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Abstract

We present a general method for estimating the location of small,well-separated

scatterers in a randomly inhomogeneous environment using an active sensor

array. The main features of this method are (i) an arrival time analysis (ATA)

of the echo received from the scatterers, (ii) a singular value decomposition of

the array response matrix in the frequency domain, and (iii) the construction of

an objective function in the time domain that is statistically stable and peaks on

the scatterers. By statistically stable we mean here that the objective function

is self-averaging over individual realizations of the medium. This is a new

approach to array imaging that is motivated by time reversal in random media,

analysed in detail previously. It combines features from seismic imaging,

like ATA, with frequency-domain signal subspace methodology like multiple

signal classification. We illustrate the theory with numerical simulations for

ultrasound.

1. Array imaging

An active array of N transducers located at xp, for p = 1, . . . , N , probes an unknown medium

containing M < N small scatterers by emitting pulses and recording the back-scattered echos.

To fix ideas, we consider a linear array where two adjacent point transducers are a distance λ/2

apart, where λ is the carrier (central) wavelength of the probing pulses. Such a set-up ensures

that the collection of transducers behaves like an array of aperture a = (N − 1)λ/2 and not

like separate entities, while keeping the interference between the transducers at a minimum

(Steinberg 1983). Our aim is to identify the number M of scatterers and their location yp in

a randomly inhomogeneous medium, in a regime where multipathing due to inhomogeneities
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Figure 1. Array probing of a randomly inhomogeneous medium containing M small scatterers.

is significant. Such a regime occurs, for example, when λ � l ≪ a ≪ L, where l is the

correlation length of random fluctuations of the wavespeed and L is the range of the targets,

as shown in figure 1. In ultrasound imaging, the correlation length may be comparable to the

central wavelength, which is typically 0.5 mm, and propagation distances can be up to several

hundreds of wavelengths. In such a regime, multipathing due to random inhomogeneities is

important and must be taken into consideration.

1.1. The array response matrix

To image the targets we use the response matrix (Ppq(t)), obtained as follows. A pulse f (t) is

emitted from transducer p, located at xp, and the back-scattered returns, Ppq(t), are recorded

at xq , q = 1, . . . , N, for a sufficiently long time interval (0, T ). Probing of the medium

is done by using all transducers, p = 1, . . . , N . The data collected is the response matrix

P(t) = (Ppq(t)).

1.2. Types of arrays

Array probing can be done with many different types of arrays, transducers and recording

devices. In ultrasound imaging the arrays are often linear, they may have as many as 100

or more transducers, and full response matrices can be measured and processed. In seismic

imaging the arrays can be very large but they are mostly passive, that is, the array consists

mostly of receivers and has few emitters. In sonar and radar the geometric layout of the arrays

may depend on applications and it need not be linear or planar.

Large arrays of closely spaced transducers can be very effective in imaging but they are

expensive, difficult to calibrate and to move, and they generate very large response matrices

that require computationally intensive processing. However, imaging of acceptable quality

can often be done with synthetic arrays, that is, with small arrays that are transported over the

area to be imaged. They generate response matrices that have block-diagonal or near-diagonal

form. In synthetic aperture imaging (SAI), only the diagonal of the response matrix Ppp(t)

is measured. In interferometric imaging, only the diagonal Ppp(t) and one lower diagonal

Ppp−1(t) are measured, etc.

In very large arrays, synthetic or actual, the exact location of the transducers may not be

known, so its imaging characteristics have to be calibrated using targets at known locations

and with known scattering behaviour. In this paper, we consider arrays with known transducer

locations and full measured response matrices, although in some cases the methods we use

work with fewer data.
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1.3. Imaging strategies

Any reflection-based imaging method involves some form of back-propagation into the

medium, or time reversal, of the fields measured on the array. This is because the back-

propagated fields tend to focus on sharp reflectors in the medium. In physical time reversal,

the back-propagating fields are emitted by the array into the real medium, which is unknown.

In virtual or computational time reversal, the back-propagation is done numerically, in a

fictitious, reference medium.

Physical time reversal has many applications in medicine, for example in the destruction

of kidney stones (lithotripsy), as well as in the destruction of mines, in communications, and

elsewhere (Fink 1993, 1997, Kuperman et al 1998, Song et al 1999). Virtual time reversal is

used mostly for imaging, as we discuss in this paper.

We may classify array imaging methods into three general categories:

(a) time-domain, broad-band methods that use mostly arrival time and/or amplitude

information recorded by the array,

(b) fixed frequency or narrow-band methods that use mostly differential phase information

on the array, and

(c) imaging methods based on intensity measurements.

We consider here only the first two categories of imaging, which we call coherent

imaging methods. Incoherent imaging uses only intensity measurements.

Time-domain methods include broad-band SAI (Curlander and McDonough 1991,Haykin

et al 1993), where only the diagonal Ppp(t) of the response matrix is measured and used.

The back-propagation of Ppp(t) is done in a homogeneous medium, that is, we use arrival

times computed in a homogeneous background (see section 3.4). Time-domain imaging

methods are also used in exploration geophysics, where they are referred to as migration.

In these applications, the measured array response matrices are very large and have very

complex structures. The arrival time analysis (ATA) is also very complicated because one

cannot assume a uniform background medium. In Kirchhoff migration (Claerbout 1985,

Bleistein et al 2001), the imaging is based on reference arrival times obtained by ray methods.

Other migration methods back-propagate waves using various approximations, as in the one-

way wave equation migration method (Claerbout 1985, Bleistein et al 2001). Narrow-

band methods use differential phase information of the full array response matrix and they

image by beam-forming (Curlander and McDonough 1991, Haykin et al 1993), or by fixed

frequency subspace methods like multiple signal classification (MUSIC) (Schmidt 1979, 1986,

Stoica and Moses 1997). Least-squares (maximum likelihood) direction-of-arrival (DOA)

estimation methods (Haykin et al 1993) also use the full array response matrix in the frequency

domain.

These imaging methods can be successfully used to locate the unknown targets, that

is, to determine their number M and their spatial location y j , j = 1, . . . , M , when the

background medium is deterministic and uniform. However, in the case of random media

with significant multipathing, imaging is more difficult and conventional approaches, such as

SAI (see section 3.4) or subspace projection methods (MUSIC, see section 3.3), perform

very poorly. Statistical approaches, such as maximum likelihood, assume that the noise

in the measured response matrix is additive and white. Such modelling is appropriate

for instrument noise when signal to noise power is small, but it is not appropriate for

dealing with stochastic effects arising from inhomogeneities in the medium that cause

multipathing.
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Figure 2. Time reversal in a homogeneous medium. A point source at y emits a wave which is
received at the array of aperture a at a distance L from the source. The signal is time-reversed and

sent back into the medium. The focusing resolution in both range and cross-range is diffraction

limited.

1.4. Imaging in random media

Since most imaging methods use virtual time reversal in some form, an important step towards

successful imaging in random media is understanding physical time reversal and the role played

by multipathing.

Physical time reversal has been explored with ultrasound (Fink 1993, 1997, Prada et al

1991, 1995, 1996, Fink et al 2000), both with active sources and in echo mode, in underwater

acoustics (Kuperman et al 1998, Song et al 1999), with numerical simulations (Blomgren et al

2002, Tsogka and Papanicolaou 2002) and with theoretical analysis (Blomgren et al 2002,

Clouet and Fouque 1997, Dowling and Jackson 1992). In physical time reversal the locations

of the targets need not be known but sources at these locations must illuminate an array of

transducers either actively or in echo mode. The signal recorded at the array is time-reversed

and re-emitted into the medium. Because of the time reversibility of the wave equation in a

non-absorbing medium, the back-propagated field focuses near the active targets. The array

acts as a mirror that refocuses the time-reversed signals back onto the source from which they

emanated. The focusing resolution is diffraction limited because of the finite aperture a of the

array, as shown in figure 2. In a homogeneous medium, the resolution in directions parallel

to the array, the cross-range resolution, is λL/a (Born and Wolf 1970). The resolution in

the perpendicular direction, the range resolution, is λ(L/a)2 ≫ λL/a (Born and Wolf 1970),

when we have L ≫ a. In randomly inhomogeneous media, the focusing resolution is much

tighter (Fink 1997, Blomgren et al 2002). This phenomenon is called super-resolution and

comes from multipathing caused by the random inhomogeneities. The array is like a lens

with an effective aperture larger than its physical size, as indicated in figure 3. Moreover, the

time-reversed, back-propagated fields are self-averaging in the time domain. This means that

super-resolution is statistically stable, that is, independent of the individual realizations of the

random medium. A more detailed description of time reversal in random media is given in

section 2 and in Blomgren et al (2002).

In this paper we are interested in locating targets hidden in a random medium, given the

measured array response matrix P(t). This is clearly different from physical time reversal.

Nevertheless, the imaging methods that we propose are related to time reversal and therefore

have its statistical stability. Our approach is a new, time resolved imaging method, where the

unknown target locations are minimizers of an objective function that is statistically stable.

The imaging method is based on the following two steps:

(1) A statistically stable broad-band DOA analysis which gives good cross-range resolution

of the targets (section 3.3).

(2) An ATA which gives good range resolution of the targets (section 3.5).

The combination of these two steps gives our estimates of the unknown target locations

(section 3.6).
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Because the host medium has random fluctuations in wave speed, the background medium

is itself a source of scattered energy. We assume, however, that the targets are sufficiently larger

and/or more reflective than the background fluctuations so that a clear distinction can be made

between targets and background scatterers. We also assume that the medium fluctuations are

weak (i.e. with standard deviation of the order of 5% or less) and that λ � l ≪ a ≪ L.

This is a regime where multipathing is significant even when the standard deviation of sound

speed fluctuations is only a few per cent (Papanicolaou et al 2002). We do not consider strong

multiple scattering that occurs in the random media studied in Tourin et al (2000).

In the next section we consider physical time reversal in a random medium and discuss

super-resolution and statistical stability. We illustrate these phenomena with the results of

numerical simulations.

In section 3 we discuss imaging, beginning with a point-target model for the response

matrix. We then introduce the array subspace analysis in section 3.2, formulate robust time-

domain direction-of-arrival estimators in section 3.3 and show results of numerical simulations

in section 3.3.2. We also discuss briefly SAI in section 3.4 before estimating arrival times in

section 3.5. The subspace arrival time (SAT) method uses time-domain direction-of-arrival

estimation and arrival time estimates. It is introduced in section 3.6 and performs very well

when we have good arrival time estimates, as our numerical simulations show. When we do

not have arrival time estimates, we can use a combination of direction-of-arrival estimation

and SAI. This does not perform as well as SAT but is robust and considerably better than SAI.

We end with a brief summary and conclusions.

2. Time reversal in random media

2.1. Super-resolution in time reversal

A short pulse f (t) emanating from a point y in the random medium illuminates the array of

aperture a. The signal ψ(xp, t) recorded at the array is synthesized from time harmonic waves

as

ψ(xp, t) =
∫ ∞

−∞
e−iωt f̂ (ω)Ĝ(xp,y, ω) dω, (2.1)

where the Fourier transform of the pulse is

f̂ (ω) = 1

2π

∫ ∞

−∞
eiωt f (t) dt . (2.2)

We record the return signal for a long enough time so that there is negligible additional scattered

energy. The time harmonic Green function Ĝ satisfies the reduced wave equation

�Ĝ(xp,y, ω) +

(

ω

c0

)2

n2(x)Ĝ(xp,y, ω) = −δ(xp − y), (2.3)

where c0 is a reference speed and

n(x) = c0

c(x)
(2.4)

is the acoustic index of refraction of the medium with random sound speed c(x).

The signal ψ(xp, t) is time-reversed (conjugated in the Fourier domain) and re-emitted

into the medium. The back-propagated field focuses near the illuminating point y. To estimate

the focusing resolution we measure the amplitude of the field on a screen placed a distance

L from the array, containing the source point y and the observation points yo. The distance

from the source to the first zero of the back-propagated amplitude, the first Fresnel zone, is the
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Figure 3. Time reversal in a random medium with significant multipathing. The array appears to

have an effective aperture ae > a and the focusing of the back-propagated field is tighter than in a

homogeneous medium.

Figure 4. The computational set-up. The dimensions of the problem are given in terms of the

central wavelength λ = 0.5 mm. The medium is considered to be infinite in all directions so, in

the numerical computations, an absorbing layer surrounds the domain.

cross-range resolution in a homogeneous medium. In random media we fit the main lobe of the

back-propagated amplitude with a Gaussian and take the estimated variance as the cross-range

resolution (Tsogka and Papanicolaou 2002). The time-reversed, back-propagated field at yo

is

Ŵ(yo,y, t) =
∫ ∞

−∞
e−iωt Ŵ̂(yo,y, ω) dω, (2.5)

with

Ŵ̂(yo,y, ω) =
N

∑

p=1

ψ̂(xp, ω)Ĝ(xp,yo, ω) = f̂ (ω)

N
∑

p=1

Ĝ(xp,yo, ω)Ĝ(xp,y, ω), (2.6)

and where the overbar denotes the complex conjugate. In a homogeneous medium, Ŵ(yo,y, t)

focuses near the source point y, near the deterministic arrival time, with cross-range resolution

λL/a, provided that L ≫ a (Born and Wolf 1970). In a randomly inhomogeneous medium, the

focusing of Ŵ(yo,y, t) is tighter, as shown schematically in figure 3. This is because the random

inhomogeneities in the medium produce multipathing and the array appears to have an effective

aperture ae which can be much larger than a, its actual physical size. Therefore, the width

λL/ae of the focusing region is much smaller than in a homogeneous medium and we have

super-resolution. The dependence of ae on the random medium is analysed in Blomgren et al

(2002). From figure 3 we can see that there will also be some diminution of the intensity of the

signal recorded at the array because multipathing will scatter some energy away from it. This

is of no great concern, however, since linearity allows us to amplify the signal ψ(xp, t) before

time-reversing and re-emitting it into the medium, assuming that instrument noise is small.



Imaging and time reversal in random media 1253

Figure 5. Typical realization of random sound speed c(x). The target is shown as a large black

dot •. The units in the horizontal and vertical axes are mm and, in the colour bar, km s −1. The

standard deviation for this example is s = 4.95%.

Figure 6. The probing pulse f (t) given by (2.7). The horizontal axis is time t in microseconds.

2.2. Simulations

We illustrate super-resolution for time reversal in random media with numerical simulations,

using the set-up shown in figure 4. We solve the wave equation for the acoustic pressure field,

in the time domain, in a medium with random sound speed c(x) which has constant mean

c0 = 1.5 km s−1 and correlation length l = 0.3 mm. The standard deviation of the fluctuations

of c(x) is denoted by s and, in this case, it varies between 0 and 5%. A typical realization

of the randomly fluctuating sound speed is shown in figure 5. The random fluctuations of the

sound speed are generated numerically with Fourier series having suitably calibrated random

amplitudes. The probing pulse

f (t) = −2π2ν2

(

t − 1

ν

)

e−π2ν2(t− 1
ν
)2

, (2.7)

is shown in figure 6. The central frequency is ν = 3 MHz, f̂ (ω) with ω = 2πν, is supported

over the band of frequencies 0.159–7.958 MHz and the carrier wavelength is λ = 0.5 mm.

We simulate an infinite medium by embedding the rectangular computational domain of

size 24λ × 48λ into a perfectly matched absorbing layer (cf Bérenger (1994)). The source

point is located at y = (11.5, 42)λ, the array has an aperture a = 9.5λ and the transducers

are located at xp = (7 + (p − 1)/2, 4)λ, for p = 1, . . . , 20. In figure 7, we show the back-

propagated, time-reversed field Ŵ(yo,y, t) for all observation points yo in the computational

domain, evaluated at the time it focuses on the source point y. We show the results for two

media. The left figure is for a homogeneous medium (s = 0%) and the right for a random

medium with standard deviation s = 4.95%. Super-resolution results in a tighter compression
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Figure 7. The re-focused field Ŵ shown as a function of range and cross-range in mm, at the time

of re-focusing on the source point y. The vertical array is 2 mm from the left side and it has twenty
transducers that are 0.25 mm apart. Note the tighter focusing in the random medium.

Figure 8. The re-focused field Ŵ at the range of the source shown as a function of cross-range (at

the time of re-focusing on the source point y). The field is normalized with respect to its maximum.

The blue curve corresponds to the homogeneous medium and the red curve to the random one.

of the pulse in the random medium. This can be seen more explicitly in figure 8. We measure

the width of the refocused wave amplitude at −6 dB and find that the size of the focal spot is

2.3667 mm for the homogeneous medium and 1.500 mm for the random one, so the gain in

this case is 36.62%.

2.3. Statistical stability of time reversal

Experimental studies of time reversal (Fink 1997, Kuperman et al 1998) show a remarkable

stability of the back-propagated, time-reversed field as it refocuses near the source point y, in a

variety of situations and without any averaging. We refer to this property as self-averaging of Ŵ,

which is a time-domain statistical phenomenon that does not occur for time-harmonic or

narrow-band signals.

The key to self-averaging of Ŵ is the approximate statistical decorrelation of its Fourier

components for different frequencies. This decorrelation holds in a regime where there is

significant multipathing in the random medium. We have such a regime when the carrier

wavelength λ and the correlations l of the sound speed fluctuations are short compared to

propagation distances and the fluctuations are weak. Then

E{Ŵ̂(yo,y, ω1)Ŵ̂(yo,y, ω2)} ≈ E{Ŵ̂(yo,y, ω1)}E{Ŵ̂(yo,y, ω2)}, for ω1 �= ω2, (2.8)

with E{·} being the expectation operator, and therefore
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E{Ŵ(yo,y, t)2} = E

{∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 e−i(ω1+ω2)t Ŵ̂(yo,y, ω1)Ŵ̂(yo,y, ω2)

}

≈
∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 e−i(ω1+ω2)t E{Ŵ̂(yo,y, ω1)}E{Ŵ̂(yo,y, ω2)}

= E2{Ŵ(yo,y, t)}. (2.9)

From this result, we can easily prove that the probability of Ŵ differing significantly from its

expected value is small. Using Chebyshev’s inequality we see that, for any small α > 0,

prob{|Ŵ(yo,y, t) − E{Ŵ(yo,y, t)}| > α} �
1

α2
E{[Ŵ(yo,y, t) − E{Ŵ(yo,y, t)}]2} ≈ 0,

which means that Ŵ is self-averaging.

In other words, in random media with significant multipathing, averaging over frequencies

ω in the band of the probing pulse f (t) is like averaging over realizations of the random medium

and

Ŵ(yo,y, t) ≈ E{Ŵ(yo,y, t)}. (2.10)

An analytic expression for E{Ŵ(yo,y, t)} is given in Blomgren et al (2002) using the Green

function Ĝ in the paraxial approximation. It is shown there that E{Ŵ(yo,y, t)} coincides with

the back-propagated, time-reversed field in a homogeneous medium where the array has an

effective aperture ae ≫ a. Therefore, Ŵ(yo,y, t) refocuses near the source point y with cross-

range resolution λL/ae, which is often much smaller than the diffraction-limited resolution

λL/a.

We have done simulations of time reversal for many realizations of random media with

standard deviation of the sound speed fluctuations s ∼ 5% (figure 7). Our numerical

simulations show clearly the statistical stability of time reversal and the tighter focusing of the

field Ŵ for different realizations of the random media.

3. Imaging

3.1. Point target model for the response matrix

To image the M unknown scatterers with an active array of transducers we measure the response

matrix (Ppq(t)), p, q = 1, . . . , N , as explained in section 1.1. We now describe a simple,point

target model for (Ppq(t)), which is used in the analysis of our imaging algorithm.

When imaging M targets located at y1, . . . ,yM , we will assume that, at frequency ω,

P̂(ω) = (P̂pq(ω)) is given by

P̂pq(ω) = f̂ (ω)

M
∑

j=1

ξ̂ j (ω)Ĝ(y j ,xp, ω)Ĝ(y j ,xq, ω), p, q = 1, . . . , N, (3.1)

where f̂ (ω) is the Fourier transform of the probing pulse, Ĝ is the Green function for

the Helmholtz equation (2.3) in the random medium and ξ̂ j (ω) is the scattering coefficient

of the j th target. Equivalently, the response matrix is a sum of outer products:

P̂(ω) = f̂ (ω)

M
∑

j=1

ξ̂ j (ω)ĝ(y j , ω)ĝT (y j , ω), (3.2)
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where T denotes transpose and where

ĝ(y j , ω) =











Ĝ(y j ,x1, ω)

Ĝ(y j ,x2, ω)
...

Ĝ(y j ,xN , ω)











, (3.3)

is the illuminating Green vector onto the array from the point y j . The main approximations

made in (3.2) are the following:

• The targets are assumed to be isotropic point scatterers over the frequency band of the

pulse.

• The transducers are also assumed to be isotropic point emitters and receivers.

• There is no multiple scattering between the unknown targets, which means that they are

weak scatterers, or that they are well separated. The form of the response matrix P̂ when

there is multiple scattering between targets is given in the appendix. Multiple scattering

of waves with background inhomogeneities is fully taken into account because the Green

function is random.

With these assumptions, (3.1) has the following interpretation. A point source at xp radiates a

field with amplitude f̂ (ω). This produces the field f̂ (ω)Ĝ(y j ,xp, ω) at y j . Then, a scatterer

acting as secondary source (from Huygens’ principle) at y j , with this amplitude times its own

scattering coefficient ξ̂ j (ω), radiates a field observed at xq and given by (3.1).

Multipathing in the random medium is taken into account in (3.2) because we use the

random Green functions Ĝ. It should be kept in mind that (3.2) is a model that we use only in

the theoretical analysis of the imaging algorithms. In our numerical simulations the response

matrix P(t) = (Ppq(t)) is obtained by solving the full random wave equation in the presence

of small inclusions that represent the targets.

3.2. Subspace analysis of the response matrix

We have pointed out that time reversal is a good way to look for the unknown target locations,

that is, to image. However, having measured the response matrix P(t), it is not clear what it

is that we should time-reverse, in what medium to back-propagate it, and what to look for in

the time-reversed, back-propagated spacetime field. The singular value decomposition (SVD)

of the response matrix P̂(ω) in the frequency domain is the relevant tool (Prada et al 1996,

Lev-Ari and Devaney 2000). To understand why, we form the product

(P̂(ω)P̂ H (ω))pq =
N

∑

r=1

P̂pr (ω)P̂rq(ω). (3.4)

Up to normalization by the scalar factor f̂ (ω) this has the following interpretation. A pulse

f (t) is emitted from the qth transducer, the echos are recorded on the array, time-reversed

and re-emitted from each transducer into the medium, and the echos are recorded again on the

array. The resulting response matrix contains information obtained from probing the medium

twice, the second time by time-reversal and back-propagation.

The eigenvectors and eigenvalues of the Hermitian matrix P̂(ω)P̂ H (ω) also have a simple

physical interpretation (Prada et al 1996). They are the characteristic responses of the medium

as seen by the array at frequency ω. Suppose that the array emits a signal which, at frequency

ω, has complex amplitudes equal to the components of one of the eigenvectors. The echos

recorded at the array are time-reversed and re-emitted into the medium. After this double
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probing the response at the array is the eigenvector sent out, multiplied by the corresponding

eigenvalue.

Given the SVD of the response matrix:

P̂(ω) = Û(ω)�(ω)V̂ H (ω), (3.5)

the eigenvectors of P̂(ω)P̂ H (ω), denoted by Ûr (ω), for r = 1, . . . , N , are the columns of

matrix Û(ω). The eigenvalues of P̂(ω)P̂ H (ω) are σ 2
r (ω), σr (ω) being the singular values of

P̂(ω) that form the diagonal matrix �(ω). In our set-up P̂(ω) is complex symmetric but not

Hermitian, so its left singular vectors Ûr (ω) are the complex conjugates of the right singular

vectors V̂r (ω), for r = 1, . . . , N . We assume symmetry here for simplicity. All of our analysis

nevertheless carries over to the non-symmetric case.

3.2.1. Application of the SVD. An immediate application of the SVD of the response matrix

is the determination of the number of small targets. Suppose that only M < N singular values

of the measured response matrix P̂(ω) are significant and the rest are zero or close to zero:

σ1(ω) � σ2(ω) � σM (ω) > σM+1(ω) ≈ · · · σN (ω) ≈ 0. (3.6)

Based on the model (3.2) for the response matrix, this means that there must be M targets

in the medium. If therefore the SVD of the array response matrix has no significant singular

values over the band of frequencies of the probing pulse, then there are no detectable targets

in the medium.

In general, the rank of the model response matrix P̂(ω) is equal to the number of targets

M � N , although there exist very special geometrical target configurations in homogeneous

media that give a lower rank matrix (Lev-Ari and Devaney 2000). Such target configurations

may be ignored in a random medium and for realistic arrays where the locations of sensors

along a line or a plane are not exactly half a wavelength apart.

In figure 9 we show the singular values σ j (ω), for j = 1, 2, 3, computed from numerical

simulations in the case of two targets embedded in homogeneous and random media. When the

background is homogeneous only two singular values of the response matrix are significant,

so we clearly detect the presence of two targets in the medium. In the case of random media

with weak fluctuations (s � 5%), more than two significant singular values may appear.

However, the third and higher singular values are small for all frequencies and therefore we

can consider them as noise and neglect them. As the fluctuations of the inhomogeneities

increase the amplitude of the ‘noisy’ significant singular values also increases and it appears

as if more than two targets are in the random medium. This fact points to a natural limitation

of this approach, since we cannot expect to detect targets in a medium when scattering from

the random inhomogeneities is comparable to that from the targets.

Now, when there are detectable targets in the medium, the next step is to locate them. To

do so, we can use the singular vectors of P̂(ω). We remark that the first M left singular vectors

Û1(ω), . . . , ÛM(ω) form an orthogonal basis of the M-dimensional subspace of CN , spanned

by the illuminating vectors at the target locations ĝ(y1, ω), . . . , ĝ(yM , ω) while Ûr (ω), for

M + 1 � r � N , are orthogonal to this subspace. When the targets are sufficiently far apart

from each other, destructive interference and the spatial decay of the Green functions imply

that the inner product ĝH (y j , ω)ĝ(yh, ω) ≈ 0 for j �= h. In this case, we can associate with

each target y j , j = 1, . . . , M , a non-zero singular value σr (ω) and the corresponding singular

vector Ûr (ω). In fact, the Ûr (ω) are proportional to the illuminating vectors from the targets

and we have

Ûr (ω) ≈ eiφ(ω) ĝ(y j , ω)

|ĝ(y j , ω)| , σr (ω) ≈ | f̂ (ω)| |ξ̂ j(ω)| |ĝ(y j , ω)|2, (3.7)
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Figure 9. The first three singular values σ1(ω), σ2(ω) and σ3(ω) from simulations with two targets

in a random medium. The standard deviation s and maximum fluctuations (MF) are indicated on

the top of each view. The horizontal axis is the radian frequency ω = 2πν with ν in MHz. Note

the crossing of singular values in the strongest random medium. Note also that in this medium it

appears that there are more than two targets.

for some 1 � j � M and an arbitrary phase φ(ω). In general, the targets will not always be

sufficiently far apart and the approximation (3.7) will not hold. However, the rank of P̂(ω)

is M and the illuminating vectors ĝ(y1, ω), . . . , ĝ(yM , ω) are linearly independent but not

necessarily mutually orthogonal. The left singular vectors Ûr (ω) are linear combinations of

the illuminating vectors from the targets.

The problem is now how to use the SVD of the matrix P̂(ω) over a band of frequencies

of the probing pulse to image the M unknown targets. In the case of well separated targets we

can image with beam-forming, at least in a homogeneous medium. We simply take the inner

product of each singular vector Ûr (ω) with the normalized illuminating vector at a test point

ys in a homogeneous medium:

Û H
r (ω)

ĝ0(y
s, ω)

|ĝ0(ys, ω)| . (3.8)

At a fixed frequency this projection is a reasonable imager in a homogeneous medium, when

the targets are not too close to the array. This is because by (3.7) the inner product (3.8) will

be small unless ys is close to one of the targets.

However, in a random medium this inner product is wildly fluctuating from realization to

realization and from frequency to frequency. We cannot integrate over frequency, as we did

in time reversal, hoping to obtain a self-averaging quantity, for two reasons. The first one is

that Ûr in (3.7) has an arbitrary frequency-dependent phase φ(ω), which comes from the way

the SVD algorithm constructs the singular vectors. This problem is easy to fix by computing

the singular vectors with the power method. The second reason is more serious and requires

a different strategy, which we introduce in the next section. The problem is that the beam-

forming inner product (3.8) will never be self-averaging because the random Green function in

the singular vector in (3.7) is not compensated by a time-reversed one (the conjugated random

Green function) which cancels the large random phase that it has (see section 2.3). Only

functionals for which such large phases cancel can be self-averaging and therefore useful for

imaging in random media. We discuss this further in section 3.3.1.



Imaging and time reversal in random media 1259

3.3. Statistically stable broad-band direction of arrival estimation

An algorithm that leads to statistically stable imaging of the target locations can be constructed

from the following observation:

• If the random vector ĝ(ys, ω) at a search point ys is orthogonal to the null space of

P̂ P̂ H (ω) then ys must coincide with one of the target locations y j , for some 1 � j � M .

We have already noted this property and now review it. The null space of P̂ P̂ H (ω) is spanned

by the singular vectors Ûr (ω), for M + 1 � r � N , which are orthogonal to the subspace

spanned by ĝ(y1, ω), . . . , ĝ(yM , ω). The test illuminating vector ĝ(ys, ω) is orthogonal to

the null space of P̂ H , which is the same as that of P̂ P̂ H (ω), if and only if it lies in the

subspace spanned by ĝ(y1, ω), . . . , ĝ(yM , ω). However, as explained in section 3.2, the vectors

ĝ(ys, ω), ĝ(y1, ω), . . . , ĝ(yM , ω) are linearly independent if ys �= yp, for all p = 1, . . . , M .

Therefore, if ĝ(ys, ω) is orthogonal to the null space of P̂ P̂ H (ω) then ys coincides with a

target location y j , for some 1 � j � M .

In a homogeneous medium the illuminating vector for a search point is known. Therefore

projecting into the null space of P̂(ω) at any fixed frequency will give a very good estimate

of the target locations because they are exact zeros of the norm of the projection as a function

of the search point ys (see (3.10)). This is, in fact, the well known MUSIC algorithm whose

advantages over beam-forming and other target location methods is well known (Schmidt 1979,

1986, Stoica and Moses 1997).

When imaging in random media, however, the illuminating vector ĝ(ys, ω) at a search

point ys is random and not known. The best we can do is use the known, deterministic

illuminating vector ĝ0(y, ω) given at ys by

ĝ0(y
s , ω) =









Ĝ0(y
s,x1, ω)

Ĝ0(y
s ,x2, ω)
...

Ĝ0(y
s ,xN , ω)









, (3.9)

where Ĝ0(y
s,x j , ω) is the deterministic two-point Green function that solves (2.3) with

n(x) ≡ 1. To locate the targets we compute the projection PN ĝ0(y, ω) of ĝ0(y
s, ω) onto

the null space of P̂ P̂ H (ω), given by

PN ĝ0(y
s , ω) =

M
∑

r=1

[Û H
r (ω)ĝo(y

s, ω)]Ûr (ω) − ĝo(y
s, ω), (3.10)

for each frequency in support of the probing pulse f̂ (ω).

In a deterministic medium the target locations yp, p = 1, . . . , M are the zeros of

‖PN ĝ0(y
s, ω)‖ for any frequency. In a random medium we cannot expect this frequency

by frequency projection to give a good estimate of the location of the targets because the

deterministic illuminating vector ĝ0(y
s , ω) is, in general, quite different from the random one

ĝ(ys, ω). In particular, at any fixed frequency ω, the replacement of the unknown illuminating

vector ĝ(ys, ω) by the known one ĝ0(y
s, ω) may be satisfactory for some realizations of the

random medium but not for others. This means that imaging by projecting ĝ0(y
s, ω) onto the

null space of P̂ P̂ H (ω) at a fixed frequency is statistically unstable. When, however, we take

the inverse Fourier transform of this projected vector, suitably normalized, and evaluate it at

an appropriate time, the averaging over frequencies ω produces a statistically stable functional

that does provide information about the unknown targets in the random medium.

We now introduce the statistically stable, time-domain target imaging algorithm. We

search for the targets one at a time. To find y j for some 1 � j � M we take a search point ys ,
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calculate the illuminating vector ĝo(y
s, ω), given by (3.9), and then compute its projection onto

the subspace spanned by ÛM+1(ω), . . . , ÛN (ω) as in (3.10). We normalize this projection by

the singular value σ j (ω) and we take the inverse Fourier transform to return to the time domain:

F
( j)(ys, t) =

∫

e−iωtσ j (ω)

M
∑

r=1

[Û H
r (ω)ĝo(y

s, ω)]Ûr (ω) dω

−
∫

e−iωt σ j (ω)ĝo(y
s, ω) dω. (3.11)

The normalization by the singular value σ j (ω), which is given by (3.7) in the case of well

separated targets, allows us to give a time-reversal interpretation of the functionals F
( j)(ys, t)

which are, therefore, self-averaging. We explain this in detail for a single target in section 3.3.1.

Up to the normalization by σ j (ω), the second term in (3.11) is the deterministic

illuminating vector go(y
s, t). The pth component of this vector has a deterministic arrival

time which is the travel time from the pth transducer to the search point:

tp(y
s) = |xp − ys |

c0

. (3.12)

It is natural, at least in homogeneous media, to evaluate the pth component of F
( j)(y, t) at

time tp(y
s). We then form the sum

G
( j)(ys) =

N
∑

p=1

(F ( j)
p (ys, tp(y

s)))2 (3.13)

and display the objective functional

R(ys) =
M

∑

j=1

minysG( j)(ys)

G( j)(ys)
, (3.14)

for points ys in the target domain. The maxima of R(ys) are estimates of the target locations

y1, . . . ,yM .

In section 3.3.2 we show results of numerical simulations for locating one or two targets

in random media using this method (figures 13 and 14). As these simulations indicate, and as

we explain in section 3.3.3, the imaging algorithm (3.14) gives a robust estimate of the DOA,

or bearing, of scattered signals from the targets to the array. In homogeneous media we also

get range estimation since the arrival times (3.12) are exact. In random media, however, the

DOA estimator (3.14) does not give the range of the targets. In section 3.3.3 we show that, by

using arrival time estimates from the data, we can modify (3.13) so as to obtain good range

estimates as well (figure 17).

3.3.1. Imaging and time reversal. The functionals F
( j)(ys , t) defined by (3.11) are, up

to normalization by the singular value σ j (ω), just the time-domain projections into the null

space of P̂(ω), which is MUSIC in the time domain. The null-space projection is a good

DOA estimator for narrow-band array probing in homogeneous media, considerably better

than beam-forming (Schmidt 1979, 1986), so extending it to the time domain is natural.

Our understanding of time reversal in random media, discussed in section 2, suggests an

entirely different reason why suitably normalized MUSIC in the time domain is a good

DOA estimator: statistical stability. This means that the estimator (3.14) is self-averaging

because of multipathing (Blomgren et al 2002) and therefore essentially independent of the

random medium fluctuations. We now give a time-reversal interpretation of F
( j)(ys, t) defined

by (3.11). In section 3.3.3 we discuss its sensitivity to arrival time estimation, which is then
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Figure 10. Time-reversal interpretation of A(ys , t). The array is illuminated from the unknown

location y1 in the random medium. The echoes received at the array are time-reversed and re-emitted

into the medium. They focus at y1, with super-resolution. The field at the search point ys is then

propagated to the array in a fictitious, homogeneous medium. The pth component of A(ys , t) is the

signal at transducer xp and it is evaluated at the deterministic arrival time tp(ys) = |xp − ys |/c0.

explored in several directions until section 3.6, where we introduce the SAT estimator that is

accurate and robust.

We consider for simplicity the case of a single target and drop the superscript ( j). Using

the theoretical model (3.7) we can write (3.11) in the form

F(ys , t) = B(ys, t) − A(ys, t), (3.15)

with

A(ys, t) =
∫ ∞

−∞
e−iωt | f̂ (ω)| |ξ̂1(ω)|ĝ0(y

s , ω)

N
∑

p=1

Ĝ(y1,xp, ω)Ĝ(y1,xp, ω) dω,

B(ys, t) =
∫ ∞

−∞
e−iωt | f̂ (ω)| |ξ̂1(ω)|ĝ(y1, ω)

N
∑

p=1

Ĝ0(y
s ,xp, ω)Ĝ(y1,xp, ω) dω.

(3.16)

The self-averaging property of F(ys , t) is inherited from time reversal in random media

because the random Green functions in (3.16) appear in a way that is similar to the time-

reversed, back-propagated field Ŵ in (2.6). In fact, both A(ys, t) and B(ys, t) have a time-

reversal interpretation as we shall explain. In general, self-averaging in the time domain

occurs when large random phases in the Green functions cancel or nearly cancel. This is

the case with A(ys, t) and B(ys, t) because the random Green functions appear in conjugate

pairs. In A(ys, t) there is exact phase cancellation while in B(ys, t) the phase cancellation

is approximate. The time-domain stability comes from the approximate decorrelation of such

quantities over different frequencies, as we discuss in section 2.3.

In figure 10 we illustrate the time-reversal interpretation of A(ys, t) in three steps. First

the unknown target sends to the array the pulse | f̂ (ω)| weighted by the magnitude of the

scattering strength |ξ̂1(ω)|. Then the echoes received are time-reversed and back-propagated to



1262 L Borcea et al

Figure 11. Time-reversal interpretation of B(ys , t). The array is illuminated from the unknown

location y1 in the random medium. The echoes at the array are time-reversed and re-emitted in a

fictitious homogeneous medium. In the third step the field at the unknown point y1 is send to the

array in the random medium.

the unknown point y1 in the random medium. The field at y1 is

| f̂ (ω)| |ξ̂1(ω)|
N

∑

p=1

Ĝ(y1,xp, ω)Ĝ(y1,xp, ω), ω, (3.17)

which is self-averaging in the time domain. In the third step we take the field at a search point

ys and send it to the array in a fictitious homogeneous medium. We expect a large response

at the array if ys is near y1. Because of the self-averaging of time reversal in random media

the components of A(ys, t) are self-averaging. In addition to this property, which is very

important in imaging, super-resolution plays a beneficial role in A(ys, t) as well. The search

point ys , at a fixed range, has to be closer to the target y1 in order to produce significant

illumination on the array.

In figure 11 we illustrate the time-reversal interpretation of B(ys, t), again in three steps.

The first step is the same as for A(ys, t), that is we record at the array the echoes received from

the unknown location y1 in the random medium. Then we time-reverse and back-propagate

to the search point ys in a fictitious homogeneous medium. The field at ys is

| f̂ (ω)| |ξ̂1(ω)|
N

∑

p=1

Ĝ0(y
s,xp, ω)Ĝ(y1,xp, ω), ω, (3.18)

and it is not self-averaging. In the third step the field at the unknown point y1 is sent to the

array of transducers in the random medium. Here again we expect a large response at the array

if ys is near y1. The components of B(ys, t) are self-averaging because in the last step we

back-propagate in the random medium.

3.3.2. Simulations. We have computed array response matrices numerically for one-target

and two-target configurations as shown in figure 12. In both configurations we use the
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Figure 12. The set-up for two numerical simulations. In the first case we have one target at

y1 = (11.5λ, 42λ) and the aperture of the array is 4.5λ. In the second case we have two targets,

one bigger than the other. The larger target is located at y1 = (8λ, 21λ) and the smaller one at
y2 = (4λ, 22λ). The aperture is 9.5λ.

probing pulse given by (2.7), with the same central frequency and frequency band. In the

first simulation an array of aperture a = 4.5λ is used to identify one target, which is located

at y1 = (11.5λ, 42λ). The array transducers are located at

xp =
(

9λ + (p − 1)
λ

2
, 4λ

)

, for p = 1, . . . , 10.

In the second simulation we have two targets, one bigger and hence more reflective than the

other. The larger target is located at y1 = (8λ, 21λ) and the smaller one at y2 = (4λ, 22λ).

The array in this case has an aperture a = 9.5λ and the transducers are located at

xp =
(

7λ + (p − 1)
λ

2
, 4λ

)

, for p = 1, . . . , 20.

The ambient medium is either homogeneous or random. The characteristics of the

random media are the same as those in section 2.2. The sound speed c(x) has constant

mean c0 = 1.5 km s−1, correlation length l = 0.3 mm and standard deviation s between 1 and

5%.

We solve the wave equation with a numerical method based on the discretization of the

mixed velocity–pressure formulation for acoustics. For the space discretization, we use a new

finite element method (see Bécache et al 1997, 2000), which is compatible with mass-lumping

techniques (i.e. it leads to explicit time discretization schemes) and for the time discretization

we use a centred second-order finite difference scheme. In the numerical simulations the

targets are modelled by small squares. The size of the small target is λ/30 ×λ/30 and the size

of the bigger one is λ/15 × λ/15.

In figures 13 and 14 we show the results obtained with the time-domain estimation

using (3.14) and a fixed frequency MUSIC estimation, at the central frequency of the pulse

ν = 3 MHz. More precisely, we display the objective functional

RMUSIC(ys) = minysGMUSIC(ys)

G(ys)
, (3.19)

where GMUSIC(ys) is computed by

GMUSIC(ys) = |PN ĝ0(y
s, ω)|2, (3.20)

where PN ĝ0(y
s , ω) is defined by (3.10) with ω = 2πν. As we see in these figures,

both methods give very good results in homogeneous media. In random media the fixed

frequency MUSIC estimation is not stable. It gives poor results for some realizations of the

random medium and satisfactory results for others. The time-domain estimation is, however,

statistically stable, as expected. In the time domain we have a robust estimate of the cross-

range, or DOA, but range estimation in random media is not good at all. In the next section 3.3.3

we use a simplified model for the random Green functions in order to explain the poor range
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Figure 13. DOA estimation for one target in homogeneous and random media. On the left is

the time-domain estimation using (3.14) and on the right is fixed frequency MUSIC, at the central

frequency of the pulse ν = 3 MHz. The target is the green star. The horizontal axis is range in mm
and the vertical axis is cross-range in mm. The standard deviation s and the MF are above each

figure.

Figure 14. Same as figure 13 with two targets.

estimation. It comes from the sensitivity of F
( j)(ys, t) to the arrival times used in it. The

deterministic arrival times (3.12) are too crude. We show that, by using good arrival time

estimates from the data, we can modify (3.13), (3.14) so as to get good range estimates as well.

3.3.3. Sensitivity of imaging to arrival times. In figures 13 and 14 the bottom left panel

indicates clearly that MUSIC in the time domain, based on the functional F
( j)(ys, t) given by

(3.11) and (3.14), is sensitive to what arrival times we use in F
( j)(ys , t). In this section we

want to explain this sensitivity and to discuss the role that arrival times play in the behaviour of

the functional F ( j)(ys, t). MUSIC for narrow-band signals is a good DOA estimator (Schmidt

1979, 1986) and this persists for broad-band signals in the time domain, when we also have

self-averaging. The price we pay for statistical stability is, however, sensitivity to arrival time

information. This is an important trade-off in target location in random media that we now

explain. We discuss it further in section 3.4 in connection with SAI and again in section 3.6

where we combine DOA estimation with ATA, which we call SAT analysis.

For simplicity we consider the case of one target ( j = 1) located at y1 and write the qth

component of F
(1)(ys, t) using the Green functions in the homogeneous, Ĝo(y1,xp, ω), and
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random media, Ĝ(y1,xq, ω), as follows:

F
(1)
q (ys, t) =

N
∑

p=1

∫ ∞

−∞
e−iωt | f̂ (ω)||ξ̂ (ω)|{Ĝ(y1,xp, ω)Ĝo(y

s ,xp, ω)Ĝ(y1,xq, ω)

− Ĝ(y1,xp, ω)Ĝ(y1,xp, ω)Ĝo(y
s,xq, ω)} dω. (3.21)

First we note that, since F (1)
q (ys, t) is self-averaging, for the analysis we may replace the

product Ĝ(y1,xp, ω)Ĝ(y1,xq, ω) of two random Green functions by its average. We can

then approximate this average by

E{Ĝ(y1,xp, ω)Ĝ(y1,xq, ω)} ≈ e−β(ω)|xp−xq |2

(4π)2rprq

e−iω(τ̃
(1)
p −τ̃

(1)
q ), (3.22)

where rp = |xp − y1| (and r s
p = |xp − ys | below), p = 1, . . . , N are the distances from

the pth transducer to the target y1 (and the search point ys , respectively), and by τ̃ (1)
p , for

p = 1, . . . , N , we denote the travel time from the pth transducer to the target in the random

medium. These random travel times are estimated from the diagonal of the response matrix

(see section 3.5.1). This approximate expression for the average holds when the distance

of the target from the array is large compared to its size (a ≪ L), along with some other

approximations (cf Blomgren et al 2002). The factor β depends on the frequency but we will

assume it is constant since here we only want to give a qualitative analysis of the sensitivity

of F (1)
q (ys, t) to arrival times.

To continue our analysis of F (1)
q (ys, t) we now simplify it by using (3.22) and doing the

Fourier transform to get

F
(1)
q (ys, t) ≈ Mq(y

s, t) = 1

(4π)3

N
∑

p=1

{

e−β|xp−xq |2

rprqr s
p

f (t + τ̃ (1)
p − τ̃ (1)

q − tp(y
s))

− 1

r2
pr s

q

f (t − tq(y
s))

}

. (3.23)

We have also replaced | f̂ (ω)| by f̂ (ω) and set |ξ̂ (ω)| = 1. The times tp(y
s), for p = 1, . . . , N ,

are the deterministic travel times given by (3.12). We form the functional

GM (ys) =
N

∑

p=1

(Mp(y
s, tp(y

s)))2 (3.24)

and display

RM = minysGM(ys)

GM (ys)
, (3.25)

at search points ys .

When evaluated at time t = tq(y
s), (3.23) becomes

Mq(y
s, tq(y

s)) = 1

(4π)3

N
∑

p=1

[

e−β|xp−xq |2

rprqr s
p

f (τ̃ (1)
p − τ̃ (1)

q

− (tp(y
s) − tq(y

s))) − 1

r2
pr s

q

f (0)

]

. (3.26)

We see from (3.26) that Mq(y
s, tq(y

s)) depends on differential arrival times, which means

that we expect it to have a minimum when

τ̃ (1)
p − τ̃ (1)

q = tp(y
s) − tq(y

s).
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Figure 15. Comparison of DOA estimators for simulations with a single target and for two

realizations of random media. In the top row we show the functional R(ys ) given by (3.14),

which requires no arrival time estimation. In the second row we show the DOA estimator given

by (3.25), with the β adjusted to match the top row and arrival times estimated from the diagonal

of the response matrix. In the third row we show the results of estimating target location with the

differential arrival time estimator (3.27).

Therefore, this functional can only have good cross-range resolution. It cannot have good

range resolution because there is essentially no range information in it. The large conical

uncertainty regions to the right of the targets (shown in red) in figures 13 and 14 are produced

by the attenuation factor e−β|xp−xq |2 , where the parameter β is adjusted to match the behaviour

of the DOA estimator (3.14).

In figure 15 we compare results using the simplified model (3.23) with the DOA estimator

(3.21), which needs no arrival time estimates. The parameter β in (3.23) is adjusted to reproduce

qualitatively the behaviour of (3.21) and the arrival times τ̃ (1)
p are estimated from Ppp(t). For

the numerical computations we used the two-dimensional Green function in (3.23) (that is,

replace rp, r s
p with

√
rp,

√

r s
p). We see from the top two rows of figure 15 that the model

estimator (3.23) reproduces very well the range uncertainty of the DOA estimator (3.21). For

comparison we show in the third row the behaviour of the estimator

R�−ATA = minysG�−ATA(ys)

G�−ATA(ys)
, (3.27)

which uses only differential arrival times when

G�−ATA(ys) =
N

∑

p,q=1

[τ̃ (1)
p − τ̃ (1)

q − (tp(y
s) − tq(y

s))]2. (3.28)

We see from the third row of figure 15 that the differential arrival time estimator (3.28) is

not statistically stable like (3.21), shown in the first row. In fact, it gives a poor estimate of the

target’s position in the bottom right of figure 15. This is due to the large difference between the

estimated random times τ̃ (1)
p , p = 1, . . . , N and the deterministic ones tp(y1), p = 1, . . . , N ,

as shown in figure 16. This difference may be caused by an unusual realization of the random

medium that produces a large error in the estimation of τ̃ (1)
p , p = 1, . . . , N . Random arrival

times are not easy to estimate in practice, as we explain in section 3.5.1.
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Figure 16. Comparison between the random arrival times τ̃p , p = 1, . . . , N (full curve), estimated

from the diagonal of the response matrix and the deterministic arrival times tp(y1), p = 1, . . . , N

(broken curve).

To summarize, the time-domain DOA estimator (3.21) is statistically stable and gives

good cross-range resolution because it uses implicitly differential arrival times, with no need

to estimate random arrival times as is typical of array processing methods. This is what we infer

from the behaviour of the model estimator (3.23) where the differential arrival times, which

are hidden in the random Green functions, now appear explicitly. The differential arrival time

estimator (3.28) uses only estimated arrival times and is not stable statistically. The DOA

estimator (3.21) that requires no arrival time estimation and is statistically stable is clearly

superior. But it is sensitive to lack of range information, as we see from the large conical

regions around the targets, in figures 13 and 14, bottom left.

3.3.4. DOA estimation with arrival times. We discuss next one way in which arrival time

estimates can be used with a DOA estimator. We return to this issue in section 3.6 after a

detailed discussion of arrival time estimation in sections 3.5.1 and 3.5.2.

The idea is to construct functionals that use both differential and absolute arrival times.

We consider only the single target case ( j = 1) for simplicity. For a search point ys we

compute

H
(1)
q (ys) = B

(1)
q (ys , τ (1)

q ) − A
(1)
q (ys, tq(ys)) (3.29)

with

A
(1)
q (ys , t) =

∫ ∞

−∞
e−iωt | f̂ (ω)| |ξ̂1(ω)|Ĝ0(y

s,xq, ω)

N
∑

p=1

Ĝ(y1,xp, ω)Ĝ(y1,xp, ω) dω,

B
(1)
q (ys, t) =

∫ ∞

−∞
e−iωt | f̂ (ω)| |ξ̂1(ω)|Ĝ(y1,xq , ω) (3.30)

×
N

∑

p=1

Ĝ0(y
s,xp, ω)Ĝ(y1,xp, ω) dω.

Here τ (1)
p , p = 1, . . . , N are arrival times estimated from the effective singular vectors (see

section 3.5.2), which are much better than the estimates τ̃ (1)
p , p = 1, . . . , N obtained from

the diagonal of the response matrix. We then construct the direction-of-arrival arrival-time

(DOA–AT) estimator

G
(1)
τ (ys) =

N
∑

p=1

(H(1)
p (ys))2, (3.31)
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Figure 17. Estimates of one target and two targets in a random medium using the DOA–AT

estimator (3.32). The range uncertainly of the DOA estimator (3.14), seen in figures 13 and 14, is

eliminated.

and display

Rτ (y
s) = minysG(1)

τ (ys)

G
(1)
τ (ys)

. (3.32)

Simulation results using the DOA–AT estimator (3.32), for one and two targets, are shown

in figure 17. Clearly the functional (3.31) gives a good estimate of both the range and cross-

range of the targets. However, it is sensitive to the quality of the arrival time estimates τ (1)
p ,

p = 1, . . . , N . In section 3.6 we introduce an alternative functional which is more efficient

and robust: it gives a better estimate of the locations of the targets and is less sensitive to arrival

time estimates.

It is clear from the analysis of this section that methods not using arrival time estimation

but providing range information are important. One such widely used method is SAI, which

we discuss in the next section.

3.4. Synthetic aperture imaging (SAI)

In SAI (Cheney 2001) we measure only the diagonal Ppp(t) of the response matrix and we

locate point scatterers using deterministic travel times. At a search point ys in the domain of

interest we compute the deterministic arrival time for Ppp(t), that is, the time to go from the

pth transducer to the search point ys and then come back to the pth transducer. This is twice

the arrival time tp(y
s) given by (3.12). The target locations are estimated as the maxima of

the absolute value of the objective function:

R(ys) =
N

∑

p=1

Ppp(2tp(y
s)). (3.33)

For large synthetic arrays with transducers that have a limited angular aperture, which is the

usual case, we should not sum over all transducer locations xp, p = 1, . . . , N , but only over

the ones that illuminate the region of interest at some range L, as shown in figure 18.

SAI with (3.33) is an arrival time imaging method, as we now explain in the single target

case. Let us suppose that there is only one target located at y1. In the frequency domain the

SAI measurements are modelled by

P̂pp(ω) = f̂ (ω)ξ̂1(ω)Q̂ pp(ω), (3.34)

where

Q̂ pp(ω) = Ĝ2(xp,y1, ω). (3.35)
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Figure 18. SAI. The array is very large, so to image a particular region we use only the part of the

array that illuminates it.

In a homogeneous medium the three-dimensional Green function is given by

G0(xp,y1, ω) = eik|xp−y1 |

4π |xp − y1|
(3.36)

and so, in the time domain,

Q pp(t) = 1

16π2|xp − y1|2
∫ ∞

−∞
eiω(2tp(y1)−t) dω = 1

8π |xp − y1|2
δ(t − 2tp(y1)), (3.37)

where δ(·) is the one-dimensional delta function. The objective function (3.33) is then given

by

R(ys) =
N

∑

p=1

1

8π |xp − y1|2
ξ1(t) ⋆ f (2(tp(y

s) − tp(y1))), (3.38)

where ⋆ stands for convolution in time. For multiple targets we simply sum over them in

(3.38):

R(ys) ≈
M

∑

j=1

N
∑

p=1

1

8π |xp − y j |2
ξ j (t) ⋆ f (tp(y

s) − tp(y j )), (3.39)

neglecting multiple scattering between the targets.

Given the small support of the pulse f (t), appropriate for a broad-band probing signal,

R(ys) peaks at search points ys with arrival time tp(y
s) ≈ tp(y j ). The SAI functional (3.39)

shows clearly the role of the probing pulse on the resolution of the images. The shorter the

pulse f (t), the better the range resolution in (3.39). Cross-range resolution is, in principle,

very good for large SAI in a homogeneous medium (Cheney 2001).

In random media, however, the arrival times of the scattered echos differ from tp(y j ), so

we expect that the quality of the images degrades when the random sound speed fluctuations

increase. Moreover, the objective function (3.33) is not statistically stable, and images can

vary significantly from one realization of the randomly inhomogeneous medium to another.

That is because in (3.33) the square of the random Green function Ĝ2(xp,y1, ω) appears. It

carries a large random phase because there is no complex conjugation (time reversal) in (3.33)
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Figure 19. The SAI estimate of the location of one target in random media with different strengths

of the fluctuations of the sound speed. The exact location of the target is denoted by the green star.

The standard deviation s and MF are indicated on the top of each view. The horizontal axis is the

range in mm and the vertical axis is the cross-range in mm.

Figure 20. Similar to figure 19 but with two targets.

to eliminate it, as in the DOA estimation in section 3.3. Only functionals in which such large

phases cancel can be self-averaging, and therefore useful for imaging in random media. Range

resolution, however, is controlled mainly by the bandwidth of the probing pulse while summing

over transducer locations smooths out fluctuations and gives acceptable results.

In figures 19 and 20 we plot the absolute value of the objective function (3.33) as a function

of range and cross-range of the search point ys . In random media the estimates of the target

locations are quite unsatisfactory, especially the cross-range, for simulations with both one

target (figure 19) and two targets (figure 20). The statistical instability is also seen clearly.

3.5. Arrival time analysis

As we have seen in sections 3.3.2 and 3.3.3, DOA estimates do not provide information about

the range of the targets. We get this from the arrival times and amplitudes of the recorded

back-scattered echos.

3.5.1. Arrival time estimation and imaging. For a single target, an easy way to estimate

arrival times from the unknown target to the array is to use the diagonal of the response matrix,
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Figure 21. Traces of the diagonal part of the response matrix Ppp(t) for a homogeneous medium

and a random medium with standard deviation s = 6.68% and MF = 11.57%. The horizontal axis

is time in microseconds.

as in SAI. The arrival time in Ppp(t) is twice the arrival time from the unknown target to the pth

transducer. For multiple targets the time traces of the diagonal of the response matrix Ppp(t)

contain scattered fronts from all the targets and they are difficult to interpret, especially when

the medium is randomly inhomogeneous as we see in figure 21. Here the traces of Ppp(t)

are from numerical simulations with two targets embedded in a homogeneous medium and a

random medium with standard deviation s = 6.68%. It is clearly difficult to estimate arrival

times for the second front in the random medium.

If we have reasonable estimates of arrival times from the diagonal of the response matrix we

can try to image the targets using only these estimates with the following objective functional.

Let τ̃
( j)
p be the estimated arrival times for the scattered fronts j = 1, . . . , M (M = 2 in

figure 21) and transducers p = 1, . . . , N (N = 20 in figure 21). For a search point ys we

compute the deterministic arrival times tp(y
s) from (3.12) and we define the ATA estimator

functional

RATA(ys) =
M

∑

j=1

minysG
( j)

ATA
(ys)

G
( j)

ATA
(ys)

, (3.40)

where

G
( j)

ATA
(ys) =

N
∑

p=1

[τ̃ ( j)
p − 2tp(y

s)]2. (3.41)

The estimates of the target locations are the maxima of the functional R(ys), which we

show in figure 22 in the left column. In random media we can get good estimates of the arrival
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Figure 22. The ATA estimate (3.40) (left column) and the estimate obtained by combining ATA

with � − ATA (3.27) (right column) of two targets in random media with different strengths of the

fluctuations of the sound speed. The exact location of the targets are denoted by the green stars.
The standard deviation s and MF are indicated on the top of each view. The horizontal axis is the

range in mm and the vertical axis is the cross-range in mm.

times τ̃ (1)
p from the first front but rather poor estimates of the arrival times τ̃ (2)

p from the second

front. This is seen in figure 22 (left column) where the image of the second target is not so

good.

It is interesting to combine the ATA estimator (3.40) with the � − ATA estimator (3.27)

that uses only differential arrival times and has good cross-range resolution. By combining

we mean that we take as estimator the sum of the products

GC =
M

∑

j=1

G
( j)

ATA
(ys) · G

( j)

�−ATA
(ys) (3.42)

with G
( j)

ATA
(ys) given by (3.41) and G

( j)

�−ATA
(ys) given by (3.28) in the one-target case.

Simulation results are shown in figure 22, right column. Cross-range resolution is somewhat

better when differential arrival times are used, as expected.

3.5.2. Arrival time estimation using the SVD. We can improve our estimates of arrival times

considerably by using the singular vectors of the response matrix. These vectors have already

been used in estimation, as explained in section 3.3. We use them now to illuminate each target

separately, while shading the others, so that arrival times of scattered fronts can be estimated

more accurately than when using only the diagonal of the response matrix as in SAI.

When the targets are sufficiently far apart, or have sufficiently different strengths, the

singular values σ j(ω), j = 1, . . . , M, of the response matrix P̂(ω) are well separated over

the frequency band of the pulse f (t). The traces of the singular vectors U j(t) have only

one coherent front (one arrival time) back-scattered by the target that makes the largest

contribution to the singular value σ j (ω), j = 1, . . . , M . This does not mean that we require

ĝH (y j , ω)ĝ(yh, ω) ≈ 0 for j �= h or, equivalently, that the targets are so far apart that
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they are essentially isolated from each other. It does mean, however, that the contribution of

the illuminating Green vector ĝ(y j , ω) in Û j(ω) is more significant than that of the vectors

ĝ(yh, ω), for h �= j .

Let us suppose that the target at y1 is the strongest with σ1(ω) separated from all other

singular values over the frequency band of f̂ (ω). The singular vector Û1(ω) of P̂(ω) is

normalized (‖Û1(ω)‖ = 1) but carries an arbitrary, frequency-dependent, phase. Because of

this U1(t) looks incoherent in the time domain. We can, however, calculate N , coherent in

time, versions of the leading singular vector by projecting the columns of the response matrix

onto it:

Û
(p)

1 (ω) = [Û1(ω)H P̂ (p)(ω)]Û1(ω), p = 1, . . . , N. (3.43)

Here P̂ (p) is the pth column of the response matrix P̂(ω). Clearly Û
(p)

1 (ω) is a singular

vector of P̂(ω) and it carries the phase of its pth column, so that in the time domain U
(p)

1 (t)

is coherent and arrival times can be estimated. The singular vector Û
(p)

1 (t) can be obtained by

iterated time reversal and back propagation, as was done by Prada et al (1996).

For a single target

Û
(p)

1 (ω) = f̂ (ω)ξ̂1(ω)Ĝ(ω,xp,y1)ĝ(ω,y1). (3.44)

For multiple targets Û
(p)

1 (ω) is more complicated and contains contributions from the other

targets. But when the target located at y1 is the strongest and its presence is dominant in the

time trace of the singular vector, for the estimation of arrival times we can still consider the

one-target expression (3.44) as valid, approximately.

The various versions of the leading singular vector calculated by (3.43) have different

arrival times because of the phase differences introduced by the Green function Ĝ(ω,xp,y1).

However, we can synchronize them and then average them (stack them) to obtain the effective

singular vector

〈U1(t)〉 = 1

N

N
∑

p=1

U
(p)

1 (t − τ (1)
p ). (3.45)

The synchronization of U
(p)

1 (t) requires the estimates of travel times τ (1)
p from emitting

transducer p to target location y1. These times are estimated as the minimizers of

min
τ

(1)
p

∫ T

0

N
∑

p=1

[

U
(p)

1 (t − τ (1)
p ) − 1

N

N
∑

q=1

U
(q)

1 (t − τ (1)
q )

]2

dt, (3.46)

for some time T large enough to capture the scattered echos in U
(p)

1 (t), for p = 1, . . . , N .

The time trace of 〈U1(t)〉 is cleaner than any individual trace because of the averaging.

But we are more interested in the estimates of the arrival times τ (1)
p that come out of (3.46) and

we now show how they can be used. Arrival time estimates for other targets are obtained in

the same way, by starting with the second singular vector of the response matrix, etc.

3.6. Subspace arrival time analysis (SAT)

We are now ready to introduce an imaging method that combines the DOA analysis (see

section 3.3) with the arrival time analysis (see section 3.5.2).

For each search point ys we compute the objective functional

RS AT (ys) =
M

∑

j=1

minysG
( j)

S AT (ys)

G
( j)

S AT (ys)
, (3.47)
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Figure 23. Traces computed from the diagonal of the singular vector matrix for the homogeneous
medium. In figures (a1) and (a2) we show the traces from the diagonal of the first and second

singular vector matrix. In figures (b1) and (b2) we show the traces of the first and second averaged

singular vector. In figure (c) we show the traces from the diagonal of the response matrix. There

is no averaging in (a1), (a2) and (c).

Figure 24. Same as in figure 23 but for the random medium with s = 6.68%.

where

G
( j)

S AT (ys) =
N

∑

p=1

[F ( j)
p (ys, tp(y

s)]2[τ ( j)
p − tp(y

s)]2. (3.48)

Here F
( j)(ys, t) is defined by (3.11), tp(y

s), p = 1, . . . , N are the deterministic arrival times

given by (3.12) and τ
( j)
p , p = 1, . . . , N , j = 1, . . . , M are the arrival times computed in (3.46).
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Figure 25. The SAT estimate of one target in random media with different strengths of the

fluctuations of the sound speed. The exact location of the target is denoted by the green star.

The standard deviation s and MF are indicated on the top of each view. The horizontal axis is the

range in mm and the vertical axis is the cross-range in mm.

Figure 26. The SAT estimate as in figure 25 for two targets.

We call (3.47) the SAT estimator. In figures 25 and 26 we show the results of simulations using

this estimator. As we can see from the results this imaging method is very robust. The target

locations are estimated well even in the case of random media with strong inhomogeneities

(MF in the velocity up to 12%). Another important property of SAT is statistical stability.

Target location estimates do not change for different realizations of the random media. The

functional (3.47) is more robust than the functional (3.29) discussed in section 3.3.3. This

is because the probing pulse is very short (broad-band signal), so evaluating the first term

B(1)
q (ys, t) at time t = τ (1)

q makes the functional (3.29) sensitive to errors in the estimates of

arrival times.

The basic limitation of SAT imaging (3.47) comes from the assumption that each singular

vector of the matrix P̂(ω) can be associated with one target. What is actually important

here is that the ordering of the singular values does not change with frequency over the

bandwidth of f̂ (ω). If the singular values cross as the frequency varies, then we need to

track this crossing. For example, by identifying the singular values from the form of the

corresponding singular vectors instead of using their relative amplitude.

SAT imaging works well because it combines good estimation of both DOA and arrival

times, ATA. In sections 3.3.3 and 3.4 we discussed the sensitivity of DOA to arrival time,
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Figure 27. Combined DOA (3.13) and SAI (3.33) estimation of one target location in random

media with different strengths of the fluctuations of the sound speed. The exact location of the

target is denoted by the green star. The standard deviation s and MF are indicated on the top of

each view. The horizontal axis is the range in mm and the vertical axis is the cross-range in mm.

Figure 28. Same as figure 27 with two targets.

and hence range estimation. We discussed in section 3.3.4 the possibility of using estimators

that do not use direct arrival time estimation at all, like the DOA estimator (3.14) and the SAI

estimator (3.33). We can combine these two estimators much as we did with ATA and �−ATA

in (3.42). A non-explicit arrival time estimator, DOA–SAI, is

RDOA−SAI (y
s) =

M
∑

j=1

G
( j)

DOA−SAI
(ys)

maxys G
( j)

DOA−SAI
(ys)

(3.49)

where

G
( j)

DOA−SAI
(ys) =

∣

∣

∣

∣

N
∑

p=1

Ppp(2tp(y
s))

∣

∣

∣

∣

/

G
( j)(ys) (3.50)

and with G( j)(ys) given by (3.13).

In figures 27 and 28 we show one-and two-target simulation results using (3.49). It is

not as good as SAT (figures 25 and 26) but it is better than DOA (figures 13 and 14) and SAI

(figures 19 and 20). This is as expected, of course, but it is interesting to see how range and

cross-range estimations interact and influence each other in a random medium.
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4. Summary and conclusions

For each frequency we record an N × N array response matrix P̂(ω). In an ideal situation this

matrix is a complex linear combination of M rank-one complex symmetric matrices, each of

which corresponds to one of the M targets in the medium. For N > M one can determine the

number of targets by calculating the number of non-zero singular values of P̂(ω). If the targets

are well separated, linear matched filter techniques can be used to determine their locations.

In practice we need to consider the effect of inhomogeneities in the ambient medium and this

is what we do in this paper.

Active array probing of small scatterers in random media poses special problems that

require a careful assessment of imaging methodology. Based on our understanding of time

reversal in random media (Blomgren et al 2002), super-resolution and its statistical stability in

the time domain in particular, we have identified a number of imaging methods that give good

estimates for the location of the scatterers. The key idea is to use a subspace projection method

in the time domain that is statistically stable (section 3.3). We explain carefully the sensitivity

of this estimator to range information, in section 3.3.3, which is somewhat unexpected since

in homogeneous media range and cross-range estimation are essentially distinct processes.

We explain briefly the well-known inadequacy of SAI in random media in section 3.4. In

section 3.6 we formulate the SAT method that is robust and accurate if we have good arrival

time estimates, as we can often find using subspace analysis in the manner of section 3.5.2.

We have conducted extensive numerical simulations to better understand and to

substantiate our theoretical insights into imaging in random media. We are currently working

on a more detailed analysis of the quality of various types of array imaging.
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Appendix. Multiple scattering between targets

In this appendix we calculate the form of the response matrix when multiple scattering between

targets is taken into consideration. Suppose that the M targets are located at y1, . . . ,yM . At

frequency ω, the response matrix P̂(ω)=(P̂pq(ω)) is given by

P̂pq(ω) = f̂ (ω)

M
∑

l=1

M
∑

j=1

ĉ jl(ω)Ĝ(y j ,xp, ω)Ĝ(yl,xq, ω), p, q = 1, . . . , N, (A.1)

where f̂ (ω) is the Fourier transform of the probing pulse, Ĝ is the Green function for the

Helmholtz equation (2.3) in the random medium and ĉ jl(ω) are the entries of a complex

symmetric matrix Ĉ(Ĉ = ĈT ) that we will describe in this appendix. Thus, the response

matrix can be written as

P̂(ω) = f̂ (ω)

M
∑

j=1

M
∑

l=1

ĉ jl(ω)ĝ(y j , ω)ĝT (yl, ω), (A.2)
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Figure A.1. From the source point xs we send a pulse f̂ (ω) that illuminates the cluster of targets

y1, . . . , yM . The field, direct and scattered, is recorded at observation point xo.

where T denotes the transpose and ĝ(y j , ω) is the illuminating Green vector onto the array

from the point y j , given by (3.3).

If the scatterers are far apart then Ĉ is approximately diagonal and we have the

response matrix model without multiple scattering between targets that is used in this paper.

Multiple scattering of waves with the medium inhomogeneities is, however, fully taken into

consideration because the Green functions are random. That is, they are solutions of the

stochastic wave equation. To carry out the imaging of the scatterer locations we do a SVD and

an arrival time analysis, as explained in this paper.

The general model that allows for multiple scattering between the scatterers is obtained

in the following way. Suppose that we illuminate from a source point xs the cluster of targets

y1, . . . ,yM and we record the field at the observation point xo as shown in figure A.1.

Let Ĝd(x,y) be the Green function between the points x and ywhen there are no scatterers

in the randomly inhomogeneous, background medium. Then the Green function between xs

and xo can be written as

Ĝ(xo,xs) = Ĝd(xo,xs) +
M

∑

j=1

Ĝd(xo,y j )ξ̂ j (ω)F̂(y j ,xs), (A.3)

with F̂(yk,xs) the total field incident upon yk :

F̂(yk,xs) = Ĝd(yk,xs) +
M

∑

j=1
j �=k

Ĝd(yk,y j )ξ̂ j (ω)F̂(y j ,xs). (A.4)

We see that F̂(y j ,xs) can be determined by solving the linear system

M
∑

k=1

Ŵ jk

√

ξ̂k(ω)F̂(yk,xs) =
√

ξ̂ j (ω)Ĝd(y j ,xs), (A.5)

with

Ŵ jk = δ jk −
√

ξ̂ j (ω)

√

ξ̂k(ω)(1 − δ jk)Ĝd(yk,y j ), (A.6)

which is a complex symmetric matrix.

The matrix Ĉ = (ĉ jl) in (A.1) or (A.2) is then given by

ĉ jl(ω) =
√

ξ̂ j(ω)

√

ξ̂(ω)(Ŵ−1) jl (A.7)

where we assume that the matrix Ŵ is invertible. This will be the case when the scatterers

are not too close to each other or the scattering amplitudes ξ̂ j are small. If the scatterers are
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far apart then Ŵ is close to the identity and Ĉ is diagonal with entries ξ j . Multiple scattering

between targets is negligible in this case. If they are clustered close to each other then the Green

function Ĝd in (A.6) can be taken to be the deterministic one, Ĝ0, since the effect of random

inhomogeneities over short distances is negligible. For clusters of scatterers the matrix Ĉ is

therefore deterministic. The detailed analysis of imaging several distinct clusters of targets

will be presented elsewhere.
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Bécache E, Joly P and Tsogka C 1997 Etude d’un nouvel élément fini mixte permettant la condensation de masse

C. R. Acad. Sci., Paris I 324 1281–6
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