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Abstract
Simulation theory proposes motor imagery (MI) to be a simulation based on representations also used for motor execution
(ME). Nonetheless, it is unclear how far they use the same neural code. We use multivariate pattern analysis (MVPA) and
representational similarity analysis (RSA) to describe the neural representations associated with MI andME within the
frontoparietal motor network. During functional magnetic resonance imaging scanning, 20 volunteers imagined or executed 3
different types of right-hand actions. Results of MVPA showed that these actions as well as their modality (MI or ME) could be
decoded significantly above chance from the spatial patterns of BOLD signals in premotor and posterior parietal cortices. This
was also true for cross-modal decoding. Furthermore, representational dissimilarity matrices of frontal and parietal areas
showed that MI andME representations formed separate clusters, but that the representational organization of action types
within these clusters was identical. For most ROIs, this pattern of results best fits with a model that assumes a low-to-
moderate degree of similarity between the neural patterns associated with MI andME. Thus, neural representations of MI and
ME are neither the same nor totally distinct but exhibit a similar structural geometry with respect to different types of action.
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Introduction
During the last 20 years, motor simulation phenomena have
become a major topic in the field of cognitive neuroscience.
Within this discussion, Jeannerod (2001) formulated his mental
simulation theory. This theory proposes a functional equiva-
lence between simulating and executing an action. More pre-
cisely, it argues that every action involves a covert stage, and
that this covert state includes the goal of the action and its

environmental consequences. Jeannerod and Frak (1999) con-
cluded that these covert actions are also actions—the only dif-
ference being that they are not executed. One prominent
situation corresponding to these so-called covert actions is the
conscious, self-intended simulation of one‘s own actions, that
is, motor imagery (MI).

On a neural level, it has been proposed that MI is a simula-
tion based on motor representations in the brain (Jeannerod
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2001). This has been supported by several neuroimaging stud-
ies showing that roughly the same brain areas are involved in
both motor execution (ME) and MI (Decety et al. 1994; Deiber
et al. 1996; Porro et al. 1996; Lotze et al. 1999; Guillot et al.
2008; Hanakawa et al. 2008; Munzert et al. 2009). However,
most of these studies used traditional forms of functional
magnetic resonance imaging (fMRI) data analysis (Decety et al.
1994; Stephan et al. 1995; Deiber et al. 1996; Porro et al. 1996;
Lotze et al. 1999; Ehrsson et al. 2003; Lorey et al. 2013) and
indicate only overall activity changes in brain regions in
response to a stimulus or a cognitive task (Friston et al. 1995).
Such analyses do not consider more distributed changes of
activation patterns within a given brain site, which may occur
in the absence of overall amplitude modulations. Newer
approaches such as multivariate decoding (Haxby et al. 2001;
Haynes and Rees 2005; Kamitani and Tong 2005; Kriegeskorte,
2011) allow the investigation of the representational content
of neuronal population codes. These approaches interpret
stimulus-related activity patterns as distributed representa-
tions of the stimuli. One aim of these newer approaches is to
identify such distributed response patterns in order to link
them to a given stimulus or a specific experimental condition.

The potential of these studies to answer open questions
within the field of motor simulation phenomena was demon-
strated recently in a couple of studies using multivariate pat-
tern analysis (MVPA). For example, it has been shown that
these analysis techniques allow the decoding of intended, ima-
gined, and executed types of hand actions from parietal and
frontal motor areas (Gallivan et al. 2011a, 2011b, 2013;
Oosterhof et al. 2012a; Pilgramm et al. 2016) as well as from lat-
eral occipitotemporal cortex (Oosterhof et al. 2012b; Pilgramm
et al. 2016). Furthermore, it has been demonstrated that distrib-
uted neural response patterns in motor and motor-related
areas can be used to distinguished whether they were elicited
by the execution, imagery (Park et al. 2015), or observation of a
hand action (Filimon et al. 2015). A recent study by Pilgramm
et al. (2016) provided evidence that patterns of activity within
motor, premotor, and posterior parietal cortex (PPC) differenti-
ate between 3 different types of imagined hand actions: a force
production task, an aiming task, and an extension–flexion task.

This study examines the similarity between neural activa-
tion patterns for different imagined and executed hand
actions in the same sample. In our fMRI experiment, subjects
worked on 6 experimental conditions and 1 baseline condi-
tion. In the experimental conditions, they had to either
imagine or execute 3 different right-hand actions: aiming,
extension–flexion, and squeezing (Lorey et al. 2013; Pilgramm
et al. 2016). We then decoded the type (aiming vs. extension–
flexion vs. squeezing) and modality (MI vs. ME) of imagined and
executed hand actions based on the spatial patterns of BOLD
signals they evoked in motor, premotor, and posterior parietal
cortices. Separate multivariate classifiers were trained and
tested for each region of interest (ROI) in order to obtain an
index of pattern discriminability. In the second step, we
decoded across the 2 modalities (MI and ME) to test whether
MI and the execution of specific hand movements share a
similar neural code. Third, we applied a representational simi-
larity analysis (RSA) (Kriegeskorte et al. 2008) to characterize
the representational geometry of MI and ME conditions in
every motor region via representational dissimilarity matrices
(RDMs) (Kriegeskorte et al. 2008; Kriegeskorte and Kievit 2013).
Finally, we compared the respective RDMs with several pre-
dicted RDMs based on different computational models: an
action type model, an action modality model, and 3 different

mixed models (Kriegeskorte 2009; Khaligh-Razavi and
Kriegeskorte 2014). In general, we used different multivariate
methods to deepen the understanding of neural representa-
tions of MI and ME.

Materials and Methods
Subjects

Twenty right-handed volunteers [14 female, mean age = 22.9
years, standard deviation (SD) = 2.9] with normal or corrected-
to-normal vision participated in this experiment. They reported
no history of psychiatric or neurological disorders, and no his-
tory or current use of any psychoactive medication. The study
was approved by the local Ethics Committee of the Psychology
and Sport Science Department of the Justus Liebig University
Giessen, and all subjects gave informed written consent in
accordance with the Declaration of Helsinki. The study took
place at the Bender Institute of Neuroimaging (BION, Justus
Liebig University).

Design and Task

The experiment consisted of 3 imagery conditions, 3 execution
conditions, and 1 rest condition. Before the fMRI experimental
phase, subjects completed a familiarization session (see
Familiarization Session). In the imagery and execution condi-
tions, they were instructed to either imagine or execute one of
the 3 tasks: 1) a force production task squeezing bellows, (2) an
aiming task pointing with the index finger at 5 targets affixed
to the bellows, or (3) an extension–flexion movement with the
right hand (i.e., the fingers) alongside the bellows (Fig. 1a). The
aiming task required no memorizing of a spatial sequence of
targets, because subjects were instructed to simply imagine
pointing to 5 affixed targets one after another (Lorey et al. 2014;
Pilgramm et al. 2016). Thus, in total, subjects were scanned dur-
ing 7 conditions. During the imagery and rest conditions, sub-
jects kept their eyes closed; otherwise, they kept them open to
receive visual feedback. Conditions were presented in a pseu-
dorandomized order counterbalanced across subjects. Each
trial started with a written instruction presented for 2.5 s
(“Imagine Squeezing Hand,” “Imagine Aiming Hand,” “Imagine
Rhythmic Movement Hand,” “Execute Squeezing Hand,”
“Execute Aiming Hand,” “Execute Rhythmic Movement Hand,”
or “Close Your Eyes and Rest”) followed by a jitter [0 – 90% of
time of repetition (TR)] and the respective imagery, execution,
or rest phase (8 s; Fig. 1b). Instructions were presented with a
PC running Presentation software (Neurobehavioral Systems)
and projected onto a screen behind the scanner that could be
viewed through a mirror attached to the head coil. During
imagery and rest, subjects kept their eyes closed, reopening
them only when the MI or rest phase was finished. This was
signaled by a sound. After each trial, subjects were asked to
rate (maximum 3 s) the perceived quality of their imagery or
execution performance on a 7-point scale ranging from “very
high” (7) to “very low” (1). For the imagery task, quality is
reflected by the perceived vividness of the mental image of the
respective movement; for the execution task, quality is
reflected by a perceived correct performance of the respective
movement. The rating also occurred after the rest trial in order
to keep the stimulation as well as the motor performance of
the subjects similar in each trial and experimental condition.
Here, participants were instructed to rate how well they did
relax. Each subject performed 10 runs of 14 trials each (corre-
sponding to 2 trials in each of the 7 conditions) in each of the 2
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separate scanning sessions within 1 week, amounting to a total
of 20 runs, 280 trials, and a scanning time of approximately
80min. To control for involuntary movements during MI as
well as the performance during ME trials, we recorded the sur-
face electromyographic (EMG) sum potential from 2 target mus-
cles of the right forearm during scanning (M. flexor carpi radialis,
M. palmaris longus).

Familiarization Session

Prior to the first fMRI-scanning session, subjects completed a
preparatory session to familiarize themselves with the different
experimental conditions and the experimental setting. First,
they observed and executed the different movements (see earl-
ier) before imagining them. All subjects were trained to imagine
the different hand movements in a first person perspective.
More precisely, participants were instructed to imagine the
movements as if they were performing it, including kinesthetic
as well as visual aspects of the movement. We used MATLAB
(MathWorks Inc.) to simulate the forthcoming fMRI session and
monitored EMG signals from several target muscles of the right
forearm using a real-time biofeedback system (Biofeedback
2000 x-pert, Schuhfried GmbH). This procedure allowed us to
give subjects feedback on whether they performed MI without
any notable muscle contraction. After each training trial, sub-
jects rated the quality of their imagery on a 7-point scale ran-
ging from very high (7) to very low (1). This session lasted a
total of 30min.

Image Acquisition and Preprocessing

The fMRI data were collected on a 3-T whole-body scanner
(Siemens Prisma) with a standard 20-channel head coil. We

acquired 1 structural image from each participant consisting of
176 T1-weighted sagittal images (1-mm slice thickness;
MPRAGE) at the first session and a fieldmap [40 slices; time of
echo (TE)(1): 10ms; TE(2): 12.46ms; TR: 1000ms] for the separ-
ate scanning sessions. For the run of functional imaging, a total
of 1,820 volumes were registered using a T2*-weighted gradient
echo-planar imaging sequence with 40 slices covering the
whole brain (slice thickness = 3mm; 0.75mm gap; descending;
time of acquisition = 2.4375 s; TR = 2.5 s; TE = 30ms; flip
angle = 87 degrees; field of view = 192mm × 192mm). The
orientation of the axial slices was parallel to the AC–PC line.
Trial onsets were jittered within 0–90 % of the TR.

Image preprocessing was carried out using SPM 12
(Wellcome Department of Imaging Neuroscience, University
College London, UK). Origin coordinates were adjusted to the
anterior commissure. Furthermore, realignment and unwarp-
ing were performed using voxel displacement maps generated
from the fieldmaps (Hutton et al. 2002), and the functional
images were coregistered with the anatomical scan for the
respective subject. Smoothing was executed with an isotropic
3-dimensional Gaussian filter with a full-width-at-half-max-
imum (FWHM) kernel of 5mm.

Data Analysis

Regions of Interest
The anatomical scan was used to reconstruct the cortical surface
of each hemisphere using FreeSurfer (http://surfer.nmr.mgh.
harvard.edu). ROIs were selected on the basis of previous find-
ings reported in the MI literature (Grèzes and Decety 2001;
Jeannerod 2001; Ehrsson et al. 2003; Heed et al. 2011) and defined
anatomically on an individual basis using the FreeSurfer

Figure 1. (a) Experimental conditions and (b) temporal structure of the experiment. (c) Subjective rating of the perceived quality of performance of participants: Bars

and error bars show means ±1 standard error of the mean (SEM). (d) EMG data: Means ±1 SEM of the “area under the curve.” Asterisks indicate statistical significance

of t tests between the experimental conditions. *P < 0.05, ***P < 0.001, adjusted for multiple testing using the Holm–Bonferroni method.
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parcellation algorithm (Destrieux et al. 2010; cf. Pilgramm et al.
2016). We defined 7 ROIs per hemisphere as follows:

1. Primary motor cortex (M1), defined as the precentral gyrus.
2. Dorsal and ventral premotor cortex (dPMC and vPMC),

defined as the superior and inferior part of the precentral
sulcus, respectively.

3. Superior (SPL) and inferior parietal lobule (IPL), defined as
the supramarginal and the angular gyrus as well as the
intraparietal sulcus (IPS) including transverse parietal sulci.

4. Primary auditory cortex (A1), defined as the anterior trans-
verse temporal gyrus (Shapleske et al. 1999), and frontomar-
ginal gyrus (FMG) serving as control regions

Defining ROIs on an individual basis allowed us to work with
high anatomical precision and avoided the need for spatial
normalization.

General Linear Models
A first-level analysis was computed with SPM 12 using separate
general linear models (GLMs) for each subject and each of the 20
runs.We created 7 boxcar regressors corresponding to the 7 condi-
tions. The boxcar functions of each regressor spanned the
imagery, execution, or rest interval (i.e., 8 s). Each regressor was
convoluted with a canonical hemodynamic response function.
Moreover, 6 movement parameters from the rigid-body trans-
formation of the motion-correction procedure were entered as
covariates in the GLM. The voxel-based time series were filtered
with a high-pass filter (time constant = 128 s). Based on these
GLMs, we calculated 6 contrast images per subject and run, each
contrasting one of theMI or ME conditionswith the rest condition.

Multivariate Pattern Analysis
The purpose of the MVPA was to analyze whether the neural
patterns for MI and ME of different hand actions are specific
enough to decode the respective experimental condition based
on these patterns. To test whether MI and ME of different
action types (aiming, extension–flexion, squeezing) evoked sep-
arable response patterns in a given ROI, we conducted a linear
discriminant analysis (LDA) with leave-one-run-out cross-
validation for each subject using functions from the MATLAB
statistics toolbox. We classified activations based on t-contrast
images derived from the GLM analysis described above to
achieve a down-weighting of noisier voxels (compared with
raw beta values; Misaki et al. 2010; Walther et al. 2016).

The t-values within an ROI were vectorized for each contrast
separately, deriving 3 response vectors per run for both MI and
ME. To avoid the influence of potential differences in mean
amplitude and variance, we additionally z-scored all t-maps.
LDA requires the dimensionality of the data to be lower than
the number of training patterns provided. We used principal
component analysis (PCA) to reduce the number of features sig-
nificantly below the number of training samples (we used the
first 5 principal components; c.f., Pilgramm et al. 2016) but still
capture most of the variance in the data (variance explained
≥60%). Note that the PCA was done across all data and there-
fore included what would become the test data of individual
folds. This does not, however, constitute ‘double-dipping’
(Kriegeskorte et al. 2009). The PCA was entirely blind to data
labels. Therefore, a PCA across all data was possible without
‘peeking’ for each fold. In each iteration of the cross-validation,
these shortened vectors were split into a set of test and training
data corresponding to data from 1 and 19 runs, respectively.

The LDA algorithm was provided with labels indicating the
condition for each of the training examples, and a linear deci-
sion hyperplane was derived on the basis of these data. This
decision criterion was applied, in turn, to the test data and
used to assign condition labels to each of the 3 test vectors.

We compared each of the assigned labels with the veridical
labels and counted correct and incorrect assignments as 1 and
0, respectively. The whole procedure was repeated until each
run had served as test data once, and we then calculated the
proportion of correct assignments across the folds of this cross-
validation procedure. This proportion of correct assignments
was derived separately for each subject, ROI, and the MI and ME
conditions. To test the respective decoding accuracies for signifi-
cance, we performed a permutation analysis with random label-
ing of the classes, providing a more robust test of statistical
significance than a one-sample t-test against chance (Stelzer
et al. 2013). In each of 2000 iterations per subject and ROI, the
action labels of the 60 data samples were randomly shuffled.
The classification accuracy of this randomly labeled data set
was calculated using the leave-one-run-out cross-validation
approach described above. P values were derived as the propor-
tion of random shuffles resulting in an accuracy as high (or
higher) than the one observed for the actual (unshuffled) labels,
with the smallest possible P-value fixed to 0.0005 (Nichols and
Holmes 2001). All P values were corrected for multiple ROIs
using the Holm–Bonferroni method (Holm 1979). Furthermore,
we calculated classifier sensitivity (d’) for each action type and
ROI based on the labels predicted by our classifier.

We used a similar procedure to classify neural activation pat-
terns according to modality (MI or ME). The difference was that
we now used all 6 (i.e., imagined and executed) t-contrast images
per run and labeled them according to their modality. The statis-
tical significance of the decoding accuracies was determined
using permutation analysis, which randomly assigned modality
labels to the data in each of 2000 iterations per subject and ROI.
Again, P values were derived as the probability of getting a value
as large as the real-label performance in the randomization dis-
tribution and were Holm–Bonferroni corrected.

Searchlight Analysis
In a next step, we performed an additional searchlight analysis
(Kriegeskorte et al. 2006; cf. De Haas et al. 2013). This analysis
serves as a control analysis in order to test whether and where
patterns of neural activity carried information about the content
of our different experimental conditions (i.e., the different action
types and modalities) outside our prespecified ROIs that belong
to the core and broader motor system. For this analysis, we
derived activation patterns from the same (trial-specific and z-
scored) t-maps that we used for the ROI analysis described
above. The searchlight consisted of a sphere with a radius of 5
voxels that was centered on each cortical gray matter voxel for
each participant‘s brain in turn (using FreeSurfer segmentations
excluding the cerebellum). For each iteration, the analysis was
restricted to the gray matter voxels intersecting the respective
searchlight sphere. The corresponding patterns were read out
for each trial, and we applied the same classification procedure
as described for the ROI analysis. Classification accuracies were
projected back onto the seed voxel, resulting in an accuracy map
for each participant. We subtracted chance level (1/3) from these
accuracy maps, spatially smoothed them with a small Gaussian
kernel (FWHM 2mm), and normalized them to MNI space http://
www.loni.ucla.edu/ICBM/. In the imagery condition, we tested
for whole-brain family-wise-error (FWE) corrected significance at

4526 | Cerebral Cortex, 2017, Vol. 27, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/27/9/4523/3056483 by guest on 20 August 2022

http://www.loni.ucla.edu/ICBM/
http://www.loni.ucla.edu/ICBM/


cluster level (P < 0.05 FWE; voxelwise cluster forming threshold
P < 0.001 uncorrected). In the execution condition, we tested for
whole-brain FWE-corrected significance at voxel level (P < 0.05
FWE). Here, we used different thresholds, because the level of
neural activity associated with MI is generally lower than that
associated with ME. Significant clusters and voxels were identi-
fied anatomically using the Juelich Histological Atlas implemen-
ted in the SPM Anatomy Toolbox (v. 2.1; http://www.fz-juelich.
de/inm/inm1/DE/Forschung/_docs/SPMAnatomyToolbox/SPMAna
tomyToolbox_node.html).

Cross-modal Classification
To test whether MI and execution of a specific hand movement
share a similar neural code in frontal and parietal motor
regions, we attempted a cross-modal classification. In this ana-
lysis, we performed the same steps for the LDA classification as
described before, but, this time, a classifier trained with the
respective 19 execution runs decoded the action types for an
imagined run and vice versa. Significant classification accur-
acies (determined by permutation tests as described above)
thus imply a similarity between neural codes for different hand
actions across MI and ME.

Representational Similarity Analysis
Further, we employed an RSA analysis in order to characterize the
geometry of neural representations in frontal and parietal motor
regions for MI and ME of different hand movements. RDMs char-
acterize the pairwise dissimilarity of activation patterns evoked by
different action types and modalities.

For this analysis, we used the toolbox from Nili et al. (2014).
The t-maps obtained for the imagined and executed hand
movements were compared with each other using correlation
distance. For each ROI, all pairwise comparisons were
assembled in an RDM with (1 – Pearson linear correlation) as
the respective degree of dissimilarity leading to a 6 × 6 RDM.
The RDMs were calculated separately for each experimental

run and averaged for each subject. This yielded 20 brain RDMs
(1 per subject) for each of the 16 ROIs. These were used to cal-
culate the noise ceiling and the similarity between model RDMs
and each of these single-subject RDMs. Then, we used multidi-
mensional scaling (MDS) to project the high-dimensional RDM
space onto 2 dimensions and get a graphical impression of rep-
resentational distances. For this purpose, the 20 subject RDMs
were averaged to obtain a single RDM per ROI.

Computational Models
Finally, we tested several model predictions against these brain
RDMs to arbitrate between theoretical stances regarding MI and
ME. Specifically, we compared the brain RDMs of the 16 ROIs
with 7 different model predictions: a purely modality-based, a
purely action type–dependent, and 5 different mixed models.
The latter type of models predict a modulation of pattern simi-
larities depending on both, modality and the action types.
Examples of these models are shown in Figure 2b. The compari-
son between brain and model RDMs was based on Pearson’s
linear correlation.

Modality Model
The modality model assumes a categorical distinction between
the 2 modalities (i.e., MI and ME) only in the corresponding
model RDM, the dissimilarities for all within-modality compari-
sons are 0 (identical neural response across action types within
a modality), and 1 for all between-modality comparisons
(totally unrelated neural responses across MI and ME).

Action Type Model
The action type model is also a categorical model. This model
assumes a categorical distinction between the 3 action types:
squeezing, aiming, and extension–flexion. In this model RDM,
the dissimilarities between identical action types were 0
(regardless of modality) and those between different action
types were 1 (again, regardless of modality).

Figure 2. RDMs for models and brain regions. (a) Legend showing the arrangement of the 6 experimental conditions (sq. = squeezing, ai. = aiming, rh. = rhythmic

extension–flexion) within 1 RDM. The percentiled RDM captures the pairwise dissimilarities between the response patterns elicited by the stimuli. By definition, the

RDM is symmetric and has a zero diagonal. Vertical scale illustrating the color coding of the dissimilarity (percentile of 1 – Pearson correlation across space) values.

(b) RDMs of the theoretical models that assume different similarities of the neural pattern based on modality and action type. The first shows an action modality–

based model that assumes equal neural patterns for each action type within an action modality. The last shows an action type–based model that assumes equal

neural patterns for a given action type across action modalities. The 3 mixed models in between vary with regard to the degree of functional equivalence they assume

between modalities of a given action type. Modality dissimilarity varied between models and was fixed to 0.1 (Mm1), 0.3 (Mm3), 0.5 (Mm5), 0.7 (Mm7), and 0.9 (Mm9),

respectively. In all mixed models, the dissimilarity between different action types within 1 modality was fixed to 0.5 and the dissimilarity between different action

types of different modalities was fixed to 0. (c) RDMs of the brain data for every ROI (means across participants).
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Mixed Models
We also tested 5 different mixed models (Mm) that predict a
dependency of the observed neural pattern on modality as well
as action type. In all models, the dissimilarity between different
action “types within a modality” was fixed to 0.5 and the dis-
similarity between different action “types across modalities”
was fixed to 1. These values matched the brain RDMs within
the different ROIs well (correlations for different action types
ranged from 0.4 and 0.6 within a modality and between 0 and
0.15 across modalities). The dissimilarity of “identical” action
types across modalities (i.e., the dissimilarity of MI and ME for
a given action) varied between the defined models and was
fixed to 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. These models
were designated Mm1, 3, 5, 7, and 9, respectively. Using these
models, we tested different degrees of neural similarity
between neural patterns elicited by the MI and ME of 1 action
type. For example, the Mm9 model assumes a low degree of
neural similarity of neural patterns associated with MI and ME.

Pearson Linear Correlation, RDM Relatedness, and Noise Ceiling
To compare brain and model RDMs, we used Pearson linear
correlation and one-sided signed-rank test across the single-
subject RDM correlations. To test differences between fits
across models, we used 2-sided signed-rank tests across sub-
jects for each pair of model RDMs. To account for multiple test-
ing, we controlled the false-discovery rate at 0.05.

The amount of variance, that a model RDM can explain is lim-
ited by the variability across subjects. Therefore, an estimation of
the noise ceiling is needed to indicate how much variance an
ideal model RDM can explain given the noise level. The average
of all subject RDMs can be used as an estimate of the ideal model
RDM. The average correlation of this average RDM with the 20
subject RDMs provides the upper bound. We estimated the lower
bound by applying a leave-one-subject-out approach. We com-
puted and averaged the correlation of each single-subject RDMs
with the average RDM of the other 19 subjects, providing the low-
er bound of the ceiling. A model RDM is deemed to capture the
true dissimilarity structure of the brain RDM as well as possible
when its correlation reaches the lower bound of the ceiling.

Subjective Rating and EMG Data Acquisition and Analysis
After each trial in the fMRI session, subjects rated the success
of each experimental trial on a 7-point Likert scale ranging
from very high (7) to very low (1). We calculated mean rating
scores for each experimental condition and computed a
repeated-measures analysis of variance (ANOVA) to examine
the effects of the respective action (aiming, squeezing, rhyth-
mic extension–flexion) or the experimental condition (imagery,
execution) on the subjective ratings.

We analyzed EMG data collected in the fMRI session by
determining the area under the curve. These data were then
averaged for each subject in each condition. The averaged data
were subjected to multiple paired t tests comparing EMG activ-
ity for each imagery condition with EMG activity in the rest
condition. All P values were corrected for multiple ROIs using
the Holm–Bonferroni method (Holm 1979).

Results
Behavioral Data

Subjective Ratings
All subjects gave high ratings in all experimental conditions
(mean ratings > 5.2). A repeated-measures ANOVA revealed a

significant main effect of modality, F(1, 19) = 62.568, P < 0.001,
η2 = 0.767 with higher ratings for ME than MI (Fig. 1c), a signifi-
cant Modality × Action interaction, F(2, 38) = 16,238, P < 0.001,
η2 = 0.461 (MI of the aiming movement was rated highest, while
it was the action type with the lowest ratings during ME), but
no main effect of action, F(1.23, 23.45) = 1.294, P = 0.277,
η2 = 0.064.

EMG Data
Muscular activity during MI was controlled during scanning. A
repeated-measure ANOVA revealed a significant main effect
of experimental condition, F(2.11, 82.16) = 43.344, P < 0.001,
η2 = 0.526. Post hoc t tests showed no significant difference
between all imagery conditions compared with resting base-
line but significant differences between the execution of
actions and the baseline condition (P < 0.001; Bonferroni
adjusted). All mean values and standard errors are depicted in
Figure 1d.

Neuroimaging Data

Multivariate fMRI Results
To test whether response patterns in a given ROI carried infor-
mation about the type of action, we compared decoding per-
formance in each ROI against chance level separately for both
modalities. For MI (Fig. 3a), the imagined type of action could be
classified significantly above chance level in left M1 (P < 0.05),
left dPMC (P < 0.05), left (P < 0.01), and right SPL (P < 0.05), as
well as right IPS (P < 0.05). No significant classification was
found for right M1, right dPMC, vPMC, left IPS, IPL, A1, and FMG.
For ME (Fig. 3b), the type of action could be classified signifi-
cantly in left and right M1, left and right dPMC, left and right
SPL, left and right IPS, left IPL (all P < 0.001), as well as left vPMC
(P < 0.01), right vPMC (P < 0.05), right IPL (P < 0.01), and left A1
(P < 0.05). No significant classification was found for right A1
and FMG. All P values were derived from permutation analyses
and were corrected for multiple testing using the Holm–

Bonferroni method. In order to test for significant differences
between the different decoding accuracies for ME, we per-
formed an 8 × 2 (ROI × hemisphere) repeated-measures ANOVA
as well as post hoc multiple pairwise comparisons. The results
revealed a significant main effect of ROI [F(7, 133) = 81.648,
P < 0.001, η2 = 0.811], a significant main effect of hemisphere
[F(1, 19) = 46.721, P < 0.001, η2 = 0.711], and a significant ROI ×
hemisphere interaction [F(7, 133) = 5,439, P < 0.001, η2 = 0.223].
Post hoc pairwise comparison (Holm–Bonferroni corrected)
showed that decoding performance in A1 was significantly low-
er compared with all other ROIs (P < 0.001 for M1, dPMC, SPL
and IPS; P < 0.01 for vPMC and IPL) and did not differ signifi-
cantly from FMG. As for FMG, the analysis of several further
control ROIs revealed no significant decoding (gyrus rectus,
transverse frontopolar gyri and sulci, temporal pole, the
respective data are not shown due to space constraints). An
additional control analysis revealed that significant classifica-
tion performance was based on classifier sensitivity (d’) for all 3
types of actions in both modalities. However, it also revealed
an especially high degree of classifier sensitivity for the aiming
condition in MI and ME (Fig. 3f,g).

Action modality, that is, whether an action was imagined or
executed (Fig. 3e), could be decoded from every single ROI with
decoding accuracies ranging from 59.1% to 96.7% (P < 0.05;
Holm–Bonferroni corrected).
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Figure 3. Decoding results for several classifications in every ROI. (a) MI decoding results: bars and error bars indicate the mean accuracy (% correct) ±1 standard error

of the mean (SEM) with which the type of imagined action could be decoded from activation patterns in a given ROI. (b) ME decoding results: bars and error bars indi-

cate the mean accuracy (% correct) ±1 SEM with which the type of executed action could be decoded from activation patterns in a given ROI. (c) MI cross-classification:

bars and error bars indicate the mean accuracy (% correct) ±1 SEM with which imagined actions in a given ROI could be decoded by a classifier trained with ME data.

(d) ME cross-classification: bars indicate the mean accuracy (% correct) ±1 SEM with which executed actions in a given ROI could be decoded by a classifier trained

with MI data. (e) Action modality decoding results: bars indicate the mean accuracy (% correct) ±1 SEM with which the type of action modality could be decoded from

activation patterns of the imagined and executed actions in a given ROI. For (a) − (e): left and right bars for each ROI represent the corresponding areas of the left and

right hemisphere, respectively. The black line marks chance level. Asterisks indicate statistical significance determined by permutation analysis, adjusted for
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Searchlight Results
We used a searchlight approach in addition to our ROI analyses
to explore which regions of the brain carried information about
imagined and executed types of hand action (see Methods,
above). For MI, this analysis confirmed that imagined hand
actions could be decoded from activity patterns within left
M1, dPMC, vPMC, preSMA, SPL and IPL, as well as the right M1,
dPMC, vPMC, and IPL. Note that most of these areas are
within an extended cluster in each hemisphere. In addition,
the searchlight analysis revealed significant clusters in right
somatosensory cortices (Brodman Area 1 and 2), right
Brodman Area 3, and left lateral occipital cortex (Area
hOc4la).

For ME, activity patterns could be used to decode executed
hand actions in left M1, dPMC, vPMC, posterior supplementary
motor area (SMAprop) (all of them in 1 cluster), IPL, and SPL; as
well as in right M1, dPMC, IPL, and SPL. In addition, the search-
light analysis revealed significant clusters in left and right som-
atosensory cortices (BA1, BA2, BA3), visual cortex (including V1,
V2, V3A, V3d, V3v, V4v), lateral occipital cortex (hOc4lp), left
Area 44, right Area FG1, and in TE 1.1 of both hemispheres. See
Table 1 for more details.

Cross-Modal Classification
Both, classification of imagery patterns with a classifier
trained with execution patterns and vice versa showed sig-
nificant decoding accuracies in some of our ROIs. Imagined
actions (Fig. 3c) could be decoded with a classifier trained on
ME data in left dPMC as well as SPL of both hemispheres (all
P < 0.05). The results for decoding executed actions with a
classifier trained on MI data are similar (Fig. 3d). Significant
decoding was found in left dPMC, SPL of both hemispheres
(all P < 0.01) as well as in right IPS (P < 0.05). All P values

were derived from permutation analyses and corrected for
multiple ROIs using the Holm–Bonferroni method (Holm
1979).

Representational Similarity Analysis

Multidimensional Scaling
Visual inspection using MDS showed a spatial organization of
the 6 conditions that was generally the same in every ROI:
First, the execution and the imagery conditions were separated
into 2 clusters. Second, the geometry of the different action
types within the execution and imagery clusters were the
same, with specific actions located face to face across modal-
ities (Fig. 4).

Correlations with Model Predictions
Table 2 shows the correlations between model predictions and
brain RDMs for different brain regions. This measure reflects
how well the response pattern dissimilarities for the several
brain regions are explained by the 7 different model RDMs. The
action type model RDM did not correlate (Pearson correlation,
mean = −0.020) with any brain RDM significantly, but the
modality model RDM (Pearson correlation: mean = 0.359), and
all 5 mixed models correlated significantly with each brain
RDM (mean Pearson correlations for Mm1, 3, 5, 7, and 9 were
0.205, 0.251, 0.300, 0.335, and 0.331, respectively) (Fig. 5).

Considering individual ROIs, the majority of RDMs was best
explained by 2 models. The Mm9 model provided the best fit
for data in left and right M1, right vPMC, right IPS, left IPL, and
left A1. In contrast, the Mm7 model best explained the data in
left dPMC, left vPMC, left and right SPL, left IPS, right IPL, and
right A1. The difference between the obtained correlations of
these 2 models was very small and significant only for left M1
(Fig. 6). These models assume that the correlations between

multiple testing using the Holm–Bonferroni method: *P < 0.05, **P < 0.01, ***P < 0.001. (f) MI classifier sensitivity: bars indicate d’ values for each action type and ROI

based on the labels predicted by our classifier with MI data. (g) ME classifier sensitivity: bars indicate d’ values for each action type and ROI based on the labels

predicted by our classifier with ME data. For (f) + (g): the 3 bars for each ROI represent the corresponding hand movements (squeezing, aiming, and extension–flexion).

The brain picture shows the anatomical location of ROI labels on the reconstructed surface of an example hemisphere.

Table 1 RDM correlations between brain regions and models

ROI L/R Ceiling Correlation to model

Modality Mm9 Mm7 Mm5 Mm3 Mm1 Action type

M1 L [0.736, 0.764] 0.708**** 0.714**** 0.663**** 0.540**** 0.404**** 0.290**** −0.205ns

R [0.406, 0.485] 0.388**** 0.397**** 0.380**** 0.322**** 0.253*** 0.193*** −0.080ns

dPMC L [0.359, 0.449] 0.213*** 0.233*** 0.255**** 0.248**** 0.223**** 0.197**** 0.042ns

R [0.142, 0.295] 0.166** 0.186** 0.212**** 0.213**** 0.197**** 0.179**** 0.057ns

vPMC L [0.187, 0.323] 0.222*** 0.238*** 0.252**** 0.237**** 0.208**** 0.178**** 0.019ns

R [0.212, 0.344] 0.286**** 0.296**** 0.292**** 0.255**** 0.207**** 0.164**** −0.038ns

SPL L [0.385, 0.469] 0.330**** 0.356**** 0.382**** 0.364**** 0.322**** 0.279**** 0.042ns

R [0.289, 0.396] 0.311*** 0.337**** 0.365**** 0.351**** 0.313**** 0.273**** 0.049ns

IPS L [0.434, 0.508] 0.376**** 0.394**** 0.398**** 0.357**** 0.298**** 0.244**** −0.023ns

R [0.328, 0.426] 0.349**** 0.363**** 0.360**** 0.317**** 0.260**** 0.208*** −0.039ns

IPL L [0.322, 0.422] 0.300**** 0.309**** 0.301**** 0.260**** 0.208**** 0.163**** −0.048ns

R [0.349, 0.439] 0.300**** 0.315**** 0.319**** 0.288**** 0.241**** 0.198**** −0.015ns

A1 L [0.267, 0.381] 0.296**** 0.308**** 0.307**** 0.272**** 0.224**** 0.180*** −0.030ns

R [0.123, 0.286] 0.187** 0.197** 0.200** 0.181** 0.152** 0.126** −0.008ns

FMG L [−0.033, 0.201] 0.134** 0.141** 0.143** 0.129** 0.108* 0.089* −0.006ns

R [0.102, 0.271] 0.163*** 0.168*** 0.164*** 0.141*** 0.113*** 0.088** −0.028ns

Pearson RDM correlation coefficients between brain regions and models. Significant correlations indicated by asterisks (ns = not significant: *P < 0.05; **P < 0.01;

***P < 0.001; ****P < 0.0001). Lower and upper bounds of the noise ceiling are stated in brackets. For each brain region, the 2 highest correlations are highlighted.

If the correlation is within the ceiling, it is set in bold.
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executed and imagined action types are relatively low, com-
pared with pattern correlations due to shared modality. Thus,
for a large part of our ROIs, pattern similarity was driven by
modality to a greater degree than action type. The highest cor-
relation between MI- and ME-evoked patterns for different
hand actions was found in right dPMC, which was best
explained by the Mm5 model, indicating that this region
showed a higher degree of neural similarity between MI and
ME. Furthermore, the model data revealed that MI- and ME-
evoked patterns correlated in a range of 0.3–0.5 in dPMC and
SPL (which is in line with the Mm5 and Mm7 predictions), while
all other ROIs showed lower. This is illustrated in Figure 6. The
figure gives a brief overview of the 2 highest correlating models
for each ROI as well as of the statistical model fit. For further
information see supplemental table S1.

Despite moderate absolute correlation values, the best fit-
ting model predictions for a number of ROIs reached the noise
ceiling. This indicates these performed as well as possible,
given the variability of the data. For example, the modality
model was able to explain the data in right dPMC, left and right
vPMC, right SPL, right IPS, and left and right A1. The Mm9 and

Mm7 models reached the ceiling in the same ROIs. Almost the
same results (the same ROIs except for the right IPS) were
observed for the Mm5 model. Furthermore, all mixed models
reached the noise ceiling for vPMC and A1 in both hemispheres.
In summary, the mixed models performed best in most ROIs
and reached the noise ceiling in a number of them, indicating a
low-to-moderate similarity of MI and ME representations
within these motor regions.

Discussion
It has been proposed that MI is a simulation based on own
motor representations that are also used while executing an
action (Jeannerod 2001; Grush 2004). This led to the assumption
of a so-called functional equivalence between imagining and
executing an action. This study used a multivariate fMRI
approach to investigate the functional organization of MI and
ME in different motor regions. Participants imagined and exe-
cuted 3 different hand actions of the right hand (aiming, exten-
sion–flexion, and squeezing). The respective fMRI data were
then fed into a battery of multivariate analysis approaches.

Our findings show that for MI, the type of action could be
classified significantly above chance level in the left and right
M1, left PMC, left and right dPMC, left vPMC, left and right PPC,
left and right SPL, left and right IPS, and right IPL. For ME, the
respective type of action could be classified significantly in
every ROI, except right A1 and FMG of both hemispheres. The
modality of actions could be classified significantly above
chance level in every ROI. Surprisingly, decoding of ME action
types was possible in left A1 although the decoding accuracy
was significant lower compared with those in all motor regions
and decoding did not work in FMG, our nonsensory control
region. Here, we can only speculate about the source of the
effect in left A1. One possible explanation is multisensory feed-
back processes during the execution of specific movements.
Within this framework, Vetter et al. (2014) argue that sensory
priors can be transmitted between sensory modalities and
through cortical feedback from higher areas, in order to prepare
early sensory areas with a predictive model for incoming exter-
nal information.

These results replicate previous findings showing that pat-
terns of activity within motor, premotor, and posterior parietal
regions differentiate between, first, different types of hand
actions (Pilgramm et al. 2016) and second, between action
modalities (Filimon et al. 2015; Park et al. 2015). This suggests
that frontal as well as parietal motor-related areas represent
the content as well as the modality of imagined and executed
actions. Furthermore, these results showed that cross-
classification succeeded for MI in left dPMC and SPL of both
hemispheres. For ME, cross-classification succeeded in left
dPMC, SPL of both hemispheres as well as in left IPS. This
demonstrates that there is at least some similarity between MI-
and ME-induced neural patterns for specific hand actions in
broad areas of the human motor system. Therefore, the results
stand for some degree of consistency between neural codes for
MI and ME within these regions. However, the relatively low
values of the cross-classification, the successful decoding of
modality, and the testing of model predictions (see below)
demonstrates that the neural codes for MI and ME are clearly
distinct at the same time.

To gain some notion of the degree of similarity and consist-
ency of neural patterns induced by MI and ME in different
motor regions, we characterized the representations in differ-
ent frontal and parietal motor regions by RDMs constructed

Figure 4. MDS plots of brain RDMs. For each ROI, an MDS plot (minimizing met-

ric stress) shows the similarities of the neural pattern elicited by the 6 experi-

mental conditions. The closer images are to each other, the more similar their

neural patterns. By arranging this higher dimensional similarity structure into

2D, the effective distances between the neural patterns get inevitably distorted.

This deviation is indicated by a gray connection line, which, like a rubber band,

becomes thinner when stretched beyond the length that would exactly reflect

the dissimilarity it represents, respectively, becomes thicker when compressed.

The thickness of each line is chosen such that the area of each connection line

(length time thickness) precisely reflects the undistorted similarity measure.

Each MDS plot visualizes the respective brain RDM in Figure 2c. The brain in

the middle shows the anatomical location of ROI labels on the reconstructed

surface of an example hemisphere.

MVPA of Imagined and Executed Hand Movements Zabicki et al. | 4531
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/article/27/9/4523/3056483 by guest on 20 August 2022

http://CERCOR.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw257/-/DC1


from fMRI patterns for different types of imagined and exe-
cuted hand actions. The RDMs of different motor and motor-
related areas were highly similar to each other with respect to
their general representational geometries of executed and ima-
gined actions. In all tested regions, the neural pattern of MI and
ME conditions were underpinned quite distinctly by 2 separated
clusters in the respective MDS. However, we also found that the
geometry of the different hand movements for the execution and

imagery was the same in every MDS. Hence, the neural organiza-
tion of action types was similar across imagery and execution.
With respect to the tested model predictions, we found the best
fits for the representational geometries of mixed models indicat-
ing that neural representations have both common and distinct
components across modalities. For nearly all tested ROIs, the best
model fit was found for the mixed models assuming a relatively
low-to-moderate degree of similarity between the neural patterns

Table 2 Searchlight results

Left/right Cluster size MNI coordinates of
maximum t value

Maximum t value

x y z

MI
vPMC / dPMC / preSMA / BA4p / BA4a / SPL (7 A/7PC) L 1852 −15 −55 56 7.36
dPMC / vPMC / BA4p / BA4a / BA1 / BA2 R 1093 42 −31 59 7.16
SPL (5 Ci) L 10 −15 −37 41 5.76
IPL (PGp) R 41 33 −82 17 5.60
IPL (Pga) L 8 −54 −55 32 5.04
IPL (PFcm) L 54 −48 −40 17 4.86
hOc4la L 36 −36 −76 8 5.19
Area 33 R 14 6 29 17 4.23
ME
BA2 R 5 33 −43 56 9.32
BA3b L 5 −60 −7 29 9.16
BA3b / BA1 L 9 −51 −19 50 12.51
BA3b / BA4a / BA4p R 151 39 −19 47 11.72
BA3b / BA4a / BA4p / dPMC / vPMC / SMAprop L 239 −48 −13 32 13.66
dPMC R 39 39 −10 59 11.50
dPMC L 8 −30 −19 68 10.27
dPMC L 7 −12 −10 68 8.56
IPL (PFcm) R 3 48 −34 17 8.55
IPL (PFt) R 23 57 −25 41 10.06
IPL (PFt) L 3 −54 −34 38 8.78
SPL (5M) L 99 −15 −40 50 10.28
V1 (hOc1) R 70 9 −91 −4 11.34
V1 (hOc1) R 20 6 −85 5 10.24
V1 (hOc1) L 4 −9 −61 2 9.96
V1 (hOc1) R 14 6 −79 −4 9.27
V1 (hOc1) R 4 15 −67 8 8.60
V1 (hOc1) R 5 15 −67 −1 8.56
V2 (hOc2) R 16 27 −97 −7 10.09
V2 (hOc2) L 3 −3 −97 11 8.64
V2 / V3d / V3v L 154 −6 −82 −7 12.10
V3A (hOc4d) R 10 18 −85 38 10.83
V3d (hOc3d) R 10 9 −82 35 8.79
V3d (hOc3d) L 10 −6 −85 23 9.03
V3d (hOc3d) R 4 15 −91 23 8.76
V3v (hOc3v) R 6 30 −85 −13 10.07
V3v (hOc3v) R 6 15 −76 −7 9.25
V3v (hOc3v) L 6 −9 −70 −4 8.06
Area 44 L 27 −48 11 5 9.07
Area 5 L (SPL) R 14 21 −49 62 8.91
Area FG1 R 3 33 −67 −10 7.60
Area hOc4v [V4(v)] L 3 −33 −79 −16 8.29
Area TE 1.1 L 9 −42 −22 5 9.51
Area TE 1.1 R 6 42 −22 8 8.70
Area hOc4lp R 5 39 −85 8 11.69
Area hOc4lp L 3 −33 −82 11 8.47
Area hOc4lp L 4 −30 −94 −7 8.43

Clusters with above chance decoding of action type in MI condition. Voxels with above chance decoding action types in ME condition. MI: P < 0.05, whole-brain FWE-

corrected on cluster level. ME: P < 0.05, whole-brain FWE-corrected.

4532 | Cerebral Cortex, 2017, Vol. 27, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/27/9/4523/3056483 by guest on 20 August 2022



associated with MI and ME. The exception was in the dorsal pre-
motor sections as well as within the superior parietal cortex.
Here, we found the best model fit for the mixed model that
assumes a slightly higher similarity between MI and ME.

Our results therefore suggest the following main conclu-
sions: (1) Evoked patterns of neural activity vary systematically
according to which type of action is being imagined or executed
using the same effector. Thus, frontal as well as parietal motor-
related areas represent the content of MI and action execution
as well as their modality (Filimon et al. 2015; Park et al. 2015;
Pilgramm et al. 2016). (2) ME and MI generate neural patterns
that have some degree of consistency as demonstrated by the
cross-modal classification. (3) The representational similarity of
MI and ME can be considered as low to moderate. (4) The dPMC
and the SPL come closest to a ‘common code’ for MI and ME,
showing the highest degree of representational similarity
between MI and ME. These results complement and extend pre-
vious research by directly comparing MI- and ME-evoked pat-
terns of neural activity and their representational geometry.

dPMC and SPL Showing Greater Similarity Between ME
and MI Representations

Generally, the dorsal premotor and superior parietal cortices
are considered to be involved in motor preparation processes
(Rizzolatti and Sinigaglia 2010). Regarding their anatomical
relatedness, it has been confirmed that most parietal input to
the dorsal premotor cortex originates from the superior parietal
cortex (Wise et al. 1997). The premotor region is involved in
many higher level aspects of movement planning such as the
preparation and organization of movements and actions (Wise
1985; Rizzolatti and Luppino 2001) or processes such as serial
prediction (Schubotz 2007). In particular, the dorsal section of
the premotor region is crucial for deciding which action to per-
form. Furthermore, Cisek and Kalaska (2004) have argued that
the activation of dorsal premotor cells is associated with men-
tal rehearsal processes of sensory events and motor tasks.
The PPC has been considered to be important for movement
intention, decision making, as well as sensorimotor transform-
ation (Andersen 1987; Kalaska et al. 1997; Rizzolatti et al. 1997;
Graziano and Gross 1998; Andersen and Buneo 2002; Bueno
et al. 2002; Desmurget et al. 2009), and a broad body of literature
relates the process of body state estimation to the PPC
(Desmurget et al. 2009). A further functional issue of the SPL is
the storage of internal models and action representations that
are mandatory for action prediction (Winstein et al. 1997;
Wolpert et al. 1998a ; Miall 2003; Rizzolatti and Matelli 2003).
For example, Aflalo et al. (2015) demonstrated that MI of move-
ments with different goals and trajectories could be decoded
from neural populations within the human PPC of a tetraplegic
subject. In a recent study, we found that decoding of MI of dif-
ferent actions is possible, especially within the dorsal section
of the premotor area and the superior section of the PPC. This
suggests that both regions carry information regarding the type
of an imagined action (Pilgramm et al. 2016). Additionally, these
data suggest that these regions show a greater similarity
between MI- and ME-evoked patterns than other motor areas.
Thus, especially the activity within the dorsal section of the
premotor area, which is assumed to decide which kind of
action is to be performed (Hoshi and Tanji 2007), shows a rela-
tively high degree of functional equivalence between MI and
ME. The same may be the case for the superior section of the
PPC, because this region is considered to store internal action
models and an internal representation of the body’s state

Figure 5. Visualizing relationships among model and brain RDMs. (a) Matrix of

all model and brain RDM correlations. Each entry compares 2 RDMs by Pearson

linear correlation. RDM correlations between brain regions and models are

framed. (b) MDS (minimizing metric stress) of brain and model RDMs. Each

point represents an RDM, and distances between the points approximate the

dissimilarity (1 – Pearson linear correlation) of the respective RDMs (left and

right hemisphere RDMs and model RDMs shown in blue, yellow, and green,

respectively).

Figure 6. Visualizing differences between RDM model correlations. For each

ROI, the 2 models with the highest RDM correlation (white background) are

shown. Furthermore, significant differences (2-sided signed-rank test across

subjects, controlling FDR at 0.05.) with respect to the model fit are shown and

indicated by color. Action modality: a purely action modality–based model that

assumes equal neural patterns for each action type within an action modality,

action type: a purely action type–based model that assumes equal neural pat-

terns for a given action type across action modalities. Mm9/Mm7/Mm5/Mm3/

Mm1: mixed models vary with regard to the degree of functional equivalence

they assume between action modalities for a given action type and is fixed to

0.9, 0.7, 0.5, 0.3, and 0.1 respectively. Dissimilarity between different action

types within a modality was fixed to 0.5; dissimilarity between different action

types of different action modalities was fixed to 1.
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(Wolpert et al. 1998). Both aspects might be mandatory for both
MI and ME. The PPC/SPL and the dorsal section of the PMC
might especially represent high-level aspects of action (Fogassi
and Luppino 2005). One conclusion for the similarity of exe-
cuted and imagined actions therefore might be that that the
similarity of MI and ME is highest for higher levels of action
processing like the planning of a movement.

Conclusion
There is a large body of neuroimaging literature concluding
that MI and ME depend on equivalent motor representations,
because they tend to come with similar activation foci. Newer
approaches using multivariate methods, however, argue that it
is not the overall activity within motor regions but the distribu-
ted activation patterns within them that are critical for the
representation of actions, modalities, and action types. This
study investigated whether the imagery or execution of 3 dif-
ferent hand actions is accompanied by similar patterns of
neural activation in the human core and broader motor regions.
Our findings are in line with previous results showing that
decoding of both the action content and the action modality is
possible for frontal and parietal motor regions (see also Filimon
et al. 2015; Park et al. 2015; Pilgramm et al. 2016). This speaks
for a distinctiveness of the neural codes underlying MI and ME
of different action types. However, they go beyond these previ-
ous findings by demonstrating that the neural patterns elicited
by the execution or imagery of different action types also
resemble each other—as demonstrated by the possibility of
cross-classification. They further show that ME and MI share a
similar representational geometry for different action types—
as indicated by the RSA analysis. A comparison of the data
with a range of models indicates that ME and MI representa-
tions are neither purely distinct nor purely equivalent. They are
best captured by models assuming that ME and MI are distin-
guishable from each other while preserving a low-to-moderate
degree of similarity. Finally, we found the closest similarity of
MI- and ME-induced neural activation patterns within the SPL
and the dPMC. Both cortical sites are discussed as representing
action ideas and internal action models. It appears that the
similarity between MI and ME is highest on this level of action
ideas and action plans.

Limitations and Open Questions

We find moderate similarities between MI and ME in several
frontal and parietal motor areas with higher degrees of similar-
ity for the dPMC and the SPL. However, these data should be
interpreted with caution, because fMRI data are indirect mea-
sures of neural activation with relatively coarse temporal and
spatial resolution. They are further subject to substantial meas-
urement noise as well as potential intersubject and intrasubject
variation (indicated by the relatively low noise ceiling in many
of our ROIs; cf. Table 2). This variation might be caused by the
differences of quality (i.e., vividness) of imagery as well as by
differences with respect to the used imagery strategy. For
example, subjects might have focused on either more visual or
kinesthetic aspects of the imagined movements what is related
with different neural activation pattern (Stinear et al. 2006;
Guillot et al. 2009). Furthermore, it should be noted that this
study investigated MI and ME of 3 hand movements that differ
with respect to their transitivity, timing, and goal-directedness.
These movement–immanent differences are accompanied by
specific neural differences within premotor and parietal areas

(cf. Lorey et al. 2014), potentially leading to differential classifier
performance for different action types across different areas. In
fact, an additional control analysis revealed that significant
classification performance was based on classifier sensitivity
(d’) for all 3 types of actions in both ME and MI. However, it also
revealed an especially high degree of classifier sensitivity for
the aiming condition in both MI and ME, which was most pro-
nounced in superior parietal cortex. This might be related to
the importance of spatial processing for this type of action, but
given our limited set of actions definitive conclusion will have
to await further research. Against this background, a more sys-
tematic investigation of different movement features and their
representations in motor regions might be an important future
research issue. A third possible limitation might emerge from
the fact that MI was performed with eyes closed and ME was
performed with eyes open and thus accompanied by processing
visual input. This might lead to an underestimation of similar-
ity between MI and ME in regions modulated by visual input
(e.g., parietal cortex). However, this difference between condi-
tions ensures that the observed similarity between MI and ME
within core and broader motor regions (as shown by the cross-
decoding as well as by the representational geometry of the
RDMs) is due to motor rather than visual commonalities of MI
and ME.

Future studies should explore whether subject variables
such as the vividness of imagery or different imagery strategies
modulate decoding performance and the similarity between MI
and ME. Furthermore, it might be interesting to examine
whether the similarity of neural representations is adaptive to
the individual motor experience.
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