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Abstract: In this paper, we propose an imagined speech-based brain wave pattern recognition using
deep learning. Multiple features were extracted concurrently from eight-channel electroencephalogra-
phy (EEG) signals. To obtain classifiable EEG data with fewer sensors, we placed the EEG sensors on
carefully selected spots on the scalp. To decrease the dimensions and complexity of the EEG dataset
and to avoid overfitting during the deep learning algorithm, we utilized the wavelet scattering
transformation. A low-cost 8-channel EEG headset was used with MATLAB 2023a to acquire the
EEG data. The long-short term memory recurrent neural network (LSTM-RNN) was used to decode
the identified EEG signals into four audio commands: up, down, left, and right. Wavelet scattering
transformation was applied to extract the most stable features by passing the EEG dataset through a
series of filtration processes. Filtration was implemented for each individual command in the EEG
datasets. The proposed imagined speech-based brain wave pattern recognition approach achieved a
92.50% overall classification accuracy. This accuracy is promising for designing a trustworthy imag-
ined speech-based brain–computer interface (BCI) future real-time systems. For better evaluation of
the classification performance, other metrics were considered, and we obtained 92.74%, 92.50%, and
92.62% for precision, recall, and F1-score, respectively.

Keywords: inner speech; imagined speech; EEG decoding; brain–computer interface (BCI); LSTM;
wavelet scattering transformation (WST)

1. Introduction

An enormous body of research has been conducted over the past decade aiming to
convert human brain signals to speech. Although experiments have shown that the excita-
tion of the central motor cortex is elevated when visual and auditory cues are employed,
the functional benefit of such a method is limited [1]. Imagined speech, sometimes called
inner speech, is an excellent choice for decoding human thinking using the brain–computer
interface (BCI) concept. BCI is being developed to progressively allow paralyzed patients to
interact directly with their environment. Brain signals usable with the BCI systems can be
recorded with a variety of common recording technologies, such as magnetoencephalogra-
phy (MEG), electrocorticography (ECOG), functional magnetic resonance imaging (fMRI),
functional near-infrared spectroscopy (fNIRS), and electroencephalography (EEG). EEG
headsets are used to record the electrical activities of the human brain. EEG-based BCI sys-
tems can convert the electrical activities of the human brain into commands. An EEG-based
implementation is considered an effective way to help patients with a high level of disability
or physical challenges control their supporting systems, such as wheelchairs, computers,
or wearable devices [2–5]. Moreover, in our very recent research [6,7], we accomplished
excellent accuracy in classifying EEG signals to control a drone, and considered the Internet
of Things (IoT) to design an Internet of Brain-Controlled Things (IoBCT) system.

Applying soft-computing tools, such as artificial neural networks (ANNs), genetic
algorithms, and fuzzy logic helps designers implement intelligent devices that fit the
needs of physically challenged people [8]. Siswoyo et al. [9] suggested a three-layer
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neural network to develop the mapping from input received from EEG sensors to three
control commands. Fattouh et al. [10] recommended a BCI control system to distinguish
between four control commands alongside the emotional status of the user. If the user is
satisfied, the specific control command is still executed, otherwise the controller should
stop the implementation and ask the patient to choose another command. Decoding
the brain waves and presenting them as an audio command is a more reliable solution
to avoid the execution of unwanted commands, and this is mainly true if the user can
listen to the translated commands from their brain and confirm or deny the execution
of that command. A deep learning algorithm offers a valuable solution for processing,
analyzing, and classifying brainwaves [11]. Modern studies have concentrated, in both
healthy individuals and physically challenged patients, primarily on communicating their
thoughts [12]. Vezard et al. [13] reached a 71.6% accuracy in a binary alertness states (BAS)
estimation by applying the common spatial pattern (CSP) to extract the feature. The
methods in [14,15] were used to discriminate between different motor imagery tasks and
reached an EEG classification accuracy of just 54.6% and 56.76%, respectively. This was
achieved by applying a multi-stage CSP for the EEG dataset feature extraction. In [16],
researchers employed the power of a deep learning algorithm using the recurrent neural
network (RNN) to process and classify the EEG dataset.

For cheaper and more easily set up and maintained BCI systems, it is preferable to
have as few EEG channels as possible. There are two types of BCI systems: online systems,
such as those described in [17,18], and offline BCI systems, such as the systems described
in [19]. In the offline EEG system, the EEG data recorded from the participants are stored
and processed later; on the other hand, the online BCI system processes the data in real
time, such as in the case of a moving wheelchair. Recent research [20] revealed that EEG-
based inner speech classification accuracy can be improved when auditory cues are used.
Wang et al. [21] demonstrated in their study, which was based on common spatial patterns
and event-related spectral perturbation (ERSP), that the highly significant EEG channels for
classifying inner speech are the ones laid on the Broca’s and Wernicke’s regions. Essentially,
the Wernicke region is responsible for ensuring that the speech makes sense, while the
Broca region ensures that the speech is produced fluently. Given that both Wernicke’s
and Broca’s regions participate in inner speech, it is not easy to eliminate the effect of the
auditory activities from the EEG signal recorded during speech imagination. Indeed, some
researchers have suggested that auditory and visual activities are essential to decide the
brain response [22,23].

In most studies, the participants are directed to imagine speaking the commands
only once. However, in [24,25], the participants must imagine saying a specific command
multiple times in the same recording. In [26], the commands “left”, “right”, “up” and
“down” were used. This choice of commands is not only motivated by the suitability of these
commands in practical applications but also because of their various manner and places
of articulation. Maximum classification accuracies of 49.77% and 85.57% were obtained,
respectively. This was accomplished using the kernel extreme learning machine (ELM)
classification algorithm. Significant efforts have been recently published by Nature [27],
where a 128-channel EEG headset was used to record inner speech-based brain activities.
The acquired dataset consists of EEG signals from 10 participants recorded by 128 channels
distributed all over the scalp according to the ‘ABC’ layout of the manufacturer of the EEG
headset used in this study. The participants were instructed to produce inner speech for
four words: ‘up’, ‘down’, ‘left’, and ‘right’, based on a visual cue they saw in each trial. The
cue was an arrow on a computer screen that rotated in the corresponding directions. This
was repeated 220 times for each participant. However, since some participants reported
fatigue, the final number of trials included in the dataset for each participant differed
slightly. The total number of trials was 2236, with an equal number of trials per class for
all participants. The EEG signals included event markers and were already preprocessed.
The preprocessing included a bandpass filter between 0.5–100 Hz, a notch filter at 50 Hz,
artifact rejection using independent component analysis (ICA), and down-sampling to
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254 Hz. The long-short term memory (LSTM) algorithm was used in [28,29] to classify EEG
signals. In [28], 84% accuracy in EEG data classification was achieved. In [29], an excellent
accuracy of 98% was achieved in classifying the EEG-based inner speech, but researchers
used an expensive EEG headset. Obtaining high accuracy in classifying brain signals is
considered essential in the design of future brain-controlled systems, which can be tested
in real-time or in simulation software such as V-Rep [30] to check for any uncounted errors.

Most researchers have used high-cost EEG headsets to build BCI systems for imagined
speech processing. Using the RNN for time-series input showed good execution in extract-
ing features over time, and achieved an 85% classification accuracy. Although innovative
techniques in conventional representations, such as event-related potential (ERP), and
steady-state visual evoked potential (SSVEP), have expanded the communication ability of
patients with a high level of disability, these representations are restricted in their use for
the availability of a visual stimulus [31,32]. Practical research studied imagined speech in
EEG-based BCI systems and showed that imagined speech could be extrapolated using
texts with high discriminatory pronunciation [33]. Hence, BCI-based gear can be controlled
by processing brain signals and extrapolating inner speech [34]. Extensive research has
been conducted to develop BCI systems using inner speech and motor imagery [35]. To
investigate the feasibility of using EEG signals for imagined speech recognition, a research
study reported promising results on imagined speech classification [36]. In addition, a
similar research study examined the feasibility of using EEG signals for inner speech
recognition and increasing the efficiency of such use [37].

In this paper, we have used a low-cost low-channel 8-channel EEG headset, g.tec
Unicorn Hybrid Black+ [38], with MATLAB 2023a for recording the dataset to decrease
the computational complexity required later in the processing. Then, we decoded the
identified signals into four audio commands: up, down, left, and right. These commands
were performed as an imagined speech by four healthy subjects whose ages are between 20
and 56 years old, including two females and two males. The EEG signals were recorded
while the imagination of speech occurred. An imagined speech-based BCI model was
designed using deep learning. Audio cues were used to stimulate the motor imagery of the
participants in this study, and the participants responded with imagined speech commands.
Pre-processing and filtration techniques were employed to simplify the recorded EEG
dataset and speed up the learning process of the designed algorithm. Moreover, the short-
long term memory technique was used to classify the imagined speech-based EEG dataset.

2. Materials and Methods

We considered research methodologies and equipment in order to optimize the system
design, simulation, and verification.

2.1. Apparatus

In order to optimize the system design, reduce the cost of the designed system, and
decrease the computational complexity, we used a low-cost EEG headset. We used a
low number of EEG channels with the focus instead on the placement of EEG sensors
at the proper locations on the scalp to measure specific brain activities. The EEG signals
were recorded using the g.tec Unicorn Hybrid Black+ headset. It has eight-channel EEG
electrodes with a 250 Hz sampling frequency. It records up to seventeen channels, including
the 8-channel EEG, a 3-dimensional accelerometer, a gyro, a counter signal, a battery signal,
and a validation signal. The EEG electrodes of this headset are made of a conductive rubber
that allows recording dry or with gel. Eight channels were recorded on the following
positions: (FZ, C3, CZ, C4, PZ, PO7, OZ, and PO8) which are the standard electrodes
positions of g.tec Unicorn Hybrid Black+ headset. The used g.tec headset provides standard
EEG head caps of various sizes with customized electrode positions. A cap of appropriate
size was chosen for each participant by measuring the head boundary with a soft measuring
tape. All EEG electrodes were placed in the marked positions in the cap, and the gap
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between the scalp and the electrodes was filled with a conductive gel provided by the EEG
headset manufacturer.

We considered the international electrode placement 10-20 recommended by the
American clinical neurophysiology society [39]. The head cap was adjusted to ensure their
electrodes were placed as close to Broca’s and Wernicke’s regions as possible, which we
assumed to produce good quality imagined speech-based EEG signals. Figure 1 shows the
g.tec Unicorn Hybrid Black+ headset with the electrode map. Ground and reference were
positioned on the back of the ears (mastoids) of the participant using a disposable sticker.

Bioengineering 2023, 10, x FOR PEER REVIEW 4 of 15 
 

ard EEG head caps of various sizes with customized electrode positions. A cap of appro-

priate size was chosen for each participant by measuring the head boundary with a soft 

measuring tape. All EEG electrodes were placed in the marked positions in the cap, and 

the gap between the scalp and the electrodes was filled with a conductive gel provided by 

the EEG headset manufacturer. 

We considered the international electrode placement 10-20 recommended by the 

American clinical neurophysiology society [39]. The head cap was adjusted to ensure their 

electrodes were placed as close to Broca’s and Wernicke’s regions as possible, which we 

assumed to produce good quality imagined speech-based EEG signals. Figure 1 shows the 

g.tec Unicorn Hybrid Black+ headset with the electrode map. Ground and reference were 

positioned on the back of the ears (mastoids) of the participant using a disposable sticker. 

. 

Figure 1. (A) Broca’s and Wernicke’s regions, (B) The electrode positions of the system. Ground and 

reference are fixed on the back of ears (mastoids) with a disposable sticker, (C) 8-channel EEG head-

set. 

2.2. Procedure and Data Collection 

The study was conducted in the Department of Electrical & Computer Engineering 

and Computer Science at Jackson State University. The experimental protocol was ap-

proved by the Institutional Review Board (IRB) at Jackson State University in the state of 

Mississippi [40]. Four healthy participants, two females and two males in the age range 

(20–56), with no speech loss, no hearing loss, and with no neurological or movement dis-

orders, participated the experiment and signed their written informed consent. Each par-

ticipant was a native English speaker. None of the participants had any previous BCI ex-

perience and contributed to approximately one hour of recording. In this work, the par-

ticipants are classified by aliases “sub-01” through “sub-04”. The age, gender, and lan-

guage information about the participating subjects is provided in Table 1. 

Table 1. Participants Information. 

Participant Gender Age Native Language 

sub-01 Male 56 English 

sub-02 Female 20 English 

sub-03 Male 29 English 

Figure 1. (A) Broca’s and Wernicke’s regions, (B) The electrode positions of the system. Ground and
reference are fixed on the back of ears (mastoids) with a disposable sticker, (C) 8-channel EEG headset.

2.2. Procedure and Data Collection

The study was conducted in the Department of Electrical & Computer Engineering and
Computer Science at Jackson State University. The experimental protocol was approved
by the Institutional Review Board (IRB) at Jackson State University in the state of Missis-
sippi [40]. Four healthy participants, two females and two males in the age range (20–56),
with no speech loss, no hearing loss, and with no neurological or movement disorders,
participated the experiment and signed their written informed consent. Each participant
was a native English speaker. None of the participants had any previous BCI experience
and contributed to approximately one hour of recording. In this work, the participants are
classified by aliases “sub-01” through “sub-04”. The age, gender, and language information
about the participating subjects is provided in Table 1.

Table 1. Participants Information.

Participant Gender Age Native Language

sub-01 Male 56 English
sub-02 Female 20 English
sub-03 Male 29 English
sub-04 Female 26 English



Bioengineering 2023, 10, 649 5 of 15

The experiment was designed to record the brain’s activities while imagining speaking
a specific command. When we usually talk to each other, our reactions will be based on
what we hear or sometimes on what we see. Therefore, we could improve the accuracy of
classifying different commands by allowing participants to respond to an audio question.
Each participant was seated in a comfortable chair in front of another chair where a
second participant would announce the question as an audio cue. To familiarize the
participant with the experimental procedures, all experiment steps were explained before
the experiment date and before signing the consent form. The experimental procedures
were explained again during the experiment while the EEG headset and the external
electrodes were placed. The setup procedure took approximately 15 min. Four commands
were chosen to be imagined as a response to the question: “Where do you want to go?” A
hundred recordings were acquired for each command, with each participant completing
25 recordings. Each recording lasted approximately 2 min and required two participants
to be present. Unlike the procedure in [24,25], we did not set a specific number for each
command to be repeated. When the recording began, the question was announced after 10
to 12 s as audio cues by one of the other three participants. After 10 s, the participant started
executing his response for 60 s by continuously imagining saying the required command,
and the recording was stopped after 10 s. In each recording, the participant responded by
imagining saying the specified command, which was one of the four commands. Since we
have four commands, the total recorded EEG dataset for all was 400 recordings.

The recorded EEG dataset for all 400 recordings was labeled and stored; then, the EEG
dataset was imported into MATLAB to prepare it for processing. The EEG dataset was
processed and classified together without separating them according to their corresponding
participants, so that we could evaluate our designed algorithm according to its performance
in dealing with a dataset from different subjects. For each command, the first 25 recordings
were for subject 1, the second 25 recordings were for subject 2, etc. After finishing the
classification process, the results were labeled according to the order of the participant’s
dataset. Figure 2 illustrates the recording and signal processing procedures. Figure 3 shows
a sample of the recorded 8-channel raw EEG signals.
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2.3. Data Pre−Processing and Data Normalization

Preprocessing the raw EEG signals is essential to remove any unwanted artifacts
arising from the movement of face muscles during the recording process from the scalp
that could affect the accuracy of the classification process. The recorded EEG signals were
analyzed using MATLAB, where a bandpass filter between 10 and 100 Hz was used to
eliminate any noisy signals from the EEG. This filtering bandwidth maintains the range
of frequency bands corresponding to the human brain EEG frequency limit [41]. Then,
normalization (vectorization) and feature extraction techniques were applied to simplify
the dataset and reduce the computing power required to classify the four commands. The
dataset was divided into 320 recordings and 80 recordings for the testing dataset (80%
for training and 20% for testing). The EEG dataset was acquired from eight EEG sensors,
and contained different frequency bands with different amplitude ranges. Thus, it was
beneficial to normalize the EEG dataset to boost the training process speed and get as
many accurate results as possible. The training and testing dataset were normalized by
determining the mean and standard deviation for each of the eight input signals. Then, the
mean value was calculated for both the training and testing dataset. Then, the results for
both were divided by the standard deviation as follows:

EEGNormalized =
X− µ

σ
(1)

where (X) is the raw EEG signal, (µ) is the calculated mean value, and (σ) is the calculated
standard deviation. After the normalization procedure, the dataset was prepared for
the training process. Figure 4 shows the normalized representation of the 8-channel raw
EEG signals.
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2.4. Feature Extraction

Wavelet scattering transform is a knowledge-based feature extraction technique that
employs complex wavelets to balance the discrimination power and stability of the sig-
nal. This technique filters the signal by assembling a cascade of wavelet decomposition
coefficients, complex modulus, and lowpass-filtering processes. The wavelet scattering
transformation method facilitates the modulus and averaging process of the wavelet coeffi-
cients to acquire stable features. Then, the cascaded wavelet transformations are employed
to retrieve the high-frequencies data loss that occurred due to the previous wavelet coef-
ficients’ averaging modulus process. The obtained wavelet scattering coefficients retain
translation invariance and local stability. In this feature-extracting procedure, a series of
signal filtrations was applied to construct a feature vector representing the initial signal.
This filtration process continued until the feature vector for the whole signal length was
constructed. A feature matrix was constructed for the eight EEG signals. As an outcome of
the normalization stage, the obtained dataset consists of one vector with many samples for
each command in each of the 100 recordings. Training the deep learning algorithm with
a similar dataset is computationally expensive. For instance, in the first recording of the
command up, a (1 × 80,480) vector was constructed after the normalization stage. After
filtering the dataset for all 100 recordings and using wavelet scattering transformation, eight
features were extracted and the (1 × 80,480) vector of the normalized data was minimized
to an (8 × 204) matrix for each recording.

Using the wavelet scattering transformation for all the recorded dataset (training and
testing datasets) minimized the time spent during the learning process. Moreover, the
wavelet scattering transformation provided more organized and recognizable brain activi-
ties. Using the wavelet scattering transformation allowed us to optimize the classifications
generated by the deep learning algorithm for distinguishing between the four different
commands more accurately. Figure 5 shows the eight extracted features after applying the
wavelet scattering transformation.
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per second).

2.5. Data Classification

The normalization and feature extraction techniques were used with both the learning
and testing datasets to enhance the classification accuracy of the designed BCI system.
At this point, the processed datasets were prepared to be trained in deep learning. An
LSTM is a type of RNN that can learn long-term dependencies among time steps of a
sequenced dataset. The LSTM network has been seen to be more operative than feed-
forward neural networks (FNN) and the regular RNN in terms of sequences prediction due
to their capability for remembering significant information or values for a long period of
time. An LSTM network is frequently used for processing and predicting or classifying
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sequenced time-series data [42]. A detailed explanation of the LSTM network can be found
in [43,44].

The classification model for the recorded EEG dataset was constructed using the LSTM
architecture. On the input side, the LSTM was constructed to have an input layer receiving
sequence signals, which were eight time-series EEG signals. On the output side, the LSTM
was constructed to have a one-vector output layer with rectified liner unit (ReLU) activation
function. The output values were set to be (0, 0.5, 0.7, 1.0) for the desired four commands:
up, down, left, and right, respectively. During the training process of the used LSTM model,
we noticed that limiting the output values of the four indicated classes to between zero
and one made the learning faster and more efficient. An AMD Ryzen 7 1700X processor
was used for the training, and the training took less than 1 hour with the selected output
values, while it took longer than 1.5 h when integer values between 1 to 10 were used.
Additionally, having an output value between 0 and 1 offers easier scaling and mapping
for the output when the designed algorithm is uploaded to a microcontroller to be tested in
real time, especially when one analog output is used for all the output classes. Three LSTM
layers were chosen, with 80 hidden units followed by a dropout layer between them.

The performance of the LSTM network depends on several hyper-parameters, such
as the network size, initial learning rate, learning rate schedule, and L2 regularization.
The initial learning rate was set at 0.019 and scheduled with a 0.017 reduction ratio every
176 epoch. To prevent or reduce overfitting in the training process, we considered dropout
ratios of 0.1, 0.3, and 0.1 for the training parameters in the LSTM neural network layers. The
dropout layers randomly set 10%, 30%, and 10% of the training parameters to zero in the
first, second, and third LSTM layers, respectively. Another technique was used to overcome
the overfitting in the learning process and for a smoother training process, which is the
L2 regularization. The L2 regularization is the most common type of all regularization
techniques and is also commonly known as weight decay or ride regression. Figure 6
illustrates the architecture of the designed LSTM model.

The mathematical form of this regularization technique can be summarized in the
following two equations:

Ω(w) = ‖W‖2
2 = ∑

i
∑

j
w2

ij (2)

L(W) =
α

2
‖W‖2

2 + L(W) =
α

2 ∑
i

∑
j

w2
ij + L(W) (3)

During the L2 regularization, the loss function of the neural network is expressed
by a purported regularization term, which is called Ω in (2). W is the weight vector,
and the regularization function is Ω(w). The regularization term Ω is defined as the L2
norm of the weight matrices (W), which is the summation of all squared weight values
of a weight matrix. The regularization term is weighted by the scalar α divided by two
and added to the regular loss function L(W) in (3). The scalar α is sometimes called
the regularization coefficient (initial value was set to 0.0001) and is a supplementary
hyperparameter introduced into the neural network, which determines how much the
model is being regularized. The network ended with two fully connected and SoftMax
output layers, with the number of class labels equal to the desired number of the four
outputs. Two fully connected layers and one dropout layer with a 0.1 dropout ratio
were added after the output of the LSTM hidden units. These two fully connected layers
consisted of 16 and 8 nodes and used ReLU activation functions, and these two layers
computed the weighted sum of the inputs and passed the output to the final output layer.
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3. Results

Using the eight-channel EEG headset enabled us to design a minimally computationally-
intensive algorithm to distinguish between four imagined speech commands. Moreover,
using the wavelet scattering transformation improved the simplicity of the EEG dataset
by extracting features from each channel and reducing the dimension of the EEG feature
matrix. The feature matrix was calculated for each recording of the four imagined speech
commands. Using the feature matrices to train the LSTM model improved the learning
process and its the execution time. In [20], a 64-channel EEG headset was used to record
8 min of imagined tones for each of the 14 participants in the study. Mixed visual and
auditory stimuli were used, and a maximum classification accuracy of 80.1% was achieved
in classifying four EEG-based imagined tones. We used a low cost 8-channel EEG-headset
to record a total of 100 min for each of the four participated subjects. Using the auditory
stimuli by asking a question to the participants showed that greater accuracy could be
achieved in an offline BCI system to classify an imagined speech. An accuracy of 92.50%
was achieved when testing the resulting LSTM model on the remaining 20% of the normal-
ized and filtered EEG dataset. The results were achieved with the utilization of the adaptive
moment estimation (Adam) optimizer. The Adam optimizer is a method for calculating
the adaptive learning rate for each of the hyperparameters of the LTSM-RNN model. We
achieved 92.50% after training the LSTM-RNN model on 80% of the recorded EEG dataset
with 500 max epochs and 40 for mini-batch size. Figure 7 illustrates the data validation and
loss curves during the training process of the LSTM model using MATLAB.
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MATLAB.

By employing the LSTM model, we could distinguish between four different imagined
speech-based commands. For each command, 20 recordings were used for the testing
stage, and the nominal values (0, 0.5, 0.7, and 1.0) were assigned for each command as
an output value, respectively. The output value of (0), representing the command Up,
predicted (16/20) of the expected outputs and achieved a classification accuracy of80%. The
output values of (0.5) and (0.7), which represent the commands down and left, predicted
(19/20) of the expected outputs and achieved a classification accuracy of 95%. Meanwhile,
the output value of (1.0), which represents the command right, predicted (20/20) of the
expected outputs and achieved a classification accuracy of 100%. We calculated the 92.50%
overall classification accuracy from averaging the (80%, 95%, 95%, 100%) results from each
imagined speech command. Figure 8 illustrates the classification accuracy of the designed
LSTM model.
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Figure 8. The performance of the designed LSTM model. The wrong predicted commands (red bars)
were only 6 out of 80 (5 recordings per participant) for all participants, which leads to 92.50% accuracy
in the overall prediction of the designed LSTM model.
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Figure 9 illustrates the number and percentage of correct classifications by the trained
LSTM network.
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Figure 9. The confusion matrix for the classification of the four imagined speech commands. The
rows represent the predicted class and the columns represent the true class. The diagonal (green)
cells correspond to observations that are correctly classified. The off-diagonal (red) cells correspond
to incorrectly classified observations. Both the number of observations and the percentage of the
total number of observations are shown in each cell. The column on the far right of the plot shows
the percentages of all the samples predicted to belong to each class that are correctly and incorrectly
classified. The row at the bottom of the plot shows the percentages of all the samples belonging to
each class that are correctly and incorrectly classified.

The column on the far right of the plot shows the percentages of all the examples
predicted to belong to each class that are correctly and incorrectly classified. These met-
rics are often called the precision (or positive predictive value) and false discovery rate,
respectively. The row at the bottom of the plot shows the percentages of all the examples
belonging to each class that are correctly and incorrectly classified. These metrics are often
called the recall (or true positive rate) and false negative rate, respectively. The cell in the
bottom right of the plot shows the overall accuracy.

For better evaluation of the performance of the trained LSTM model, the classified
dataset was categorized into true positive, true negative, false positive, and false negative.
The number of true positive and true negative are the number of classes that were correctly
classified. Numbers of false positive and false negative are the numbers of classes that
were misclassified. The state-of-the-art metrics for classification are accuracy, precision,
recall, and F-score. The recall, sometimes called sensitivity, estimates the ratio of true
positive from the total number of true positive and false negative. Precision estimates
the ratio of true positive from the total number of true positive and false negative. The
F-score estimates the average between the recall and precision. Using the above confusion
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matrix, we calculated all the three metrics, and we obtained 92.74%, 92.50%, and 92.62% for
precision, recall, and F1-score, respectively.

4. Discussion

Although the overall accuracy of classifying the imagined speech for the designed BCI
system is considered excellent, one of the commands still needs improvements to show a
higher accuracy compared with the other three commands. For each of the 100 recordings,
the participants imagined saying each of the individual four commands. In [24], the
participants were instructed to keep performing speech imagery for up to 14 s, but they
only responded when they heard a beep until the visual cue disappeared. In [25], in each
recording, a visual cue was used and the participants were instructed to perform 30 s of
repeating six different words using speech imagery. Unlike the recording scenario in [24,25],
we did not use any cues during the 60 s chosen response time. In fact, our participants were
instructed to keep repeating the speech imagery for a single command in each recording.
The first command, up, was always the first to be imagined and the results showed that
up has the highest prediction error in all the participants. The reason might be because
the participant’s brain adapts to the speech-imagining process gradually. At the beginning
of the recording, a participant might not have been focused enough to produce a good
EEG signal while imagining saying a command. Another reason might be that the timing
to present the question was not enough to generate the best EEG signal, especially at the
beginning of the recording when the question was immediately announced as soon as
the recording had started. Another limitation is related to the participants, who were all
healthy subjects without any challenges in normal speech or language production.

Although the recorded EEG dataset has a potential flaw, we still have an excellent
performing LSTM imagined speech classification model that can be used to decode our
brain thoughts. We used audio cues to stimulate the brain by asking a question to the
participants and let the person imagine the response, unlike [27,29] where visual cues were
used. The resulting LSTM model can be converted to a C++ or Python code using MATLAB
code generation and uploaded to a microcontroller to be tested in real-time.

5. Conclusions

A BCI system is particularly beneficial if it can be converted into an operational and
practical real-time system. Although the offline BCI approach allows the researchers to
use computationally expensive algorithms for processing the EEG datasets, it is applicable
only in a research environment. This research provided insights towards using a low-
cost EEG headset with a low number of channels to develop a reliable BCI system using
a minimized computing for optimum learning process. We accomplished the resulting
imagined speech classification model by employing the LSTM neural architecture in the
learning and classification process. We placed the EEG sensors on carefully selected
spots on the scalp to demonstrate that we could obtain classifiable EEG data with fewer
sensors. By employing wavelet scattering transformation, the classified EEG signals showed
the possibility of building a reliable BCI to translate brain thoughts to speech and help
physically challenged people to improve the quality of their lives. All the testing and
training stages were implemented offline without any online testing or execution. Future
work is planned to implement and test an online BCI system using MATLAB/Simulink
and g.tec Unicorn Hybrid Black+ headset.

6. Future Work

Further deep learning and filtration techniques will be implemented on the EEG
dataset to improve the classification accuracy. We obtained a promising preliminary result
with the support vector machine (SVM) classification model. Online testing for the resulting
classification model is planned to be implemented using MATLAB Simulink for better
evaluation of the classification performance in real-time.
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