be chosen

to fit the problem; we used k-means clustering.

The quantization step can also be understood as a way to

control the value bandwidth of the local histograms. Using

empirical histograms rather than, for example, kernel density

estimation implicitly assumes that pF (vi) and pF (vj) are

unrelated, no matter how similar the values vi and vj are.

This assumption is more accurate for a well-quantized image

than one with 24 bits of color.

B. Factorization

To compute the initial factorization of the local histograms

of f ′, we arrange them into a matrix, A, of size |V ′| × |X|.
Our goal is to express A as A = HW , where H is a |V ′|×N
matrix of histograms and W is an N ×|X| matrix of weights.

We frame this as the optimization

argmin
H,W

||A−HW ||

subject to Hij ≥ 0,Wij ≥ 0, for all i, j,
∑

i

Hij = 1,
∑

j

Wij = 1,

1: procedure [H , W ] = FACTOR ALS(A)

2: initialize H with random values

3: while not converged do

4: W = (HHT )−1HA
5: set negative values in W to zero

6: H = (WTW )−1WTA
7: set negative values in H to zero

8: normalize H and W
9: end while

10: end procedure

Fig. 6. Alternating least-squares method for non-negative matrix factorization.

which we solve with a variant of the alternating least-squares

method [37], described in Figure 6.

To increase the robustness of the algorithm, we repeat

it multiple times with different random initializations of H
and keep the result with the lowest error. To reduce the

computational cost, we factor only a random subset of the

histograms in each iteration.

We used alternating least-squares for its simplicity, but

repeat that our framework is flexible: any NMF method can

be used. Other approaches in the literature may be faster or

allow for the inclusion of priors. For example, encouraging

W to be sparse would correspond to the assumption that each

point in the image is only near a small number (one or two)

texture regions. For more discussion of approaches to the NMF

problem, see [34].

C. Deconvolution

Each row of the matrix W from the factorization step can be

reshaped into an image of weights αn that represents a blurred

version of one level of the labeling function, w ∗ 1{n}(σ). To

recover σ from these images, we must deconvolve them, that

is, solve

argmin
σ

N−1
∑

n=0

∣

∣

∣

∣w ∗ 1{n}(σ)− αn

∣

∣

∣

∣ . (8)

The problem in (8) is a sum of N deconvolution problems

with the added complexity that the image to be recovered in

each of the problems, 1{n}(σ), is {0, 1}-valued. In general,

existing deconvolution methods can be adapted to this problem

by relaxing σ to be a set of real-valued images, {σ̂n} with the

constraint that
∑N−1

n=0 σ̂n(x) = 1. Then the joint deconvolution

can be solved by working on each σ̂n in turn and renormalizing

every few iterations. Then, σ can be recovered from {σ̂n} via

σ(x) = argmaxn σ̂n(x).
The design freedom our framework offers is especially

valuable in the deconvolution step, as there exist numerous

deconvolution methods that allow the use of prior knowledge

about the image to be recovered. If we can describe the shape

of the regions with a few parameters, parametric deconvolution

can achieve excellent results. In less constrained cases, many

looser priors may be used. For example, total variation regu-

larization [38] promotes solutions with a blocky appearance.

In this work, we explore two deconvolution methods: The

first method is to assume that σ̂n = αn for all n. This
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means that the label at a given point corresponds to the

histogram with the largest weight at that point, so σ(x) =
argmaxn αn(x). This method, while basic, is useful because

it is fast and requires no particular knowledge about the

properties of the labels we want to recover. The downside

is that the resulting labelings tend to be smooth.

The second method is parametric deconvolution. We assume

that the regions to be labeled, 1{n}(σ), are the Voronoi cells of

three seed pixel locations. We then deconvolve using gradient

descent on the seed pixel locations. This method is useful

only on images that fit this model; we include it as a proof of

concept for parametric deconvolution.

D. Selecting the Number of Textures

In what we have presented so far, the number of textures

N must be known beforehand. While this may be sufficient in

certain applications, we may also want a method for selecting

an appropriate N automatically from the input image. Select-

ing the number of textures is essentially the same problem as

selecting the number clusters for any unsupervised clustering

algorithm. There are numerous approaches to this problem; for

an overview see Section 3.3 in [39]. In general these methods

replace the parameter N with one or more new parameters that

control the tradeoff between having tight clusters and having

a small number of clusters.

In our work, we have experimented with a simple method

in which we set a parameter r < 1 that controls how much

we expect the model error to decrease when the number of

textures increases by one. We begin by setting N = 1, running

the whole algorithm, and measuring the model error as the

value of the norm in (6). We then increase N by one and

repeat this process. As soon as the error at Ni+1 fails to be

smaller than r times the error at Ni, we select Ni as the final

number of textures.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We compared our segmentation method to four other meth-

ods from the literature on synthetic test images and on real

histology images; results are given in Table I and example

segmentations in Figures 8, 7, 9, and 10. We now describe the

test data, the specifics of these experiments, and each of the

comparison methods and discuss the results of the comparison.

The test data and MATLAB code for our proposed algorithm

is available in the reproducible research compendium for this

article, [40].

A. Datasets

The three datasets we used for testing are as follows:

The random texture dataset is a synthetic dataset designed

to illustrate the difficulty of segmenting edgeless images. To

generate these images, we choose three seed pixel locations at

random and let the ground truth regions be the Voronoi cells

formed by these seeds. For each region, we select a color

distribution at random and select each pixel independently

from this distribution (since each pixel is independent of its

neighbors, these images have a persistence length of 1). The

TABLE I
COMPARISON RESULTS IN TERMS OF THE RAND INDEX MEAN AND

STANDARD DEVIATION. THE VALUE 1 INDICATES PERFECT AGREEMENT

WITH THE GROUND TRUTH.

Dataset

Method random texture histology Prague

Normalized 0.785 ± 0.122 0.736 ± 0.176 0.812 ± 0.064

JSEG 0.943 ± 0.067 0.751 ± 0.141 0.839 ± 0.056

EDISON 0.697 ± 0.084 0.798 ± 0.148 0.784 ± 0.077

Efficient 0.566 ± 0.189 0.619 ± 0.129 0.823 ± 0.070

gPb-owt-ucm 0.707 ± 0.206 0.787 ± 0.130 0.835 ± 0.062

ORTSEG 0.989 ± 0.002 0.830 ± 0.144 0.766 ± 0.073

ORTSEG-D 0.992 ± 0.004

resulting images can be segmented by eye, but lack distinct

edges between regions. At the same time, the high frequency

content within regions can be mistaken for edges. We created

25 such images. The number of unique colors in each image

is 8 and the size of each image is 128× 128.

The histology dataset consists of color images of H&E-

stained tissue (for more details on these images, see [23]).

The ground truth was drawn by an expert pathologist via visual

inspection. From a set of 36 images comprising more than 20
tissue types, we manually selected 36 128 × 128 subimages

such that each contained only two tissues. The aim of this

process was to include only subimages that had very accurate

ground truth labeling. This dataset is relatively small because

only trained pathologists can reliably label histology images

and creating pixel-wise labels is very time-consuming; we

hope to expand the dataset in the future. In the histology

dataset, some regions have clearly defined boundaries while

many do not, we expect that our edgeless approach should

work well.

The Prague dataset contains the grayscale mosaics from the

Prague Texture Segmentation Benchmark [28]. These images

were designed to be similar to the natural images in datasets

like the Berkeley Segmentation Dataset and Benchmark [41],

while avoiding the ambiguity in the ground truth that comes

with human labeling. We take this dataset to be indicative

of performance on natural image segmentation; it is not

representative of the class of edgeless images for which our

algorithm is designed. The dataset contains 20 images of size

512×512 with the number of textures per image varying from

3 to 12.

B. Algorithms Tested

We implemented two versions of the algorithm described in

Section III:

ORTSEG (Occlusion of Random Texture SEGmenter) uses

the maximum weight deconvolution method and therefore in-

cludes no strong prior information about the region boundaries.

The parameters are the number of textures N (or the automatic

selection parameter r), the size of the window |w|, and the

number of colors to quantize to |V ′|.
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ORTSEG-D uses parametric deconvolution. Since it makes

strong assumptions on the region boundaries, it is only useful

on the random texture dataset. The parameters are the same

as those for ORTSEG.

We compare our two algorithms to five others:

Normalized Cut [10] forms a graph from an image by using

pixels as nodes and assigning edge weights based on distance

and color similarity. It segments by recursively finding graph

cuts that maximize the similarity within and dissimilarity

between regions. The only parameter is the number of regions.

JSEG [19] quantizes the colors in an image and then

searches for segmentations that produce regions of uniform

color distribution via region growing. JSEG does not rely

on edge information, and is therefore the most similar to

ORTSEG of these comparison methods. The parameters are

the region merging threshold, the quantization threshold, and

the number of scales.

EDISON [20] uses mean shift to cluster pixels in terms

of their color and location. Edge information is included as a

weight during the mean shift computation. The parameters are

the spatial bandwidth, the range bandwidth, and the minimum

region size.

Efficient Graph-Based Segmentation [42] is another graph-

based algorithm. Pixels are used as nodes and edges are

assigned between adjacent pixels based on difference in inten-

sity. It groups pixels into regions when there is no evidence of

a boundary between them. The parameters are the smoothing

σ, scale k, and the minimum region size.

gPb-owt-ucm [41] detects local edges with a combination

of color and texture features. Global information is combined

with the local edges via spectral clustering to detect contours

in the image. Finally, a watershed transform finds regions from

the contours. As of its publication in 2010, this method was

the top performer on the Berkeley Segmentation Dataset [43],

which is a large and well-annotated dataset for benchmarking

natural image segmentation methods. The only parameter is

the edge strength required to create a segment, k.

Note that we do not compare to our previous work [26]

because it presented a supervised segmentation method, while

ORTSEG and all the comparison methods are unsupervised.

C. Experimental Setup

The comparison was performed as a leave-one-out cross

validation. for each method and dataset, each image was

sequestered in turn while the others were used to perform a pa-

rameter sweep over the parameters mentioned in Section IV-B

with the goal of allowing each method to achieve its maximum

performance. Specifically, we set up the sweep according

the principles: 1) When the authors of the method specified

an operating range for a parameter, we swept between its

minimum and maximum value. When they did not, we swept

between values that produced opposite kinds of bad results

(e.g. too coarse and too fine segmentations) to ensure that

the optimal value was between our end points. 2) When the

correct value for a parameter (e.g. number of regions) was

known for an entire dataset, this value was the only one used.

3) When methods had comparable parameters (e.g. a window

size), comparable values were swept. 4) The total number

of parameter settings to sweep did not exceed 150 for any

method.

The performance of the method was then evaluated on the

sequestered image using the parameters that resulting in the

best average performance on the training set. The results in

Table I represent the average performance when this process

was repeated over all images.

As our performance metric, we chose the Rand index [44],

[45]. The Rand index gives the fraction of pairs of pixels that

are either grouped into a single region in both the ground truth

and the test image or are in different regions in both the ground

truth and the test image. It therefore ranges from 0 to 1, with 1
being perfect agreement between the test image and the ground

truth. We selected it because it naturally handles multi-region

unsupervised segmentation and avoids degenerating when a

method greatly over- or under-segments an image. There are

a wide variety of other, similarly good performance metrics

for segmentation algorithms; see Section 3 of [46] for a good

overview. In addition to the Rand index, we provide results in

terms of the variation of information [47] on the reproducible

research page for this paper; the ranking of methods is largely

unchanged between metrics and the best-performing method

for each dataset does not change.

D. Discussion

On the random texture dataset (Figure 8), ORTSEG is

clearly superior to the comparison methods, which shows that

it excels when segmenting truly edgeless images. ORTSEG-D

performs slightly better, giving essentially perfect segmenta-

tions (Figure 7), because it leverages prior knowledge about

how the region boundaries were formed. JSEG has the next

best performance, which makes sense because it does not rely

on edge information. We believe that ORTSEG outperforms

JSEG in this case because ORTSEG optimizes its labels over

the whole image rather than in a region merging scheme. The

other methods have a difficult time with the random texture

dataset, likely due to their reliance on edge information.

(a) Input (b) ORTSEG (.992) (c) ORTSEG-D (.995)

Fig. 7. Example segmentation results from ORTSEG and ORTSEG-D on
a synthetic texture; Rand indexes are given in parentheses. The parametric
deconvolution in ORTSEG-D forces region boundaries to be linear, improving
the segmentation quality.

On the histology dataset (Figure 9), ORTSEG also outper-

forms the comparison methods, though the next best method is

within a standard deviation. On this dataset, ORTSEG selects a

relatively large window w (25×25, as opposed to 9×9 on the

random textures), resulting in smoother boundaries compared
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(a) Input (b) Ground truth

(c) Normalized (.778) (d) JSEG (.962) (e) EDISON (.692)

(f) Efficient (.602) (g) gPb-owt-ucm (.347) (h) ORTSEG (.987)

Fig. 8. Example segmentation results for the comparison methods (c)-(g)
and our method (h) on the random texture dataset; Rand indexes are given in
parentheses. This dataset is challenging due its lack of meaningful edges.

to e.g. EDISON. This is an asset because the tissues generally

have smooth boundaries. We believe that ORTSEG performs

worse on the histology images than on the random textures

because the histology images are much more complex. The

relatively stronger performance of the comparison methods

makes sense because at least some of the images in this dataset

do have sharp edges.

On the Prague dataset (Figure 10), ORTSEG does not out-

perform the comparison methods. We believe that ORTSEG’s

relatively poor performance is because, by design, it does not

detect the sharp edges between regions, while other methods

do (e.g. note the sharp edges that Normalized Cut finds).

Surprising, JSEG has the best performance on this dataset.

We have a few ideas why. First, this may be because the

seeded region growing approach is good at finding the correct

number of regions in the image. Second, while JSEG does not

explicitly look for edges, it uses high J values as evidence of

boundaries, which may let it leverage the edges in these images

to some degree. Finally, JSEG uses information at a variety of

scales while our implementation of ORTSEG does not, which

may help in the Prague dataset where the scale of the textures

is large relative to the complexity of the boundaries.

Here we make a few observations about the parameters

selected for ORTESG during the cross validation. For the

random texture dataset, the typical window size selected was

9×9, while the quantization was set to 8 colors and the number

of textures was set to 3. This relatively small window size

(a) Input (b) Ground truth

(c) Normalized (.500) (d) JSEG (.821) (e) EDISON (.851)

(f) Efficient (.614) (g) gPb-owt-ucm (.903) (h) ORTSEG (.924)

Fig. 9. Example segmentation results for the comparison methods (c)-(g)
and our method (h) on the histology dataset; Rand indexes are given in
parentheses. This is a real-world example of a dataset in which the lack of
edges is challenging for many segmentation methods.

makes sense: the textures in images are small scale (neigh-

boring pixels are statistically independent) so only a small

window is needed to recognize them and has the advantage of

localizing the boundaries better than a larger window. The

performance on this dataset is not very sensitive to scale,

however, as window sizes from 5 × 5 to 25 × 25 generally

give Rand indexes that vary less than .01. In the histology

dataset, the typical window size selected was 25× 25 and the

typical quantization selected was 50 colors. The number of

textures was set to 2. Though the histology images are the

same size as the random images, the increased scale of the

textures means that a larger window is necessary, reducing

the ability of the algorithm to accurately localize boundaries.

Again, results were not very sensitive to changes in window

size. Changes to the number of quantized colors did not make

much difference once the number of colors was greater than

10. The performance of ORTSEG on the Prague dataset was

not strong enough to draw any conclusions about parameters.

The computation complexity of ORTSEG is dependent on

the particular implementation of the individual steps. The

local histogram transform is a filtering operation and will

therefore scale well with input image size; this is also true

of many deconvolution algorithms. The factorization step as

we described it involves inverting a matrix that grows in size

with the square of the number of pixels in the image, however

if the number of textures remains low and no texture region is
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(a) Input (b) Ground truth

(c) Normalized (.819) (d) JSEG (.853) (e) EDISON (.799)

(f) Efficient (.813) (g) gPb-owt-ucm (.813) (h) ORTSEG (.733)

Fig. 10. Example segmentation results for the comparison methods (c)-(g) and
our method (h) on the Prague dataset; Rand indexes are given in parentheses.
This dataset simulates segmentation of natural images. Our method is not
well-suited to such images because it by design does not make use of edges
as evidence of boundaries.

very small, then in practice a random subset of pixels can be

used for factorization, reducing the complexity of this step.

For our non-optimized MATLAB implementation, run times

per image on a Windows 7 laptop with an Intel Core i7-

620M processor for the random texture, histology, and Prague

datasets are about 1.5 seconds, 2.5 seconds, and 22 sec-

onds, respectively. On the same computer, segmenting a color

1600 × 1200 image into five regions (result not shown)

takes about 30 seconds. Selecting the number of textures

automatically as described in Section III-D increases these

times multiplicatively because it simply runs the algorithm

repeatedly with different values of N .

V. CONCLUSIONS AND FUTURE DIRECTIONS

Inspired by the difficult task of segmenting histology im-

ages, we proposed a new mathematical and algorithmic frame-

work for image segmentation. We began with the idea of

textures as random fields and explored how the dependence

between pixels in these textures varies spatially by introducing

the notions of dependence decay and persistence length. We

then modeled images as occlusions of textures and showed that

the local histograms of these images are convex combinations

of the value distributions of their component textures. Based

on this theorem, we proposed a segmentation framework

that first discovers the value distributions of the component

textures of an image, finds the contribution of each texture

to every local histogram of the image, then deconvolves the

contributions to recover a segmentation.

We presented one implementation of this framework, ORT-

SEG, and compared it to four segmentation methods from

the literature on three datasets. ORTSEG outperformed the

other methods on images of random textures and real histol-

ogy images, indicating that it handles the difficult class of

edgeless images and has real applicability to histology image

segmentation.

In the future, we aim to expand our mathematical model by

studying histograms of filter responses rather than simply col-

ors. This would allow for a richer characterization of textures

and has interesting algorithmic ramifications. We will also

explore other implementations of the presented algorithmic

framework, including calculating histograms over multiple

scales and testing a wider variety of deconvolution approaches.

APPENDIX A

PROOF OF THEOREM 1

Proof: Let F be a flat texture with value distribution pF
and persistence length ǫ. Given any set of N0 unique pixel

locations, Θ = x0, x1, . . . , xN0−1, we aim to partition that

set into subsets such that the minimum distance between two

locations in a subset is larger than ǫ. We call the locations

within ǫ of a location its neighbors. We place the locations

in order of decreasing number of neighbors. Let the largest

number of neighbors of any location be A0. We build a

subset by first selecting the location with the largest number

of neighbors and then selecting the location with the next

largest number of neighbors among all those that are not

neighbors of the first location. We continue this process with

each new location selected such that it is not a neighbor of

any previously selected location. We end this process after

forming a subset of size K0 =
⌊

N0

A0

⌋

. This is possible because

each addition to the subset can only preclude a maximum

of A0 locations from further consideration. Additionally, each

location with A0 neighbors must either be in this set or be

a neighbor of a location in this set. If this is not the case,

then there are A0 locations not in the set, which leads to

N0 ≥ K0 +A0, which is a contradiction.

Removing the locations in the first subset from considera-

tion, let N1 be the number of remaining locations and A1 be

the maximum number of neighbors among them. We know that

A1 ≤ A0 − 1 because, similarly to the reasoning above, each

point that had A0 neighbors belongs to the first subset or lost at

least one neighbor to the first subset. We now follow the same

procedure as above, creating a subset of size K1 =
⌊

N1

A1

⌋

.

We continue the process until all points have been placed in

subsets. The same argument as above gives that Ai+1 ≤ Ai−1
and therefore,
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Ki+1 =

⌊

Ni+1

Ai+1

⌋

=

⌊

Ni −Ki

Ai+1

⌋

=









Ni −
⌊

Ni

Ai

⌋

Ai+1









≥
⌊

Ni − Ni

Ai

Ai+1

⌋

≥
⌊

Ni − Ni

Ai

Ai − 1

⌋

=

⌊

AiNi −Ni

Ai(Ai − 1)

⌋

=

⌊

Ni

Ai

⌋

= Ki.

The above implies that Ki ≥ K0 =
⌊

N0

A0

⌋

. Finally, since the

largest possible value for A0 is Aǫ = 2ǫ2 + 2ǫ + 1, which is

the number of locations in the ℓ1-ball with radius ǫ, we can

define K where Ki ≥ K =
⌊

N0

Aǫ

⌋

.

Let Yi = {y0, y1, . . . , yKi−1} be the ith subset. By the

definition of persistence length and flatness, the random

variables F (y0), F (y1), . . . , F (yKi−1) are i.i.d. (persistence

length gives independence, flatness gives identical distribu-

tion) with distribution pF . Let the empirical distribution of

F (y0), F (y1), . . . , F (yKi−1) be

p̂Yi

F (v) =
1

Ki

Ki−1
∑

k=0

1{v}(F (yk)).

We can select an arbitrary ordering on the set of values and

define the cumulative value distribution and the empirical

cumulative value distribution of F as

PF (v) =

v
∑

w=0

pF (w)

and

P̂Yi

F (v) =
1

Ki

Ki−1
∑

k=0

1[0,v](F (yk)),

respectively.

Then, by the Dvoretzky-Kiefer-Wolfowitz inequality [48],

Pr(max |P̂Yi

F (v)− PF (v)| > α) ≤ 2e−2Kiα
2

.

To return to the (non-cumulative) color distributions we note

that

|p̂Yi

F − pF |(v)
= |(P̂Yi

F (v)− P̂Yi

F (v − 1))− (PF (v)− PF (v − 1))|
≤ |(P̂Yi

F (v)− PF (v))− (P̂Yi

F (v − 1)− PF (v − 1))|
≤ 2max |P̂Yi

F (v)− PF (v)|,

so

Pr(max |p̂Yi

F (v)− pF (v)| > α) ≤ 2e−Kiα
2/2.

Finally, letting α =
√

−2 log γ
2

Ki
, gives

max |p̂Yi

F (v)− pF (v)| ≤

√

−2 log γ
2

Ki
≤
√

−2 log γ
2

K
(9)

with probability at least 1− γ.

We now examine the histogram formed from all the loca-

tions in the original set Θ rather than a single subset. If we

have a total of I subsets, then

p̂ΘF (v) =
1

N0

N0−1
∑

n=0

1{v}(F (xn))

=
1

N0

I−1
∑

i=0

∑

y∈Yi

1{v}(F (y)) =
1

N0

I−1
∑

i=0

Kip̂
Yi

F (v)

and therefore

max|p̂ΘF (v)− pF (v)|

= max

∣

∣

∣

∣

∣

1

N0

I−1
∑

i=0

Kip̂
Yi

F (v)− pF (v)

∣

∣

∣

∣

∣

= max

∣

∣

∣

∣

∣

1

N0

I−1
∑

i=0

Kip̂
Yi

F (v)− 1

N0

I−1
∑

i=0

KipF (v)

∣

∣

∣

∣

∣

= max
1

N0

I−1
∑

i=0

Ki

∣

∣

∣
p̂Yi

F (v)− pF (v)
∣

∣

∣

≤ 1

N0

I−1
∑

i=0

Ki

√

−2 log γ
2

K

=

√

−2 log γ
2

K
=

√

√

√

√

−2 log γ
2

⌊

N0

Aǫ

⌋ ≤

√

−2Aǫ log
γ
2

N0

with probability at least (1 − γ)I , because each of the I
inequalities from (9) must hold simultaneously. Given that the

minimum subset size is
⌊

N0

Aǫ

⌋

, I ≤ Aǫ, so this probability is

at least (1−γ)Aǫ . We finally set γ = 1− Aǫ
√
1− δ. The result

is

max |p̂ΘF (v)− pF (v)| ≤

√

−2Aǫ log
1− Aǫ

√
1−δ

2

N0

with probability at least (1−δ). This means that F has depen-

dence decay complexity a = (−2Aǫ log
1
2 (1−

Aǫ
√
1− δ))1/2,

proving the theorem.

APPENDIX B

PROOF OF THEOREM 2

Proof: Start with the first term of the left-hand side of

(5),

LwOσ{fn}N−1
n=0 (x, v)

(a)
= Lw

N−1
∑

n=0

1{n}(σ(x))fn(x)

(b)
=
∑

x′∈X

1{v}

(

N−1
∑

n=0

1{n}(σ(x
′))fn(x

′)

)

w(x− x′)

(c)
=

N−1
∑

n=0

∑

x′∈X

1{n}(σ(x
′))1{v}(fn(x

′))w(x− x′),

(10)

where (a) follows from the definition of occlusion (2), (b)

from the definition of the local histogram transform (1), and

(c) because, for a given c and n, the indicator functions are

only nonzero when σ(x′) = n and fn(x
′) = v.
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We now manipulate (10) so that it becomes, for each n, a

histogram sampled from fn. Using the fact that w is a constant

filter (that is, it takes only the value 1/|w| or 0), (10) becomes

N−1
∑

n=0

∑

x′∈X 1{n}(σ(x
′))1{v}(fn(x

′))1(0,1](w(x− x′))

|w|
(a)
=

N−1
∑

n=0

|Θn(x)|
|w|

∑

x′∈X 1{n}(σ(x
′))1{v}(fn(x

′))1(0,1](w(x− x′))

|Θn(x)|

(b)
=

N−1
∑

n=0

|Θn(x)|
|w| p̂

Θn(x)
fn

(v), (11)

where Θn(x) = {y | σ(y) = n and w(x − y) > 0}. The

equality (a) is a multiplication by 1 and (b) uses the definition

of a histogram, (3).

Turning our attention to the second term of the left-hand

side of (5), we have

N−1
∑

n=0

[

w ∗ 1{n}(σ)
]

(x)pFn
(v)

(a)
=

N−1
∑

n=0

∑

x′∈X

w(x− x′)1{n}(σ(x
′))pFn

(v)

(b)
=

N−1
∑

n=0

∑

x′∈X 1(0,1](w(x− x′))1{n}(σ(x
′))

|w| pFn
(v)

(c)
=

N−1
∑

n=0

|Θn(x)|
|w| pFn

(v), (12)

where (a) follows from the definition of convolution, (b) from

w being a constant filter, and (c) from defining Θn(x) as

above.

Subtracting (12) from (11), we have
∣

∣

∣

∣

∣

N−1
∑

n=0

|Θn(x)|
|w| (p̂

Θn(x)
fn

(v)− pFn
(v))

∣

∣

∣

∣

∣

(a)

≤
N−1
∑

n=0

|Θn(x)|
|w|

∣

∣

∣
p̂
Θn(x)
fn

(v)− pFn
(v)
∣

∣

∣

(b)

≤
N−1
∑

n=0

|Θn(x)|
|w| an|Θn(x)|−1/2, (13)

where (a) follows from the triangle inequality and positivity of

|Θn(x)| and |w| and (b) from the dependence-decay property

of {F0, F1, . . . , FN−1}. The probability of (b) holding for

each n is 1 − δ, thus the probability of it holding for all of

them simultaneously is (1− δ)N .

We aim to bound (13) by its maximum. To do this, we

first replace an with a = max{a0, a1, . . . , aN−1}. We then

maximize the quantity over |Θ0|, |Θ1|, . . . , |ΘN−1| with the

constraint that |Θ0| + |Θ1| + . . . + |ΘN−1| = |w|. This

maximum occurs at |Θ0| = |Θ1| = . . . = |ΘN−1| = |w|/N ,

meaning that (13) is bounded by

N−1
∑

n=0

1

N
a

( |w|
N

)−1/2

= a

( |w|
N

)−1/2

,

thus proving the theorem.
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tive active-mask image segmentation for quantitative characterization of
mitochondrial morphology,” in Proc. IEEE Int. Conf. Image Process.,
Orlando, FL, Sep. 2012, pp. 2033–2036.

[8] D. B. Chklovskii, S. Vitaladevuni, and L. K. Scheffer, “Semi-automated
reconstruction of neural circuits using electron microscopy,” Curr.

Opin. Neurobiol., vol. 20, no. 5, pp. 667–675, Oct. 2010.

[9] J. Nascimento and J. Marques, “Robust shape tracking with multiple
models in ultrasound images,” IEEE Trans. Image Process., vol. 17,
no. 3, pp. 392–406, 2008.

[10] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.

[11] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.

[12] R. Malladi, J. A. Sethian, and B. Vemuri, “Shape modeling with front
propagation: A level set approach,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 17, no. 2, pp. 158–175, Feb. 1995.

[13] A. Jain and F. Farrokhnia, “Unsupervised texture segmentation using
Gabor filters,” Pattern Recogn., vol. 24, pp. 1167–1186, 1991.

[14] H. Derin and W. S. Cole, “Segmentation of textured images using
Gibbs random fields,” Computer Vis. Graph. Image Process., vol. 35,
no. 1, pp. 72–98, Jul. 1986.

[15] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient
algorithm based on immersion simulations,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 13, no. 6, pp. 583–598, Jun. 1991.

[16] R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 16, no. 6, pp. 641–647, 1994.

[17] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 5, pp. 603–619, May 2002.

[18] C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld: Image
segmentation using Expectation-Maximization and its application to
image querying,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp.
1026–1038, 1999.

[19] Y. Deng and B. S. Manjunath, “Unsupervised segmentation of color-
texture regions in images and video,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 23, no. 8, pp. 800–810, Aug. 2001.

[20] C. M. Christoudias, B. Georgescu, and P. Meer, “Synergism in low
level vision,” in Proc. IEEE Int. Conf. Pattern Recogn., vol. 4, Quebec
City, Aug. 2002, pp. 150–155.

[21] D. E. Ilea and P. F. Whelan, “CTex—An adaptive unsupervised
segmentation algorithm based on color-texture coherence,” IEEE Trans.

Image Process., vol. 17, no. 10, pp. 1926–1939, Oct. 2008.

[22] T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, “Use of active shape
models for locating structures in medical images,” Image Vis. Comput.,
vol. 12, no. 6, pp. 355–365, Jul. 1994.

[23] J. A. Ozolek and C. A. Castro, Teratomas Derived from Embryonic

Stem Cells as Models for Embryonic Development, Disease, and

Tumorigenesis. InTech, 2011, ch. 13.

[24] C. Chen, J. A. Ozolek, W. Wang, and G. K. Rohde, “A general
system for automatic biomedical image segmentation using intensity
neighborhoods,” Int. J. Biomed. Imag., Jan. 2011.



14

[25] A. Cagri, A. Burak, C. Aykanat, C. Sokmensuer, and C. Gunduz-
Demir, “Multilevel segmentation of histopathological images using
cooccurrence of tissue objects.” IEEE Trans. Biomed. Eng., vol. 59,
no. 6, pp. 1681–1690, Jun. 2012.

[26] M. L. Massar, R. Bhagavatula, M. Fickus, and J. Kovačević, “Local
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