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The QCD phase diagram is studied in the lattice QCD simulation with the imaginary chemical potential

approach. We employ a clover-improvedWilson fermion action of two flavors and a renormalization-group

improved gauge action and perform the simulation at an intermediate quark mass on a 83 � 4 lattice. The

QCD phase diagram in the imaginary chemical potential �I region is investigated by performing the

simulation for more than 150 points on the ð�;�IÞ plane. We find that the Roberge-Weiss phase transition

at �I=T ¼ �=3 is first order and its endpoint is second order, which are identified by the phase of the

Polyakov loop. We determine the pseudocritical line from the susceptibility of the Polyakov loop modulus.

We find a clear deviation from a linear dependence of the pseudocritical line on �2
I .
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I. INTRODUCTION

The QCD phase diagram, which includes states of mat-

ter formed in terms of the strong interaction, has been of

prime interest in recent physics covering particle physics,

hadron/nuclear physics, and astrophysics. Because QCD is

nonperturbative in most regions of the QCD phase dia-

gram, one is forced to use the lattice QCD in order to obtain

a quantitative understanding. The lattice QCD is expected

to provide reliable information on the phase structure

based on QCD. Indeed, recently there have been many

active quantitative investigations about the finite tempera-

ture QCD [1,2].

On the other hand, simulations of systems with nonzero

quark chemical potential � have been a long challenge for

the lattice QCD because of the notorious sign problem. In

the lattice QCD, a fermionic determinant det�ð�Þ is used
as a probability in a Monte Carlo method. The introduction

of nonzero�makes det�ð�Þ complex, and therefore leads

to the breakdown of the stochastic part of the lattice QCD,

see Ref. [3].

Despite of the severe sign problem, several approaches

have been proposed to study the QCD with nonzero�, see,

e.g., [3,4]. One idea is to avoid the sign problem by

performing simulations in systems with an imaginary

chemical potential. A partition function and its free energy

are analytic within one phase even if the chemical potential

is extended to complex, which is true until the occurrence

of a phase transition. This validates the imaginary chemical

potential approach for the study of the QCD phase

diagram.

Fermion determinants satisfy a well-known relation

�ð�Þy ¼ �5�ð���Þ�5; (1)

which holds for a complex chemical potential: � ¼ �R þ
i�Ið�R; �I 2 RÞ. This implies that det�ð�Þ is complex

for a real chemical potential � ¼ �R, which causes the

sign problem. On the other hand, one can easily prove

det�ð�Þ is real for a pure imaginary chemical potential

� ¼ i�I. The sign problem does not occur in this case and

Monte Carlo methods are available. The imaginary chemi-

cal potential approach provides an insight into the QCD

phase diagram through the analytic continuation. In addi-

tion, data obtained in such a simulation can be used for the

matching of phenomenological models such as Polyakov

loop extended Nambu-Jona-Lasinio models with the lattice

QCD [5,6].

The imaginary chemical potential approach has been

studied by using staggered fermions with two flavor

[7–9], three flavor [10], four flavor [11–14] in 2-color

QCD and finite isospin QCD [15,16], by using Wilson

fermions with two flavor [17].

Staggered fermions of the standard type might have

suffered from two problems. First, it needs a fourth-root

trick for one flavor [18]. Second, it does not show a scaling

behavior expected from three-dimensional Oð4Þ spin mod-

els for the finite temperature transition [19], although the

possibility of the first-order phase transition for two degen-

erate flavors was studied in Ref. [20]. Wilson fermions are

free from the fourth-root tricks and show the correct scal-

ing behavior. On the other hand, Wilson fermions suffer

from an explicit breaking of chiral symmetry. However,

one can define a subtracted chiral condensate, which

satisfy a correct scaling behavior. Although Wilson fermi-

ons require more computational time than that required in

staggered fermions, simulations with Wilson fermions are

now possible even on the physical quark masses at zero

density.

In finite temperature simulations with the combination

of the plaquette gauge action and the standard Wilson

quark action at Nt ¼ 4, the transition is smooth crossover
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at small and large quark mass and rapid crossover at

intermediate quark mass [21], which is different from

what is expected, i.e., that the transition becomes sharp

for light and heavy quark masses. This unexpected behav-

ior is removed by improving the gauge action [19,22]. The

improvement of the gauge action is essential in removing

lattice artifacts at finite lattice spacings.

Thus, the study of the Wilson fermions with improved

terms is complementary and useful to confirm results ob-

tained in other actions [7–13,17] and to establish a better

understanding of the QCD phase diagram. In this paper, we

study the two-flavor QCD phase diagram at an intermediate

quark mass by using the imaginary chemical potential

approach. This is the first employment of the two-flavor

Wilson fermion with a clover term and the renormalization-

group (RG) improved gauge action to the imaginary chemi-

cal potential approach.

This paper is organized as follows. In the next section,

we briefly review properties and issues of the imaginary

chemical potential region of the phase diagram. The setup

for the simulation is also explained here. The numerical

results are shown in Sec. III. We investigate the deconfine-

ment transition and Roberge-Weiss endpoint in Sec. III A

and Roberge-Weiss phase transition line in Sec. III B. We

determine the pseudocritical line in Sec. III C. The final

section is devoted to a summary.

II. FRAMEWORK

A. Phase diagram with imaginary chemical potential

We begin with a brief overview of the QCD phase

diagram and of the issues in question.

First we show in the left panel of Fig. 1 an expected

phase diagram in the ð�2; TÞ plane containing both the real
(�2 � 0, � ¼ �R) and imaginary (�2 � 0, � ¼ i�I)

regions. Even if �2 � 0, it is expected that quark-gluon-

plasma and hadronic phases exist at high and low tempera-

tures, respectively. The two phases are separated by the

deconfinement crossover transition line, which is an ex-

tension from the �2 � 0 region. These are consequences

of an analyticity of the grand partition function. The abso-

lute value of the Polyakov loop is often employed to

identify the confinement/deconfinement phase, although

it is not a real order parameter because of the crossover

nature of the transition.

Two characteristics of the �2 � 0 region are so-called

Roberge-Weiss (RW) phase transition and RW periodicity

[23]. The QCD grand partition function has a periodicity

with a period 2�=Nc as

Z

�

�I

T

�

¼ Z

�

�I

T
þ

2�k

Nc

�

; (2)

where k is an integer. Furthermore, Roberge and Weiss

showed from a perturbative analysis the existence of a first-

order phase transition on the line �I=T ¼ �=Nc, and from

a strong coupling analysis the absence of such a transition

at low temperatures. These features hold for SUðNcÞ gauge
theories. Hereafter we consider Nc ¼ 3. The RW phase

transition relates to the Zð3Þ symmetry and an order pa-

rameter identifying this phase transition is the phase or

imaginary part of the Polyakov loop. Because the RW

phase transition occurs at high temperatures but does

not at low temperatures, it may have an endpoint at

a temperature TRW on the line �I=T ¼ �=3. These fea-

tures are well manifested in the ð�I=T; TÞ-phase diagram,

see the right panel of Fig. 1.

Although the phase diagrams in Fig. 1 are naively ex-

pected, several points remain as issues which should be

discussed further. Figure 1 is drawn according to the two

points:

(i) The RW phase transition exists at high temperatures

and has an endpoint.

(ii) The extension of the crossover line exists in the

�2 � 0 region.

The second point needs an assumption that a pseudocritical

line can be defined for a crossover. Once the pseudocritical

line is defined, the second point is ensured by the identity

theorem.

Based on the above two points, one can consider several

counter examples against the naive expectation Fig. 1, see

Fig. 2. In order to reveal the phase structure without

assumptions on imagination, we need to know

(i) the location and order of the RW endpoint,

(ii) the location of phase boundary of the deconfinement

transition,

(iii) the way with which the RW and deconfinement

transition lines are connected.

Indeed, the quark-mass dependence of the RW endpoint

was found in Refs. [8,10]. D’Elia et al. discussed [8] a

possibility that other first-order phase transition lines

FIG. 1. Schematic figures for the Nf ¼ 2 QCD phase diagram

in the ð�2; TÞ plane (left panel) and ð�I=T; TÞ plane (right

panel). A: Pseudocritical point at � ¼ 0. B: Critical endpoint.
C: Roberge-Weiss endpoint. AB: Pseudocritical line. AC:

Extension of the line AB into the imaginary chemical potential

plane. CD: Roberge-Weiss phase transition line �I=T ¼ �=3. In
the right panel, the larger �I=T region of the phase diagram is

obtained from the RW periodicity.
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depart from the RWendpoint, which corresponds to the left

top panel in Fig. 2.

The above questions are important for two reasons. First,

they are relevant with the definition range of the pseudo-

critical line determined by the imaginary chemical poten-

tial approach, which also relates to the applicable range of

the line in the �2 � 0 region. For instance, if the pseudo-

critical line has an endpoint near Tpc at � ¼ 0 [24], then a

convergence radius R of the pseudocritical line obtained

from the imaginary chemical potential approach is given

by a distance between the endpoint and Tpc. The pseudo-

critical line obtained can be applied to a domain with the

convergence radius.

Second, it is speculated from the Lee-Yang theorem

[25,26] that a phase transition in the �2 � 0 region is

relevant to one in the �2 � 0 region, although the distri-

bution of the Lee-Yang zeros of the QCD grand partition

function has not been well understood. Assuming the Lee-

Yang zeros of the QCD are distributed on a line in the

complex fugacity plane, it is possible that the RW phase

transition line and its endpoint in the �2 � 0 region reflect
the first-order phase transition line and critical endpoint in

the �2 � 0 region of the QCD phase diagram.

B. Formulation and setup

We employ the RG-improved gauge action [27]

Sg ¼
�

6

�

c0
X

x;�<�

W1�1
�� ðxÞ þ c1

X

x;�;�

W1�2
�� ðxÞ

�

; (3)

with c1 ¼ �0:331 and c0 ¼ 1� 8c1, and the clover-

improved Wilson fermion action with the quark matrix

�ðx; yÞ ¼ �x;x0 � �
X

3

i¼1

½ð1� �iÞUiðxÞ�x0;xþî þ ð1þ �iÞU
y
i ðx

0Þ�x0;x�î�

� �½eþ�ð1� �4ÞU4ðxÞ�x0;xþ4̂ þ e��ð1þ �4ÞU
y
4 ðx

0Þ�x0;x�4̂� � �CSW�x;x0
X

���

���F��: (4)

Here � is the quark chemical potential in the lattice unit,

which is introduced to the temporal part of link variables.

In order to scan the phase diagram, simulations were

done for more than 150 points on the ð�I; �Þ plane in the

domain 0 � �I � 0:288 00 and 1:79 � � � 2:0. Note that
the RW phase transition line in the present setup is given by

�I ¼ �=12� 0:2618. All the simulations were performed

on a N3
s � Nt ¼ 83 � 4 lattice. The value of the hopping

parameter �were determined for each value of� according

to a line of the constant physics with mPS=mV ¼ 0:8 ob-

tained in Ref. [28]. The coefficient of the clover term CSW

was determined by using a result obtained in the one-loop

perturbation theory [29]: CSW ¼ ð1� 0:8412��1Þ�3=4.

The hybrid Monte Carlo algorithm was employed to

generate gauge configurations. The setup for the molecular

dynamics was as follows: a step size �	 ¼ 0:02, number of

the molecular dynamics N	 ¼ 50, and length N	�	 ¼ 1.
The acceptance ratio for this setup was more than 90%. We

generated 11 000 trajectories for most parameter sets and

16 000 trajectories for some parameter sets near the decon-

finement transition at �I ¼ 0. For all the ensemble, the

first 5000 trajectories were removed as thermalization.

The plaquette P, Polyakov loop Lei
 and their suscepti-

bilities were measured for each trajectory, where L and 

are the modulus and phase of the Polyakov loop.

The Polyakov loop operator is, as usual, defined by

Pol ¼
1

NVNc

X

x

tr
Y

Nt

t¼1

U4ð ~x; tÞ; (5)

where NV ¼ N3
s . The modulus and phase are, after the

ensemble average, defined by hPoli ¼ Lei
. Their suscep-
tibilities are also defined by

�L ¼ NVhðL� hLiÞi2; (6)

�
 ¼ NVhð
� h
iÞi2: (7)

Distributions of the Polyakov loop in the complex plane

are shown in Fig. 3. As the figures clearly show, the phase

structure can be identified by considering the � and �I

dependence of the Polyakov loop.

T

E
T

R

T

E
T

RW
T

RW
T

T

E
T

0
2 <µ 0

2 >µ

R
RW

T

FIG. 2. Counter examples against the naive expectation. R is a

convergence radius of the pseudocritical line determined in the

�2 � 0 region.
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III. NUMERICAL RESULTS

A. Deconfinement transition and RW endpoint

First, we investigate the deconfinement transition and

RW endpoint by considering the � dependence of the

observables.

The plaquette P and its susceptibility �P are shown in

Fig. 4. P is a smooth increasing function of � for all �I.

The effect of �I suppresses P for intermediate �, while it
does not change for small and large �. However, the effect
is up to a few percent. �P has a broad peak and the peak

position moves toward larger � with increasing �I.

The Polyakov loop modulus L and its susceptibility �L

are shown in Fig. 5. L increases slowly for small �. At a

certain value of� the slope of L becomes large, and �L has

a broad peak. These behaviors suggest the possibility that

the system undergoes the crossover transition with increas-

ing � or temperature. The peak position tends to move

toward a larger � with increasing �I, similar to the behav-

ior of �P. This behavior confirms that pseudocritical

temperatures become higher with the increase of �I until

�I ¼ �=12.
It should be noted that the crossover behavior is ob-

served for all �I, even on the line �I ¼ �=12. Hence,
the pseudocritical line starts from �I ¼ 0 and reaches

�I ¼ �=12.
Also note that the peaks of �P and �L are not sharp and

the signal is unclear. This may come from the small spatial
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-0.2 -0.1  0  0.1  0.2  0.3

Re[Pol]
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µI=0.00
µI=0.16
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o
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FIG. 3 (color online). Scatter plots of the Polyakov loop. Left panel: � ¼ 1:80 [low temperature (below Tpc)]. Right panel: � ¼ 1:95
[high temperature (above TRW)].

 0.5

 0.55

 1.8  1.85  1.9  1.95  2

β

P

µI=0.00
µI=0.05
µI=0.10
µI=0.15
µI=0.20
µI=π/12

 0.005

 0.01

 0.015

 1.8  1.85  1.9  1.95  2

β

χ
P

µI=0.00
µI=0.05
µI=0.10
µI=0.15
µI=0.20
µI=π/12

FIG. 4 (color online). The � dependence of the plaquette P (left panel) and its susceptibility �P (right) for various �I .
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FIG. 5 (color online). The � dependence of the Polyakov loop modulus L (left panel) and its susceptibility �L (right panel) for

various �I.
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and temporal sizes. In fact, the WHOT Collaboration

reported in a finite temperature simulation with the same

action that the hopping parameter dependence of the

Polyakov loop susceptibility shows a pronounced peak in

a 163 � 6 lattice [28].

The Polyakov loop phase
 and its susceptibility �
 are

shown in Fig. 6. 
 rapidly changes near � ¼ 1:92 only for
�I ¼ �=12, while it is a smooth function of � for 0 �
�I <�=12. It is seen that for �I ¼ �=12 there is one

vacuum at low temperatures and two vacua at high tem-

peratures. The histogram of 
 at �I ¼ �=12 in Fig. 7 also
shows this behavior. The susceptibility �
 shows a

divergent-like behavior near � ¼ 1:92 only for �I ¼
�=12. These behaviors suggest the possibility that the

system undergoes the second order phase transition at the

RW endpoint with increasing temperature.

The transition point of �
 in Fig. 6 agrees with the peak

position of �L in Fig. 5 within error bars. Hence, the

pseudocritical line is connected with the Roberge-Weiss

phase transition line at the RW endpoint. This is the case

shown in Fig. 1. We observed that near the RW endpoint,

the Polyakov loop modulus shows the crossover-like be-

havior and its phase shows the second order-like behavior.

Note that the order of the phase transition was naively

obtained from the behaviors of the observables. In order

to confirm the order of the phase transition, the finite

volume scaling analysis should be investigated in future

works.

B. RW phase transition

Next, we show the �I dependence of the observables in

Figs. 8 and 9, and investigate the nature of the RW phase

transition line. The results of P are not shown there be-

cause the effect of �I changes the value of P up to a few

percent, as shown in the previous subsection.

L decreases for �I <�=12, and increases for �I >
�=12. A rapidly decreasing behavior, which occurs due

to the intersection with the pseudocritical line, is observed

for � ¼ 1:87 and 1.90. The line for � ¼ 1:95 crosses the

RW phase transition line at �I ¼ �=12. However, a criti-
cal behavior is not observed there.

The �I dependence of 
 and �
 are shown in Fig. 9.


 is a smooth function of �I at low temperatures

(� ¼ 1:80–1:90), while 
 jumps to �2�=3 from 0 at

�I ¼ �=12 at a high temperature (� ¼ 1:95Þ. The system
undergoes the first-order phase transition at �I ¼ �=12 at

high temperatures. Note L is periodic and 
 is antiperi-

odic, which is caused by the periodicity of the �I depen-

dence of the Polyakov loop [6].

Together with the result obtained in the previous sub-

section, we find that the RW phase transition is the first-

order one and ends at the second order endpoint, which are
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various �I.
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identified by the phase of the Polyakov loop. This feature is

consistent with the results obtained in Ref. [7,17]. It was

reported [8,10] that the order of the RW endpoint depends

on the quark mass, and first order for light and heavy quark

masses and second order for intermediate quark masses.

Hence, the second order nature of the RW endpoint comes

from the intermediated quark mass.

C. Pseudocritical line

As we have discussed in Sec. III A, the Polyakov loop

modulus L shows the deconfinement crossover with in-

creasing temperature, which spans the range 0 � �I �
�=12. We extract the value of �pc by fitting five or six

data of �L near the peak with a Gaussian function: �L /

expð�bð�� �pcÞ
2Þ.

The results are shown in Table I and plotted as a function

of �2
I in Fig. 10. The data points in Fig. 10 clearly deviate

from a linear function near �I � �=12, which implies the

contributions of higher-order terms. The need of terms of

order higher than �2 in the functional form of the pseudo-

critical line was first pointed out in [14–16]. Such a behav-

ior has not been obtained from a study with the

combination of plaquette gauge action and the standard

Wilson fermion without the clover term [17]. Hence the

clover-improved Wilson fermion and the RG-improved

gauge action leads to the deviation from a linear depen-

dence of the pseudocritical line on �2
I . This finding is an

advantage of the improved actions.

In general, the pseudocritical line can be expanded in

powers of �I:

�pcð�IÞ ¼
X

n

cnð�
2
I Þ

n; (8)

which is defined for the range 0 � �I � �=12 bounded by
the RW endpoint. Within the definition range and with

the present numerical results, only a few terms can be

determined. Here, we test quadratic and quartic functions

and a Padé approximation of a simple type

�pcð�IÞ ¼ c0
1þ c1�

2
I

1þ c2�
2
I

: (9)

The results are shown in Table II and Fig. 11. The Padé

approximation and quartic function are better than the

quadratic function because of non-�2
I contributions, as

we have mentioned above. The Padé approximation is

slightly better than the quartic function in �2=d:o:f (where
d.o.f. refers to ‘‘degrees of freedom’’) but the difference is

quite small in the �2 � 0 region. They are extended to the
�2 � 0 plane through the analytic continuation �2

I !
��2. The result in the �2 � 0 region depends on the fit

functions, in particular, at large �2.

The pseudocritical line �pcð�IÞ can be transformed into

the one in the physical unit through the relation

T ¼
1

að�ÞNt

: (10)

However, we use the data for the � dependence of

T=Tpcð0Þ obtained in Ref. [28] instead of determining

lattice spacings. Note that the value of �pcð0Þ slightly
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 and �
 for various �.

TABLE I. The values of �pc determined by fitting �L with a

Gaussian function.

�I �pc ��pc

0.00 1.866 0.007

0.05 1.866 0.001

0.10 1.877 0.008

0.15 1.880 0.002

0.20 1.891 0.001
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FIG. 10. �pc and �2
I .
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disagrees with the one obtained in Ref. [28], which causes

the 1% deviation of Tpc=Tpcð0Þ at � ¼ 0 from 1.

It should be noted that T is not a linear function of �,
therefore there is no need for the above functions to be used

here. We consider quadratic, quartic functions and two

types of the Padé approximation;

Tpc

T0
pc

¼
X

n

dn

�

�̂I

Tpc

�

2n
; (11)

Tpc

T0
pc

¼ d0
1þ d1ð�̂I=TpcÞ

2

1þ d2ð�̂I=TpcÞ
2
½Pad�eðIÞ�; (12)

�

Tpc

T0
pc

�

2

¼ d0
1þ d1ð�̂I=TpcÞ

2

1þ d2ð�̂I=TpcÞ
2 þ d3ð�̂I=TpcÞ

4
½Pad�eðIIÞ�;

(13)

where �I ¼ a�̂I and �̂I is the imaginary chemical poten-

tial in physical unit. T0
pc and Tpc are pseudocritical tempera-

tures at zero and finite chemical potentials. As we have

mentioned above, d0 [ ¼ Tpc=Tpcð0Þ at � ¼ 0] deviates

from one with 1% because of the disagreement of �pcð0Þ

from Ref. [28]. Here we added Padé (II) defined in Eq. (13),

which was investigated to fit the critical line for four flavors

in Ref. [14]. Note that Eq. (13) can be extended to Tpc ¼ 0

for the �2 > 0 region [14]. The results are shown in

Table III and Fig. 12.

The central values of the quadratic, quartic, and Padé (I)

approximation show similar behavior to�pcð�IÞ. The Padé

(II) are consistent with the quartic and Padé (I) until

�I=Tpc < 0:8, and shows sharp rising for 0:8<�I=Tpc.

Considering the errors, the quadratic function still under-

shoots the obtained data and the quartic function suffers

from large errors. The two Padé approximations reproduce

the data well with small errors. The difference between the

two Padé approximations are observed for 0:8<�I=T.
Further investigations of this region would be important

for better determination of the pseudocritical line. It is

interesting to note that the Padé (II) has the intersection

with the line Tpc ¼ 0 at �crit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�d1=d3
p

¼ 2:73ð58ÞT0
pc,

which is in good agreement with the result obtained for

Nf ¼ 4 with staggered fermions, 2.5904(93) [14].

Similar to �pc, the deviation becomes larger with in-

creasing �̂=T in the �̂2 � 0 region and amounts to more

than 10% at �̂=T � 1. The quartic function increases and

the other three functions decrease. The quartic function is

completely different from the other three functions,

although the quartic and Padé (I) are almost same in the

�2 < 0 region.

The quadratic function decreases the fastest, the Padé

(II) does the next, and the Padé (I) overshoots the other

two. The curvature at �̂=Tpc ¼ 0 of a power series of

ð�̂=�TpcÞ
2 is often used to make comparisons with various

studies [30]. We obtain

t2 ¼ �2d1 ¼ 0:38ð12Þ: (14)

Here we employ the result for the quartic function. The

result is smaller than the value obtained from staggered

fermions [7,31] and standard Wilson fermions [17] and

implies the pseudocritical line decreases slower.

TABLE II. The coefficients of the fit functions for the pseu-

docritical line. c0 is fixed with the central value of �pcð0Þ.

Type c0 c1 c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2=d:o:f
p

Quadratic 1.866 0.67(4) � � � 1.56

Quartic 1.866 0.40(9) 6.64(2.17) 0.96

Padé 1.866 �6:59ð90Þ �6:84ð88Þ 0.76
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FIG. 11 (color online). The pseudocritical line �pc in the imaginary (left panel) and real (right panel) region.

TABLE III. The coefficients of the fit functions for the

pseudocritical line.

Type d0 d1 d2 d3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2=d:o:f
p

Quadratic 1.01 0.077(5) � � � � � � 1.68

Quartic 1.01 0.039(12) 0.060(19) � � � 1.00

Padé (I) 1.01 �0:44ð5Þ �0:49ð5Þ � � � 0.70

Padé (II) 1.01 �0:89ð10Þ �1:02ð12Þ 0.119(37) 0.55
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IV. SUMMARYAND OUTLOOK

We have investigated the two-flavor QCD phase diagram

in the lattice QCD. The imaginary chemical potential

approach was employed in order to avoid the sign problem.

The clover-improved Wilson action and renormalization-

group improved gauge action was first applied to the

imaginary chemical potential approach. The simulation

was performed on the 83 � 4 lattice and at the intermediate

quark mass. The simulation was performed for more than

150 points in the parameter (�, �I) plane. Considering the

Polyakov loop, the imaginary chemical potential region of

the phase diagram was examined.

Obtained behaviors of the phase transitions are first

order for the RW phase transition, second order for the

RWendpoint, and the crossover for the deconfinement. The

corresponding order parameter for the phase transitions are

the phase of the Polyakov loop for the RW phase transition

and RWendpoint and the modulus of the Polyakov loop for

the pseudocritical line. The Polyakov loop modulus did not

show a critical behavior on the RW phase transition line,

while the Polyakov loop phase did not on the pseudocriti-

cal line. We determined the pseudocritical line from the

susceptibility of the Polyakov loop modulus. We found a

clear deviation from a linear dependence of the pseudo-

critical line on �2
I .

The present calculation was performed with the inter-

mediate quark mass and small lattice. The finite volume

scaling analysis and quark mass-dependence analysis are

necessary to confirm the present results. In particular, the

order of the RWendpoint depends on the mass of the quark.

The improvement on these points should be done in a

future study.
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