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G U E S T E D I T O R I A L

Imaging biomarkers for amyloid: a new generation of probes
and what lies ahead

Introduction

Since the original 1984 criteria for Alzheimer’s
disease (AD), put forth by a work group
jointly established by the National Institute of
Neurological and Communicative Disorders and
Stroke (NINCDS) and the Alzheimer’s Disease
and Related Disorders Association (ADRDA)
(McKhann et al., 1984), important advances have
occurred in our ability to detect AD patho-
physiology, with the incorporation of biomarkers
– defined as anatomic, biochemical, or physiologic
parameters that provide in vivo evidence of
AD neuropathology (Cummings, 2011) – that
can improve the certainty of AD diagnosis.
Use of imaging biomarkers such as positron
emission tomography (PET) with amyloid ligands,
particularly in asymptomatic and pre-dementia
stages of AD, however, has been the subject of
debate (Dubois et al., 2013), with arguments both
for and against the biomarker driven diagnosis
of AD.

Revised conceptualization of AD: the role of
amyloid imaging

In contrast to the original 1984 criteria the recently
proposed revisions put forth by the International
Working Group (IWG; Dubois et al., 2007)
and the National Institute on Aging/Alzheimer’s
Association (NIA-AA; Sperling et al., 2011a)
redefine AD as a clinicobiological entity, comprising
a semantic and conceptual distinction between
AD neuropathology and resulting clinical phe-
nomenology. Currently, AD is conceptualized as a
progressive pathophysiological process in which β-
amyloid pathology is thought to accumulate during
a silent “preclinical” phase followed by a dynamic
cascade of neurodegenerative events including
tau pathology, which ultimately cause cognitive
impairment and dementia. This amyloidocentric
framework incorporates the use of imaging
biomarkers for amyloid in the form of abnormal
PET amyloid tracer retention. The slow progression
of β-amyloid deposition in AD supports the idea
that amyloid pathology occurs very early in the

disease process and tends to reach a plateau by the
onset of the first clinical signs of dementia.

As novel amyloid directed therapeutics enter
clinical trials, the role of amyloid imaging is
increasingly clear given that its ability to allow for
accurate, reliable, and reproducible quantification
of both regional and global amyloid burden, and
the growing consensus emerging from longitudinal
studies that disease-modifying therapies targeting
amyloid must be administered early on in the
disease course (Sperling et al., 2011b). In addition
to serving as a diagnostic biomarker to guide
population enrichment strategies, amyloid imaging
can be used to calculate sample size and to increase
statistical power via population stratification or
through use as baseline predictors (Wu et al., 2011).
In parallel, amyloid-imaging outcomes can serve as
endpoint biomarkers to monitor the rate of disease
progression, as well as response to therapy.

First generation of amyloid probes: 11C
Pittsburgh Compound B

The 11C labeled thioflavin T derivative Pitts-
burgh Compound B (PIB) is the benchmark
PET amyloid-imaging agent, demonstrating high
sensitivity and specificity for in vivo quantification
of fibrillar Aβ in both plaques and related Aβ con-
taining lesions, such as diffuse plaques and cerebral
amyloid angiopathy (Price et al., 2005; Lockhart
et al., 2007; Cohen et al., 2012). Importantly, on
the basis of concentrations achieved during PET
studies, cortical retention of 11C-PIB has been
shown to reflect Aβ load as opposed to Lewy bodies
or tau pathology (Fodero-Tavoletti et al., 2007;
Lockhart et al., 2007; Ikonomovic et al., 2008).
In addition to accelerating current understanding
of cerebral amyloidosis and advancing detection of
AD pathology to an earlier stage (Klunk et al., 2004;
Mintun et al., 2006; Rowe et al., 2007; Cohen et al.,
2012), 11C-PIB has contributed to improvements
in the differential diagnosis of neurodegenerative
diseases (Ng et al., 2007; Rabinovici et al., 2007;
Rowe et al., 2007). However, the short 20-minute
half-life of carbon-11 probes limits their use to
imaging centers possessing an onsite cyclotron and
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a radiochemistry department with expertise in the
synthesis of 11C; the cost of 11C-PIB studies has
precluded it’s routine use in clinical settings.

Second and third generation amyloid probes:
18F-labeled radiopharmaceuticals

In order to address short half-life limitations a
number of 18F labeled amyloid PET radiophar-
maceuticals have been developed with a 110-
minute half-life. Radiopharmaceuticals like [18F]3′-
F-PIB (flutemetamol; Wolk et al., 2011), [18F]AV-
45 (florbetapir; Clark et al., 2012), [18F]-AV-1
or [18F]-BAY94–9172 (florbetapen; Rowe et al.,
2008; Vallabhajosula, 2011), and [18F]AZD4694 or
NAV4694 (Jureus et al., 2010; Cselenyi et al., 2012;
Rowe et al., 2013) can facilitate the integration
of PET into routine clinical use by allowing for
centralized production and regional distribution
(Rowe and Villemagne, 2013).

While 18F-florbetapir, 18F-florbetaben, and 18F-
flutemetamol allow for clear differentiation of AD
patients from healthy controls, cortical retention
of 18F-florbetapir and 18F-florbetaben are inferior
to that of 11C-PIB (Villemagne et al., 2012)
and are characterized by a more narrow dynamic
range of standardized uptake value ratios (SUVRs),
associated visually with elevated non-specific white
matter (WM) binding (Vandenberghe et al., 2010).
Moreover, novel 18F amyloid tracers are associated
with the loss of gray-white matter demarcation
(Rowe and Villemagne, 2011), in contrast to
11C-PIB, where gray matter retention is visibly
greater relative to subjacent WM uptake (Rowe
and Villemagne, 2013). Though it has yet to pass
through phase II trials, 18F-AZD4694 (NAV4694)
is similar to 11C-PIB, possessing rapid kinetics, low
non-specific WM binding, and a wider dynamic
range when comparing AD to healthy control
individuals (Cselenyi et al., 2012; Zimmer et al.,
2013). In a head-to-head comparison study with
11C-PIB among healthy controls and patients
with AD and frontotemporal lobar degeneration
(FTLD), 18FNAV4694 showed an r of 0.98 and
a slope of 0.95, indicating significant overlap with
11C-PIB (Rowe et al., 2013).

Criteria for appropriate use of amyloid PET
imaging

Given that 18F-florbetapir is now approved by the
Food and Drug Administration (FDA) for the
clinical assessment of individuals with cognitive
impairment, with additional 18F tracers likely to
become available in the coming years, appropriate
use criteria (AUC) are of chief importance owing to

(1) the potential for harm if scans are performed for
inappropriate reasons, are misinterpreted, and/or
the information obtained incorrectly applied; and
(2) the high cost associated with such investigations.
Apropos the first instance, a suitable example
is the disclosure of amyloid positivity in an
individual without cognitive impairment. Given
positive findings in close to 30% of cognitively
normal individuals over the age of 70 – and the
lack of sufficient longitudinal data to adequately
characterize the potential risk of future cognitive
decline – premature diagnosis of AD on the
basis of a positive Aβ scan alone has been
categorized as inappropriate given the potential
for detrimental social, psychological, employment,
lifestyle, and financial consequences (Rowe and
Villemagne, 2013). In addition, among patients
with cognitive complaints, precipitous conclusions
could lead to lack of appropriate treatment for
underlying alternative causes, such as depression.
Moreover, from an economic perspective, the
lack of established disease-modifying therapies
necessitates a careful cost-benefit analysis, with
the likelihood of improved diagnostic accuracy and
altered treatment guiding a decision to opt for
amyloid imaging. In short, amyloid findings must
be situated within the context of a comprehensive
investigatory framework, interpreted by a physician
with requisite expertise, and, where possible,
supported by additional markers suggestive of AD
such as an amnestic syndrome of the hippocampal
type (Dubois and Albert, 2004), hippocampal
atrophy on magnetic resonance imaging (MRI), or a
parietotemporal pattern of hypometabolism on 18F-
FDG PET.

Assembled in late 2012 by the Alzheimer’s
Association (AA) and the Society of Nuclear
Medicine and Molecular Imaging (SNMMI), the
Amyloid Imaging Taskforce (AIT) was charged
with delineating AUC for amyloid PET imaging
using available literature and a consensus-based
approach among dementia experts. On the basis
of this approach amyloid imaging was deemed
appropriate in the following clinical contexts:
(1) patients exhibiting unexplained mild cognitive
impairment (MCI) that is persistent or progressive,
(2) patients fulfilling core criteria for possible AD
yet with a clinical course that is atypical or an
etiologically mixed presentation, and (3) patients
with rapidly progressive dementia and atypically
young age at the onset. In a sister publication
(Johnson et al., 2013b), clarification and expansion
of three topics were discussed in the original
publication (Johnson et al., 2013a), including the
practical identification of physicians possessing the
expertise required for appropriate integration of
amyloid PET imaging; the importance of identifying
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the specific subset of MCI individuals for whom
amyloid PET imaging would prove appropriate;
and the creation of developing education programs
aiming to augment awareness of the amyloid PET
AUC and how best to integrate this technique into
clinical decision-making algorithms.

Potential ethical issues tied to disclosure of
amyloid positivity

With the increasing paradigmatic shift toward
the uncoupling of AD pathophysiology from
resulting clinical phenomenology – with the
attendant implication of a diagnosis of AD issued
during the presymptomatic/minimally symptomatic
phase – appropriate legal revisions must occur in
parallel to guard against privacy and confidentiality
infringements (Karlawish, 2011). Guidelines must
also be put in place to address the well-established
stigma tied to AD, and to guide assessment of the
potential for negative psychological sequelae in a
given individual following disclosure of biomarker
information conferring an elevated risk of AD (e.g.
amyloid positivity).

Although researchers are currently not under
obligation to disclose biomarker findings to research
participants owing to uncertainty regarding the
clinical utility of this information – a case in
point being the Alzheimer’s Disease Neuroimaging
Initiative’s (ADNI) “no return policy” – a move
toward clinical trials and increasing calls for
disclosure of research results from the public
(Shalowitz and Miller, 2008) makes clear the
need to accelerate the development of appropriate
guidelines. This reorientation toward disclosure
has been, furthermore, strengthened by recent
findings suggesting that ADNI investigators support
disclosure of amyloid imaging results – as well as,
more generally, other biomarker findings – to ADNI
participants (Shulman et al., 2013). In addition,
despite a lack of evidence supporting the predictive
value associated with imaging biomarkers, some
clinicians have already begun incorporating IWG
and NIA-AA research diagnostic criteria for
asymptomatic at risk and MCI/prodromal into
clinical practice (Gauthier and Rosa-Neto, 2013).

As the field of AD moves rapidly forward,
a growing need exists in terms of the incor-
poration of procedures addressing disclosure of
biomarker findings into large-scale studies and the
encouragement of research addressing the impact
of disclosure of biomarker findings (Gauthier
and Rosa-Neto, 2013). Importantly, those ADNI
investigators who endorsed disclosure likewise, in
a majority of cases, highlighted the importance of
developing standardized protocols and participant

educational materials addressing disclosure, as well
as longitudinal outcome studies to assess the effects
of this information on the well-being of participants
(Shulman et al., 2013).

Future directions

In research, amyloid-imaging agents can serve to
enrich clinical trial populations, monitor disease
progression, or assess the effect of amyloid-
targeted interventions. While PET amyloid probes
have yet to find application in routine general
clinical practice, FDA approval of 18F florbetapir
– with approval of additional 18F compounds
likely in the coming years – requires careful
adherence to, and promulgation of, current AUC.
Moreover, as new data are gathered, and, in
particular, should new effective therapies emerge,
these criteria will likely require re-evaluation and,
possibly, redefinition. In the interim, special care
must be paid to the potential consequences
associated with inappropriate use of amyloid PET
imaging. Further, given the increasing attitudinal
shift toward disclosure of research results it is
vital that psychosocial research keep apace with
developments in the area of AD biomarkers.
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