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You have entered, following your own whim,

into the sphere of the inevitable—be at peace and be patient,

Venedikt Erofeev inMoscow to the end of the line,
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1

Introduction

The latest projected global oil demand from the International Energy Agency (2004a) shows

that, in the short term, the global demand will increase by a few percents. In the long term

(around 2030), however, oil demand will roughly have doubled compared to today, while gas

is expected to play a much more important role than it does now (International Energy Agency,

2004b).

Oil companies make investments to develop and produce future energy supplies in order to

meet this global demand for hydrocarbons. In this way, they guarantee a continuous supply by

replacing the oil they produce with probable or proven reserves— reserves that can be produced

within a few year’s development.

On the other hand, they make these investments because the number of new proven reserves

to balance depleted reserves is a measure of the potential of maintaining to be profitable in the

long term. Consequently, continuity also directly influences the sentiment about the market

value of a company (Wendlandt and Bream, 2003, e.g.).

It is therefore of vital importance for both oil consumers and oil companies that new reser-

voirs are found.

1.1 Seismic Exploration

Seismic methods are used for both exploration and detailed investigation of known reservoirs.

In these methods seismic data are acquired and processed into a map –or image – of the first

few kilometers of the Earth’s subsurface, to identify potential oil or gas-bearing structures. A

seismic experiment on land consists of setting off a source at the Earth’s surface, sending down

seismic energy to illuminate a target area in the subsurface. Reflected or scattered waves are

then recorded with geophones, spread out along a line or grid on the Earth’s surface.

One often assumes that sedimentation processes have produced a vertically layered Earth,

i.e. a medium the properties of which change with increasing depth only. These changes in

medium properties reflect the seismic waves back to the surface. Due to tectonic processes,

however, the Earth’s horizontal layering is complicated by folding and faulting. Due to various

physical and geological processes, the younger top layers near the Earth’s surface can be het-

1



2 1.2 What about the Near Subsurface?

erogeneous. This more complex structure causes the generation of many types of elastic waves

other than purely up and down going body waves.

Some of these waves give valuable additional information about the subsurface structure,

but others are considered unwanted as they obscure the body-wave reflections from the deeper

subsurface. An example of such unwanted signal is the strong surface wave generated by the

source. Because it is confined in the upper part the subsurface, it does not bear information of

the deeper target area and is therefore considered as noise.

Once acquired, the data are processed to get a reliable image of the target area. The aim of

processing is to increase signal-to-noise, to suppress unwanted signal and to increase the spatial

and depth resolution (Yilmaz, 2001, for a complete overview of existing processing methods).

1.2 What about the Near Subsurface?

As more reservoirs are produced, it becomes increasingly difficult to replace them with new

discoveries. To keep up with the demand for new discoveries, oil companies explore in pro-

gressively complex areas. In some cases, one of the consequences of shifting these operations

to more complex areas, is the poorer quality of acquired data.

An important cause of poor data quality is the near-surface region (Levander, 1990; Cox,

1999, and the references therein). Notably seismically difficult areas are those with shallow

carbonates (Taner, 1997; Regone, 1997), mountainous areas or areas with rugged topography

(Regone, 1998), glacial tills (Berni and Roever, 1989) and, in general, deserts where dunes,

karsts and wadis (Van der Veen and Herman, 2001) cause the wavefront of upcoming waves to

be distorted.

Lateral velocity variations in the near subsurface and variations in layer thickness or topog-

raphy cause variations in the arrival times and amplitudes of the upcoming wave front. When the

dimensions of anomalies are comparable to the dominant wavelength, they can excite secondary

(or scattered) waves. Moreover, spatially limited structures, like dunes, caves or underground

channels, may cause resonances (Levander, 1990; Combee, 1994). In addition to a time shift

in the upcoming reflection, scattering and resonances cause time-varying phase and amplitude

distortions.

The presence of the surface and near-surface layers allows for the generation of guided

wave types. For example, near-surface layers such as shallow carbonates, trap most of the

source energy guiding it in horizontal directions, while only little energy is transmitted to the

deeper subsurface. These strong surface waves attenuate less due to spreading compared to

body waves. For this reason, they often dominate seismic records, masking reflections from

the target area. The guided surface wave is usually called ground roll. Guided waves can be

scattered by surface topography or near-surface anomalies producing strong secondary surface

waves, which are difficult to remove with conventional filtering methods.
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1.3 What to do about Near-Surface Effects?

The near subsurface can cause two main problems: variations in travel times and amplitudes

of upcoming reflections, and a strong (scattered) surface wave obscuring upcoming reflections.

We briefly review two strategies to attack these problems associated with near-surface layers.

The first option is to suppress artifacts during the acquisition stage while the second one is to

suppress them during the processing stage.

1.3.1 Acquisition

In conventional exploration seismic surveys, one uses geophone arrays rather than single geo-

phones. An array consists of a number of geophones spread out along a line or in a small pattern.

The distance between the geophones is the geophone spacing, while the distance between the

centers of two adjacent arrays is referred to as the group interval. The output of such an array

is one trace that is attributed to the center of an array (also called a station). The outputs of the

geophones in an array are summed (stacked) and then transmitted to the recording truck where

this summed trace is stored on tape.

Because upcoming reflection events are expected to arrive almost at the same time (with

the same phase) at each receiver in an array, summing the response of receivers within an array

is expected to enhance the signal by way of constructive interference of wave forms that align

horizontally, while this operation attenuates random noise by a factor of the square root of the

number of elements (Telford et al., 1990; Cooper, 2004, e.g.).

In general, each receiver has a slightly different response that can be attributed to its cou-

pling in the ground, due to the fact that the top soil can vary at the surface (like dry sand, wet

sand, loose sand). By summing the responses from several geophones, trace-to-trace amplitude

variation due to ground coupling can be averaged.

Another way to reduce near-surface effects using arrays is that with a properly chosen geo-

phone layout, horizontally traveling surface waves can be suppressed through destructive inter-

ference when the signals from the geophones in the array are stacked (Morse and Hildebrandt,

1988). This property is based on the fact that a regular pattern in the spatial domain, corre-

sponds to a low-pass filter in the wavenumber domain.

When the near subsurface varies significantly on the scale of an array, however, perturba-

tions affect the response of the wavenumber filter. The effect of perturbations on array forming

have been investigated by Berni and Roever (1989); Blaquière and Ongkiehong (2000) and

Panea et al. (2003), for example. The perturbations that occur on an intra-array scale can be

statics, a move-out term or they can be due to misplacement of receivers within an array or due

to ground coupling. Each can reduce the fidelity of the output trace of the array. Because the

events are less continuous, these intra-array perturbations attenuate the high-frequency content

of the output trace (Berni and Roever, 1989; Baeten et al., 2000; Muyzert and Vermeer, 2004).

In many cases, the stacking operation acts as a high-cut filter (Marsden, 1993). This in turn,
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reduces the maximum obtainable resolution.

For this reason, seismic exploration has witnessed a trend towards acquiring data with

smaller geophone groups up-to the point where single receivers are recorded (Burger et al.,

1998; Baeten et al., 2000; Moldoveanu et al., 2004, for example). It is a logical consequence of

the increasing need for high-resolution data to focus on progressively smaller subsurface areas.

Clearly, the advances in hardware, wiring and computer storage power have contributed to this

trend.

The idea of single-receiver acquisition is to preserve as much signal as possible. However,

the signal-to-noise ratio can be quite poor on individual traces. Neither is the coherent noise

filtered by a stack array nor is the random noise reduced by destructive interference during the

group forming process. The philosophy of these methods is that whatever noise was suppressed

by stacking the array, can be done better after preprocessing as the dense sampling offers greater

flexibility in processing (Baeten et al., 2001). After preprocessing, conventional groups can be

formed, which are then expected to be more effective.

While there are those who strongly believe in the benefits of single-receiver recording, a

critical note has been offered by Pecholcs et al. (2002) for example, claiming that there are no

benefits to be expected from single-receiver recording when the data are very poor to begin with

(see also Cooper, 2004).

1.3.2 Near-Surface Corrections Methods

Surface-Consistent Methods

At the processing stage, methods to correct for the time shifts caused by near-surface anomalies

are often referred to as static corrections methods (short: statics). Sheriff (2002) defines statics

as ‘corrections applied to seismic data to compensate for the effects of variations in elevation,

weathering thickness, weathering velocity or reference to a datum. The objective is to deter-

mine the reflection arrival times which would have been observed if all measurements had been

made on a (usually) flat plane with no weathering or low-velocity material present’.

Statics methods can be roughly divided into three categories: elevation corrections, refrac-

tion statics and residual statics. Elevation corrections are used to undo shot and geophone

elevation differences. Then, usually, refraction statics are applied to account for varying layer

velocities and thicknesses. Any static anomalies not resolved by the first two methods are

collected under ‘residual statics’. Because these statics have an impact on velocity analysis,

signal-to-noise and, ultimately, the quality of the image, application of residual statics correc-

tions is often an important step in seismic processing.

The assumptions underlying (residual) static correction methods are discussed in Taner et al.

(1974, for example), while popular methods for the computation of statics can be found in Wig-

gins et al. (1976) and Ronen and Claerbout (1985). A comprehensive overview on the entire

subject can be found in Cox (1999).



Introduction 5

Taner et al. (1974) expect that the overburden works like a filter, causing time and amplitude

anomalies in the upcoming wavefront. But, they argue that estimating this filter is not practically

feasible. In order to approximate the filter, they introduce some simplifying assumptions. First,

they assume that the effect of the near subsurface is a pure time delay and that these delays are

surface consistent, implying that each trace at a given surface location gets the same time delay.

This is usually explained by assuming vertical ray paths through the overburden. In addition to

the vertical ray paths in the overburden, Taner et al. (1974) assume that the near-surface effects

do not vary with reflection time. Thus, the traditional statics model assigns the same uniform

time shift to each trace from a distinct surface location. In this way, a single time shift corrects

the entire trace. The statics shifts are computed relative with respect to some suitably chosen

datum.

Most methods start by selecting one or a few time windows around clearly visible reflection

events in the data. By first selecting the time windows and subsequently adding the shift to the

whole trace, the time corrections are derived from a subset of the data and applied to the entire

data set. In the time windows, time-shifts are picked between neighboring traces using cross

correlations. These shifts are inserted into an equation that expresses the time shift as a compo-

sition of several time-delay effects. In general, this equation breaks the picked static shift down

into a source static, a receiver static, an arbitrary shift for the CDP gather and a residual Normal

Move Out (NMO) component. This is cast in a linear inverse problem which is under deter-

mined. Several solutions have been proposed for this problem. Most statics methods compute

surface-consistent time shifts that align a Common-Depth Point (CDP) such that it produces an

optimally stacked trace.

Based on the principle of surface consistency, one can also formulate schemes for ampli-

tude corrections (Taner and Koehler, 1981). For the simultaneous estimation of amplitude and

time anomalies, surface-consistent deconvolution methods have been developed (Cambois and

Stoffa, 1993; Perkins and Calvert, 2001, e.g.). These last methods in fact closely resemble the

‘filtering’ behavior of the near surface. However, a single filter is estimated for each surface

location which makes these methods also single-channel methods.

Redatuming Techniques

It is generally accepted that the near-surface problem is much more complex than described

by the statics model described above (Taner and Koehler, 1981; Cox, 1999). In fact, surface-

consistent static time shifts can be considered as an approximation to wave-equation datuming,

where actual ray paths through the overburden are used.

In the past decade, wave-field-based datuming techniques have been developed to extrap-

olate the recorded wave field to a new ‘datum’ just under the overburden, thereby compen-

sating for near-surface variations — or replacing the near-surface by a constant velocity layer

(McMechan and Chen, 1990; Berryhill, 1984; Reshef, 1991). Because these methods use ray

theoretical operators to redatum the data, they require an accurate velocity model of near sub-

surface. In complex near-surface regions, this is a serious drawback, because an accurate veloc-
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ity model is difficult to obtain. For this reason, ‘data-driven’ redatuming techniques, like those

based on Common Focus Point technology (Hindriks and Verschuur, 2001; Kelamis et al., 2002)

may be preferable in areas with strong heterogeneity. However, in these areas, rapid changes in

topography or layers may cause scattering and resonances. These are phenomena that are not

modeled by ray theoretical methods like the redatuming techniques and, thus, the data have to

be conditioned before application of such schemes.

Being based on ray theory, redatuming methods work best if the overburden varies smoothly

which corresponds to long to intermediate-wavelength statics. This limits their use to near-

surface regions where the wave field is not scattered by cavities, karsts, etc.

1.3.3 Surface-Wave Suppression

For land data, most of the source energy is converted into surface (Rayleigh) waves (Aki and

Richards, 1980; Regone, 1998, e.g.). This causes a strong surface wave, usually called ‘ground

roll’ in seismic exploration. Because one is usually interested in body-wave reflections from the

deeper subsurface where the target area is, there has been considerable interest in developing

methods to suppress (scattered) surface waves (Blonk and Herman, 1994; Regone, 1998; Her-

man and Perkins, 2004). In this section we review methods to suppress this type of noise.

As discussed before in Section 1.3.1, the surface wave can be suppressed in the field by

using suitably chosen patterns of receivers (arrays). This method uses the difference in propa-

gation direction of body waves (close to vertical) and surface waves (horizontal). The Rayleigh

wave also differs from body waves in its polarization properties. If multicomponent data are

available, it is sometimes possible to distinguish these differences in polarization and reject any

arrival with elliptical polarization (Shieh and Herrmann, 1994).

A widely used technique to remove guided (surface) waves is filtering in the wavenumber-

frequency (k − f ) domain (also called dip filtering). This technique is based on the difference

in apparent velocity of certain events. The apparent velocity is defined as the quotient of the

distance traveled between two geophones and the difference in the arrival times of the event at

the these geophones. Thus an upcoming reflection event has high apparent velocity because it

arrives at two adjacent geophones nearly at the same time. On the other hand, the (apparent) ve-

locity of ground roll is typically very low. However, they can overlap in the spatial-time (x− t)

domain because, just like reflection events, surface waves arrive at late times. To use this dif-

ference in apparent velocities, one transforms the data with a double Fourier Transformation to

the k− f domain, because a double Fourier transformation maps a plane wave (i.e. a wave that

is characterized by one apparent velocity) in the x− t domain to a line in the k−f domain with
the same slope that corresponds to this velocity (Yilmaz, 2001). In this way, the waves with

slower apparent velocities are located along lines with different slopes than events with higher

apparent velocities and are thus separated. By defining a suitable pass zone for the events in the

k − f domain, all events with apparent velocities outside this pass zone are rejected and one

subsequently transforms the data back to the spatial-time domain.
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This technique works well if the surface wave is sufficiently sampled in the spatial coor-

dinates to prevent aliasing and if the apparent velocity of the surface waves is the same as the

actual velocity (because then it is sufficiently different from the apparent velocities of upcoming

reflections). This last condition is only the case when the surface wave travels along the receiver

line.

Scattered ground roll presents a complication to most of the ground roll suppression schemes,

especially when it has been scattered out of plane. Ground roll that has been scattered away from

the line of receivers, has a part with hyperbolic move-out (the apex) and therefore higher ap-

parent velocities which may overlap the body-wave reflections in the k− f domain. Moreover,

scattered surface waves can produce such complicated interference that it renders polarization

filters useless.

Regone (1997, 1998), discusses the problem of identifying and suppressing coherent noise

in seismic data. He focuses mainly on the scattered coherent noise in 3-D acquisition ge-

ometries. In these geometries, the wave field is generally not sufficiently sampled at the sur-

face to process the data with conventional methods in such a way that the signal-to-noise ra-

tio (reflections-to-coherent noise-ratio) is acceptable for a reliable subsurface image. Regone

(1998) proposes an identification tool to better understand the 3-D properties of the noise wave

field. In this way, acquisition design can be optimized so that further processing can attenuate

this noise better. This technique shows the strong link between acquisition and successful pro-

cessing (see also Cooper, 2004, for example).

Another approach has been developed during the last decade at Delft University (Blonk and

Herman, 1994; Ernst et al., 1998). Both methods are based on a common philosophy: with

knowledge of the near-surface scattering distribution, one can calculate the scattered waves and

subsequently subtract them. Thus, an important step in these methods is to find the scattering

distribution that causes the near-surface scattered waves.

For the case of surface wave-to-surface wave scattering in the near subsurface (side-scattered

waves or additive noise), Blonk (1994) derives an efficient model using scattering of Rayleigh

waves in a homogeneous elastic embedding, in which scatterers are distributed near the sur-

face. Ernst (1999) considers the same problem, but in a laterally varying medium. Allowing

the background medium to vary introduces more complexity in the model and to keep his the-

ory tractable for large-scale problems, Ernst (1999) approximates the main contribution with a

scalar approach.

To model the scattered surface waves, Blonk (1994) first estimates a distribution of near-

surface scatterers. This is an inverse problem that he solves by finding a near-surface scattering

distribution that minimizes a cost function that consists of the squared difference between the

observed near-surface scattered field and the scattered field modeled with his noise model. To

condition the data before the inversion, Blonk (1994) first suppresses the direct Rayleigh wave,

so that the remaining data consist mainly of scattered surface waves. The remaining data are

then fed to the inversion scheme.

The success of this method is based on its ability to discriminate near-surface scattered
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Figure 1.1: Illustration of two types of nearsurface scatteringmechanisms: A is a heterogeneity

far from the source, S, and receiverG; shotgenerated surface waves travel along path a and are

scattered at A. This is a form of sidescattered or additive noise. B is a heterogeneity directly

beneath the receiver. Body waves travel along path b and are reflected by deeper layers. Each

reflection that is recorded by G passes through B and excites (scattered) surface waves.

waves from body-wave reflections as they are also contained in the input for the inversion al-

gorithm. In order to effectively separate these waves, Blonk (1994); Ernst (1999) estimate a

scattering distribution that is consistent with several shot records. In a way, this may be con-

sidered the equivalence of the surface-consistency concept used in static corrections methods,

where one uses redundancy of the data to obtain more accurate corrections. The method of

Blonk and Herman (1994) has been modified for the case of data on a dense grid of shots and

receivers by Herman and Perkins (2004).

1.4 A Closer Look at Near-Receiver Scattering

1.4.1 Additive vs Multiplicative Noise

In the previous section, we reviewed some methods to identify and suppress scattered surface

waves. These waves are excited by the shot-generated surface wave (or ground roll). Scattered

ground roll is sometimes refferd to as side-scattered noise. Because this scattering process

takes place in the first tens of meters of the subsurface only, it is independent of body waves

that travel into the medium and are reflected back to the surface. Therefore it can be considered

as an additive term and we can refer to this type of noise as additive noise. Reduction of additive



Introduction 9

scattered noise on seismic data is discussed by Blonk (1994) and Ernst (1999), for example (see

Section 1.3.3).

On the other hand, surface waves can also be excited by body-wave reflections impinging

on heterogeneities directly beneath the receivers. In this case, body waves are converted into

(scattered) surface waves because these heterogeneities act as secondary sources. Although the

body wave is also converted to scattered P− and S waves, we restrict our discussion to the
scattered Rayleigh wave as this surface wave usually represents the bulk of the scattered wave

field. Because the strength of these scattered waves is proportional to the strength of the incident

reflection (Bannister et al., 1990, for example), this type of scattered energy can be considered

as multiplicative noise. Reduction of this type of multiplicative noise is the main topic of this

thesis.

To see the difference, consider the situation sketched in Figure 1.1, where the source S

excites both body and surface waves. The shot-generated surface wave travels along path a and

scatters far from the source and receivers and is recorded at the geophone G. In this case, the

interaction takes place between surface waves only. The body wave however, first travels down,

where it is eventually reflected partly into upcoming body waves. These upcoming waves travel

through the overburden and can be scattered by heterogeneities close to the receivers where they

excite surface waves. In this way, all upcoming body-wave reflections are partly converted into

surface waves.

1.4.2 Near-Receiver Scattering vs Short-Wavelength Statics

To understand near-receiver scattering, we analyzed data from a relatively simple synthetic

near-surface scattering experiment. Combee (1994) isolated the problem of an upcoming plane

scalar wave incident on a near-surface anomaly and presented analytical solutions. He con-

cluded that for sizes of the anomaly in the order of a wavelength, multiple scattering caused the

wavelet to change in a way that cannot be corrected for by static correction methods.

Here, we present a similar study, using a 2-D elastic finite-difference method to model the

response of the wave field excited by a plane-wave source at the bottom of a two-layered model.

This type of model takes conversion of body waves into surface waves and guided waves into

account.

The model is shown in Figure 1.2(a). The top layer has a P -wave velocity given by

cP = 1200 m/s and a S-wave velocity given by cS = 400 m/s. In the middle of the model

the depth of the top layer (10 m) changes to 20 m and back. The P -wave velocity in the base

layer is cP = 2500 m/s while the S-wave velocity in the base layer is cS = 600 m/s. The

vertical component of the particle velocity, calculated at the surface, is shown as a function of

time and position in Figure 1.2b. In this Figure, we have simulated field arrays by averaging

over five traces (10 m) of the original record for each trace in this record. In Figure 1.2c the

original record of single receivers with a spacing of 2 m is shown.

Figure 1.2c contains a shift, consistent with a static shift calculated along vertical ray paths,



10 1.4 A Closer Look at Near-Receiver Scattering

W

H
D

H H HH H H

u
in

(a)

0

0.05

0.10

ti
m

e
 [

s
]

40 60 80
position [m]

(b)

0

0.05

0.10

ti
m

e
 [

s
]

20 40 60 80
position [m]

(c)

0

0.05

0.10

ti
m

e
 [

s
]

20 40 60 80
position [m]

(d)

Figure 1.2: (a) Model with a layer and anomaly. The velocities of the top layer and the

anomaly are the same : cP = 1200 m/s and cS = 400 m/s. The velocities of the second layer

are cP = 2500 m/s and cS = 600 m/s, respectively. To simulate an upcoming reflection, a

planewave source, with dominant frequency of about 20 Hz, is located at 25 m depth. The

dimensions in terms of the dominant wavelength λ are W ≈ λ,D < λ and H << λ. (b)

Response of the plane wave,uin, passing through the lowvelocity layer with anomaly. Vertical

velocity at the surface, computed with 2D elastic FD code and averaged over five traces to

simulate array forming. (c) Same as in (b), but without averaging. The time shift is consistent

with the time shift predicted by the statics model. (d) Same as in (c), but aligned at first breaks.

at about 25 ms and interference around 70 ms, due to multiple scattering. At later times, one

can identify guided waves traveling outward from the anomaly. In Figure 1.2d we have aligned

the first arrival times of the traces (first breaks). It is clear that this (simple) static correction

does not restore the continuity of the event and stacking these corrected traces will produce

nearly the same array-formed stack as the one shown in Figure 1.2b. In the array-formed data,

the anomaly appears in the form of a ’static’ with additional amplitude and phase distortions,
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Figure 1.3: (a) An upcoming wavefront impinges on a nearreceiver scatterer. This causes a

timeshift and amplitude anomalies in the wave front. The upcoming body wave is also partly

converted to a surface wave. This surface wave interferes with the body wave. (b) An upcoming

body wave impinges on many nearreceiver scatterers. In this case, the secondary surface waves

interfere with one another and cause a complicated coda following the upcoming wave. In this

case, individual scatterers cannot be identified anymore and the variations may be erroneously

interpreted as shortwavelength statics.

while in the original, single-receiver data, the anomaly is characterized by scattering, including

a different time shift for each receiver and interference. This is especially clear in densely sam-

pled data, in which case the diffraction from near-surface heterogeneity can be tracked at least

along a few traces in the data, which makes them appear coherent (Telford et al., 1990).

As the near-surface becomes more complex, scattering from different heterogeneities in-

terferes and the noise can appear as rapid (trace-to-trace) variations in the arrival times and

amplitudes of reflections. For many, randomly distributed scatterers, this is shown in Figure

1.3b, while Figure 1.3a shows again scattering from one near-surface anomaly. In the context

of statics, these variations may be erroneously attributed to (very) short-wavelength (intra-array)

statics (Cox, 1999, p. 277).

1.5 Our Method

In Section 1.2 we identified two main problems associated with the near surface: time and

amplitude anomalies and interfering (scattered) surface waves. In fact, near-receiver scattering

can be considered as a combination of these two problems. Because near-receiver scattering

and its related phenomena like interference are deterministic, multichannel, processes, one can

infer that the proper way to correct for the anomaly is a multichannel approach, before array-

forming. Discussing intra-array processing, Baeten et al. (2001) raise a similar point. While

they show that statistically based intra-array static corrections can be effective, they argue that
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Figure 1.4: (a) Part of a singlereceiver field record with dense spatial sampling. One can

identify nearreceiver scattering, showing as the diffractions and interference between 125 and

175 m and around 40 m. (b) Same record, but after group forming by summing five neighboring

traces. (c) Same as (b), but after suppressing scattered noise with our method. Note that the

signaltonoise ratio of the shallow reflection (the second event) has increased significantly and

the amplitudes are better balanced. This example illustrates the potential benefit of our method

for densely sampled data.

perturbations incurred by diffractions and reverberations ‘can only be addressed properly by

wave-field-based inversion methods’.

In this thesis, we present such a deterministic method to suppress near-receiver scat-

tered noise based on a wave-theoretical model for body wave-to-surface-wave scattering. The

underlying idea of our method is the same as in the method developed by Blonk (1994): with

knowledge of the near-surface scattering distribution and the propagation characteristics of the

near-surface region, we can predict and subsequently subtract the scattered noise. To this end

we first formulate a model that describes near-receiver scattering. However, before we can pre-

dict the scattered wave field, we need an estimate of the distribution of scatterers that excites

this (secondary) wave field. This is an inverse problem, which we solve by iteratively updating

a near-surface scattering function that ’best’ fits the data using our scattered noise model.

To derive the near-surface scattering function from the data, we use short time windows to
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obtain an independent estimate of the scattering distribution. This is similar to the approach

taken in residual statics estimation. Our approach differs from statics, because in our for-

mulation, surface-consistent, single-channel, time shifts or filters are replaced by a surface-

consistent, multichannel filter. We then use the estimated scattering distribution to forward

model the scattered wave field and finally we subtract the scattered wave field.

As an example of the effect of our method on the group forming process, we show part of

a shot record from a survey in an area with a significant amount of near-receiver scattering in

Figure 1.4a. Figure 1.4b shows the same record, but after conventional group forming by stack-

ing five adjacent traces. After application of our method, the group formed record is depicted in

Figure 1.4c. In this figure, the signal-to-noise ratio has been improved and the second reflection

event is more pronounced and can therefore be identified with more certainty.

1.6 Outline of This Thesis

In Chapter 2, we start with analyzing propagation and scattering of elastic waves in the near

subsurface. Based on physical arguments, we arrive at an approximate integral representation

for the near-receiver scattered field. With this representation we can predict the scattered field

when the scattering distribution is known. In the second part of this chapter, we discuss a

procedure to estimate this near-surface scattering distribution from the seismic data itself. At

the end of this chapter we summarize the results, yielding our method to predict and subtract

near-receiver scattered waves from seismic data.

In Chapter 3, we investigate the validity and limitations of the main assumptions made to

arrive at our scattered noise model. These tests are carried out by applying the algorithm to data

obtained from suitably chosen models. In the same chapter, we apply our algorithm to data from

two laboratory tests of scattered surface waves. This is an intermediate step before applying the

algorithm to field data in Chapter 4.

The application to field data shows the potential of our method and the robustness in the

case that the data are contaminated by noise.

In Chapter 5 we conclude with a discussion of the results obtained in this thesis and with

recommendations for future work.
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2

Formulation of the Forward and

Inverse Scattering Problem

We present the basis of our method to predict and suppress near-receiver scattered waves

from seismic data. We start by describing propagation and scattering in the near-surface region

of an elastic medium. The elastic wave field in the medium is expressed in terms of an inte-

gral representation, which consists of one part that accounts for propagation in the embedding

medium and one part that is due to perturbations in the elastic parameters.

In Section 2.1, we derive an approximate equation for near-receiver scattering, using mainly

physical arguments. We arrive at a scalar representation for the scattered field, describing the

dominant scattering effects. This is followed by a prelude to the formulation of the inverse

problem. We parameterize our approximate scattering equation in terms of a surface scattering

distribution, which represents the impedance experienced by upcoming waves when they travel

through the shallow subsurface.

The deterministic approach taken in this thesis hinges on knowledge of the distribution of

near-surface heterogeneities that cause scattering. To determine this distribution we need to

solve an inverse problem. We describe a sequence of steps that allows us to obtain an indepen-

dent estimate of the near-surface impedance function from one event, so that we can predict the

scattered field on an entire record. This is followed by a description of the inversion algorithm,

where we minimize a cost functional consisting of the squared difference of the actual field and

the predicted field by iteratively updating the impedance function.

In the final section, we collect the results from this chapter and present a method for sup-

pressing near-receiver scattered waves.

2.1 Propagation and Scattering in the Near-Surface Re-

gion

We consider scattering of waves by heterogeneities embedded in an elastic half space occupying

the domain D. The heterogeneities occupy the scattering domain B. The boundary of the half
space, ∂D, consists of the free surface, Σ, and the lower hemi-sphere, Ω. The configuration is

15
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i3

Σ
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Dρ0, s0
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ρ, sijkl

B

nj
∂D

Figure 2.1: Configuration: a nearsurface scatterer with properties ρ and sijkl, occupies the

domain B. It is embedded in an elastic half space (D) where ρ = ρ0 and sijkl = s0
ijkl.

depicted in Figure 2.1. To denote position, we use coordinates x, y, z with respect to the origin

O of a Cartesian reference frame with unit vectors i1, i2, i3 along three mutually perpendicular
axes, in this order forming a right-handed system. We use the subscript notation for vectors

and tensors. Latin subscripts range from 1 to 3 while Greek subscripts range from 1 to 2. For

repeated lower subscripts the summation convention is understood, i.e., uivi = u1v1 + u2v2 +

u3v3, for example. For position vectors we also use the boldface notation x = xi1 + yi2 + zi3
and xL = xi1 + yi2. Partial derivatives with respect to the spatial coordinates are denoted by

Latin or Greek subscripts, for example ∂i or ∂α. Derivation with respect to time is denoted by

∂t, ‘t’ being reserved for ‘time’ (no summation).

2.1.1 Elastodynamic Equations

For small deformations, the local behavior of disturbances in an elastic medium is governed by

the linearized equation of motion (Newton’s law) and the equation of deformation:

∆ijpq∂jτpq(x, t) − ρ(x)∂2
t ui(x, t) = −fi(x, t), (2.1)

∆ijpq∂puq(x, t) − sijpq(x)τpq(x, t) = 0. (2.2)

Here, ui(x, t) [m] denotes the displacement of the solid and τpq(x, t) [Pa] the stress in the solid

at position x [m] and at time t [s]; fi(x, t) [N/m
3] denotes a source term of body forces. The

density of the medium at position x is ρ(x) [kg/m3], while the compliance is denoted by the

rank four tensor sijkl(x) [Pa−1]. The symmetrical tensor of rank four is defined in De Hoop

(1995, Equation (A.7-43)):

∆ijpq =
1

2
(δipδjq + δiqδjp) , (2.3)
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where δik is the Kronecker delta (δij = 1 for i = j and δij = 0 for i 6= j). In this the-

sis, we only consider causal solutions of these equations. In the following, we mainly use

the frequency-domain counterparts of Eqs (2.1) and (2.2). Using the Fourier Transformation

defined in Appendix A, Equation (A.1), we obtain:

∆ijpq∂jτpq(x, ω) + ρ(x)ω2ui(x, ω) = −fi(x, ω), (2.4)

∆ijpq∂puq(x, ω) − sijpq(x)τpq(x, ω) = 0, (2.5)

where ω [rad/s] denotes the angular frequency, and we have used ∂t → iω. From now on, when

we work with frequency-domain quantities, we will omit the ω-dependence. When working

with time-domain quantities, we will explicitly indicate this. The above equations are comple-

mented with the boundary condition of vanishing traction at the free surface Σ (e.g. Aki and

Richards, 1980, pp. 135):

njτij(x) = 0, x ∈ Σ. (2.6)

Here, nj is the (outward pointing) normal to the surface Σ (see Figure 2.1). As there are no

sources at infinity, the wave field consists of waves propagating away from the sources at large

distances from the sources.

2.1.2 Integral Representation for the Wave Field

Consider again the configuration depicted in Figure 2.1. Using the Betti-Rayleigh reciprocity

theorem (e.g. De Hoop, 1995, pp. 445-448, see also Appendix B), we express the wave field in

this configuration as a superposition of a part that accounts for propagation in the embedding

medium D, u0
i , and a secondary wave field, u

1
i , accounting for the presence of local perturba-

tions (occupying the domain B) in the medium (Eq. (B.12)):

ui = u0
i + u1

i . (2.7)

In Appendix B, we derive the following integral representation for the displacement in the

embedding, u0
i :

u0
i (x) =

∫

D
uG

ij(x,x
′)fj(x

′)dV, (2.8)

and for the displacement due to heterogeneities, u1
i :

u1
i (x) = ω2

∫

B
uG

ij(x,x
′)(ρ− ρ0)(x′)uj(x

′)dV

+

∫

B
∂′ju

G
ik(x,x

′)c0kjns(snspq − s0
nspq)(x

′)τpq(x
′)dV, (2.9)

where c0ijkl [Pa] is the stiffness tensor. In Equations (2.8) and (2.9), u
G
ij(x,x

′) is the Green’s

function, denoting the i-th component of the wave field at x due to a point source directed in

the j-th direction at x′.



18 2.1 Propagation and Scattering in the Near-Surface Region

2.1.3 An Approximate Integral Representation for Near-Receiver Scattering

Having presented the integral representation for scattering of elastic waves by contrasts in den-

sity and compliance, we now direct our attention to the specific problem of inversion and mod-

eling scattering by heterogeneities close to the receivers. For now, we assume that the scattering

takes place at a distance smaller than a Rayleigh wavelength from the surface. In the next chap-

ter, where we test the sensitivity of our method with respect to the depth of the scattering, we

will show that this assumption can be relaxed.

In Section 1.3.3 we reviewed the work of Blonk (1994), on imaging and predicting scat-

tered surface waves. To estimate a scattering distribution that predicts scattered surface waves,

he minimizes the difference between the observed scattered field and the scattered field calcu-

lated with his model of near-surface scattering. This near-surface scattering model only takes

into account density perturbations.

In his thesis, Blonk (1994, pp. 55-56) investigated the sensitivity of his method with respect

to neglecting the Lamé parameters (for an isotropic solid, the only independent parameters in

the compliance tensor are the Lamé parameters) in the inversion scheme for the vertical com-

ponent of the velocity. It turned out that perturbations in both density and Lamé parameters can

be accounted for with a fair degree of accuracy by using only a density perturbation. Note that

the distribution of scatterers estimated in this way does not necessarily correspond to the actual

scattering distribution in the near subsurface. For his purpose, however, this was not a problem,

as long as this estimate could accurately predict scattering.

In our proposed method, we are also primarily interested in accurately estimating scattered

waves and we may use the same ansatz. Consequently, we drop the second term on the right-

hand side (RHS) of Equation (2.9) containing the compliance contrast. In this way, we obtain

u1
i (x) = ω2

∫

D
uG

ij(x,x
′)∆ρ(x′)uj(x

′)dV, (2.10)

where ∆ρ = ρ− ρ0 is the density perturbation.

In the majority of land surveys in seismic exploration, vertical velocity is measured. For

practical reasons, we therefore want to express our integral representation in terms of vertical

velocity. To do so, we first differentiate particle displacement with respect to time. In the

frequency domain, this operation corresponds to a multiplication by iω (see Appendix A). We

then obtain:

v1
i (x) = ω2

∫

D
uG

ij(x,x
′)∆ρ(x′)vj(x

′)dV. (2.11)

This equation expresses that the j-th component of the field at x′ interacts with the scatterer and

excites scattered waves in the i-direction. If we consider now the measurement of the vertical

component at x, we select i = 3, yielding:

v1
3(x) = ω2

∫

D
uG

3j(x,x
′)∆ρ(x′)vj(x

′)dV. (2.12)
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Although we have reduced the problem to an integral representation for one component, three

terms play a role in the RHS of Eq. (2.12) (the summation convention applies to subscript j).

For (nearly) plane upcoming P waves with moderate angles of incidence (which we expect

to get from reflections from the deeper subsurface), we may assume that the vertical components

are larger than the horizontal ones for events arriving at the scatterer1. By doing so, we can

further reduce the complexity of Equation (2.12). Neglecting the horizontal components at the

scatterer, we obtain

v1
3(x) = ω2

∫

D
uG

33(x,x
′)∆ρ(x′)v3(x

′)dV. (2.13)

On the RHS, we only have one term left. This term contains an exciting field in the i3-direction

and an isotropic scatterer. Therefore, we can think of the factor∆ρv3 as a vertical excitation.

For the wave field excited by a vertical force, Los et al. (2001) show that the vertical com-

ponent of the field observed within a wavelength of the source may be fairly accurately approx-

imated by a scalar equation. This is considered in the next section.

2.1.4 Green’s Function

We construct a scalar Green’s function for Equation (2.13) of the form used in Los et al. (2001).

Note that we are looking for the vertical displacement due to a vertical force. For simplicity, we

assume that the medium is isotropic. For such a medium, the stiffness tensor is symmetric and

only depends on the Lamé parameters, λ and µ:

c0ijkl = λ0δijδkl + µ0(δikδjl + δilδjk). (2.14)

Using c0ijkl = c0ijlk and τij = τji we can write Equation (2.5) as

τij = c0ijkl∂kul. (2.15)

Substituting Equation (2.14) into Equation (2.15) and then substituting in turn Equation (2.15)

into (2.4), we eliminate the stress, arriving at the elastic wave equation for particle displacement

(cf De Hoop, 1995, Equation (10.12-13), for example):

(λ0 + µ0)∂i∂kuk + µ0∂k∂kui + ρ0ω2ui = −fi. (2.16)

Here, we assume that the Lamé parameters λ0 and µ0 and the density ρ0 in the embedding close

to the surface are constant.

1In receiver function studies in global seismology, it is common to assume that the longitudinal (i.e. the vertical)

component of the particle velocity consists of near-vertically incident teleseismic P−waves only (Langston, 1979,

for example).
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The Green’s function uG
ij is defined as the i-th component of the displacement at x due to a

point source pointing in the j-direction at x′:

(λ0 + µ0)∂i∂ku
G
kj + µ0∂k∂ku

G
ij + ρ0ω2uG

ij = −δijδ(x − x
′). (2.17)

To obtain the vertical component of the displacement due to a vertical point excitation, we select

i, j = 3. Then, the relevant component of the elastic Green’s function satisfies

(λ0 + µ0)∂3

(

∂1u
G
13 + ∂2u

G
23 + ∂3u

G
33

)

+ µ0∂k∂ku
G
33 + ρ0ω2uG

33 = −δ(x − x
′). (2.18)

From this equation, a scalar equation can be obtained by neglecting the terms2 ∂1u
G
13 and

∂2u
G
23. This is consistent with our assumption that the vertical component of particle velocity

dominates at the scatterer. Equation (2.18) then simplifies to:

(λ0 + µ0)∂3∂3u
G + µ0∂k∂ku

G + ρ0ω2uG = −δ(x − x
′). (2.19)

We have omitted the subscripts from the Green’s function to distinguish between the component

from the elastic Green’s function uG
33 and its scalar approximation u

G. Using the compressional

wave velocity cP =
√

λ0+2µ0

ρ0 and shear velocity cS =
√

µ0

ρ0 , Equation (2.19) can be written as

(Los et al., 2001, e.g.):

[

c2P
c2S
∂3∂3 + ∂α∂α

]

uG +
ω2

c2S
uG = −δ(x − x

′). (2.20)

This equation exhibits anisotropy, as the wave front is stretched in the longitudinal direction.

Introducing the scaled vertical coordinate ζ = cS

cP
z, we obtain the scalar Helmholtz equation:

[

∂k∂k +
ω2

c2S

]

uG = − cS
cP
δ(xL − x

′
L, ζ − ζ ′), (2.21)

which we solve in Section D.2, using the boundary condition of a traction free surface at z = 0

(i.e. ∂ζu
G = 0, z = 0). Note that ∂k in Equation (2.21) is with respect to the scaled coordinate,

i.e., ∂k = (∂x, ∂y, ∂ζ). The result is the well-known half space Green’s function (for example

Morse and Feshbach, 1953, p. 849), in the space-frequency domain given by:

uG(x,x′) = uG(xL − x
′
L, z, z

′) =
cS

4πcP





exp
(

−iω |x−x
′|

cS

)

|x − x′| +
exp

(

−iω |x−x̆
′|

cS

)

|x − x̆′|



 , (2.22)

where x̆
′
L = x

′
L and z̆

′ = −z′. In order to simplify notation, we will use z instead of ζ for the
scaled coordinate from this equation onwards.

2This type of assumption also occurs in soil mechanics, where it is used to calculate vertical stresses in a

medium with horizontal constraints (Harr, 1966, but originally attributed to Westergaard). In the context of wave

propagation it has been applied by Barends (1971) to calculate the response of an elastic half-space due to a vertical

impulsive force source.
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Figure 2.2: Vertical velocity as a function of time and sourcereceiver offset at the surface due

to a vertical point source at the surface. The parameters used to calculate these wave fields,

are such that the dominant wavelength of the Rayleigh wave is about 6m. (a) Calculated with

Equation (2.18). (b) Same, but neglecting horizontal components, using the scalar Green’s

function (from Los et al., 2001).

In the actual elastodynamic near field, the factor 1
R
(where R is the distance from the source

to the observation point) dominates (Morse and Feshbach, 1953, p. 1784). This factor is of the

same order as the ones that occur in our Green’s function of Eq. (2.22). Hence, this Green’s

function should allow us to predict the amplitude behavior of the elastodynamic near field cor-

rectly. In contrast, in an asymptotic expression for the far-field behavior of the elastic Green’s

function uG
33, a factor

1√
R
dominates (Aki and Richards, 1980, p. 217). Therefore, the asymp-

totic surface wave Green’s function would have been the correct choice if we were interested in

the behavior of surface waves at larger distances (Blonk, 1994, for example).

Apart from the amplitude behavior, the kinematic character of the Green’s function is an

important factor. The Green’s function for an elastic half space contains surface waves. These

surface waves have linear move-out, while in the scalar Green’s function this is hyperbolic

move-out. However, in the near field, close to the (secondary) source, no surface wave has yet

built up, and therefore the asymptotic surface wave Green’s function is not a good approxima-

tion for this region (Wu and Ben-Menahem, 1985, for example).

Figure 2.2(a) illustrates what we have discussed so far. It depicts the elastic wave field cal-

culated with uG
33 (i.e., the solution to Equation (2.18)), while 2.2(b) shows the scalar wave field

calculated with uG (i.e., the solution to Equation (2.19)). Both uG
33 and u

G have been calculated
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using the Cagniard method (for example Aki and Richards, 1980, p.(p.) 218 f(f)). For distances

smaller than 6 m (which corresponds roughly to the Rayleigh wavelength) both figures are ar-

guably similar, while for larger distances the scalar wave field starts to deviate from the elastic

one. Because we are mainly interested in the wave field within a Rayleigh wavelength from the

source/scatterer, this deviation at larger distances is not a critical problem.

With the Green’s function (Eq. (2.22)) we arrive at the following scalar representation for

the vertical component of the velocity:

v1(x) = ω2

∫

D
uG(xL − x

′
L, z, z

′)∆ρ(x′)v(x′)dV. (2.23)

By replacing uG(x,x′) with uG(xL − x
′
L, z, z

′) under the integral in this equation, we have

explicitly used the fact that the embedding medium is (laterally) homogeneous close to the

surface.

2.1.5 Parameterization

Following Blonk and Herman (1994), we define a suitable parameterization for the near-receiver

scattering problem. We assume that the scattering medium can be thought of as being composed

ofN , thin, laterally homogeneous layers with equal thicknesses∆z, centered around z(i). If∆z

is small enough, we can rewrite the integration over the depth direction as a summation over

discrete depths. In this way, we approximate the integral over one depth interval as the value of

the function at z(i) times the thickness of this interval. For the field at z, Equation (2.23) can

then be written as:

v1(xL, z) = ω2
N−1
∑

i=0

∆z

∫

Σ

uG(xL − x
′
L, z, z

(i))∆ρ(x′
L, z

(i))v(x′
L, z

(i)), dA (2.24)

where ∆z = z(1) − z(0) and xL = (x, y).

Blonk (1994, pp. 50-51) shows that for estimating and predicting scattered surface waves,

it suffices to take only one such layer into account, even when the actual scattering distribution

consists of more layers (see also Hudson, 1977; Snieder, 1986, e.g., for similar approximations

for scattering of surface waves by topography). Because we assume that scattering takes place

close to the receivers, we take this reference layer at the surface (z(i) = z(0)). For the field at

the surface (i.e. z = 0) we arrive at:

v1(xL, 0) = ω2∆z

∫

Σ

uG(xL − x
′
L, z

(0))∆ρ(x′
L, z

(0))v(x′
L, z

(0))dA. (2.25)

Note that the original volume integral in Equation (2.23) is now reduced to evaluating an integral

over the surface Σ at one depth, z(0).

At this point we define the impedance function as:

σ(x′
L, z

(0), ω) = ω2∆z∆ρ(x′
L, z

(0)). (2.26)
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Here, ∆z is interpreted as the thickness of the impedance layer at the surface. This function

depends on frequency, because we have included the factor ω2 into it. However, we also let it

depend on frequency to compensate for some variation in the actual depth of the scattering. In

this way, depth dependence is converted into frequency dependence, much like in a dispersion

relation, where vertical structure is related to frequency-dependent behavior of the modal am-

plitudes of guided surface waves.

If the heterogeneity is close to the receiver (i.e. z(0) is small compared to the seismic wave-

length), we can replace the wave field (in the scattering domain) on the RHS of Equation (2.25)

with the wave field measured at the surface: v(xL, z
(0)) ≈ vmeas(xL, 0). This approach is also

taken by Herman et al. (2000a) in the case of tube-wave scattering in a borehole, where it is

assumed that the wave field in the borehole is uniform and one can approximate scattering by

wash-out zones as a one-dimensional problem.

Finally, we obtain the approximate near-receiver scattering equation:

v1(xL, 0) =

∫

Σ

uG(xL − x
′
L, z

(0))σ(x′
L, z

(0))vmeas(x′
L, 0)dA, (2.27)

where vmeas denotes the actual vertical velocity measured by the geophones at the surface. By

substituting the data measured at the surface, we do not rely on the Born approximation and we

include multiple scattering and resonances which may occur in cavities in the near subsurface,

for example. Equation (2.27) is the basis of our estimation-and-suppression algorithm for near-

receiver scattered waves.

2.2 Formulation of the Inverse Scattering Problem

In the previous section, we have derived an approximate integral representation that allows one

to calculate near-receiver scattering efficiently, using wave-field quantities actually recorded by

geophones in the field. In this section we use this representation (2.27) as the basis of an inver-

sion scheme to estimate the near-surface scattering impedance σ. The main difference is that the

impedance function in the formulation in the previous section is assumed to be known, while

in this section, it is the scattered field that is known, while both σ and the field in the scattering

domain are unknown. In general, there are two approaches to solve such an inverse problem.

The first one is a direct approach, where one constructs an (approximate) inverse for the

modeling operator (Cohen et al., 1986; Miller et al., 1987, for example). There has been con-

siderable interest in developing such migration schemes for applications in the oil industry, but

also for medical applications. Each migration scheme has certain practical advantages over

others, but they have in common that they work best with densely and regularly sampled data.

If data are missing (due to obstacles at the surface for example), these methods give artifacts

(Sevink and Herman, 1994, for example).

The second technique is (linearized) inverse scattering (e.g. Tarantola, 1984; Kleinman and

van den Berg, 1991). Here, the material properties are determined by minimizing a cost func-



24 2.2 Formulation of the Inverse Scattering Problem

tional by iteratively updating the model parameters. This type of method only predicts the

measured data in the observation points. In this way, they are less sensitive to sampling geom-

etry (as pointed out by Sevink and Herman, 1994). Moreover, it is straightforward to include

data from multiple experiments in the same minimization.

We have chosen the second (inverse scattering) approach because it is our aim to estimate a

scattering model that best fits the observed scattered data.

2.2.1 Preconditioning

The elastic wave field can be written as a part that accounts for propagation in the embedding,

v0, and a part that accounts for scattering by heterogeneities close to the surface, v1 (see also

Section 2.1.2):

v(x, t) = v0(x, t) + v1(x, t). (2.28)

Note that v0 can be quite complex in this case. In principle, it includes many events: reflections

from the subsurface and possibly multiples, refractions, etc. Thus v1 only accounts for scattering

from near-surface heterogeneities.

Here, we calculate v1 with Equation (2.27), requiring an estimate of the impedance function.

To obtain this estimate, however, we need an estimate of the near-surface scattered energy

v1. Thus, we are faced with a catch 22 situation: to calculate the scattered field, we need

the impedance function and to calculate the impedance function, we need an estimate of the

scattered energy. This can be solved only if we can obtain an independent estimate of the near-

surface scattered energy.

At this point, the similarity of our method to residual statics method becomes clear. In

statics, one aims to estimate time shifts in such a way that they correct an entire shot record.

These time shifts, however, are derived from one or more time windows in the shot record (Cox,

1999, e.g). In other words, the time shifts are derived from a subset of the available data and

then applied to the entire data set.

In fact, we use a similar approach here. A shot record can be thought of as a collection of

events. If the scattering takes place close to the receivers, all events — from any angle — pass

through the same anomalies. This implies that we can use one such event to derive the near-

surface impedance function and use this impedance function to calculate the scattered energy

on all (other) events, just like in residual statics. For this purpose we can use an event that

is separable in time (using a window) from the rest of the events and shows clear evidence of

scattering near the surface. This scattering should be included as much as is possible.

Using the idea of a shot record as a collection of events, we can write for the data:

v(x, t) = d(x, t) + r(x, t), (2.29)

where d is the derive— or reference — event separated by time windowing, and r denotes the

rest of the data containing all other events. To derive the image from d we first estimate the

scattered energy excited by the reference event. As in Equation (2.28), we decompose the event
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into a part accounting for propagation in the embedding medium, d0, and a part accounting for

local perturbations, d1:

d(x, t) = d0(x, t) + d1(x, t). (2.30)

We discuss this decomposition step in more detail when we apply our method to laboratory and

field data. For now, we assume that we have separated the scattered energy from the smooth

event using a filtering method, for example. This independently obtained scattered energy is the

input for the inversion.

2.2.2 Inversion

We estimate the surface impedance function, σ, by minimizing the squared difference between

the scattered field from the reference event and the scattered field calculated with Equation

(2.27).

To set up the inversion scheme, we write Equation (2.27) for the reference event in operator

form:

d1,op
J = Kd

Jσ, (2.31)

where we use d1,op
J for the modeled scattered field and Kd

J is an operator defined through (see

also Eq. (2.27))

{

Kd
Jσ

}

(xL, 0) =

∫

Σ

uG(xL − x
′
L, z

(0))σ(x′
L, z

(0), ω)dmeas
J (x′

L, 0)dA, (2.32)

and where J denotes the shot-index. We define the cost function as:

F =
ΣJ ||d1

J −Kd
Jσ||2

ΣJ ||d1
J ||2

+ λ||σ||2. (2.33)

Here, λ is a stabilization parameter determining the weight given to minimization of the model

and the residual. In Section C.2 we discuss a method to choose λ. We have included the

possibility to simultaneously minimize the scattered field from different experiments and obtain

an impedance function consistent with several shots. Now, the impedance function is found by

iteratively updating σ until it minimizes the cost function F , in the following way:

σ0 = 0,

σN = σN−1 + αNγN , N ≥ 1.
(2.34)

Here, αN is the step size, γN is the update direction and N is the iteration number.

For the minimization, we have chosen a conjugate gradient scheme following Van den Berg

(2002). This scheme is briefly outlined in Appendix C, while an efficient scheme to compute

the operators discussed above is discussed in Appendix D.
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① Select reference event

② Decompose reference event

③
Estimate characteristics of

the embedding

④ Estimate impedance function
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Predict scattered field
excited by other events

⑥
Subtract predicted scattered
field from entire data set

Post-process

Figure 2.3: Scheme of our method for suppressing near-receiver scattered noise.

2.3 Suppressing Near-Receiver Scattered Waves

With the basic equations in place, we now summarize our method to suppress near-receiver

scattered waves.

Figure 2.3 is a schematic of this method. The shaded boxes represent steps that are car-

ried out in standard seismic processing – they are not inherent to our method. In principle,

our method can be applied to raw pre-stack common-shot or common-midpoint gathers. Pre-

processing should be minimal, but could include enhancing the signal-to-noise ratio. After

application of our algorithm, the usual processing can be done.

We briefly review the steps of our method here:

① Select reference event. Like in residual statics, we first select a suitable event from the

field record. This event should clearly contain scattering by near-surface heterogeneities.

Furthermore, it should – ideally – not interfere with other arrivals. We need to use differ-

ent time windows to obtain an independent estimate of the surface impedance function.
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The reference event is denoted d throughout this thesis.

② Decompose reference event. In the near-receiver problem, the scattered field can interfere

with the incoming wave field. Therefore, to extract the relevant scattered energy, sophisti-

cated filtering techniques or wave-field separation methods are required (see also Herman

et al., 2000a). This estimate of the scattered field from the reference event is denoted d1.

③ Estimate characteristics of the embedding. This step essentially consists of estimating

the surface (Rayleigh) wave velocity. This velocity is required to calculate the Green’s

function occurring in Equation (2.27).

④ Estimate impedance function. Using the estimated scattered field from step② as input, we

estimate the impedance function by iteratively updating σ by minimizing Equation (2.33).

This impedance function can be interpreted as a distribution of near-surface scatterers,

lumped at the surface (i.e., an image of near-surface scatterers).

⑤ Predict scattered field excited by other events. Here, we substitute the wave field mea-

sured at the surface for the wave field at the scatterer (see Section 2.1.3). Together with

the estimate of the velocity in the embedding and the impedance function, this allows us

to directly calculate the scattered field v1 using Equation (2.27).

⑥ Subtract predicted scattered field from entire data set. The last step of this scheme is

subtracting the predicted scattered field v1 from the shot record so that the near-receiver

scattered energy is canceled due to destructive interference with the predicted scattered

field. We have then obtained an estimate of the wave field that would have been measured

if there were no near-surface heterogeneities, v0.
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3

Application to Synthetic and

Laboratory Data

Our method is based on an approximate integral representation for the near-receiver scat-

tered field. In the derivation of this representation, we have made several simplifying assump-

tions. Most of these assumptions have been validated separately by others (e.g. Blonk, 1994;

Ernst, 1999; Los et al., 2001). However, to use the equation resulting from making all these

assumptions simultaneously, we need to investigate if, and to what extent it is accurate.

To this end, we have designed a configuration that allows for testing the two main assump-

tions, using three-dimensional, elastodynamic, numerically modeled data. We consider scatter-

ing of upcoming events in the first part of this chapter. By varying the depth of the scattering

and the angle between reference and target events, we test the sensitivity of our method to these

parameters. At the end of the first section, we introduce a measure to quantify the spatial conti-

nuity of reflectors and the trace-to-trace coherence in order to compare the data before and after

application of our algorithm. At the same time, this enables us to investigate the sensitivity of

the algorithm with respect to the Rayleigh-wave velocity.

In the second part of this chapter, we describe two laboratory experiments of surface-wave

scattering on an Aluminum block. These experiments have been performed in collaboration

with the Physical Acoustics Laboratory (PAL) at Colorado School of Mines in Golden, Col-

orado (US).

The first experiment involves surface waves only, to allowmaximum insight in the scattering

process. At the same time, the first experiment is an additional validation of our formulation,

but now for horizontally traveling incident waves. This experiment also serves to introduce the

entire sequence of steps of our algorithm. We illustrate each step with examples taken from this

experiment.

In the second experiment, we topped the Aluminum with a (low velocity) Lucite layer to

simulate more realistic situations, for instance due to the presence of multiple reflections from

the Aluminum-Lucite boundary. Now, the source is excited at the bottom of the block, so we

excite upcoming body waves that interact with the scatterer to excite surface waves.

29
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3.1 Test on Synthetic Data

The goal of our method is to estimate and subtract near-receiver scattered waves from seismic

data. The basic idea is that we first select a reference event from the data and use this event to

estimate a near-surface impedance function. We use this impedance function to calculate the

scattered field excited by other, ‘target’, events using Equation (2.27). Subtracting the calcu-

lated scattered field then gives an estimate of the target events in the absence of near-surface

scattering.

The impedance function is determined using an inverse scattering method, thus requiring

the near-receiver scattered field as input. Consequently, we need to separate the scattered wave

field from the reference event. In the test on synthetic data, this is, however, not necessary. The

scattered field in this case is ‘perfectly’ separated from the reference event.

3.1.1 Objective

Here, we investigate the validity of our assumptions and the limitations of our method. In

Chapter 2, we used various – mainly physical – arguments to simplify the general integral

representation for scattered elastic waves (Equation 2.9).

Essentially, those arguments can be summarized in two main assumptions. These are:

A1 We assume that the vertical component dominates the horizontal components of the field

at the scatterer and at the same time we neglect interaction between horizontal compo-

nents and the vertical component in the Green’s function.

A2 We assume that scattering takes place close to the surface and consequently we can con-

centrate the distribution of scatterers in a layer at the surface.

These steps lead to the following scalar equation:

v1(xL, 0) =

∫

Σ

uG(xL − x
′
L, z

(0))σ(x′
L, z

(0))vmeas(x′
L, 0)dA, (3.1)

describing the dominant component of the wave field. Because we concentrated scattering in a

layer at the surface, the integral in Equation (3.1) is over the surface Σ. Inspection of Equation

(3.1), reveals that it should hold for any upcoming event, regardless of the angle at which it

arrives at the scatterer.

By using an elastic modeling program, we can test if the near-receiver scattered field can be

modeled with sufficient accuracy using a scalar representation (in fact, in section 2.1.4 we have

already shown that assumption A1 can be used with a fair degree of accuracy when scattering

takes place within about a Rayleigh wavelength from the receivers). For this purpose, we use a

3-D elastic integral-equation modeling method, that has been especially developed for analyz-

ing near-receiver scattering problems. For a detailed description of this method and for more

examples, see Riyanti and Herman (2005).
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Figure 3.1: Validation configuration. The scatterer is located at an average depth of hm below

the acquisition surface Σ. The angle between the reference and target event is denoted by ϕ.

By deriving the near-surface impedance from a vertically upcoming plane wave, and then

predicting the scattered field on independent events with increasing angles of incidence, we can

test the second assumption. In addition, we vary the depth of the scattering distribution, allow-

ing us to determine the limits of the validity of our formulation.

The configuration of our test model is shown in Figure 3.1. We consider scattering of

an upcoming wave by a scatterer embedded in a homogeneous elastic half space. The vertical

point source is located at a 300 meter depth. The P -velocity of the embedding is 1100 m/s,

while the S-wave velocity of the half space is 450 m/s. The density of the embedding is 2000

kg/m3 and the density of the scatterer is 5000 kg/m3. The source wavelet has a flat spectrum

between about 20 and 100 Hz. From analyzing the data modeled with these parameters, we find

that the Rayleigh wave appears to have a dominant frequency of about 30 Hz, which implies a

wavelength, λR, of about 14 m.

3.1.2 Results

Sensitivity with Respect to the Angle between the Reference and Target Event

In the first test, we keep the scatterer fixed at the surface, while we move the horizontal position

of the source progressively away from the horizontal position of the scatterer. In this way, the

condition of scattering close to the surface (in the near field) is fulfilled and we increase the

angle of incidence of the target event. Because we choose the vertically incident wave field as

the reference event, this angle corresponds to ϕ in Figure 3.1.

The idea is now to first estimate an impedance function using the scattered energy excited
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Figure 3.2: (a) An upcoming P wave excites scattered waves; this event is used to derive the

impedance function. (b) Target event from an angle of about 30 degrees from the vertical. In

this experiment, the average depth of the scatterer h = 4 m.

by the reference event, shown in Figure 3.2a. In this way, the impedance function is obtained

independently from the target events. Then, we predict and subtract the scattered field excited

by the target event. We have done this for events with increasing angles of incidence up to the

point where the predicted scattered field started to deviate significantly from the actual scattered

field.

Figure 3.2b shows the target event with an angle of about 30 degrees from the vertical. When

we use the impedance function obtained from the data of Figure 3.2a to predict the scattered

field excited by the event in Figure 3.2b we obtain a good result. This is illustrated in Figure

3.3. Figure 3.3a shows a detail of the target in the area above the scatterer (from 50 to 100

m). The result after predicting and subtracting the scattered energy is shown in Figure 3.3b. We

observe that the scattered field has been removed well. There is a small remnant of the Rayleigh

wave visible from the remaining interference in the second lobe of the wavelet, but most of the

interference is successfully removed. The difference of these two figures corresponds to the

predicted scattered field and it is shown in Figure 3.3c.

We have removed the scattering effectively from this event, while the event was not used

to derive the impedance function. However, when we further increase the angle, the predicted

scattered field and the actual scattered field start to deviate significantly. We can conclude that

when the scatterer is close to the surface, we can use a reference event to estimate the impedance

function and use this impedance function to predict the scattered field on another event with a
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Figure 3.3: (a) Detail of the target event (Figure 3.2b) from 50 to 100 m. (b) Same detail

after predicting and subtracting scattered energy. (c) Difference between (a) and (b), i.e. the

predicted scattered field. The average depth h = 4 m.

difference in angle at least up to about 30 degrees.

Sensitivity with Respect to the Depth of the Scatterer

In the second experiment we also vary the depth of the scatterer. Doing so, allows us to in-

vestigate the limitation of our approach with respect to the depth of the scatterer. In fact, this

experiment consists of repeating the first experiment, but now for different depths of the scat-

terer. We have done this for a few different depths and noted that for a depth h = 13 m (about

the Rayleigh wavelength) we started to note the limitation of our method (this is the average

depth of the scatterer; the top of the scatterer is 8 meters below the surface).

Again, we derive the impedance function from a vertically incident P -wave. However, when

we estimate the scattered waves on target events, the modeled scattered field starts to differ from

the actual scattered field, for angles exceeding 10 degrees from the vertical.

In Figure 3.4a we show a detail of the target event with an angle of incidence of about 10

degrees from the vertical. Figure 3.4b shows the the same event after subtracting the predicted

scattered field shown in Figure 3.4c. Because as the depth of the scatterer increases, the excited

scattered field becomes weaker, the result is still quite acceptable. However when we compare

the actual scattered energy (not shown here) and the predicted scattered energy, we note that

they start to deviate significantly in this case. Hence, we find that our method is limited to small
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Figure 3.4: (a) Detail of the target event between 50 and 100 m. The (average) depth, h, of the

scatterer is now 13 m, which corresponds roughly to the Rayleigh wavelength. (b) Same detail

after predicting and subtracting scattered energy. (c) Difference between (a) and (b) , i.e. the

predicted scattered field.

angles between reference and target events when the scatterer is at a distance from the surface

of about one Rayleigh wavelength.

3.1.3 Waveform and Continuity

Statics are often considered as a main contributor to a poor stack response, because when the

waveforms are out of phase (i.e. the event is not continuous), they do not align to produce a

strong amplitude in the stack. Moreover, static shifts are known to act as a high-cut filter (Mars-

den, 1993; Cox, 1999; Berni and Roever, 1989). Because static shifts are pure phase shifts, this

means that the waveform of a particular event remains the same over different traces, but the

waveform of the stack is altered such that the higher frequencies are attenuated due to destruc-

tive interference. Amplitude changes on the other hand, scale the output of a stack, but do not

change the wave shape.

In principle, such generalizations do not hold for near surface-scattering. This is because

the individual waveforms can also be changed by scattering, especially when reverberations

play an important role (Combee, 1994, for example). In fact, this is also the reason that Baeten

et al. (2000) suggest wave-field-based imaging methods to compensate for time and amplitude
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Figure 3.5: (a) Waveforms of the P wave on the trace in the center above the cavity (at 75 m).

The traces have been shifted, so the timing does not correspond to Figure 3.3, but the time scale

does. The dotted line denotes the waveform of the target event (with scatterer), the solid line

represents the desired waveform (without scatterer) and the dashed line represents the waveform

obtained after predicting and subtracting the scattered energy. (b) The same waveforms but now

in the frequency domain (in dB scaled to 1).

anomalies induced by scattering.

Like in the case of statics, the stack response will typically be degraded by near-receiver

scattering due to the various phase and amplitude differences between the different traces. How-

ever, because the individual waveforms can be quite complex, it is not immediately clear that

stacking acts as a high-cut filter in this case.

In contrast to static correction methods, wave-field based multichannel methods should be

capable of correcting for both the time shift and amplitude distortions. In this section, we in-

vestigate whether our method is able to restore the original waveform (i.e. the waveform of the

event if there were no scatterer).

Wave Shape

The objective of our method is to remove interference between target reflections and scattered

waves excited near the surface. This implies aligning the arrival and restoring the waveform.

As an example, consider the first synthetic test again. The results of this test are shown in

Figure 3.3.

In Figure 3.5 we compare the waveforms of the trace at 75 m for each of the wave fields

shown in Figure 3.3a-b to the desired waveform. The desired waveform corresponds to the

waveform that we would have measured in the same model without heterogeneity. It is repre-
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Table 3.1: Semblance calculated for different events.

Mean Depth 5 m

Event Semblance

Before 0.58

After 0.96

Desired 0.97

Mean Depth 13 m

Event Semblance

Before 0.91

After 0.99

Desired 0.99

sented by the solid line in Figure 3.5a. The dotted line represents the waveform of the wave

field in the model with scatterer (Figure 3.3a).

We clearly observe a time shift in the first break, due to the difference in velocity in the em-

bedding and in the anomaly. This shift can be predicted by an analysis of rays (like in statics)

and it can be removed by a static shift. However, additional phase and amplitude distortions can

be observed. It is these distortions that can not be predicted by static correction methods.

After applying our method, we obtain the dashed waveform, depicted in Figure 3.5. Com-

paring it to the desired (solid) waveform, we observe that it has fairly well been restored.

The corresponding waveforms in the frequency domain are shown in Figure 3.5b. In this

case the dotted line departs from the solid line, indicating that scattering increased the energy at

higher frequencies when compared to the desired waveform. Furthermore, we observe that the

spectrum of the waveform after predicting and subtracting the scattered field (the dashed line)

agrees well with the spectrum of the desired waveform. Hence, we may conclude that we can

restore the original waveform well.

Finally, we remark that it seems contradictory that we have attenuated the higher frequen-

cies in the waveform. Typically, one aims at preserving as much of the high-frequency content

in the seismic signal as is possible to obtain maximum resolution. However, because the higher

frequencies in our example have been introduced by scattering near the receivers they constitute

information from the near-subsurface and they may be erroneously attributed to deeper subsur-

face effects such as those analyzed for stratigraphic information. Consequently, in order to

restore the actual wavelet, they should be attenuated. Conversely, our method should enhance

higher frequencies if they are attenuated due to scattering.

Coherency and Continuity

We have shown that we can restore the wave shape fairly well after it has been altered by scat-

tering. In this way, the event will be more coherent and should produce a greater amplitude

in the stack than stacking its less coherent counterpart (Telford et al., 1990). Investigating the

effect on the stack therefore provides another validation of our method. So, after analyzing

the effect of our method on one trace, we now investigate what is the effect of our method on
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several traces, to see if the trace-to-trace coherency has increased.

To this end we use semblance (Neidell and Taner, 1971). Telford et al. (1990) define sem-

blance as the ratio of the energy of the stack compared to the energies of the individual traces

over a certain time interval. This ratio is expressed as:

S =

k+N/2
∑

j=k−N/2

{

M
∑

i=1

d(j, i)

}2

M
k+N/2
∑

j=k−N/2

M
∑

i=1

d2(j, i)

. (3.2)

Here, the term in the brackets in the numerator is the sum of M traces (the stack). The time gate

is a window of length N centered around time k.

Before we calculate the semblance, we first apply (hyperbolic) move-out and then place a

window around the event such that the remnants of the surface wave with linear move-out are

not included in the calculation. Typically, the time gate for calculating the semblance is about

the length of one period of the waveform. When we do this for the events shown in Figure 3.3a-

b and Figure 3.4a-b, we obtain the results shown in Table 3.1. As a reference we have again

also calculated the semblance of the corresponding events in the model without heterogeneity

(the desired events).

These tables demonstrate that the continuity of the event after applying our method is about

the same as the continuity of the desired events. This improvement ranges from a few percent to

50 %, depending on the strength of the scattered energy relative to the energy in the total wave

field. Note that we calculated these semblances only for the range from 50 to 100 m (M=20).

3.1.4 Sensitivity with Respect to the Velocity of the Embedding

Coherency measures are often used to determine parameters such that they optimize a stack.

They can also be used to investigate the sensitivity of a method to certain parameters. Now that

we have introduced a measure to calculate the trace-to-trace continuity of seismic events, we

can test the sensitivity of our method with respect to the (Rayleigh wave) velocity of the em-

bedding medium. In practice, this parameter is estimated from the data and is therefore prone

to deviations from the actual value.

The geometry of the test model is the same as in the previous example, but now the mean

scattering depth is 9 m. As in the previous examples, the reference event is a vertically incident

P -wave. The target event is fixed at an angle of about 10 degrees from the vertical. We repeat

the same test for this target event, but for varying surface wave velocity.

The results are shown in Figure 3.6. If we calculate the semblance of the target event ob-

tained after predicting and removing the scattered energy using surface wave velocities ranging

from 300 to 1000 m/s, we obtain the result shown in Figure 3.7. Before calculating the sem-

blance, we have again placed a time window around the event to suppress the remnants of part

of the scattered wave with linear move-out. The semblance of the original target event (with
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Figure 3.6: (a) Detail of the target event from 50 to 100 meters. (b) The same detail of the

target event, but after predicting and removing the nearsurface scattered energy. Here we have

used the correct Rayleigh wave speed (about 400 m/s). (c) The desired wave field that would

have been measured without anomaly. Note that the result of (b) is almost the same as the wave

field in this display. (d) The same detail, but after predicting and removing the scattered energy

using a surface wave velocity of 300 m/s. (e) Same as (d), but using a surface wave velocity

500 m/s. (f) Same as (d), but using a surface wave velocity 1000 m/s. Apart from the remnants

of the surface wave with linear move out, the continuity of these event has been equally well

restored using the different velocities.
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Figure 3.7: The semblance, calculated for one target event, but after predicting and removing

scattered energy using increasing surfacewave velocities (from300 to 1000m/s). The semblance

of the original target event is denoted by the dot.

scattering) is denoted by the star in this Figure.

We can conclude that for removing the interference caused by the scattered surface wave,

the method is not very sensitive to the surface wave velocity. In practice however, care should

be taken to suppress the remaining parts of the surface wave with linear move-out after appli-

cation of our method. This can be done by standard techniques, like wavenumber-frequency

domain (dip) filtering (Yilmaz, 2001, for example).

3.1.5 Conclusion from Tests on Synthetic Data

In general, we can conclude that the we have obtained a robust algorithm and that the results

of this sensitivity analysis justify the assumptions we made about near-receiver scattering. It

should be noted that the impedance distribution we obtain from the inversion is not necessarily

the true impedance distribution, but one that can accurately explain the observed data with our

model of near-receiver scattering. After application of our algorithm, events are more coherent

and the original waveforms are restored. Moreover, our method is not sensitive to the surface-

wave velocity of the embedding medium. However, with an inaccurate surface wave velocity,

part of the surface wave with linear move-out may remain in the result. This is, however, not a

serious limitation, because this part can be removed with a mild dip filter.
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S

R

Figure 3.8: The source laser (S) and the interferometer (R) are mounted to a vibrationfree

optical bench. The beam from the source laser is redirected and focused through lenses also

mounted on this bench.

3.2 Tests on Laboratory Data

3.2.1 Exciting and Measuring Surface Waves

In this section we briefly describe the instrumentation used in the experiments. These exper-

iments have been carried out in collaboration with the Physical Acoustics Laboratory at the

Colorado School of Mines in Golden, Co, US. The entire setup, including the source laser,

interferometer and the model to be sampled, is mounted on an optical bench with vibration

isolation (see Figure 3.8).

The Laser Source

The source is a pulsed (5 ns) Nd:YAG laser with a wavelength of 1064 nm and an energy of 0.3 J

per pulse. Ultrasonic waves are generated by the thermoelastic expansion or ablation depending

on the absorbed power and the skin depth of the sample (Scruby and Drain, 1980).
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In the thermoelastic regime the effect of the incident laser pulse is a rise in temperature at

the spot where the laser hits the Aluminum. This is accompanied by thermal expansion of the

Aluminum and this in turn generates a disturbance in the stresses and strains in the material. If

more energy is absorbed there will be ablation, but this effect was negligible in our experiments.

The Laser Vibrometer Detector

The wave field is detected by a scanning laser interferometer that measures absolute particle

velocity on the surface of the sample via the Doppler shift (Nishizawa et al., 1997; Scales and

van Wijk, 1999). The output of the vibrometer-head is a beam of diameter less than 1 mm and

a wavelength of 633 nm (red). Once the beam reflects off a moving target, its frequency is

Doppler shifted. The beat-frequency of the output plus the reflected signal is decoded in the

hardware to give an absolute measurement of particle velocity, without contacting the medium.

The signal of the vibrometer is amplified with a low-noise preamplifier (SR 560 with 12

db/octave 10 kHz high-pass filter) and digitized at 14-bit resolution using a Gage digital oscil-

loscope card, attached to a PC. The dominant frequency of the measured waves is about 0.6

MHz , while the maximum frequency is limited by the detector electronics.

To ensure high signal-to-noise, thin reflective tape is applied to the model for a strong re-

flectivity of the interferometer beam. While stacking (averaging) of multiple shots improves

data quality, experience tells us that higher levels of noise are mostly caused by a decrease in

reflection strength of the interferometer beam. In practice, this often means that there is either

an air-bubble between tape and the model, or the reflection strength of the tape is diminished by

dirt.

3.2.2 Description of Experiment I

In the first experiment, we consider scattering of surface waves only, to insure maximum con-

trol over the scattering process. We focused the laser beam on a line to simulate a line source.

This source generates surface waves that are scattered by a cavity with a diameter of 2 mm and

a depth of 3 mm, which is roughly the size of the dominant wavelength. Traces are recorded at

0.25 mm intervals, which implies about 10 samples per wavelength.

Figure 3.9a is a picture of the experimental configuration, while Figure 3.9b illustrates a

schematic top view of experiment I. Figure 3.10 shows four snapshots (constant time cross sec-

tions) of the wave field passing through the cavity for increasing times. The wave is traveling

from left to right, clearly showing the circularly expanding scattered surface wave, excited when

it hits the cavity (Figures 3.10b-3.10d).

The dense sampling on an areal grid allows for dynamic data visualization, by watching

the wave field as a function of time (Scales and Malcolm, 2003, e.g.). A movie of the experi-

ment, showing many constant time cross sections for increasing time, can be downloaded from

http://acoustics.mines.edu/re searc h.
We have designed the experiment in such a way that events do not interfere so that they can
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Figure 3.9: (a) Picture of the Aluminum block. The bright dot (indicated by the arrow) on the

reflecting tape is the beam from the interferometer. The source laser is not active. The face of

the block in this picture was used for a similar experiment as our experiment I. (b) Schematic top

view of the Aluminum block with cavity. The shaded area is the area covered by the receivers

(in the examples we use subsets of these data, not exactly centered around the cavity). For this

experiment, we focused the sourcelaser beam on a line (indicated by the dark shaded line). The

width of this focused beam is 0.5 mm. Dimensions in the Figure are given in mm.
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(a) (b)

(c) (d)

Figure 3.10: Snapshots (timeslices) of the wave field measured at the surface of the Aluminum

block. Time increases from (a) to (d).

be easily separated by time windowing. This can be verified in Figure 3.11, which shows an

inline seismogram of the vertical velocity measured at the surface of the Aluminum block. The

various events are labeled as follows: R is the direct Rayleigh wave, C is the Rayleigh wave

reflected off the cavity, P is the direct P -wave, G is the ‘ghost’ Rayleigh wave reflected off

the edge of the Aluminum block behind the source, A is an air wave, generated by the thermal

expansion as the laser hits the Aluminum, and finally, F is the Rayleigh wave reflected off the

far end of the Aluminum block. The presence of the cavity is clear from the repeated diffraction

patterns between about 9 and 13 mm, on P,R,G and F . They are indicated by the arrows and

labeled S in the Figure. The airwave (A) is unaffected by the cavity, because it travels over the

surface.
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Figure 3.11: Inline seismogram of the vertical velocity component measured on the surface of

the Aluminum block. Events are labeled with letters and are explained in the text. All through

the seismogram, the presence of the cavity can be seen between about 9 and 13 mm.
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Figure 3.12: (a) Part of the direct Rayleigh wave (event d in the text). This event is used to

derive the scattered energy d1. (b) The estimated field in the embedding medium (d0, i.e. if there

were no cavity) using a wavenumberfrequency domain filter. (c) Separated scattered energy,

d1. This is the difference between (a) and (b) (cf Eq. (3.3)). (d) Image of the cavity along the

same line. Note the improved focusing compared to the scattered field in (c).

3.2.3 Results from Experiment I

Wave-Field Separation

We now follow the procedure outlined in Section 2.3. To this end, we first select the reference

event, d, by time windowing: in this case the direct Rayleigh wave together with the energy

scattered by the cavity (displayed in Figure 3.12a). The data consist of 81 by 81 receivers, but

in the figure a portion of one seismic line (41 receivers) above the cavity is shown. This line is

also indicated in Figure 3.9b as the solid line labeled ‘data line’.

To estimate the energy scattered by the cavity, we first estimate the incident wave d0, using

the fact that the incoming wave can be approximated by a plane wave in the measurement area.
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Figure 3.13: Cross section of the image at t = 0 for the first experiment, showing the correct

position and size of the cavity. The two darkshaded dots in the upper and lower right corners are

due to scattering from surface disturbances, smaller than the cavity. The darker shades indicate

higher amplitudes.

It is well known that for each frequency, a two-dimensional spatial Fourier transformation maps

a plane wave to a point in the wavenumber-frequency domain (Yilmaz, 2001). We use this prop-

erty to separate the incoming plane wave from its local perturbations. The estimated incident

wave is shown in Figure 3.12(b). This filtering operation is further explained in Appendix E.

Subtracting the incident wave d0 from the reference event d (see also Equation (2.30)),

d(x, t) − βd0(x, t) = d1(x, t), (3.3)

we obtain the scattered field d1. Here, β = 1.12, due to the fact that we used a very narrow

window to estimate d0. The scattered field is shown in Figure 3.12c. This is the wave field

attributed to the presence of the cavity. Clearly, it is an estimate of the true scattered field,

limited by our separation method, as is evident from the leakage of some coherent energy in the

separated scattered field of Figure 3.12(c), other than the wave reflected off the cavity.

Imaging

Next, we estimate the impedance function using (Equation (2.33)):

F =
Σ||d1 −Kdσ||2

Σ||d1||2 + λ||σ||2. (3.4)
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Figure 3.14: (a) The ghost Rayleigh wave. (b) The predicted scattered field for this event. (c)

The ghost Rayleigh wave after removing the predicted nearsurface scattered field.

Because there is only one source position, the index J = 1. For simplicity we have omitted this

index here. The calculation of the operators requires an estimate of the surface wave velocity,

to be able to calculate the Green’s function. For a more detailed account of the calculation of

the operators, see Appendix D. From the data, we estimate that cR ≈ 3000 ms−1, which agrees

closely with the observed Rayleigh-wave speed in Aluminum in Scales and van Wijk (1999).

The estimated scattered field d1 serves as the input for the inverse scattering algorithm as

outlined in Section 2.2.2. The impedance function for this in-line data set, obtained after mini-

mizing Equation (3.4), is shown in Figure 3.12d. In this Figure, we observe that the energy is

localized in time around t = 0 which indicates that the scatterer is indeed at the surface and the

scattered energy is spatially focused at the actual location of the cavity.

A top view of the image at t = 0 is shown in Figure 3.13. The circular shape of the

impedance function slightly to the left from the center, represents the actual shape and location

of the cavity (we used a subset of the data, not centered exactly around the cavity – as shown in
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the top view of the measurement setup). Anomalies in the right corners of the Figure are due to

scattering from smaller surface disturbances.

Prediction and Subtraction

With this estimate of the spatial impedance function from the direct Rayleigh wave, we can

calculate the scattered wave field v1 for a different event, using the following representation

(Equation (2.27)):

v1(xL, 0) =

∫

Σ

uG(xL − x
′
L, z

(0))σ(x′
L, z

(0))vmeas(x′
L, 0)dA (3.5)

For the event vmeas, we select the Rayleigh wave that is reflected by the end of the Aluminum

block behind the source (the “ghost”, shown in Figure 3.14a). Note that vmeas has not been used

for determining the impedance function, and therefore prediction of the scattered field v1 is a

good validation test of the method. The predicted scattered field using Equation (3.5) and the

independently estimated impedance function σ, is shown is in Figure 3.14b.

Finally, we obtain the wave field minus the scattered energy from equation (3.3), shown in

Figure 3.14c. We observe that the scattering has been effectively removed and that the continu-

ity of the event has increased.

3.2.4 Description of Experiment II

In the second experiment, we consider scattering of upcoming body waves by near-surface

heterogeneities. The body waves are excited by a point source at the bottom of a two-layered

model, consisting of an Aluminum layer, topped by a Lucite layer, in which we drilled a 2-mm

wide and 3-mm deep cavity. When the body waves reach the surface, energy is scattered by

the cavity. We record the wave field in a 4-cm2 region, at 0.1-mm intervals. A top view of this

model is shown in Figure 3.15a.

Compared to the data from Experiment 1, these data are further complicated by the fact

that they contain multiples from the layer boundary and reflections from the sides of the model

as depicted in the side view (Figure 3.15b). Data above the cavity (Figure 3.15c) show the

multiples between the layers and reflections from the sides all being scattered by the cavity.

3.2.5 Results from Experiment II

Preprocessing

Due to the fact that the source is at the bottom of the model and the body waves are only partly

transmitted through the Aluminum - Lucite interface, the received signal is much weaker than

in the first experiment. For this reason, these data required some preprocessing, consisting

of tapering-off low frequencies (including a dc-component) and then applying a short spatial

convolution filter, to increase signal-to noise. Here, the spatial sampling is dense and the convo-
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Figure 3.15: (a) Top and (b) side view of the twolayered model with cavity. All dimensions

are given in mm. (c) Seismogram of part of the data through the cavity.

lution filter is only 3 traces in each of two perpendicular directions, so that it is not comparable

to array-forming and it does not significantly affect the results of our method.

Wave-Field Separation

Apart from the preprocessing of these data, the algorithm is applied in the same way as in Exper-

iment I. Again, we start by selecting a reference event. In this case, we select the first upcoming

P−wave event, shown in Figure 3.16a. We separate the incident wave (d0) from the energy

scattered by the cavity (d1), using a narrow wavenumber-frequency domain filter. In this case,

we are aided by the fact that the first upcoming P -wave is approximately a vertically incident

plane wave. Therefore, most of the energy of the incident wave without scattering should be
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Figure 3.16: (a) The first upcoming P−wave is denoted by P , while the scattered Rayleigh
wave is denoted by R. Together they form the reference event (d in the text) used to derive

the scattered energy. (b) Separated scattered energy, d1, using a narrow wavenumberfrequency

domain filter. Observe that some coherent energy is not removed by the wavenumberfrequency

domain filter, between 0.5 and 1 cm around 0.011 ms. (c) Image of the cavity along the same

receiver line.

concentrated around kx, ky = 0. This makes the filtering operation particularly straightforward.

We estimate the surface-wave velocity (cR ≈ 1000 m/s) from the data shown in Fig-

ure 3.16a. The surface wave excited by the upcoming P−wave and scattered by the cavity
is clearly visible in these data as the ‘tails’ with linear move-out, following the first arrival

(labeled R in the Figure). The separated scattered field d1 is shown in Figure 3.16b.

Imaging

Using the surface-wave velocity cR = 1000 m/s, we estimate the impedance function depicted

in Figure 3.16c. Here, we have windowed the impedance function in the time domain, such that
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Figure 3.17: Cross section of the image at t = 0 for the second experiment, showing the correct

position and size of the cavity.

the length of the filter is about a period of the dominant wavelength of the event. This is done

to reduce “ringing” in the predicted scattered field due to the fact that some frequencies may be

dominant in the image. Some incident energy has leaked into the scattered field of Figure 3.16b.

Figure 3.17 is a top view of the image at the surface at t = 0. The dimensions and location of

the image are in agreement with the actual location and shape of the cavity.

Prediction and Subtraction

Finally, we predict the near-surface scattered field in the rest of the data. Depicted in Fig-

ure 3.18a is part of the data on a line above the cavity. The data shown in this Figure were not

used to derive the impedance function.

Our method is, in some way, sensitive to the velocity of the surface wave, because, as we

subtract the modeled scattered waves, a small error in the surface wave velocity may even cause

constructive interference with the surface waves in the actual data. The same holds true for

velocity variations due to dispersion. For this reason, the desired result may contain residual

tails from surface waves, but these can be removed by dip filtering. To remove the apexes of the

scattering, we have found that an accurate velocity is less important (see also the discussion in

Section 3.1.4). So, in order to make a comparison between the data before and after applying

the algorithm, we use a dip filter on the input data, as well as on the data after removal of the
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Figure 3.18: (a) Part of the data following the first P wave (v in the text). (b) Same as (a) but

after a mild dipfilter only. (c) Predicted nearsurface scattered field for these data. (d) Same as

(a) but after subtracting the predicted scattered field in (c), followed by the same dip filter as in

(b). The dashed lines indicate a time window placed around the event at 0.027 ms to calculate

the semblance in order to compare this event before and after application of our method.
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scattered surface waves.

The filtered input data are shown in Figure 3.18b. Obviously, the dip filter only removed

the flanks of the surface waves, but not the apexes, which have higher apparent velocities and

were therefore unaffected by the filter. Especially this part of the surface waves is important

to remove, because it is the interference between surface wave scattering and the incident field

that diminishes the quality of the target reflection.

Figure 3.18c shows the predicted scattered field excited by the events in Figure 3.18a, cal-

culated using the impedance function shown in Figure 3.16c. This figure shows that we have

mainly predicted the part of the scattered waves that cause the strong interference between 3

and 5 mm. The output v0 after subtracting this predicted scattered field, followed by the same

dip-filter is shown in Figure 3.18c. When we compare Figure 3.18b to Figure 3.18d, we can

conclude that the algorithm has improved the continuity of the reflectors by reducing the inter-

ference of the scattered waves.

To quantify this improvement, we again calculate the semblance (see Section 3.1.3). To this

end, we select a window of 5 ns around the event at about 0.027 ms (this window is roughly in-

dicated with the dashed lines in Figure 3.18a-d). The semblance of the raw event is S = 0.2861.

After applying the dip filter only, the semblance is S = 0.3825. After applying our algorithm,

the semblance of the same event is S = 0.5769, which demonstrates that the coherency among

the traces has improved.



54 3.2 Tests on Laboratory Data



4
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In Chapter 3, we applied our method to data from two laboratory models. In these models,

we chose the parameters and geometry such that it was relatively easy to precondition the data

for our method (as described in Section 2.2.1). Apart from being a further validation of the

method, these laboratory tests can be seen as an intermediate step directed to the application of

our algorithm to field data.

In the present chapter, we apply our prediction-and-subtraction algorithm to two field data

sets containing significant near-receiver scattering. These tests on field data serve to show the

applicability of our method to exploration seismic problems and to further investigate the limits

of the method.

Anticipating further developments in seismic data acquisition, we have designed our method

for 3-D densely sampled data, despite the fact that in current practice these data sets are rare

(even so, examples of such data exist Herman and Perkins, 2004; Moldoveanu et al., 2004, for

example). However, with a minor adjustment, our algorithm can be readily applied to 2-D data

sets as we will show in this chapter.

The first data set has been provided by Schlumberger Cambridge Research andWestern/Geco.

It was collected at a field experiment in Michigan, US. This data set comprises two densely sam-

pled receiver lines recorded in an area with significant amounts of near-surface scattering. Each

trace in these data has been recorded by an individual receiver (thus there has been no group

forming).

The second one, from a high-resolution survey in the Saudi Arabian desert, has been pro-

vided by Saudi Aramco. In the area where the data were collected, surface topography is

present. This has consequences for the preprocessing step in our algorithm. We will place

emphasis on this step when we discuss application of our method to these data. The Aramco

data also differ from the Schlumberger data in that they have been group formed in the field in

the crossline direction to suppress ground roll. The inline direction however, has been densely

sampled. The group forming may influence the inversion and modeling part of our algorithm.

55
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Figure 4.1: Geometry of the Michigan field experiment. The line represents the receiver line

with 401 receivers. The receiver spacing is 5 m, while the shot spacing is 10 m. The dots

represent source positions, labeled with their numbers.

4.1 Michigan Experiment — Schlumberger Data

4.1.1 Geometry

During the summer of 2002, Schlumberger/WesternGeco recorded two lines with 401 multi-

component receivers each, in a cross-spread geometry. From these two lines, we have analyzed

the vertical component of the velocity of one line running roughly from West to East. The

geometry of this line is shown in Figure 4.1. After analyzing these data, we have focused on the

data from the shots indicated in this figure in more detail (shot 103, 341 and 346). From these

shots, we have selected areas where we have applied our prediction-and-subtraction algorithm.

The receivers were laid out on the line shown in Figure 4.1, without being moved during the

survey. The total length of the receiver line is 2000 m. Each shot is recorded by the entire line

of 401 receivers with a spacing of 5 m. For the survey, (single) explosive sources with a spacing

of 10 m were used. No arrays were formed in the field, so that each trace from this densely

sampled data set was stored on tape.

Two typical shot records are shown in Figure 4.2a and b. First, we describe the application

of our method to the part of the data in the boxed area of Figure 4.2a. In Figure 4.3, we have

zoomed in on this part.

4.1.2 Near-Receiver Scattering

The data shown in Figure 4.2a-b were collected in an area where substantial near-surface scat-

tering is present. The near-surface region consists of a glacial till containing large boulders.

Since receiver intervals (or geophone spacings) are small (5 m), we can clearly identify near-
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Figure 4.2: Two typical shots record from the Michigan Experiment. (a) Shot 103 (see Figure

(4.1)) and (b) shot 346. We have applied AGC to both shots for display purposes. The distance

is measured from the beginning of the receiver line. The nearsurface region varies along the

line. There are two transitions in ground conditions from West to East. First the ground is wet,

then dry sand and at the end of the line the ground is moist.
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Figure 4.3: (a) Detail of shot record 103 (corresponding roughly to the boxed area in Figure

4.2a). We clearly observe the effects of the near subsurface on the two events in this display. We

can identify diffraction hyperbolas around 125 m and strong interference around 150 m, typical

of nearsurface scattering. They are indicated by the arrows; the numbers are explained in the

text. (b) Wavenumberfrequency domain spectrum of the data displayed in (a). In this domain,

we also observe effects introduced by the near subsurface. These are explained in the text.

surface scattering. Because the near surface varies considerably along the line, we have selected

a few areas where the near surface is (hopefully) not changing too much.

In Figure 4.3a we zoom in on the boxed area in Figure 4.2a. The arrows point to some char-

acteristic features of near-surface scattering. We observe diffraction hyperbolas marked with

①, ②, in the figure. We also note parts of diffractions with linear move-out (③,④). Note that

the scattering features are consistently repeated in the later (reflection) event. This is typical

of near-receiver scattering (or multiplicative noise) because each event passes through the same

anomaly close to the receiver (see also Section 1.4). Along the part of the line shown here, there

are no significant elevation variations. Around 175 m, a strong discontinuity is present in both

the first arriving wave and the reflection (⑤). From looking at the elevations in the headers of

the data, this discontinuity has no apparent surface manifestation. This observation leads us to

believe that the discontinuity is also caused by near-surface scattering.

Figure 4.3b shows part of the wavenumber-frequency (k − f ) spectrum of the data shown
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in Figure 4.3a. The velocity of the first arriving wave is roughly 1625 ms−1 (indicated by the

dashed line in Fig 4.3a). Because this wave has linear move-out we should be able to observe a

coherent alignment in the k − f spectrum with a slope of about .0007 sm−1. The beginning of

this line is indicated with the dashed line in Figure 4.3b.

We observe that due to near-surface perturbations, this event is not a well-defined linear

alignment as we would expect to get from a linear arrival in the data. Moreover, we observe that

much energy is ‘smeared’ over the wavenumber-frequency space due to amplitude and arrival

time anomalies (Panea et al., 2003). We observe the dipping lines, almost parallel to the dashed

line typical of random static effects (Blaquière and Ongkiehong, 2000; Panea et al., 2003). This

noise is dispersed throughout the k−f domain and is thus partly localized in the pass band of a

dip filter (in the context of the effect of perturbations on linear noise arrivals, this is discussed in

Cox, 1999, pp. 311-313). This is the same for the scattering hyperbolas induced by near-surface

scattering, as the apex has higher apparent velocities than linear coherent noise.

We have selected this part of the data such that it does not interfere with the strong ground

roll visible in Figure 4.2.

4.1.3 Wave-Field Separation

Wave-field separation is part of the preconditioning of the data before inversion as described

in Section 2.2.1. To estimate a near-surface impedance function, we require an estimate of the

near-surface scattered field. Because we assume that the scattering takes place immediately

under the receivers, we can assume that each event passes through the same heterogeneous

domain. Consequently, we need only one event to characterize the immediate subsurface. This

is the ‘reference’ event.

In Figure 4.3a, such an event is the first arriving wave. To select this event, we place a time-

window around it. In this case we use a constant velocity (from the data we estimate c ≈ 1625

ms−1):

tmin(x) = T0 − x/c− µTw,

tmax(x) = T0 − x/c+ (1 − µ)Tw.

Here, x denotes the offset, c the velocity, T0 the intercept time of this event (in this case about

0.1 s) and Tw is the length of the time window. The window length Tw should be long enough

to include scattering coda, but, preferably not too long so that it includes other events. The

parameter µ controls the portion of this window to include the reference event and the portion

to include scattering following this event so that it does not have to be centered around T0 (if

µ = 0.5, the window is centered around T0). Defined in this way, tmin(x) described the mini-

mum time selected for each trace, while tmax(x) describes the maximum time included for each

trace. In practice, we also taper the edges of this window to reduce artifacts in further process-

ing.

The next step is to separate the wave field in the embedding from the wave field due to local
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perturbations. Because scattering takes place close to the receivers (i.e. in the near field), it

interferes with the incident wave. For this reason, careful processing is required. Various meth-

ods can be used to separate the local perturbations from this event. For example, in Section 3.2

we use a wavenumber-frequency domain filter for a (approximately) plane incident waves in a

medium with a homogeneous near-surface region. For more complicated arrivals, for example

in the presence of topography one can use smoothing techniques that afford slow variations in

the incident wave field (Gersztenkorn and Scales, 1988, e.g.). In the case where different events

interfere, one can use more advanced techniques, for example based on the singular value de-

composition, used in vertical seismic profile processing (Mars et al., 1999, e.g.).

From looking at the data we infer that the first arriving wave varies somewhat smoothly.

From this observation we presume that the embedding changes slowly. Although we have as-

sumed that the near-surface region in our scattered-noise model is homogeneous, we can allow

for some lateral variation as long as we can obtain a reasonable estimate for the wave field in the

embedding through preprocessing. To afford such slow variations while separating the faster

variations, we have chosen an α-trimmed mean (α-TM) filter (Bednar and Watt, 1984, see also

Section E.2). The window length of the α-TM filter offers a handle on the smoothness of the

changes that we want to maintain in the incident field.

First, we apply linear move-out correction (LMO) to the reference event to align it horizon-

tally. Then we apply the α-TM filter, as described in Appendix E, Section E.2 to estimate the

wave field in the embedding medium. Once we have obtained an estimate of the incident field,

we subtract it from the total field in the following way (Equation (2.30)):

d1(x, t) = d(x, t) − βd0(x, t), (4.1)

to obtain the near-surface scattered energy d1 for the reference event. In the subtraction we

include a simple scaling factor (β) so that the incident wave is optimally removed from the total

field.

This procedure is depicted in Figures 4.4a-c, where the (spatial) window length for the α-

TM filter is 11 points and α = .2. The reference event is shown in Figure 4.4a, while the

estimated incident wave is shown in Figure 4.4b. Finally, the estimated scattered field is shown

in Figure 4.4c. Inspection of this figure reveals that most of the smooth event has been removed

from the reference event. In particular, note that the apex of the hyperbola around 130 m is

unimpaired, which indicates that we chose the filter parameters correctly.

4.1.4 Imaging and Suppressing Near-Surface Scattering

Imaging

Once we have an estimate of the near-surface scattered energy, the next step is to image it. This

yields the near-surface impedance function.

The inversion scheme is formulated in terms of minimizing a misfit between the estimated

scattered field and a forward-modeled scattered field by iteratively updating the impedance
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Figure 4.4: (a) The reference event selected from the detail of shot record 103. (b) Estimate

of the incident wave field. This estimate is obtained using the αTM filter. (c) Estimated near

surface scattered energy. This is the wave field attributed to the presence of local heterogeneity.

(d) Nearsurface impedance function.

function as described in Appendix C.

The algorithm has been set up to handle 3-D data, and up to now we have used 3-D data

exclusively. However, without major modifications, we can use our algorithm for 2-D data. In

fact, because the data were collected along a line, and because we assume that the scattering

takes place directly under the receivers, the only modification is that we now constrain the

impedance function to lie on the receiver line, instead of in a surface. Apart from this, the entire

inversion is carried out in the same way as in the 3-D case.

For the inversion we require a velocity model of the embedding. We use the fundamental

mode Rayleigh-wave velocity in this area to characterize the model. We estimate this velocity

from the data (see for example Figure 4.2); it is given by cR ≈ 300 ms−1. Even though the

Rayleigh wave is dispersive, we may use the velocity of the fundamental mode, because our

algorithm is not very sensitive to this velocity (see Section 3.1.4).

After minimizing the difference between the modeled scattered field and the scattered field
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Figure 4.5: (a) Scattered field predicted with Equation (2.27) and using the impedance function

of Figure 4.4d. We observe that we have mainly predicted scattered energy because there is

hardly any coherent incident or reflection energy in this prediction. (b) Wavenumberfrequency

domain spectrum of the predicted scattered field.

obtained from the reference event using the algorithm outlined in Appendix 2.2.2, we obtain

the impedance function shown in Figure 4.4d. The scattered energy has been focused around

t = 0, which indicates that the scattering takes place close to the surface.

Predicting and Subtracting Near-Receiver Scattered Waves

With this estimate of the impedance function, we calculate the scattered field on the data shown

in Figure 4.3a, using Equation (2.27). This predicted scattered field is shown in Figure 4.5a.

From inspecting these predicted data we conclude that we have not modeled coherent incident

or reflection events, but only the part of the wave field that we attribute to the presence of near-

surface heterogeneity. From this observation we conclude that our scattering model (Equation

(2.27)) effectively discriminates near-surface scattering from reflection events.

This can also be observed in Figure 4.5b, which shows the k − f representation of the

predicted data (the gray scales of Figure 4.3b and 4.5b are the same). The dashed line shows

the start of the expected linear alignment of coherent energy from the first arriving wave.

Finally, we show the data after subtracting the predicted scattered energy in Figure 4.6.
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Figure 4.6: (a) Detail of the shot record after predicting and subtracting the nearreceiver

scattered waves. It corresponds to the difference of Figure 4.3a and Figure 4.5a. (b) The clean

data in the k − f domain.

This figure demonstrates that we have removed most of the interference caused by scattering.

However, there are some remnants of coherent energy with the steeper dips. This energy is most

probably introduced by the ringing in the impedance function, because they appear to have a

strong dominant frequency.

As a quick way of quality control, we can compare the estimate of the incident field from

the reference event (Figure 4.4b) with the same event in Figure 4.6a. A quick glance at both

figures confirms that they resemble quite well. The difference is due to the fact that we allow

a small residual after the minimization, because our scattering model does not explain all the

energy separated from the reference event, as it also includes incoherent noise for example.

In Figure 4.7a, we show the input data after applying a dip filter to remove that part of the

scattering that has lower apparent velocities than those in the area between the dashed line and

the vertical axes. From this figure it is clear that the apexes (i.e., part of the scattered waves

with higher apparent velocities) and the interference are left unaffected by the dip filter.

After modeling and subtracting the scattered field on the record in Figure 4.2a, we obtain

the desired output shown in Figure 4.7b followed by the same dip filter. This is an estimate of

the record that would have been measured without near-receiver scattering.
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Figure 4.7: (a) Detail of the shot record after applying a k−f filter to remove part of the record
with lower apparent velocities. (b) Same detail, but after predicting and subtracting scattered

waves followed by the same dip filter. Observe that we have successfully removed most of the

interference. (c) Wavenumberfrequency domain spectrum of the data shown in (a). Note that

the dip filter removed the part with lower apparent velocities (compare with Figure 4.3b). (d)

Wavenumberfrequency domain spectrum of the the data shown in (b). (e) Difference between

(c) and (d). This is the k−f spectrum of the noise that is passed by the dip filter, but is removed
by our method.
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Figure 4.8: (a) Same as Figure 4.7a, but after normal moveout correction. (d) Same as Figure

4.7(b), but after normal moveout correction. This figure emphasizes the visual improvement

obtained for the second event in these data.

Figure 4.7c depicts the k − f spectrum of the data shown in Figure 4.7a. This figure shows

that the dip filter removed the the part of the data with lower apparent velocities, while it passed

all energy in a cone around the vertical (only half of this cone is shown in this figure because the

events all dip in negative direction). Figure 4.7d shows the spectrum of the data in Figure 4.7b.

The difference of these spectra is shown in Figure 4.7e. This figure shows the k − f spectrum

of the noise that is passed by the dip filter, but is removed by our method. This figure illustrates

how our method complements the well-known dip filter.

4.1.5 Continuity and Coherency

Cox (1999, p.(p.) 451 f(f)) gives a list of quality control (QC) tools that can be used for residual

statics estimations. One of the tools is to look at the continuity and trace-to-trace coherency

in a common-midpoint (CMP) gather. Furthermore, Cox (1999, p. 457) notes that residual

statics should improve the stack response of a stack made in any record domain. In principle,

we should obtain similar results with our method, although we leave smooth variations intact as

far as they are they are included as a priory information in the estimation of the incidence field
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Table 4.1: Semblance calculated for different events. In these tables, R denotes the raw event

after NMO,RD denotes the event after the dip filter followed by NMO,C denotes the event after

subtracting the predicted scattered energy followed by NMO and CD denotes the event after

prediction and subtraction, followed by a dip filter and NMO. The window for the calculation

of the semblance is centered around time sample k and is about the length of one cycle of the

waveform. The traces included run fromm1 tom2, so thatM = m2 −m1. In this case we have

chosen k = 115 which corresponds to t = 0.23 s.

k = 115, m1 = 5, m2 = 60

Event Semblance

R 0.21

RD 0.30

C 0.47

CD 0.63

of a reference event. Hence, we do not expect to get a perfectly aligned shot-gather. However,

compared to the initial shot gather, we should see an improvement in continuity due to the fact

that we have removed the interference between the upcoming reflection and the scattered waves.

Because we have worked on common-shot records only, we use this for QC. Note, that this

stack can include structural components when the near subsurface is complex. However, we

assume that this structural component is negligible because we use only a portion of the data

which covers a limited part of the line. From Figure 4.7a-b, we see a clear visual improvement

of the reflection event after we have applied our method. In Figure 4.8, we have applied NMO to

align the reflection event. This emphasizes the improvement in continuity of this event. While

it also shows that it has not been flattened completely, the variations are much less rapid than

in Figure 4.8a, implying that current statics methods may be expected to be more effective after

application of our method.

At the same time, we expect improved trace-to-trace coherency, because the multi-channel

filter also corrects for interference that causes amplitude and phase anomalies other than shifts

in the arrival times due to the difference in velocity between the scatterer and the embedding

medium. This has been discussed in Section 3.1.3. Here, we calculate the semblance of a part

of the event shown in Fig 4.8a-b, before and after applying a dip filter and/or our method. We

assume that there is no structural component, but, nonetheless, we don not include the farther

offsets because the waveforms there are stretched due to the NMO correction. The results of

these calculations are summarized in Table 4.1. From this table we conclude that the dip filter

increases the coherency moderately, while application of our method (without a dip filter) about

doubles the semblance coefficient. Finally, after we applied our method and a dip filter the
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Figure 4.9: (a) Frequency spectrum of a detail of shot record 341 (the boxed area in Figure

4.2b). (b) Frequency spectrum of the part of shot number 346 covered by the same receivers.

This shot is from the area where the ground conditions are similar to those for shot 341. (c)

Frequency spectrum of the part of shot 343 covered by the same receivers. This shot is located

at the other side of the receiver line, where the ground conditions differ from those of the area

of shot 341 and 346.

semblance coefficient has increased considerably (three times the semblance coefficient of the

original event).

4.1.6 Surface Consistency

Practically all near-surface correction methods use the concept of surface consistency. This en-

tails the approximation that ray paths through the overburden are vertical and that the all traces

measured at a specific surface location are effected in the same way. Using redundancy of mea-

surements at surface locations, one can use this to obtain statistically inferred corrections.

If one assumes vertical ray paths through the overburden, the static shift at each surface

location is the same, regardless of from which shot the data are. Thus, near-surface corrections

methods assign the same uniform time shift or filter to a distinct surface location.

Now consider near-receiver scattering. If the anomaly is close to the receiver, it does not

matter if the ray path through the overburden is vertical or not (this reasoning is consistent with
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the conclusions from Section 3.1). Each reflection event scatters at the same anomaly. In this

way, our impedance is surface consistent.

To verify this assertion, we derive an impedance function from the first arriving wave in

shot record 341 and use this function to estimate scattered energy on another record (shot 346).

To this end, we have selected a shot record with comparable frequency content. The frequency

spectrum of shot record 341 is shown in Figure 4.9a. Because the ground conditions along the

survey line can be roughly divided in three different areas, we select a shot from the same area.

This spectrum is shown in Figure 4.9b. Comparing Figure 4.9a-b reveals that the frequency

content is comparable.

To give an idea of the variability of the frequency spectrum among different shot positions,

we have plotted the spectrum of part of a shot at the other side of the line with different ground

conditions (shot 343), for the same receivers. Comparing these figures, it is clear that the fre-

quency content of shot 343 is lower than that of shot 341 and 346. Consequently, the impedance

function derived from an event in shot 341, can not cover the whole range of frequencies found

in shot 343. Moreover, from looking at the data from this shot we have found that they seem

to be less sensitive to the near-surface heterogeneity. This is most probably due to the longer

wavelengths observed in this record that are less sensitive to small-scale heterogeneities. This

example shows that the local ground conditions at the source and the propagation path from the

source to the heterogeneities can have impact on the application of our method.

In Figure 4.10a we zoom in on the boxed area in Figure 4.2b (shot 341), while Figure 4.10b

shows the same area but from shot 346. We now follow the procedure described above, and

estimate the near-surface impedance function from the first arriving event in Figure 4.10a. In

Figure 4.10c we show the part of shot 341 after we have predicted and subtracted the near-

receiver scattered energy followed by a mild k − f filter. With the same impedance function,

derived from the event in shot record 341, we now predict the near-surface scattered field on

shot record 346. After subtracting this predicted scattered energy and applying the same k − f

filter as in Figure 4.10c, we obtain the record shown in Figure 4.10d.

As a verification that this result is due to application of our method, we show the same part

of shot 341 after the mild k − f filter only in Figure 4.10e. Finally, the same part of shot 346

after application of the same k − f filter is shown in Figure 4.10f, which shows that the inter-

ference remains after the dip filter only. Consequently, the improvement in this record is due to

application of our method.

From a glance at Figures 4.10c-d we find that the results obtained are similar for both shot

records. Thus, even though we have derived the impedance function from one shot record, we

can use it to predict the scattered energy effectively on another shot record. We have actually

carried out this test for a few shot records. From these tests we have found that it is impor-

tant that the frequency contents of the shot records are comparable. Because we estimated

an impedance function under receivers that are fixed at the same surface location for different

shots, this is a demonstration of surface-consistency.

This example also suggests that we could derive an impedance function that is consistent



Field-Data Examples 69

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 [

s
]

200 300 400 500 600 700
Distance [m]

(a)

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 [

s
]

200 300 400 500 600 700
Distance [m]

(b)

0

0.1

0.2

0.3

0.4

0.5

T
im

e
 [

s
]

200 300 400 500 600 700

(c)

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 [

s
]

200 300 400 500 600 700

(d)

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 [

s
]

200 300 400 500 600 700

(e)

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 [

s
]

200 300 400 500 600 700

(f)

Figure 4.10: (a) Detail from shot 341 (the boxed area in Figure 4.2b). (b) Same detail, but now

from shot 346. (c) Same as (a), but after predicting and subtracting nearreceiver scattering and

a mild k− f filter. (d) Same as (b), but after predicting and subtracting nearreceiver scattering

and the same k − f filter. The impedance function used to predict the scattered field on this

record was derived from the first arriving event of shot 341 in (a). (e) Same as (a), but after a

dip filter only. (f) Same as (b), but after a dip filter only.
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with several shot records. This was also found and shown by Blonk and Herman (1994). Even

though we have included this possibility in our algorithm, it requires that we also estimate the

scattered energy from several reference events in a consistent way. So far, consistently estimat-

ing this scattered energy from several events in different shot records remains a challenge.

4.2 Saudi Aramco Data

4.2.1 Geometry

The data from Saudi Aramco were acquired in the desert of Saudi Arabia. In the acquisition area

surface topography plays a more significant role than in the area where the data of the previous

section were acquired. Besides topography, occasionally there can be some lateral variations

due to surface anhydrite, but in the areas we have analyzed these variations do not play a sig-

nificant role; we show that scattering is most probably due to the changes in topography. We

focus our attention on the shot record shown in Figure 4.11 (displayed is the vertical velocity).

This shot record contains 2880 traces. Each trace in the data actually represents the sum of

a group with twelve elements. The groups are used to suppress side-scattered noise (see also

Pecholcs et al., 2002). The group spacing is 5 meter in the inline direction, while the width of a

group is about 2 meter and its length 27.5 meter.

4.2.2 Topography

We selected the area between 2860 and 3470 meters (121 stations) in Figure 4.11. In this area,

surface topography changes relatively fast compared to other areas, which results in scattering.

When we plot the topography on top of the data, we clearly see that the first arrival follows

the topography (note that the wavefront is shifted down when the elevation is higher). From the

headers we infer that the difference in elevation does not exceed 10 m in this part of the data.

The lateral extent ranges from roughly 50 to 100 meters. Even though the elevation is moderate

compared to the lateral extent of the dunes, from inspecting Figure 4.12 we conclude that there

is a strong correlation between the location of the elevation variations and scattering. This is

most evident from the scattering and interference between 2900 and 3100 m and between 3200

and 3300 m.

As we have discussed in Section 1.2, elevation statics are often corrected by time shifts based

on the elevation in the header and a known velocity, assuming vertical ray paths in the near

subsurface. More recently, wave-field based datuming techniques have been used to redatum

the data collected at the surface to a datum beneath the overburden (Berryhill, 1984; Kelamis

et al., 2002). In principle, this should also undo the effects of surface topography. In general,

these datuming methods are based on a ray-approximation of the (primary) wave field. For this

reason, they do not take into account the near-receiver scattered field, including body-to surface
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Figure 4.11: Representative shot record from the Saudi Aramco data. The lateral nearsurface

variations are mostly attributed to topography (sand dunes). In general, variations are quite

smooth. However, in some areas, more rapid variations cause scattered noise which interferes

with reflections.
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Figure 4.12: (a) Selected data from Figure 4.11, with topography indicated. These data are the

input of our algorithm. We have applied AGC to balance the amplitudes for display purposes.

wave conversions.

Therefore, before redatuming methods can be successfully applied, near-surface scattered

noise should be removed. If this noise is not suppressed, it will be extrapolated with the same

operators giving rise to artifacts. This will especially affect the amplitudes of the redatumed

data (Hindriks, 2003).
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Figure 4.13: (a) The reference event. (b) Estimated wave field in the embedding. We have

kept the topography trend in this estimate. (c) Estimated scattered energy, i.e. the difference of

(a) and (b). Note the diffraction at 3050 m responsible for the interference observed in (a).

4.2.3 Wave-Field Separation

The whole sequence of steps to apply to these data is similar to the one in the previous example.

However, here we deal with more complicated surface topography. In Figure 4.12, we have

plotted the elevation (taken from the headers of the data) on top of the part of the line we

process.

We start by selecting a reference event. For this purpose, we use the first two arrivals (see

Figure 4.13a). Because of the surface topography, we did not apply NMO in this case. Instead,

we picked the arrival times following the first breaks. In this way, we keep the main trend of the

surface topography in the reference event.

After aligning this event using the picks, we apply an α-trimmedmean filter. Using this filter

we can separate the more rapid variations from the slower variations. The rapid variations are
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Figure 4.14: (a) Same as Figure 4.12 (b) Same as (a), but after a mild dip filter to remove the

steeply dipping noise trains. (c) Same as (a), but after subtracting predicted scattered waves

followed by application of the same dip filter as in (b). We have applied AGC to balance the

amplitudes for display purposes to each panel.
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attributed to scattering from topography changes (Figure 4.13b), while the slow variations are

attributed to propagation in the laterally varying near-surface region of the embedding medium

(Figure 4.13c). We observe that we have maintained the topography trend in the estimate of the

wave field in the embedding.

By preserving the slow topography variations in the reference event we do not correct for

them in our procedure. However, because we aim at removing the locally scattered energy

which interferes with reflections, the data will be better conditioned for application of methods

that correct for topography, such as those discussed in Section 1.3.2.

4.2.4 Result

After separating the scattered energy from the reference event, we apply our algorithm in ex-

actly the same way as in the previous section. First, we image the scattered energy, yielding the

near-receiver scattering distribution. With this distribution, we predict the scattered energy in

the rest of the data. The input data are repeated in Figure 4.14a.

For comparison, we have again plotted the input data after a mild dip filter to remove the

coherent noise trains with steep dips (Figure 4.14b). This noise is especially clear between 2900

and 3000 meter and is most probably due to conversion of incident body waves and refractions

to Rayleigh waves. Note that it is quite well removed using the dip filter, as can be observed

in the figure. However, we observe that the parts of the scattered noise with higher apparent

velocities still cause interference. A smaller pass band of the dip filter does remove some of the

higher apparent velocities, but at the cost of ‘smearing’ the reflection energy and a consequent

loss of high frequencies.

After subtracting the predicted scattered waves and applying the same dip filter, we obtain

the output shown in Figure 4.14c. We observe that the continuity of events is better. Note that

the first arrival has been used to derive the near-receiver scattering impedance and should there-

fore resemble the incident wave field shown in Figure 4.13b. Comparing these figures indeed

conforms that they resemble quite well, which indicates that the minimization scheme worked

well.

Because we kept the topography trend in the estimate of the wave field in the embedding

we have shown that our method is not restricted to areas with a strictly flat surface. However,

a more rigorous analysis of how to incorporate topography in our method has to be performed

because in our example we used hand picked times. Doing so, we assume that we have infor-

mation about how the topography changes. In order to incorporate actual topography, one could

think of constraining the filter to follow a moving average of the actual elevation header values.

We also expect that the results obtained here can be improved by using a semi-automatic pick-

ing program, because it will lead to a smoother estimate of the incident wave field.

We have applied this test to other areas in these data, where the surface is changing more

slowly. It turned out that our method hardly affects the data in those areas. In those cases, the

dip filter is about as effective as our method because there are hardly any rapid changes that
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cause scattering.

Finally, we note that despite the fact that the data have group formed in the cross line direc-

tion, our method gives good results, without introducing artifacts.



5

Conclusions and Discussion

Conclusions

We developed a method to image, predict and suppress near-receiver scattered waves for seis-

mic land data. The objective of our method is to obtain an estimate of the wave field that would

have been measured if there were no heterogeneities close beneath the receivers.

To develop an efficient model, we identified the main features of near-receiver scattering. It

is characterized by a time shift in the wavefront of upcoming reflections, due to the difference

in velocity between the embedding and scattering media. Secondly, the incoming wavefront

excites surface waves when it impinges on near-receiver heterogeneity. These surface waves

cause interference with the incident wave, resulting in additional phase and amplitude changes.

Based on these observations we derived an integral representation, accounting for the dominant

effects of body-to-surface wave scattering in the vicinity of the receivers.

Our representation contains an approximation to the near-field behavior of the elastic Green’s

function of the near-surface region, a surface impedance function (representing the scatterers)

and the actual vertical particle velocity measured in the field. We have shown that this scalar

representation accurately models elastic scattering in the near-field region of the geophones.

Even though we have focused on body-to-surface wave scattering, we have found that it applies

to surface-to-surface wave scattering as well.

The integral representation forms the computational basis of our method to suppress near-

receiver scattered waves. The underlying idea, however, is that with knowledge of the distri-

bution of near-surface scatterers, it is possible to predict and subsequently subtract scattered

waves. Hence, an important step is the determination of a near-surface scattering distribution.

We estimate this distribution from the data itself, using short time windows to obtain an indepen-

dent estimate of the impedance function. Despite the fact that we only require this impedance

function to predict the scattered wave field accurately, we have found that in many cases it re-

sults in a physically meaningful spatial image of the scattering distribution.

We have demonstrated that the impedance function, derived from one event in the data,

predicts the scattered waves excited by other events with different angles of incidence for mean

scattering depths up to about a Rayleigh wavelength. From tests on synthetic data we found that
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if the scatterers are deeper and the the difference between the angle of incidence from the ref-

erence event and that of the target event is larger than about 10 degrees, the predicted scattered

fields start to differ significantly from the actual scattered field. Nonetheless, in most cases the

dominant energy in the scattered field (in the apex of the scattering hyperbola) is still effectively

modeled.

The embedding medium is characterized by the fundamental mode Rayleigh wave velocity,

but our method is not very sensitive to this parameter. In practice, we apply a mild dip filter

to remove any remnants of scattered surface waves with linear move out. Because our method

compensates for rapid time shifts observed in the wavefronts and additional phase and ampli-

tude changes, the continuity and trace-to-trace coherency of events is greatly improved after

application. In addition, our method restores individual wave forms fairly well.

From our experience with two field data sets we conclude that our method suppresses scat-

tered noise due to heterogeneities and changes in surface topography. These tests show that our

scattering model effectively discriminates between upcoming body-wave reflections and scat-

tered noise. Because the data were quite noisy and in one example data were acquired with

geophone arrays, we conclude that our method is quite robust. These tests also confirm that we

do not need detailed information about the subsurface. The fundamental Rayleigh wave veloc-

ity suffices and this can be estimated from the data. By estimating the impedance function from

one shot, and successfully predicting and subtracting the scattered field from data from another

shot, we show that our method is surface consistent.

Discussion

The results described in this thesis show the potential of our prediction and suppression method

for use on a larger scale. However, there is room for improvements and extensions.

Although the method has been implemented such that we can use information from various

shot records to estimate an impedance function that is consistent with these records, we have not

yet used this possibility. The main reason for this is that to obtain an impedance function, also

the separated scattered energy from the events from the different records have to be consistent.

In this case, data selection is important and the filter has to be the same over the various events.

Although it should be limited to a minimum, we expect that some data preprocessing may

improve our results. For example, our inversion algorithm is more sensitive to higher amplitudes

than to lower amplitudes. For this reason, we expect that trace editing to remove anomalous

traces and trace balancing before inversion results in a physically more reasonable impedance

function.

In this thesis we have specifically focused on developing our method for and applying it

to exploration seismic data. In recent years, however, there has been a large effort in adopting

seismic imaging algorithms for teleseismic imaging of the Earth’s upper-mantle (Marfurt et al.,

2003, e.g.). This development has been stimulated by the availability of increasingly denser
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geophone arrays. Especially data from short-period sensors have the potential of producing

high resolution images. However, body-to-surface wave scattering limits the maximum ob-

tainable resolution from these data (Wagner and Langston, 1992; Morozov and Dueker, 2003;

Rondenay et al., 2003). We expect that one can also apply our method to suppress scattered

surface waves in short-period passive-source seismic data without major modifications.

Although we do not require the impedance function to correspond to the actual scatteri-

ing distribution, we found that it does give physically meaningful spatial images of the near-

subsurface. In Herman et al. (2000b) and Campman et al. (2004), it is shown that by imaging

the near-surface scattered field, one can spatially resolve near-surface scatterers. From these im-

ages, we cannot infer the depth of the scatterers, but in combination with other (dispersion, e.g.)

information, this image may provide useful information that can be used in archaeology, civil

engineering, (non contacting) land-mine detection (Van Wijk et al., 2005) or even exploration

of aquifers.
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A

Fourier Transformations

A.1 Temporal Fourier Transformation

Let f(x, t) be a real valued function of space and time. The forward temporal Fourier transform

is defined by

f̃(x, ω) =

∫ ∞

−∞
f(x, t) exp(−iωt)dt, (A.1)

and the inverse transform:

f(x, t) =
1

2π

∫ ∞

−∞
f̃(x, ω) exp(iωt)dω. (A.2)

Here, i is the imaginary unit (i =
√
−1) and ω is angular frequency. For notational convenience,

we omit the tilde over the frequency-domain function in the main text of this thesis. The only

way we distinguish between time and frequency-domain quantities is via their arguments.

We will frequently use the property of this transformation that a differentiation with respect

to time corresponds in a multiplication by iω in the frequency domain.

A.2 Spatial Fourier Transformation

The two-dimensional spatial Fourier transformation of f(x, ω) is defined as:

f̂(kL, ω) =

∫ ∞

−∞

∫ ∞

−∞
f̃(xL, ω) exp(ikαxα)d2

xL, (A.3)

and the inverse transformation as:

f̃(xL, ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f̂(kL, ω) exp(−ikαxα)d2

kL. (A.4)

Here, xL = (x, y), kL = (kx, ky) and kαxα is the subscript notation for kL ·xL (see also Section

2.1). For notational convenience, we omit the hat over the wavenumber-domain function in the

main text of this thesis. The only way we distinguish between the spatial and wavenumber-

domain quantities is via their arguments.

We use the property of the spatial Fourier transformation that a spatial differentiation in

the spatial-domain is replaced by multiplication with−ikα in the two-dimensional wavenumber

domain.
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A.3 Convolution Theorem

We use the convolution theorem to calculate the convolutions occurring in our integral equation.

This theorem follows from the properties of the Fourier transform as defined above. Let f(x, t)

and g(x, t) be two functions of space and time. Then the temporal convolution integral of f and

g is defined as:

h(x, t) =

∫ ∞

−∞
f(x, t− t′)g(x, t′)dt′. (A.5)

Taking the Fourier transformation of Equation (A.5), we obtain

h(x, ω) = f(x, ω)g(x, ω). (A.6)

This result is known as the convolution theorem (see also Brigham, 1988).

Similarly, for two functions of space and frequency, we have the convolution integral in the

spatial coordinates:

h(xL, ω) =

∫ ∞

−∞

∫ ∞

−∞
f(xL − x

′
L, ω)g(x′

L, ω)d2
x
′
L, (A.7)

and the spatial convolution theorem:

h(kL, ω) = f(kL, ω)g(kL, ω). (A.8)



B

Derivation of Equation (2.7)

Using the elastic frequency-domain reciprocity theorem of time convolution type (De Hoop,

1995, pp. 445-448), we derive an integral representation for the wave field in terms of particle

displacement.

B.1 Reciprocity

Let the interaction quantity ∆ijpq∂i(τ
A
pqu

B
j − τB

pqu
A
j ) account for local interaction between two

elastodynamic states, denoted by superscripts A and B, in a solid occupying domain D. Both
states satisfy Equations (2.4) and (2.5). For the moment we do not specify boundary conditions.

We can write the interaction quantity as:

∆ijpq∂i(τ
A
pqu

B
j − τB

pqu
A
j ) = ∆ijpq

[

(

∂iτ
A
pq

)

uB
j + τA

pq

(

∂iu
B
j

)

−
(

∂iτ
B
pq

)

uA
j − τB

pq

(

∂iu
A
j

)

]

. (B.1)

By substituting terms using Equations (2.4)-(2.5), one obtains:

∆ijpq∂i(τ
A
pqu

B
j − τB

pqu
A
j ) = ω2

(

ρB − ρA
)

uA
i u

B
i +

(

sB
ijpq − sA

pqij

)

τA
ij τ

B
pq −fA

i u
B
i +fB

i u
A
i , (B.2)

where we have used ∆ijpq = ∆pqij and sijpq = spqij . This is the local form of the reciprocity

theorem. Integrating over the domain D and applying Gauss’ theorem, we obtain the global
form of the Betti-Rayleigh reciprocity theorem:

∆ijpq

∫

∂D
ni

(

τA
pqu

B
j − τB

pqu
A
j

)

dA =
∫

D

[

ω2
(

ρB − ρA
)

uA
i u

B
i +

(

sB
ijpq − sA

pqij

)

τA
ij τ

B
pq

]

dV −
∫

D

[

fA
i u

B
i − fB

i u
A
i

]

dV. (B.3)

As this relation holds for any two states in the domain D, we can derive a representation for the
actual wave field (state B) in D, by suitably choosing state A.

B.2 Green’s State

Green’s state is the wave field in the embedding medium (ρ = ρ0, sijkl = s0
ijkl) caused by an

impulsive point force in an arbitrary direction:

∆ijpq∂jτ
G
pql(x,x

′) + ρ0(x)ω2uG
il (x,x

′) = −δilδ(x,x′), (B.4)

∆ijpq∂pu
G
ql(x,x

′) − s0
ijpq(x)τG

pql(x,x
′) = 0. (B.5)
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The Green’s state is labeled with superscript G. The boundary condition at the free surface for

the Green’s state is:

njτ
G
ijl(x) = 0, x ∈ Σ, (B.6)

while on account of the radiation condition, the wave field of the Green’s state consists of waves

propagating away from the sources at large distances.

B.3 Integral Representation

Associate the Green’s state with state A and the actual wave field with state B. They satisfy the

radiation condition and the following boundary conditions:

njτ
G
ijl(x) = 0, x ∈ Σ, (B.7)

and

njτij = 0, x ∈ Σ. (B.8)

On account of these conditions, the surface integral on the LHS of Equation (B.3) vanishes.

Upon substituting the states and rearranging, this yields:

ui(x) =

∫

D
uG

ij(x,x
′)fj(x

′)dV+

ω2

∫

D
uG

ij(x,x
′)(ρ− ρ0)(x′)uj(x

′)dV +

∫

D
∂′ju

G
ik(x,x

′)c0kjns(snspq − s0
nspq)(x

′)τpq(x
′)dV.

(B.9)

Here, we have used the reciprocity relation uG
ij(x,x

′) = uG
ji(x

′,x) (De Hoop, 1995, p. 471,

Equation (15.8-47)) and we have expressed the stress Green’s tensor, which occurs in the third

term on the RHS of Equation (B.9), in terms of particle velocity, using the generalized Hooke’s

law:

τG
ijl = c0ijpq∂pu

G
ql, (B.10)

where c0ijpq [Pa] is the stiffness tensor. Here, we used cijkl = cijlk and τijl = τjil (Aki and

Richards, 1980).

Because we assume that the actual medium (ρ, sijkl) only differs from the embeddingmedium

(ρ0, s0
ijkl) in the near-surface scattering domain B (see Figure 2.1), we may write:

ui(x) =

∫

D
uG

ij(x,x
′)fj(x

′)dV+

ω2

∫

B
uG

ij(x,x
′)(ρ− ρ0)(x′)uj(x

′)dV +

∫

B
∂′ju

G
ik(x,x

′)c0kjns(snspq − s0
nspq)(x

′)τpq(x
′)dV.

(B.11)
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The first term on the right hand side of Equation (B.9) is the incident field, the second and

third term represent the secondary field caused by perturbations of the medium with respect to a

background medium. Hence, the representation can be written as a superposition of the incident

wave field u0 and the scattered wave field u1:

ui(x) = u0
i (x) + u1

i (x). (B.12)
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C

Iterative Minimization

C.1 Conjugate Gradient Method

We have posed the inversion problem as the problem of finding an impedance function that

minimizes a cost function, consisting of a squared error between the measured data and the

calculated data.

First, we define the residual, i.e. the misfit between the actual data and the calculated data:

r = d1 −Kσ, (C.1)

where the operator K has been defined through (Equation (2.32)):

{Kσ} (xL, 0) =

∫

Σ

uG(xL − x
′
L, z

(0))σ(x′
L, z

(0), ω)dmeas(x′
L, 0)d2

x
′
L. (C.2)

Now, we define the error as the (L2) norm of the residual:

Err = ||r|| = 〈r, r〉 1

2 , (C.3)

where 〈·, ·〉 denotes the inner product defined on the domain Σ:

〈f, g〉 =

∫

Σ

f(xL)ḡ(xL)d2
xL. (C.4)

Here, the over bar denotes complex conjugate.

We minimize the following cost function (Equation 2.33):

F =

∑

J ||d1
J −KJσ||2

∑

J ||d1
j ||2

, (C.5)

such that F = 1 if σ = 0 and F = 0 if σ is the exact solution, which corresponds to the nor-

malized error. This cost function is minimized by iteratively updating the impedance function

in the following way:

σ0 = 0,

σN = σN−1 + αNγN , N ≥ 1.
(C.6)
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where γN is a suitably chosen update direction.

We use Polak-Ribière conjugate-gradient directions so that (e.g. Van den Berg, 2002):

γN = gN +
Re〈gN − gN−1, gN〉

||gN−1||2
γN−1, (C.7)

where gN is the gradient ∂FN−1/∂σ:

gN = −
∑

J K∗
JrJ,N

∑

J ||d1
J ||2

, (C.8)

and the adjoint operator K∗ is defined through:

〈Kf, g〉 = 〈f,K∗g〉. (C.9)

For details about obtaining the gradient and an explicit expression for the adjoint, we refer to

Zhdanov (2002), for example.

Carrying out the analysis described therein, yields:

{K∗r} (x′
L, z

(0)) = d̄meas(x′
L, 0)

∫

Σ

ūG(x′
L − xL, z

(0))r(xL, 0)d2
xL, (C.10)

for the adjoint operator.

To complete the algorithm, we determine α. By writing out Equation (C.5) and requiring

for the derivative of the cost functional with respect to α to vanish, we obtain

αN =

∑

j Re〈rJ,N−1,KJγN〉
∑

J ||KJγN ||2
. (C.11)

C.2 Regularized Conjugate Gradients

In practice, data contain noise and the solution described above may depend on it, leading to an

unstable solution. To ensure a reasonable estimate of the impedance function, we regularize the

inverse problem.

One way to regularize the minimization is to add a stabilizing term in the cost function:

F =

∑

J ||d1
J −KJσ||2

∑

J ||d1
J ||2

+ λ||σ||2. (C.12)

In this way, with the right choice for λ we accomplish that the solution remains close to that of

the solution of the unperturbed problem (with small residual norm and a model norm of ‘rea-

sonable’ size).

We adopt a practical (and popular) method to choose this parameter: via the L-curve method

(see Hansen, 1997, for an extensive treatment of this method). To this end, we introduce sepa-

rate cost functions for either term in Equation (C.12):

F = Φ(σ) + λΨ(σ). (C.13)
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Here, Φ is the cost function for the residual, while Ψ is the stabilizing cost-function.

In the L-curve method, one plots, usually in log-log scale, Φ versusΨ for different values of

the parameter λ. Plotted on this scale the curve typically describes an ‘L’ shape. In the bend of

the ‘L’, a small perturbation of λ results in a balanced change of Φ and Ψ. This value can thus

be considered as representing the ‘optimum’ trade-off between the best fitting solution and the

most reasonable estimate for the impedance function.

Using this type of additive constraint, we need to replace the gradient in the scheme de-

scribed in the previous section, in the following way:

gN = −
∑

J K∗
JrJ,N + λσN−1
∑

J ||d1
J ||2

, (C.14)

while the step size α needs to be replaced by:

αN =

∑

J〈rJ,N−1,KJγN〉
∑

J ||KJγN ||2 + λ||γN ||2
. (C.15)

Apart from these adjustments, the conjugate-gradient scheme remains the same.
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D

Computational aspects

To set up the conjugate-gradient scheme we first write our scattering equation (Equation

(2.27)) in operator form. We meet the operator defined in this way several times: in the direct

calculation of the scattered field and in the inversion, and once in the form of the adjoint in the

inversion. Because calculation of the action of those operators represent the main computational

effort in our scheme, we want to do it efficiently. This is most easily done with the use of the

convolution theorem.

In each of these spatial convolutions, the Green’s function occurs. To avoid computing the

spatial Fourier Transform of the Green’s function (Eq. 2.22), we derive its representation in the

wavenumber-frequency domain in the second section of this appendix.

D.1 Operators

In operator form, our near-receiver scattering equation can be written as (Equation (2.27) and

(2.31)):
{

d1,op, v1,op
}

= Kd,v
J σ, (D.1)

where Kd,v is the operator defined through:

{

Kd,vσ
}

(xL, 0) =

∫

Σ

uG(xL − x
′
L, z

(0))σ(x′
L, z

(0)) {dmeas, vmeas} (x′
L, 0)dA (D.2)

For the gradient in the conjugate-gradient scheme we need an expression for the adjoint operator

as defined through Equation (C.9). Explicitly, we found for the adjoint operator (Equation

C.10):

{K∗r} (x′
L, z

(0)) = d̄meas(x′
L, 0)

∫

Σ

ūG(x′
L − xL, z

(0))r(xL, 0)d2
xL, (D.3)

where the ∗ denotes the adjoint, the overbar denotes complex conjugate and r is the residual as
defined in Appendix C, Equation (C.1). In both operators we recognize a spatial convolution,

as defined in Appendix A, Eq. (A.7). If we define the quantity w, through:

wd,v(x′
L, z

(0)) = σ(x′
L, z

(0)) {dmeas, vmeas} (x′
L, 0), (D.4)

then we can write Equation (D.2) as

{

Kd,vσ
}

(xL, 0) =

∫

Σ

uG(xL − x
′
L, z

(0))wd,v(x′
L, z

(0))dA (D.5)
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Consequently, we can use the spatial convolution theorem Eq. (A.8) to efficiently calculate

these equations.

On account of this theorem, we can write:

{

Kd,vσ
}

(kL, 0) = uG(kL, z
(0))wd,v(kL, z

(0)). (D.6)

The result in the space-frequency domain is now obtained by applying the two-dimensional

inverse Fourier transformation to the result of Equation (D.6):

{

Kd,vσ
}

(xL, 0) = F−1
L

{

uG(kL, z
(0))wd,v(kL, z

(0))
}

, (D.7)

where F−1
L {f(kL)} is shorthand notation for the inverse Fourier transform defined by Eq.

(A.4).

In the next section, we derive an explicit expression for the Green’s function Eq. (2.22) in

the wavenumber-frequency domain. Using this expression, we can express the calculation of

the scattered field as:

{

d1,op, v1,op
}

(xL, 0, ω) =

F−1
L

{

uG(kL, z
(0), ω)FL

{

σ(xL, z
(0), ω) {dmeas, vmeas} (xL, 0, ω)

}}

. (D.8)

Here FL {f(xL)} denotes the forward Fourier transform defined in Eq. (A.3).
In the same way, we can express the calculation of Equation (D.3) as:

{K∗r} (x′
L, z

(0), ω) = d̄meas(xL, 0, ω)F−1
L

{

ūG(kL, ω)FL {r(xL, 0, ω)}
}

. (D.9)

In the numerical implementation these expressions are discretized and we use the Fast

Fourier Transform to compute the discretized Fourier Transform (see e.g. Brigham, 1988).

D.2 Green’s Function in theWavenumber-FrequencyDo-

main.

The Green’s function of our problem is defined as the solution to (Equation (2.21)):

[

∂k∂k +
ω2

c2S

]

uG(xL − x
′
L, ζ, ζ

′) = − cS
cP
δ(xL − x

′
L, ζ − ζ ′) (D.10)

This equation is complemented with the boundary condition of a traction free surface at z = 0

(Equation 2.6): njτij = 0. The relevant component can be found using the generalized Hooke’s

law (Equation (2.15)):

τ33 = (λ+ 2µ)∂3u3, (D.11)

and the boundary condition can be written as:

lim
z↓0

∂3u3 = 0. (D.12)
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In addition, the displacement satisfies the radiation condition, to allow only outgoing waves at

infinity.

This problem can be solved by the method of images (e.g. Morse and Feshbach, 1953, p.

848). However, to efficiently calculate the spatial convolutions as described in the previous

section, we choose to express this Green’s function in the wavenumber-frequency domain.

To solve for uG we transform Equation (D.10) to the spatial-wavenumber domain using

Equation (A.3):

(

∂3∂3 + k2
3

)

uG(kL, ζ, ζ
′) = − cS

cP
δ(ζ − ζ ′) exp(ikαx

′
α). (D.13)

Here the vertical wavenumber k2
3 = ω2

c2
S

− kαkα and kL = (kx, ky).

The δ-distribution is accounted for by a jump condition at the source depth:

lim
ζ↑ζ′

∂3u3 − lim
ζ↓ζ′

∂3u3 = − exp (ikαx
′
α) . (D.14)

At the source depth, we also have a continuity condition for the field u3:

lim
ζ↑ζ′

u3 − lim
ζ↓ζ′

u3 = 0. (D.15)

Now we use the trial solutions:

φ(ζ, ζ ′) = A exp (ik3(ζ − ζ ′)) +B exp (−ik3(ζ − ζ ′)) , ζ < ζ ′, (D.16)

and

ψ(ζ, ζ ′) = C exp (ik3(ζ − ζ ′)) +D exp (−ik3(ζ − ζ ′)) , ζ > ζ ′. (D.17)

Solving for A,B,C andD and rearranging yields the Green’s function:

uG(kL, ζ, ζ
′) =

cS
2ik3cP

(exp (−ik3|ζ − ζ ′|) + exp (−ik3|ζ + ζ ′|)) exp (ikαx
′
α) , (D.18)

where Re k3 > 0 and Im k3 < 0, on account of the radiation condition (Bleistein et al., 2001,

p. 31) and our Fourier transformation conventions. In order not to complicate the main text, we

will use z instead of ζ to denote the scaled depth from Equation (2.22) on.
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E

Filtering

In the first step of our method as described in Section 2.3, we select a reference event from

a shot record. However, the inversion scheme requires scattered data as input. To this aim, we

separate the scattered field from this reference wave field in the second step. This separation is

done with the use of a suitable filter.

Because the scattered field interferes with the incoming wave itself, this requires careful

processing. In this appendix we describe two ways of wave-field separation, each for a different

situation. However, there exist many other methods to achieve similar results and for yet other

situations.

E.1 Wavenumber-Frequency Domain Filtering

We transform the recorded data to the spatial-wavenumber frequency domain using the Fourier

transformations defined in Appendix A, Eqs. (A.1) and (A.3), yielding

d(kL, 0, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w(xL)d(xL, 0, t) exp[i(kαxα − ωt)]d2

xLdt, (E.1)

where w(xL) is a window function with tapered edges, to suppress edge effects.

In the wavenumber frequency domain we select the plane event, with a filter function: let

f(kL, ω) be the filter function and d0 the filter output. The output can be obtained by taking the

inverse transform of the product of the filter function and the data:

d0(xL, 0, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
v(kL)f(kL, ω)d(kL, 0, ω) exp[−i(kαxα − ωt)]d2

kLdω, (E.2)

where v(kL) is another window function to suppress edge effects. The filter function f(kL, ω)

can be compared to the one-pass 3D wavenumber-frequency domain filters described by Row-

botham and Goulty (1990) or Stewart and Schieck (1989). The filter function passes a small

area around the expected wavenumbers (kx, ky) at a given frequency for a plane wave.

Now the scattered field is obtained by subtracting this output from the total field in the

space-time domain in the following way:

d(xL, t) − βd0(xL, t) = d1(xL, t). (E.3)
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Figure E.1: Wavefield separation in the spacetime domain. In the displays, time is constant.

(a) Time slice of a event passing through a cavity in the surface of an aluminum block. Note the

scattering slightly to the left and down from the center of the picture. (b) Time slice (same time)

of the estimated incident field from the filter described above. (c) Time slice of the scattered

field obtained as the difference between (a) and (b). The factor β in Equation (E.3) is β = 1.12.

The Figures have been displayed in the same scale.

The factor β is included here to account for energy loss due to the various window functions.

This factor should be chosen such that the incident field is optimally removed from the event,

as is shown in a time slice in Figure E.1(a)-E.1(c). This figure illustrates wave-field separation

in the space time domain. In the left panel, the total field is depicted, while in the middle panel

we show the estimated incident field using the procedure described above. Since we used a very

narrow filter in the wavenumber domain, we can still observe edge effects in this display. In the

right panel, the difference between the total field and the estimated incident field is shown. In

this case, β = 1.12 gave the best result. This figure confirms that we have removed most of the

coherent energy and we have thus separated the scattered energy.

E.2 Alpha-Trimmed Mean Filtering

The wavenumber-frequency domain filter is relatively easy to implement and fast, but it is

limited to cases where it is known that the embedding is laterally homogeneous. Moreover, it is

most practical if the incident wave is (nearly) a plane wave.

If the shallow subsurface varies slowly with respect to the dominant wavelength, we want

to retain that variation, because our method is primarily aimed at correcting for rapid variations

due to local heterogeneity or rapid changes in topography. Thus, we want to smooth the event,

without destroying the slow trend. In principle, we could use a mean filter for this purpose.

However, it is well known that the mean filter is not robust. For example, the mean depends
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Figure E.2: (a) A reference event with considerable long spatial wavelength and rapid varia

tions. (b) Estimate of the incident wave field. This estimate is obtained using the αTM filter.

The long spatial wavelength variation has been preserved in the incident field. (c) Estimated

nearsurface scattered energy. This is the wave field attributed to the presence of local het

erogeneity. From this figure we conclude that we have chosen the parameters correctly. The

diffraction hyperbola around 130 m has been left unaffected while most of the aligned direct

wave has been removed.

on ‘outliers’, smearing them in the output. Because seismic data often contain anomalous or

zero traces, these will be taken into account in the mean. A filter that is robust in the presence

of outliers is the median filter. However, this filter is known to preserve edges (sharp changes)

in the data, while it is usually these changes that we want to smooth. In post-stack data these

changes can indicate faults or other geological features and one may want to preserve these

steps, but in our application we attribute any sharp changes to scattering.

For this reason, we use the α-trimmed mean (α-TM) filter (Bednar and Watt, 1984). The α-

TM combines properties from the mean and median filters. Given a set of time samples {xi}N
i=1,

the α-TM is defined by (for N=odd):

χ =
1

N − 2αN

N−αN
∑

i=αN+1

x(i), (E.4)

where χ is the output sample and x(i) are the samples from the sorted set
{

x(i)

}N

i=1
.

Thus, the output of the α-TM filter is obtained by taking the mean of the data within a certain

window of length N ordered in ascending order and after dropping a number of points on each

end of the ordered array. The fraction of the data that is dropped is relative to the window and

is controlled by α, with 0 ≤ α ≤ .5. If α = 0, the α-TM is the mean filter, while if α = .5 it is

a median filter. In this way, the window length and the parameter α offer a handle on the spatial

wavelength of the variations allowed in the estimate of the incident wave field.

The main reason to use this filter is because we want a robust way to smooth the event. In

practice, we take α small so that the filter most resembles the mean filter, but it is not sensitive

to outliers. The window length determines the smoothness of the event. Figure E.2 shows the
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result of filtering an event with both long and short spatial wavelength variations. To obtain this

result we have first applied linear move-out to the event.

In case of surface topography we use the α-TM filter as well, but after aligning the first

arrival times of the traces (first breaks). In this way, we preserve the topography trend in the

incident wave field while scattering due to topography is isolated (see Section 4.2.3).



Samenvatting

‘Afbeelden en Verwijderen van Verstrooide Seismische Golven
Dichtbij de Ontvangers’

Xander Campman

Vanwege de verwachte sterk stijgende vraag naar olie in de komende decennia, investeren olie

maatschappijen om nieuwe oliereserves te vinden en produceren. In de meeste gevallen maken

ze gebruik van seismische exploratie methoden om olie op te sporen. Het belangrijkste doel

van deze methoden is om een gedetailleerd beeld van de diepe ondrgrond te krijgen. Om aan

de vraag voor nieuwe reserves te kunnen blijven voldoen, zoeken olie maatschappijen in steeds

complexere gebieden. Een mogelijke consequentie daarvan is slechtere kwaliteit van de data,

veroorzaakt door de vaak sterk heterogene ondiepe ondegrond.

Seismische golven die door lagen diep in de ondergrond zijn gereflecteerd, kunnen worden

verstoord als ze door de ondiepe ondergrond lopen. Als de heterogeniteit van de ondiepe onder-

grond snel varieert dan veroorzaken deze snelle variaties verstrooide oppervlakte golven als naar

boven lopende golven erop invallen. Die oppervlakte golven veroorzaken op hun beurt interfer-

entie met de reflecties uit de diepe ondergrond. Tot nu toe worden variaties in de opkomende

golffronten met behulp van ‘surface-consistent near-surface’ correctie methoden gecorrigeerd.

Deze methoden zijn evenwel gebaseerd op een relatief simpel model van de ondergrond dat

sterke limiteringen heeft. In dit proefscrhift hebben we een methode ontwikkeld om oppervlakte

golven die dicht bij het oppervlakte van de Aarde verstrooid zijn te voorspellen en vervolgens

van de data af te trekken zodat de continuiteit van de reflecties verbetert. Onze methode is

gebaseerd op een integraal representatie van het verstrooide veld in de buurt van de ontvangers.

De methode is dus gebaseerd op golftheorie en houdt rekening met conversies van opkomende

golven naar oppervlakte golven.

Het principe van de methode berust erop dat we als we de distributie van heterogeniteiten in

de ondiepe ondergrond en de snelheid van de oppervlakte golf in de ondiepe ondergrond ken-

nen, we deze golven kunnen voorspellen en vervolgens van de data kunnen aftrekken. Voordat

we de oppervlakte golven kunnen voorspellen hebben we echter een schatting van de verdeling

van verstrooiers nodig. Dit inversie probleem lossen we op door de verdeling van verstrooiers

iteratief aan te passen totdat ons voorspelde veld op een bepaalde manier goed ‘lijkt’ op het

gemeten veld. Om de verstooiingsfunctie te schatten gebruiken we smalle tijd-‘windows’ om

een onhafhankelijke schatting te krijgen. Dit is een overeenkomst met ‘statics’ methoden, maar

onze aanpak verschilt van ‘statics’ methoden omdat wij in plaats van een enkel-kanaals correc-

tie, een meer-kanaals filter schatten dat zowel variaties in aankomsttijden in de golffronten als

fase en amplitude verstoringen corrigeert.

Met gebruik van de impedantie functie die we hebben geschat van een bepaalde reflectie,

voorspellen we het verstrooide veld op de complete data set. De ‘target’ reflecties kunnen
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een andere hoek van inval hebben dan de referentie reflectie. Als de verstrooiers zich minder

diep bevinden dan ongeveer één Rayleigh golflengte, dan kan deze hoek oplopen tot ongeveer

30 graden. Als de verstrooiers zich dieper bevinden, dan is de hoek beperkt tot ongeveer 10

graden. Met behulp van een standaard maat voor de continuiteit van een meer-kanaals signaal,

laten we zien dat onze methode de continuiteit van opkomende reflecties sterk verbetert. We

hebben onze methode verder getest door hem succesvol toe te passen op data verkregen van

metingen aan twee laboratorium modellen. Deze tests kunnen gezien worden als een tussenstap

voordat we het algorithme toepassen op veld data. In het bijzonder blijkt dat de inversie van

het verstrooide veld fysisch zinnige afbeeldingen van de verstrooier aan het oppervlak van een

aluminium blok oplevert.

Met behulp van twee velddata voorbeelden laten we zien dat ons algorithme werkt ondanks

de aanwezigheid van ruis. We verkrijgen goede resultaten voor data die opgenomen zijn in

een gebied met een sterk heterogene ondiepe ondergrond en een gebied met topografische ver-

schillen. We laten verder zien dat we een meer-kanaals filter verkrijgen dat consistent is met

data van verschillende schoten. In onze formulering wordt de ondiepe ondergrond gekarak-

teriseerd door middel van de snelheid van de Rayleigh golf. Een gevoeligheidstest voor deze

parameter leverde op dat de methode niet erg gevoelig is voor de Rayleigh-golfsnelheid. In de

velddata kiezen we de fundamentele Rayleigh-golfsnelheid die we uit de data schatten. Voor

onze methode is dus geen gedetailleerde informatie van de ondiepe ondergrond nodig.



Summary

Imaging and Suppressing Near-Receiver Scattered Seismic Waves

Xander Campman

Because of the expected steep rise in oil demand in the next decades, oil companies make in-

vestments to explore and produce new reserves. In most cases one uses seismic exploration

methods to prospect for oil. The main aim of seismic exploration is to obtain detailed images

of the subsurface. To meet the demand for future reserves, oil companies explore in areas with

progressively complex near-surface regions. One of the consequences of exploration in such

areas is poorer data quality, compromising the quality of final images.

Body waves that have been reflected by deep layers can be distorted when they travel

through the near subsurface. When the near-surface region varies rapidly, upcoming body

waves excite scattered surface waves, which interfere with the reflections of interest. Up to

now, surface-consistent near-surface correction methods correct for rapid variations in arrival

times of a reflector, but these techniques are based on a model that assigns the same uniform

time shift to each trace from a distinct surface location, assuming vertical ray paths through the

overburden. These single-channel methods impose strong restriction on the near-surface model.

In this thesis we have developed a multichannel method to predict and suppress near-receiver

scattered waves, thereby restoring the continuity of upcoming reflections. The method is based

on an integral representation for the scattered field in the vicinity of the receiver. This model is

based on wave theory and takes into account body-to-surface wave scattering at the near-surface

anomalies.

The main idea of our method is that with knowledge of the near-surface scattering distri-

bution and the propagation characteristics of the near-surface region, we can predict and sub-

sequently subtract the scattered noise. Before we can predict the scattered wave field using

our scattered noise model, we need an estimate of the distribution of scatterers that excites this

(secondary) wave field. This is an inverse problem, which we solve by iteratively updating a

near-surface scattering function that ’best’ fits the data using our scattered noise model. To

derive the near-surface scattering function from the data, we use short time windows to obtain

an independent estimate of the scattering distribution. This is similar to the approach taken in

residual statics estimation, where one places a time window around one or a few strong reflec-

tors to derive the time shifts that are subsequently applied to the entire data set. Our approach

differs from statics, because in our formulation, single-channel time shifts or filters are replaced

by a multichannel filter that takes into account both the time shift in the wavefront and addi-

tional phase and amplitude anomalies incurred by near-receiver scattering.

Using the impedance function derived from an independent event, we predict the scattered

field on the entire record. Target events can have different angles of incidence than the reference

107



108

event. We use synthetic data to test the limitations of our method with respect to the incident an-

gle of reflection events and the mean scattering depth. For differences in the angle of incidence

of the reference event and the target event up to about 30 degrees, our method works well for a

mean scattering depth that is less than a Rayleigh wavelength. When the scattering takes place

deeper, the difference in angle of incidence should be smaller than about 10 degrees. Using

a measure for trace-to-trace continuity of multichannel records, we found that application of

our method greatly increases the continuity of events that had been scattered by near-receiver

heterogeneities. We have further validated our method with data from two laboratory models.

These tests can be seen as an intermediate step towards the implementation of our algorithm

for field data. Our algorithm performed well on the laboratory data. In particular, we have

found that the inversion step gives physically meaningful images of the near-surface region of

the laboratory model.

In two field data examples we show that our method is robust in the presence of noise and we

obtain good results in the presence of a near-surface layer containing boulders and another one

with surface topography. We show that we obtain a multichannel filter that is consistent with

data from a few shots. This filter represents the impedance experienced by upcoming reflection

events when traveling trough the subsurface. In our formulation, the near-surface is character-

ized by the fundamental Rayleigh-wave velocity. From a sensitivity test we have found that

our method is not very sensitive to this velocity. In the field data, we choose the fundamental

Rayleigh-wave velocity, which we estimate from the data. Thus, the method does not require

detailed information about the near-subsurface.
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