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This article gives an overview of microstructure imaging of the brain with diffusion MRI and

reviews the state of the art. The microstructure‐imaging paradigm aims to estimate and map

microscopic properties of tissue using a model that links these properties to the voxel scale MR

signal. Imaging techniques of this type are just starting to make the transition from the technical

research domain to wide application in biomedical studies. We focus here on the practicalities of

both implementing such techniques and using them in applications. Specifically, the article sum-

marizes the relevant aspects of brain microanatomy and the range of diffusion‐weighted MR

measurements that provide sensitivity to them. It then reviews the evolution of mathematical

and computational models that relate the diffusion MR signal to brain tissue microstructure, as

well as the expanding areas of application. Next we focus on practicalities of designing a working

microstructure imaging technique: model selection, experiment design, parameter estimation, val-

idation, and the pipeline of development of this class of technique. The article concludes with

some future perspectives on opportunities in this topic and expectations on how the field will

evolve in the short‐to‐medium term.
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1 | INTRODUCTION

The central vision in microstructure imaging is of virtual histology: estimating and mapping histological features of tissue using non‐invasive imaging

techniques, such as MRI. This virtual histology has several advantages over classical histology: (i) it is non‐invasive, avoiding the need for tissue sam-

ples, e.g. from biopsy; (ii) it views intact in situ tissue, avoiding disruptions that arise from tissue extraction and preparation; (iii) it is non‐destructive,

so enables repeat measurements for monitoring; (iv) it provides a wide field of view, typically showing a whole organ or body, rather than the small

samples often used in classical histology; and (v) data acquisition is relatively fast, cheap and automated compared with classical histology.

Abbreviations: ADD, axon diameter distribution; AQP‐4, Aquaporin‐4; AIC, Akaike's information criterion; BIC, Bayesian information criterion; CC, corpus callosum;

CHARMED, composite hindered and restricted models of diffusion; CODIVIDE, COnstrained DIffusional VarIance DEcomposition; DIC, differential interference

contrast; DDE, double diffusion encoding; DIVIDE, DIffusional VarIance DEcomposition; DODE, double oscillating diffusion encoding; DTI, diffusion tensor imaging;

DKI, diffusion kurtosis imaging; DSI, diffusion spectrum imaging; DBSI, diffusion basis spectrum imaging; ECS, extracellular, space; FEXI, filter exchange imaging;

GM, grey matter; HARDI, high‐angular‐resolution diffusion imaging; IVIM, intra voxel incoherent motion; MAP, mean apparent propagator; MMWMD, minimal

model of white matter diffusion; MD, mean diffusivity; MCMC, Markov chain Monte Carlo; MC, Monte Carlo; NODDI, neurite orientation dispersion and density

imaging; NAWM, normal appearing white matter; OD, orientation dispersion; ODE, Oscillating diffusion encoding; OGSE, oscillating gradient spin echo; PGSE,

pulsed gradient spin echo; PGSTE, pulsed‐gradient stimulated‐echo sequence; QTE, q‐trajectory encoding; SDE, single diffusion encoding; SE, spin echo; STE,

stimulated echo; TE, echo time; TR, repetition time; TDE, triple diffusion encoding; vic, neurite density index; viso, isotropic fraction; WM, white matter
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Classical histology has been a lynchpin in the development of modern neuroscience including understanding the brain's macroscopic organi-

zation (see, e.g., Reference 1), the mechanisms of connectivity and communication,2 and the pathologies underpinning neurodegeneration.3 Such

work primarily uses sliced post‐mortem tissue. Clinical applications in the brain are mostly for post‐mortem confirmation of diagnosis, as in vivo

brain biopsy is normally justified only in aggressive diseases such as grading brain tumours. The non‐invasive, non‐destructive nature of virtual his-

tology offers the potential to study the live brain in situ in healthy volunteers or patients. The relative ease of data acquisition allows population

studies that provide insight into anatomical variability. Furthermore, its non‐destructive nature allows repeat measurements to monitor changes

during normal development or pathological processes. Clinically, virtual histology avoids biopsy and the potential side effects of the invasive pro-

cedure, and provides a window on tissue changes when the risk of side effects prohibits biopsy. Moreover, the wide field of view that virtual his-

tology provides potentially reduces false negatives that may arise from, say, poor targeting of a biopsy.

Figure 1 compares typical images from classical histology and microstructure imaging. The clear advantage of classical histology is its level of

anatomical detail; its submicrometre image resolution provides vivid insight into the cellular architecture of tissue, whereas microstructure imaging

FIGURE 1 Comparison of classical histology and microstructure imaging showing a range of microstructure imaging techniques in the current

literature organized by target tissue feature. A‐D, Imaging indices of neurite (axon or dendrite) density with classical histology from Reference 4

(A) and by model‐based dMRI (B‐D). Maps show the cylinder fraction from Reference 4 (B), orientation dispersion (OD), neurite density index (vic)

and isotropic fraction (viso) from NODDI (C),5 and isotropic fraction, ‘stick density’, and tissue mean diffusion from CODIVIDE (D).6 E‐G, Imaging

fibre orientation distribution. E, Estimation of fibre directions from histology and corresponding estimates from dMRI.7 F, In vivo fibre orientation

mapping using constrained spherical convolution.8 G, Combined mapping of microstructure and orientation by the spherical mean technique.9 H‐L,

Imaging indices of axon diameter. H, Histology provides high‐resolution maps enabling measurements of individual axon diameters; images from

Reference 10. I, Estimated axon diameter distributions from diffusion MRI using AxCaliber in Reference 10 of the in vivo rat‐brain cluster into

groups reflecting corresponding diameter histograms from histology. J‐L, Axon diameter indices from the monkey brain using ActiveAx (J),11 ex vivo

spinal cord (K)12 and in vivo spinal cord using 300 mT/m gradients (L).13 M‐P, Imaging cell shape indices. M, Classical histology reveals elongated

cells in a meningioma to the left and rounder cells in a glioma to the right; from Reference 14. N, Fractional anisotropy from DTI is low in both

meningioma and glioma tumours, but the microscopic anisotropy (μFA) from DIVIDE is more specific to cell shape and shows high value in the

meningioma only.14 O,P, A similar measure of the microscopic anisotropy from double diffusion encoding in a rat brain (O)15 and a healthy human

brain (P).16 Q‐T, Imaging myelin density. Classical histology by luxol fast blue shows reduced myelin density in the brain of a multiple sclerosis

patient (Q) and MRI‐derived maps using quantitative relaxometry show similar features (R).17 S, MRI used to track the myelination in infants.18 T,

An early example of the myelin water fraction from relaxation‐weighted MRI19
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provides only statistical descriptions of the tissue over the extent of millimetre‐sized image voxels. In some applications, rich and specific content of

classical histological images is important: for example, in enabling a cancer histopathologist to identify the presence of minute fractions of mitotic

cells. However, many tasks that histologists perform seek broader statistical changes over a relatively wide extent of tissue. For example, the den-

sity and diameter distribution of axons in a white matter pathway determine its information‐bearing capacity; different densities, shapes and con-

figurations of cells discriminate different types of brain tumour; widespread protein deposits are hallmarks of Alzheimer's disease. In such

applications, the precise detail of cellular architecture is less important and the benefits of microstructure imaging can significantly outweigh those

of traditional histology.

Microstructure imaging relies on a model that relates microscopic features of tissue architecture to MR signals. In general, the approach

acquires a set of images with different sensitivities and fits a model in each voxel to the set of signals obtained from the corresponding voxel in

each image. The process yields a set of model parameters in each image voxel, which constitute parameter maps of microscopic tissue features.

Figure 2 illustrates with an example based on diffusion MRI.

Diffusion MRI is a key modality for microstructure imaging, because of its unique sensitivity to cellular architecture. The technique sensitizes

the MR signal to the random dispersion of signal‐bearing particles, typically water molecules, over diffusion times from the millisecond range up to

around one second. The mean free path over this time at room or body temperature is in the micrometre range, i.e. the cellular scale, so the cellular

architecture of the tissue strongly influences the dispersion pattern of the molecules. Thus diffusion MR measurements support inferences on tis-

sue microstructure.

This article reviews the current state of the art in microstructure imaging of the brain using diffusion MRI. We thus focus on diffusion MRI

techniques that aim to estimate and map tissue properties via biophysical models and mention only in passing diffusion MRI techniques based

on signal models, which other parts of this special issue cover in more detail.22 This kind of technique has reached an important turning point in

recent years with its transformation from largely a technical research topic to widespread application in biomedical studies. With this in mind,

the review aims to emphasize practicalities of developing microstructure‐imaging techniques designed for front‐line application while giving a crit-

ical review of the state of the art. Thus Section 2 provides some background information on brain anatomy at the scale we are sensitive to with

diffusion MRI together with the nature of the measurements we make. Section 3 then reviews the state of the art in models underpinning current

microstructure imaging techniques and the range of current applications. Section 4 focuses on practical issues in the development of microstruc-

ture imaging techniques, specifically model selection, experiment design, parameter estimation and validation. That section concludes with an out-

line of the microstructure‐imaging development pipeline. Finally, Section 5 discusses the future of diffusion MRI microstructure imaging of the

brain highlighting opportunities for future research, development and application, and considers the wider perspective of applications outside

the brain and exploiting contrasts other than diffusion MRI.

2 | BACKGROUND

This section provides some background context for the rest of the article. First it provides information on the anatomy of brain tissue at the cellular

scale—the primary targets for diffusion MRI and microstructure imaging. Second it reviews the range of diffusion MR measurements available to

probe this anatomy.

Imaging

Microstructure maps

Modelling

Fitting

FIGURE 2 Illustration of the microstructure imaging paradigm, which fits a model relating microscopic tissue features to MR signals in each voxel

to produce microstructure maps. For example, various techniques to map indices of axon diameter10-12,20,21 use a simple geometric model of white

matter microstructure, consisting of parallel non‐abutting impermeable cylinders that represent axons. The methods acquire a set of images with

varying diffusion weighting and fit the model in each voxel to recover estimates of cylinder size and packing density, which provide maps of indices

of axon diameter and axon density. MRI maps from Reference 11. Electron microscopy courtesy of Mark Burke
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2.1 | Brain microanatomy

Brain tissue contains neurons and glial cells and is separated into two types: grey matter (GM) and the white matter (WM). The GM contains the cell

bodies, i.e. somas of neurons and glial cells, as well as neuronal dendrites, short‐range intra‐cortical axons and the stems of long‐range axons

extending into the white matter. The WM is dominated by densely packed and often myelinated axons that emanate from the soma of neurons

in GM, and project to distal GM areas or other parts of the body. Glial cells are also found in WM. Figure 3 illustrates the neuron and its environ-

ment, which in combination provide the basic mechanisms for brain function via communication between brain regions.24

2.1.1 | Dendrites

In grey matter, the dendrites range from 0.2 to 3 μm in diameter for dendrites both proximal and distal to the soma of the neuron.25 The dendrites

branch from the soma membrane in a formation like a tree crown; see Figure 4.

The structure of the dendritic tree and its branches, their extent and architectural outline depends on the type of neuron.25 In general, rela-

tively few (typically one to five) dendrites extend from the soma body itself, but the total number of branches varies from four to more than

400. The cerebellar Purkinje cells have the most branches. The spatial extent of the dendrite tree ranges from 15 to 1800 μm radial distance from

the soma to the tip of the most distal dendrite. Dendrites from each neuron strongly intermingle with those from other neurons in their

neighbourhood to form a dense and complex dendritic network.25 The Golgi‐Cox stain, as shown in Figure 4, visualizes just a fraction of neurons

so does not reveal the full complexity of the dendritic network, but does highlight the variety of shapes of the dendritic tree. Figure 4F also shows

small protrusions from the main shaft of the dendrites, which are called dendritic spines; see Reference 30 for a review of their structure and func-

tion. For neurons in the cerebral cortex, the dendritic trees are mostly isotropic, extending and branching evenly in all directions, whereas else-

where, e.g. in the layers of the hippocampus, the trees can be highly anisotropic to support inter‐layer connectivity.25,26

2.1.2 | Axons

The connecting distances of axons range from a few millimetres, e.g. for intra‐cortical connections, to over 1 m, e.g. for the corticospinal connec-

tions in humans.31 In WM the axon diameter ranges from 0.1 μm to more than 10 μm in vertebrates, with myelinated axon diameters rarely less

than about 0.2 μm. A small number of ‘giant’ axons (>3 μm) arise in the vertebrate brain, and they have been observed for example in the corpus

callosum (CC)32,33 and cortico‐spinal tracts.34 Larger axons transmit signals more quickly, as saltatory conduction, i.e. the signal propagation along

the axon, increases in speed approximately linearly with axon diameter.35 However, space constraints within the brain make giant axons ‘expensive’

to host.36 Moreover, energy consumption increases super‐linearly with axon diameter, further favouring small axons.36

A brain connection is formed by a bundle of axons in WM that share a trajectory from emanation to target region. The axon diameter distri-

bution (ADD) of a brain connection largely depends on the target region,37,38 and varies among species for the same connection.39 However, the

ADD often has shape similar to a gamma distribution, as often assumed in mathematical models, e.g. References 20 and 40, i.e. a single‐mode sin-

gle‐sided (positive only) distribution with a heavy tail extending into the range of ‘giant’ axons. The mean of an ADD that contains myelinated axons

FIGURE 3 The neuron and the glial cells in brain tissue. A, Cells have a cell body or ‘soma’. All cells have processes that extend from their soma, but

only the neuron has an axon. Glial cells—astrocytes, oligodendrocytes, and microglia—support neuronal function. Oliogodendrocytes associate with

several axons to wrap around each a segment, called an ‘internode’, of the thin layer of fatty myelin to boost saltatory conduction. The nodes of

Ranvier are the gaps between internodes. B, The thickness of the myelin around axons in normal conditions has a roughly constant ratio with the

axon diameter. This ratio is called the g‐ratio (defined in fact as the inner diameter divided by the outer diameter). The space encapsulated by the

axolemma, the cell membrane surrounding the axon, is the intra‐axonal space. The illustration is reproduced from Reference 23
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is typically 0.5‐0.8 μm. Most ADD measurements are reported in the mid‐sagittal CC. There, the mid‐body of the CC has a larger mean ADD than

the genu, and the splenium has the smallest mean ADD (even though occasional giant axons do appear).32,33,39,41 In mammals, brain connections

that project through the mid‐body tend to include the largest diameter axons.39 These connections are associated with the motor system, which is

one of the fastest conducting systems in the central nervous system and also includes the longest axons in the brain. Since the need for speed of a

brain connection, and thus its ADD, is determined by its target,37,38 projections with different targets but emanating from the same cortical

region42 can contain quite different ADDs. For example the corticostriatal projections (ipsi‐ as well as contralaterally) typically contain smaller axons

compared with the corresponding contralateral corticocortical projections.37,43 Interestingly, the size of the neuronal soma varies by neuron type in

the range 7‐58 μm, and for some neurons a positive correlation with axon diameter has been found.44,45

2.1.3 | Myelin

The myelin sheath consists of 80% lipids and 20% proteins and wraps around the axon in layers about 10 nm thick, as illustrated in Figure 3. The

myelin sheath divides into segments along the axon with regularly spaced gaps called ‘nodes of Ranvier’ or just ‘nodes’. The internodal distance is

approximately proportional to the outer axon diameter (i.e. myelin and axon) with a coefficient of proportionality of about 100. Thus the segments

are 0.2‐2 mm long,46 whereas the nodes of Ranvier themselves are 1‐2 μm long.47

The myelin insulates the axon, which boosts the conduction speed along axons by a factor of about 5.5.35 The outer diameter of a myelinated

axon has an optimal ratio to the inner axon diameter (i.e. without the myelin). The ratio (inner diameter divided by outer diameter) is known as the g‐

ratio, and in normal CNS simulations suggest the g‐ratio that optimizes conduction speed is about 0.7.48

FIGURE 4 Golgi‐Cox staining of the adult

mouse brain to highlight neuronal and

dendritic structures in grey matter. A, Neurons

in all brain regions are evenly and reliably

stained with a Golgi‐Cox protocol. B‐E,

Magnified images of cerebral cortex (B,C),

hippocampus (D), and cerebellar cortex (E). F,

Dendritic spines are visible at high

magnification. (Golgi staining, differential

interference contrast (DIC) images, scale bars

500 μm in A,B, 50 μm in E and 5 μm in F.)

Figure and modified text from Reference 26,

Figure 5
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In the primate CC, the fraction of unmyelinated axons as observed with EM is small compared with myelinated axons. Across the mid‐sagittal

CC, the largest fraction of unmyelinated axons can be found in the genu (16‐20%), which includes the prefrontal corticocortical projections.32,33

The function of unmyelinated axons is still not clearly understood, but Reference 38 provides some thoughts.

2.1.4 | Intra‐axonal structure

The intra‐axonal space shown in Figure 3B is the space encapsulated by the cell membrane of axons and contains macromolecules and proteins, as

well as solid filaments and mitochondria. In axons, the cytoskeleton consists of filaments that maintain the axon's shape and internal organization,

and acts as mechanical support for the intra‐axonal transportation system i.e. the microtubules. The microtubules have a diameter of about 25 nm

and are the intra‐axonal railway transporting substances to and from the cell body, both retrograde and anterograde; they are easily seen with EM.

The density of microtubules relates to axon diameter but not length.49

2.1.5 | Glial cells

Besides neurons, the central nervous system also contains different types of glial cell. In contrast to neurons, glial cells have no axon and retain the

ability to undergo cell division in adulthood. In adult human neocortex, References 50 and 51 find the proportion of glial cells (by cell count) to be

76.6% oligodendrocytes, 17.3% astrocytes and 6.5% microglia. Moreover, in adults, the glia/neuron ratio is 1.32 and 1.40 for males and females

respectively. Aquaporin‐4 (AQP‐4) water channels in the cell membrane, which make the membrane highly permeable to water, are a feature of

glial cells.52

Oligodendrocytes create the myelin sheaths around axons, as shown in Figure 3; see Reference 53. The soma is about 13 μm in diameter and

extends up to 30 processes each like an arm that embraces a different axon, providing the myelin for one internode segment. The processes extend

to distances of 80‐120 μm.54

Astrocytes have somas of about 10 μm in diameter from which many processes extend in a star‐shaped formation, with an overall diameter of

about 150 μm.55 They perform a plethora of functions, e.g. a role in tissue repair and scarring, as well as maintenance of extracellular ion balance

probably in relation to sleep.56 The list is constantly growing; see Reference 57 for a review of current understanding. The astrocytes are territorial,

meaning that their processes intermingle very little with the processes of neighbouring astrocytes.

Microglia are macrophages that provide the first reaction for many CNS injuries.58 Their soma is 10 μm in diameter, and total coverage (with

processes) is about 15‐30 μm. Like astrocytes, microglia are territorial cells.59

2.1.6 | Interstitial space

The interstitial, or extracellular, space (ECS) is the space that surrounds anatomical structures such as cells, axons and dendrites. Invasive micros-

copy techniques suggest that the fraction of ECS in adult brain of various non‐human species is 15‐35%.60 However, neither electron nor light

microscopy can provide reliable measurements of ECS fraction, because chemicals used in the processing of the tissue for the display introduce

dehydration. The resulting shrinkage effects have been reported to be as low as less than 1% and as high as 65%.32,33,41,61

2.1.7 | Macroscopic configurations

The image resolution of MRI typically provides voxels of a few mm3 in volume, from which we aim to draw microanatomical statistics such as

anisotropy, cell sizes and axon diameters—features in the micrometre length scale. Axons often extend across many voxels, and each voxel can con-

tain hundreds of thousands of axons, which can adopt a wide variety of configurations, e.g. bending, fanning, crossing etc.,7,62,63 as illustrated in

Figure 5A. Moreover, axons are not straight even within a single voxel, as Figure 5B illustrates, which further complicates the task of modelling

the geometry of axons at the millimetre scale.

2.1.8 | Vascular system

The brain contains three vessel systems for blood perfusion: arteries, veins and capillaries. The capillaries contain the smallest vessels and ensure

perfusion in brain tissue. They range in diameter between about 5 and 10 μm, and capillary density in cortical layers is high compared with WM.64

Macroscopically, the capillaries generally appear randomly organized,64 and when perfused produce a water‐dispersion effect, called intra voxel

incoherent motion (IVIM),65 similar to water diffusion through Brownian motion, although dispersion is more rapid and has a different time

dependence.

2.2 | Sequences

Diffusion is encoded into the MR signal by time‐varying magnetic field gradients. Here, we focus on the most common type of pulse sequence for

dMRI,66 which yields so‐called single diffusion encoding (SDE).67 We will also briefly cover other encodings that can overcome some of the limi-

tations inherent to SDE; Figure 6 illustrates the various pulse sequences we consider.
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2.2.1 | Single diffusion encoding (SDE)

SDE sensitizes the MR signal to diffusion using a pair of gradient pulses (Figure 6A), which encode and decode the positions of spins. The sequence

maintains a magnetic field gradient, defined by the gradient vector g, during each pulse of length δ. The onsets of the two pulses have separation Δ,

which determines the diffusion time. Diffusion during and between the pulses leads to an attenuation of the MR signal, and this attenuation

increases (i.e. signal decreases) monotonically with the variation in the distance traversed by the spins, i.e. their dispersion, between the two pulses.

1
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T=1/f
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T=1/f
(F)

t

STE

TE/2 TE/2TM

FIGURE 6 Illustration of gradient waveforms and sequences used for diffusion encoding. A, The single diffusion encoding (SDE) sequence consists

of a pair of pulsed gradients defined by three parameters δ, Δ and g that together define the b‐value. The encoding gradients must be implemented

in a pulse sequence. B, The spin echo (SE) sequence is composed of an excitation pulse (90°) and a refocusing pulse (180°). C, The stimulated echo

(STE) sequence replaces PGSE's 180° pulse with two 90° pulses that store and recall the magnetization. The effective sign of the gradient is

reversed by the 180° pulse in PGSE or by the last two 180° pulses in the PGSTE sequence, explaining the difference between the effective

waveform in A and the actual waveform in B and C. Panels A,D‐G show the effective waveform. D, The double diffusion encoding (DDE) sequence

has two pairs of pulsed gradients, separated by a mixing time tm. The gradient directions of the two blocks may differ. Oscillating gradients, with

either smooth (E) or square (F) waveforms, can provide short encoding times when performed with high frequency f. G, Irregular gradient

waveforms can also be used, for example, to obtain isotropic diffusion encoding

(A) (B)

FIGURE 5 Macroscopic effects arise (A) from differences in the trajectory of multiple axons across a single voxel and (B) from non‐straight axonal

trajectories across a voxel. Macroscopic configurations of axons such as fanning, bending and crossing are often found in brain tissue. A from

Reference 27 and B from Reference 28 are both schematic drawings. Micrographs showing axonal undulation can be found in Reference 29
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The mechanism that attenuates the signal is phase dispersion: the phase of each spin corresponds to the distance it moves in the direction of the

gradient; a wider range of distances (i.e. greater dispersion) leads to a wider range of magnetization phases contributing to the signal; with greater

phase dispersion, the magnetizations have a lower sum, so we observe greater attenuation of the net signal.

For free diffusion, the diffusion coefficient alone determines the range of distances for a particular δ and Δ. The degree of attenuation thus

provides a direct estimate of the diffusion coefficient. However, in restricted diffusion, the maximal distance any spin can travel between encoding

and decoding is limited, which in turn limits the signal attenuation. The attenuation depends on the restriction distance and, in multiple dimensions,

the shape of a restricting pore. Thus, multiple SDE (or other) measurements obtained by varying the different parameters of the sequence, i.e. δ, Δ

and g, inform estimates of size and shape of restricting pores; see References 68–70 for examples.

The b‐value summarizes the overall diffusion weighting of a sequence and, for the SDE sequence, b ¼ γδ gj jð Þ2 Δ−
δ

3

� �

, where γ is the gyromag-

netic ratio. This formula assumes negligible ramp time in the pulses. For free diffusion, the b‐value alone determines the signal attenuation, even

though different combinations of |g|, δ and Δ can give the same b. Specifically, S(b) = S(0) exp(−bd), where S is the signal and d is the diffusivity. How-

ever, in the presence of restricted or hindered diffusion the attenuation depends separately on |g|, δ and Δ. Other variables of diffusion encoding

sequences include the echo time (TE) and repetition time (TR). These are often fixed in measurement protocols with multiple sequence‐parameter

combinations to ensure constant relaxation weighting.

Some unconventional implementations of SDE can offer distinct practical benefits. For example, the level of eddy currents can be reduced by

implementing SDE in a double spin‐echo sequence or with asymmetric gradients.71,72 While SDE is often implemented as a pulsed gradient spin‐

echo (PGSE) sequence (Figure 6B), the pulsed‐gradient stimulated‐echo sequence (PGSTE) can provide longer diffusion times than standard PGSE

(Figure 6C). In PGSE, the diffusion time is limited by T2 relaxation, since the SNR decays withTE as exp(−TE/T2). PGSTE comprises three 90° pulses

(rather than one 90° and one 180° pulse as in PGSE) that excite, store and recall the magnetization73,74 (compare Figure 6, Panels B and C). In

PGSTE, only T1 relaxation, which is slower than the T2 relaxation pertinent in PGSE, takes place between the second and third 90° pulses; PGSTE

thus retains more signal at longer diffusion times. However, in PGSTE half of the signal is lost in the storage and recall process compared with

PGSE.75 Thus, PGSTE has an SNR advantage over PGSE only when the time between the gradient pulses exceeds ln(1/2)(T1
−1

− T2
−1), where T1

and T2 are the longitudinal and transversal relaxation times (disregarding imperfections of the RF pulses). In general in PGSTE, care must be taken

to account for both theT1 weighting and diffusion weighting from crusher and imaging gradients, which can confound both experiment design and

subsequent analysis.76 Another unconventional implementation of SDE has gradient pulses of different lengths—the ‘long‐short’ sequence, which

provides particular sensitivity to pore shape.77

Common targets for SDE acquisitions in the brain are, in addition to cell size and shape mentioned above, properties such as anisotropy, fibre

density, exchange and IVIM. Quantification of anisotropic diffusion for fibre direction estimation and tractography is covered elsewhere in this spe-

cial issue. The degree of anisotropy of distinct compartments, such as axons, and the density of these compartments, can be estimated from exper-

iments with multiple diffusion weightings; see, e.g., References 78 and 79. Compartment sizes, e.g. axon diameters, can be probed by SDE with

variable diffusion times.80,81 Restriction manifests as a reduced signal attenuation compared with free diffusion as the diffusion time increases,

and the smaller the compartment the more marked the reduction of attenuation. Exchange between compartments82,83 manifests as increased sig-

nal attenuation, compared with full restriction, as diffusion time increases. The similar effects of increasing restriction length and exchange on the

signal amplitude make them challenging to disentangle in practice with SDE.84 Finally, for low b‐values the SDE signal also captures effects of pseu-

dorandom flow (the IVIM effect),65 which can inform on capillary blood volumes, although quantification can be sensitive to noise.85

2.2.2 | Alternative waveforms

Double diffusion encoding (DDE) (Figure 6D) consists of two successive SDE blocks, separated by a so‐called mixing time.80,86 DDE has also been

referred to as the double pulsed‐field gradient spin‐echo sequence,87 or the double wave‐vector experiment.88 Five distinct usages of DDE target

various microstructural features in different ways.67 The first varies the relative gradient directions of the two SDE blocks to quantify microscopic

anisotropy (see, e.g., References 89–92). The second utilizes parallel gradients but a variable mixing time to measure exchange rates (see, e.g.,

References 23, 70 and 93–95). In this experiment, the first encoding block perturbs the signal fractions of different components, which then grad-

ually restore to equilibrium. Exchange is measured by gradually increasing the mixing times while using the second encoding block to monitor this

equilibration process. The third usage of DDE employs parallel and antiparallel gradients and a short mixing time to vary the degree of flow com-

pensation and thereby improve estimation of blood volumes (see, e.g., References 85, 96 and 97). The fourth uses parallel and antiparallel gradients

and short mixing time to estimate compartment sizes (see, e.g., References 88, and 98). Finally, the fifth usage targets pore size and shape distri-

butions in heterogeneous media by noting the retention of diffusion diffraction patterns.99-102

Oscillating diffusion encoding (ODE) can be achieved with the oscillating gradient spin echo (OGSE) sequence, which replaces the constant

gradient pulses in SDE with pulses that have oscillating gradient amplitude.103 Oscillating waveforms may follow smooth sine or cosine functions

(Figure 6E),103,104 from square waves (Figure 6F)103,105,106 or even irregular square waves.107 With SDE, estimation of the diffusivity in

small compartments requires short diffusion times, which limits the achievable b‐value and thus the sensitivity to microscopic features. ODE can

maintain b‐value at short diffusion times by repeating multiple pulses. This can enhance the sensitivity to the diffusion coefficient in small pores

and thus facilitate estimation of small sizes.108,109 However, recent work110,111 suggests that the primary benefit of ODE for the estimation of axon

diameters (or cylindrical pores in general) arises in the presence of orientation dispersion or uncertainty, because ODE retains sensitivity to size

8 of 26 ALEXANDER ET AL.



while avoiding high b‐values, which lead to low signal from free diffusion along cylinders that are not perfectly perpendicular to the encoding

gradients.

Although SDE, DDE and ODE have been most commonly used to date, there are no theoretical reasons for limiting the gradient waveform to

such designs. Benefits may arise from using irregular waveforms112,113 (Figure 6G). Specific examples include the combination of ODE with DDE

into a double oscillating diffusion encoding (DODE) sequence, which may improve size and shape estimation.114 Other approaches utilize multidi-

mensional waveforms to disentangle microscopic anisotropy from variation in isotropic diffusion, which is not possible with SDE alone.115 Exam-

ples include triple diffusion encoding (TDE),116 circularly polarized gradients,117 magic angle spinning of the q‐vector118,119 and q‐trajectory

encoding (QTE).120,121

3 | STATE OF THE ART

This section summarizes the current state of the art in models relating the diffusion MR signal to features of brain tissue through a historical review.

It then reviews current applications in biomedicine of imaging techniques based on these models.

3.1 | Models for quantitative diffusion MRI

Using biophysical models of diffusion to estimate tissue microstructure follows a longstanding tradition in the field of physical chemistry which

applies models of this kind to determine microstructure of inanimate samples.122 For example, Packer and Rees81 quantified the size distribution

of oil droplets using a model of spheres with log‐normal distributed radii. Pioneering works such as this have inspired the adoption of this approach

in biomedical imaging. In the early days of diffusion tensor imaging (DTI)123 it was hoped that simple indices such as the eigenvalues of the diffusion

tensor, or combinations of them such as the mean diffusivity or fractional anisotropy, would reflect WM tissue properties such as myelination or

fibre density. In regions of approximately parallel fibres, such as the CC, contrast in these parameters may arise from such tissue properties and has

been used in this way in the literature, e.g. Reference 124. However, in general, the effects of orientation dispersion dominate such contrast and

more sophisticated models are necessary to separate the effects.5 This section reviews such models in the context of assessing brain tissue

microstructure.

In this article, we focus on models that exhibit the following two key features. First, the models consider the signal in a voxel as the sum of

contributions from several compartments. Each compartment is posited to correspond to certain cellular components and exhibit a distinct pattern

of diffusion. Often known as compartment models, they provide a natural way to describe the heterogeneity within a voxel and a mechanism to infer

compartment‐specific properties. This is in contrast to signal models, such as DTI, diffusion kurtosis imaging (DKI),125 q‐space imaging,80,126 diffu-

sion spectrum imaging (DSI)127 and mean apparent propagator (MAP)‐MRI128 for SDE, and extensions to DDE,15,91,129-131 which effectively treat

each voxel as a single homogeneous compartment, thus providing only a composite view. Such signal models are reviewed elsewhere in this special

issue.22 Second, the models relate the signal directly to salient microscopic features of each compartment, typically by modelling them as simple,

idealized, geometric objects. For example, models often represent axons as cylinders. Such simple geometries provide close analytical or simple

numerical approximations of the signal, which enable estimation of specific microscopic features via numerical fitting. This is in contrast to, for

example, bi‐exponential decay models,12,132 which, although compartmental in nature, do not explicitly associate diffusion characteristics with

microstructural features.

The first compartment model of neuronal tissue, pioneered by Stanisz et al.,69 models nerve‐tissue microstructure. It designates individual

compartments for glial cells, axons and extracellular space, and aims to estimate the volume fraction of each compartment and the spatial dimen-

sions of the cells. The glial cells are represented as identical spheres and the axons as identical prolate ellipsoids, giving rise to restricted diffusion

characterized by their respective geometry. The diffusion in the extracellular space, hindered by the presence of glial cells and axons, is approxi-

mated with a tortuosity model. Tortuosity refers to the reduction of the apparent diffusivity, relative to the bulk diffusivity, in an environment with

hindrance, i.e. obstacles that increase the path length of a diffusing particle.133-136 Evidence suggests this is a key factor determining the particle

mobility in biological tissue.136 Stanisz et al. employ standard approximations of the tortuosity factor (see, e.g., Reference 137), for simple geom-

etries that relate packing density to reduced apparent diffusivity as a function of the volume fractions of impeding objects—higher volume fraction

leads to lower extracellular diffusivity. The model additionally accounts for the exchange of water between the intracellular compartments and the

extracellular space, via the Kärger model,138 enabling estimation of the exchange rate.

More recent models of WM microstructure represent axons as straight, impermeable, cylinders. The ball‐and‐stick model139 represents the

axons as parallel cylinders of zero radius (the ‘stick’), so that water diffuses only along the cylinder axis, and dispersion in the extra‐axonal space

follows an isotropic diffusion tensor model (the ‘ball’). The model assumes that the intra‐ and extra‐axonal spaces have a common intrinsic diffu-

sivity. The later and more general composite hindered and restricted models of diffusion (CHARMED)140,141 model assumes cylinders to have radii

following a gamma distribution20 and to form one or more (crossing) bundles with distinct orientations. The intra‐axonal signal is determined ana-

lytically by the cylinder radius and the intrinsic diffusivities parallel and perpendicular to the cylinder. The extra‐axonal diffusion is modelled with a

general diffusion tensor unconstrained by any tortuosity model. In References 142 and 143, this two‐compartment CHARMED model is simplified,
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by adopting the stick model of axons, to explain the DKI metrics. In Reference 10, the model is extended with a free water compartment144 to

account for in vivo CSF contamination.

The AxCaliber technique10,20 uses the CHARMED model to estimate the ADD (axon diameter distribution). AxCaliber requires a priori

knowledge of the axon fibre orientation. To enable orientation invariant mapping of axon diameter, the ActiveAx technique11,145 combines

and simplifies features of Stanisz's model69 and the CHARMED model in Reference 10 to produce the minimal model of white matter diffusion

(MMWMD).21 The key simplifications are a single cylindrical axon radius, a single fixed intrinsic diffusivity for the intra‐ and extra‐axonal

compartments, and modelling the apparent perpendicular diffusivity of the extra‐axonal diffusion tensor using a simple tortuosity model from

Reference 137. The MMWMD includes an isotropically restricted compartment (the ‘Dot’ compartment), similar to the glial‐cell model in

Reference 69, to account for unattenuating signal observed at high b‐value in ex vivo data. Later, Panagiotaki et al.146 and more recently

Ferizi et al.147 constructed a taxonomy of compartment models for WM including those above and a range of intermediate and additional

compartment combinations.

Parallel cylinders assumed in the CHARMED and MMWMD models do not account for complex axonal configurations, such as bending and

fanning fibres, that are widespread in WM—see Figure 5 and surrounding text. Spherical deconvolution8,78,148 aims to recover the distribution

of fibre orientations, which partially captures this orientational complexity. Such techniques provide no information on fibre composition whereas

generalizations of microstructural models discussed earlier potentially capture both. The ball‐and‐stick model generalizes straightforwardly to

accommodate fibre crossing149 and orientation dispersion150 by incorporating multiple discrete sticks or a continuous distribution of sticks, respec-

tively. Similarly, the MMWMD model generalizes to capture fibre orientation dispersion151 and crossing,152 and AxCaliber3D extends ADD map-

ping to crossing fibres.153

Models of complex orientation distribution led to the emergence of unified models that aim to represent both WM and GM. Jespersen et al.79

first exploit this opportunity with an analytical two‐compartment model of neurites (dendrites and axons). This model, to represent highly dispersed

dendritic trees, assumes that the cylinders modelling neurites follow an arbitrary orientation distribution described using spherical harmonics.

Additionally, unlike the CHARMED model, the geometry of individual cylinders is not explicitly modelled. Instead, an apparent transverse diffusion

coefficient is used to reflect the combined effect of cylinder radius, bending, undulation, non‐vanishing permeability etc. Similar to the CHARMED

model, the extra‐neurite diffusion is modelled with a general diffusion tensor.

A simpler neurite model is subsequently proposed for neurite orientation dispersion and density imaging (NODDI).5 NODDI simplifies the

orientation‐dispersed MMWMD model151 by representing neurites as sticks rather than cylinders. The main differences from Jespersen's model

in Reference 79 are a parametric description of orientation dispersion with a Watson distribution, which models isotropic orientation dispersion

about a single main fibre orientation, a single fixed intrinsic diffusivity for the intra‐ and extra‐neurite compartments, and the use of a tortuosity

model to specify the apparent extra‐neurite diffusion tensor. The NODDI model has been recently extended to accommodate more general

orientation distributions and to relax many of its constraints on diffusivities. Tariq et al.154 replace the Watson distribution with a Bingham dis-

tribution to accommodate dispersion anisotropy. Fibre crossings are accounted for in Reference 155. Kaden et al.9 avoid any assumption on the

shape of the fibre orientation distribution and further allow the estimation of the intrinsic diffusivity. However, this requires removing the CSF

compartment to obtain estimates from data acquisitions currently practical for clinical studies. Jelescu et al.156 generalize this two‐compartment

model further, by allowing the intra‐ and extra‐neurite compartments to have different intrinsic diffusivities and by not imposing the tortuosity

model, but show that this leads to degeneracies among parameters given currently practical data acquisition. Lampinen et al.6 show that

extending the data acquisition to include a spherical tensor encoding protocol yields additional information that may address this degeneracy,

allowing us to relax one model constraint.

Another family of compartment models places strong emphasis on the statistical modelling of tissue heterogeneity. One of the first examples is

diffusion basis spectrum imaging (DBSI).157 DBSI is unique in that it models the extra‐axonal space as a spectrum of isotropic diffusion tensors. This

spectrum of extra‐axonal compartments is defined by an arbitrary continuous function of diffusivity that specifies the relative fraction of isotropic

tensors with any given diffusivity. A similar idea is exploited in a generalization of the ball‐and‐stick model,158 which assumes a spectrum of intrinsic

diffusivities that follows a gamma distribution. Restricted spectrum imaging159 generalizes DBSI by modelling both intra‐ and extra‐axonal spaces in

terms of diffusivity spectra. Most recently, Scherrer et al.160 have proposed a comprehensive model to capture the heterogeneity from restricted,

hindered and isotropic diffusion. The heterogeneity is modelled by matrix‐valued gamma distributions to generalize the similar approaches in

References 158 and 161–163.

3.1.1 | Limitations of these models

Current models have several common limitations. First, at the heart of compartment models is the division of the measured signals into separate

compartments. This is necessary to disentangle the signal into the contributions from the various underlying cellular components, but the validity of

the division is difficult to assess directly. While experimental evidence suggests that the WM signal can be divided into intra‐ and extra‐axonal ori-

gins (e.g. Reference 164), the existence of distinguishable compartments for glial cells and/or CSF has not been demonstrated explicitly. Second,

the volume fractions estimated from the current models are invariably weighted by the T1 and T2 relaxation times of the corresponding compart-

ment. A case in point is the absence of a myelin compartment in diffusion modelling, which is the result of the very short T2 of myelin19 in com-

parison with the echo times of typical diffusion MR experiments. Third, straight, impermeable cylinders are the standard model of neurites but
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are an oversimplification. Axons are known to undulate63 and dendrites to branch165 (see Figures 4 and 5). The impermeability assumption may be

reasonable in healthyWM over the typical timescales of diffusion MR experiments, but is probably violated in pathology.70,94,166 Fourth, extra‐axo-

nal space is often assumed to exhibit time‐independent hindered diffusion and is modelled by a diffusion tensor, sometimes with a tortuosity

model. However, in vitro experiments167,168 suggest that the extracellular space can exhibit non‐Gaussian diffusion in a densely packed environ-

ment. Further studies169,170 suggest that the time dependence of extra‐axonal diffusion might not be negligible for experiments involving diffusion

times of about 10 ms to about 100 ms. Various models assume fixed or otherwise constrained diffusivity parameters, but recent evi-

dence6,156,171,172 suggests violations of this assumption in the brain. Models for brain tissue often neglect the IVIM effect (see Section 2.1), which

again may be reasonable for healthy tissue, but can be significantly altered in pathology.

To summarize, models potentially incorporate many biophysical influences on the signal. However, practical acquisition protocols support esti-

mation of relatively few model parameters. Model constraints, such as ignoring certain effects, fixing certain parameters, enforcing relationships on

parameter combinations or imposing prior distributions on parameter values, are unavoidable. The art of model design involves first selecting con-

straints that are not overly restrictive or erroneous, and second understanding the behaviour of the model when its constraints or assumptions are

violated. At the time of writing, the community is far from convergence on either issue, and much debate continues over what constraints and

assumptions are reasonable and how best to interpret parameters.6,9,156,173

3.2 | Applications

Model‐based diffusion MRI aims to provide biologically more specific interpretation than standard techniques such as DTI. For example, the range

of model‐based approaches reviewed in the previous section aim to map, and support subsequent analysis of, indices of specific microstructural

features that DTI conflates, such as neurite density, axonal diameter and neurite orientation distribution. This has great appeal for studying normal

brain development, maturation and aging, as well as understanding a broad range of brain disorders. This subsection reviews current examples of

such applications to biologically motivated questions.

3.2.1 | Axonal/dendritic density and orientation distribution

Among the first example applications, Vestergaard‐Poulsen et al.174 applied Jespersen's neurite model79 to examine neurite remodelling in chronic

stress studied in fixated tissue. They demonstrate a significant reduction in neurite density estimates in the hippocampus, amygdala and the pre-

frontal cortex. Later, Wang et al.175 adopted the same model to examine the treatment effect of marrow stromal cells, which stimulate neurite reor-

ganization to promote functional recovery, in an animal model of traumatic brain injury. They find increased neurite density estimates in the

treatment group relative to the control group and the estimated neurite density from diffusion MRI strongly correlates with histology. In both

examples, ex vivo imaging is conducted following the sacrifice of the animals.

As one of the first applications involving living human subjects, Tavor et al.176 use the CHARMED model to study structural plasticity of the

brain following short‐term learning. They demonstrate an increase in an index of dendritic density (the fraction of the restricted compartment)

in several GM areas, including hippocampus and parahippocampal gyrus, which explains the reduction in mean diffusivity (MD) observed from

the corresponding DTI data. In addition, they show that the percentage change in dendritic density index induced by the learning task is consis-

tently larger than the percentage change in MD. This example highlights the increased sensitivity for detecting subtle microscopic changes with

specific markers of microstructure. However, since CHARMED is a WM model and does not explicitly model orientation dispersion, it may lead

to biased estimates of dendritic density in GM and axonal density for WM with non‐negligible orientation dispersion.

Kunz et al.177 apply both the NODDI and CHARMED models to assess WM microstructure in the newborn. The study demonstrates the

feasibility of such analysis and shows that these biophysical models explain multi‐shell data better than the diffusion tensor model. The results

further suggest that NODDI's accounting for non‐negligible orientation dispersion is important in all the major WM tracts, including the

CC. Winston et al.178 applied NODDI to study GM microstructure for the first time. In a clinical cohort of individuals with focal cortical dysplasia,

a subtype of epilepsy, the authors show that focal lesions exhibit reduced neurite density index consistent with previous histological analyses. They

additionally show that the reduction in neurite density index is significantly more conspicuous than the corresponding changes in MD and FA.

NODDI has since been applied to study normal brain development,179 chart the trajectory of brain maturation180-182 and investigate

neurodevelopmental disorders,183,184 neurodegeneration185,186 and other neurological disorders.187,188 The simplified two‐compartment

CHARMED model in Reference 142 has also been increasingly adopted to enhance our understanding of brain development,189,190

neurodegeneration191,192 and neuroinflammation.193-195

3.2.2 | Axon diameter

Given its impact on the speed of information transfer, estimating axon diameter is of significant interest in neuroscience. Techniques such as

AxCaliber20 and ActiveAx11 are difficult on most human scanners, because the gradient strength is insufficient for sensitivity to most axon diam-

eters 21 Thus applications of these techniques are limited. Horowitz et al.196 provide the first example, applying AxCaliber, on a clinical 3 T system

with 40 mT/m gradient, to estimate axon diameter distributions in the CC and correlate these to interhemispheric response times. However, the

study has triggered debate within the community about its validity,197 given the known limitations of estimating axon diameters on systems with

inadequate gradient.21,110,111 More recently, Huang et al.198 took advantage of the unique Connectom scanner with 300 mT/m gradient and used a
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simplified version of AxCaliber in a clinical cohort (multiple sclerosis) to investigate axonal pathology in the mid‐sagittal section of the CC. Huang

et al.198 demonstrate increased axon diameter index in the MS lesions compared with adjacent normal appearing white matter (NAWM), a finding

consistent with reported histopathologic data.

4 | IMPLEMENTATION AND PRACTICALITIES

This section introduces some key steps in the implementation of practical microstructure imaging techniques and summarizes the state of the art

in each.

4.1 | Model selection

Statistical model selection199,200 seeks the model that best explains observations. The problem is important in microstructure imaging, because our

understanding of the mechanisms of MR signal generation from complex tissue architectures remains crude so we typically have to make empirical

choices. Moreover, the degree of complexity that our data can support is unclear. Broadly two strategies are available.

1. Ockham's razor seeks the simplest model, i.e. the model with the smallest number of free parameters, that explains the data. This means

‘explaining’ in the statistical sense of fitting the data within errors expected from noise. Various information criteria, such as Akaike's informa-

tion criterion (AIC) or the Bayesian information criterion (BIC),199 explicitly encode the idea by trading off model complexity against goodness

of fit; Bayesian model selection200 implicitly works similarly.

2. Cross‐validation201 seeks the model that best predicts unseen data. Two distinct tasks arise in predicting: (i) within‐sample measurements

(interpolation); and (ii) out‐of‐sample measurements (extrapolation).

The two strategies often broadly agree, and provably so,201 because a model that predicts unseen data best is generally one that fits visible

data well but without overfitting, i.e. using the smallest possible number of parameters. However, inconsistencies certainly arise (see, e.g.,

Reference 147). The strongest conclusions come from using multiple model‐selection strategies to identify concurrence of model ranking.

A series of publications146,147,202-204 comparing the ability of different models to explain diffusion MR signals from WM tissue, using both

strategies above, provides insight into the complexity of models that such data can support. Panagiotaki et al.146 compared various models on data

from fixed ex vivo rat brain tissue using the BIC. They conclude that explicit modelling of restriction in the axonal compartment, as well as isotropic

restriction (as in Stanisz's glial cell compartment69 or ActiveAx's Dot compartment11), are essential in capturing signal variation. Ferizi et al.147 per-

form a similar analysis on in vivo human brain data, finding again that three compartments are necessary to capture signal variation, although the

in vivo data supports less complex models than Panagiotaki's ex vivo data. Ferizi et al.147 consider AIC, BIC and cross‐validation, as well as a study of

the stability of model ranking over bootstrap samples, which provides useful additional insight into which conclusions are reliable. Rokem et al.205

compare the diffusion tensor model and a multi‐compartment model using cross‐validation with scan‐rescan data. More recent work202-204 high-

lights the importance of fibre dispersion in modelling the signal from in vivo WM, establishing it as a key component of modern diffusion MRI

models for neuroimaging. A broader study reporting results from an organized challenge across the community203 compares a wider set of model

classes using cross‐validation (primarily for interpolated data). Results suggest that even very crude and simple biophysical models can explain data

as well as more complex signal models.

With these kinds of experiment, it is important to keep in mind that simply ‘explaining’ the signal, i.e. fitting measured data with few parame-

ters, says very little about the biophysical accuracy of the model. As an illustrative example, Nilsson et al.206 conclude from studying fitting errors of

various WM models that axonal permeability strongly affects the signal. However, that experiment did not consider models that incorporate the

effects of orientation dispersion. Later work from the same group63 shows that orientation dispersion (a more likely biological explanation) explains

the variation in the data just as well. Nevertheless, experiments that compare fitting errors and model complexity, or prediction accuracy, have

great value. This value lies in the ability to reject models that cannot explain the data. This kind of statistical model selection thus provides a filter

on a broad set of models we might initially brainstorm for an application, allowing us to distil a small set of candidates that are plausible explanations

of what we measure. This insight is key to designing practical and reliable imaging techniques that use such models. However, empirical validation,

as we review in Section 4.4, is essential to refine the choices further.

Finally, we note the importance of out‐of‐sample measurements in model selection (and verification). Often different or new types of measure-

ment can reveal weaknesses or differences among models. For example, recent results from spherical tensor encoding6 or from very rich data sets

with high b‐values173 show that the NODDI model does not explain the full range of signals, particularly from grey matter, despite it fitting data

from standard clinical acquisition protocols fairly well.

4.2 | Experiment design optimization

Experiment design refers to the finite set of data points we sample from the, generally infinite, space of possible measurements. The choice of

experiment design is critical in obtaining good parameter estimates in any model‐based estimation task. In quantitative MRI, the experiment design
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is the choice of pulse‐sequence parameters in each image that provides the data to which we fit the model. In diffusion MRI, the pulse‐sequence

parameters might be, depending on the complexity of the model, just the b‐value or a more complete set of defining parameters, e.g. δ, Δ, g, TE, for

the SDE sequence.145 A good design has to balance competing effects, such as increasing sensitivity with b‐value but lower signal‐to‐noise ratio as

TE increases to accommodate higher b‐value. To design a protocol for front‐line application, i.e. use in a biomedical study or clinical application

rather than development, we seek the combination of measurements that, for a particular budget of acquisition time, maximizes sensitivity to

the parameters of a model we have chosen to use.

The Fisher information matrix207 F is the expectation of the second derivative of the log likelihood of the measured signal. It is a key tool in

experiment design optimization, because the inverse of F provides an estimate of the covariance matrix (i.e. the expected uncertainty of the esti-

mates) of the model parameters given the design. Design optimization typically seeks to minimize the variance of the parameter estimates. Thus,

several scalar functions of F, e.g. Tr(F−1), 1/Det(F) etc. (see References 207 and 208), provide suitable objective functions to minimize with respect

to the combination of sequence settings comprising the acquisition protocol.

Applications of these ideas in quantitative MRI include Dixon imaging,209 quantitative magnetization transfer210 and arterial spin labelling.211 In

diffusion MRI microstructure imaging, Reference 145 outlines a framework for optimizing the design in this way. The acquisition protocols for

ActiveAx in References 11 and 21, NODDI in Reference 5 and filter exchange imaging (FEXI) in Reference 212 all use this approach. These

optimized designs can produce substantial improvements in parameter maps over ad hoc designs; see Figure 7 for an example.

Two caveats are important with this experiment design strategy.

1. For any non‐linear model, F depends on the choice of model parameters. This creates circularity: we can only optimize the design for pre‐

defined parameter values, yet we do not know the parameter values, which is why we estimate them. Moreover, in MRI, the parameter values

vary spatially, but we can only choose one protocol common to all voxels. In practice, we break this circularity by: (i) assuming that the opti-

mality of the design changes slowly as a function of the parameter values; and/or (ii) selecting a range of combinations of representative

parameter values and averaging the objective function over each combination.

2. The optimization has high dimension. A typical diffusion MRI protocol includes of the order of 100 diffusion‐weighted images. With SDE, each

has at least five degrees of freedom, leading to a 500‐dimensional optimization problem.145 Such problems are usually intractable. If we

consider the whole gradient waveform, as in References 112, 113 and 120, the problem explodes further to hundreds of parameters per

measurement. To mitigate this, we can impose constraints on the protocol to bring the dimensionality of the problem under control. For exam-

ple, the framework in Reference 145 divides the DWIs into a relatively small number,M, of high‐angular‐resolution diffusion imaging (HARDI)

shells each with common pulse timing. This reduces the dimensionality to 3M. Even with this relatively small number of dimensions, the search

requires multiple runs of a lengthy stochastic optimization to find good solutions, as the objective function has many local minima. An alter-

native strategy is to optimize proxy quantities, such as the maximal b‐value in the minimum echo time.120

These caveats reveal that experiment design is an inexact science at least in application to microstructure imaging. However, even the

suboptimal solutions we obtain can make substantial practical differences; again see Figure 7. In fact, even in very high‐dimensional experi-

ment design problems, optimization can find useful solutions and provide important insight into the choice of protocol; see, for example,
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FIGURE 7 Comparison of AXR maps from the original213 experiment design and the optimized212 experiment design. The map on the right shows

clearer structure and contrast, despite requiring only 13 min of acquisition as opposed to 45 min for the map on the left. (The slices do not exactly match,

as the acquisitions come from different subjects in a different study, but they show typical contrast for each protocol.) The unit of the grey scale is 1/s
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Reference 113. Validation experiments using simulations, physical phantoms and relevant biological samples are important to verify efficacy of

any design.

We emphasize that the experiment design strategy above is only appropriate once a suitable model has been identified. Preceding steps in the

development of microstructure imaging techniques can require quite different design strategies. For example, model comparison experiments

(Section 4.1) tend to cover the useful measurement space as widely as possible to reveal all significant and potentially useful effects. This contrasts

strongly with F‐based designs, which cluster measurements around a few points at which the signal changes rapidly with parameter values. Other

developmental steps use F‐based optimization, but in different ways. For example, to establish (or rule out) sensitivity of a particular family of mea-

surement to a particular parameter (can we measure any realistic axon diameters in white matter with SDE and 40 mT/m gradients?) requires the

best possible combination of measurements within the family; see, for example, Reference 145. Similarly, to make statements about which pulse‐

sequence family is most sensitive to a particular parameter (is OGSE more sensitive to axon diameter than SDE?) requires the optimal combination

of measurements within each family; see, for example, References 110 and 214. The literature on experiment design (e.g. Reference 208) contains a

variety of other strategies that are relatively unexplored in microstructure imaging and quantitative MRI.

4.3 | Parameter estimation

Once we have a model and some data, a variety of options are available for fitting the model to the data to obtain parameter estimates. An

accompanying article in this special issue22 focuses on some aspects of this challenge, but we summarize key techniques briefly here for

completeness.

The standard procedure is to use maximum likelihood estimation, typically via non‐linear fitting such as gradient descent, independently in each

image voxel. Standard implementations of NODDI, AXR imaging and AxCaliber all use this approach and typically report a single best‐guess param-

eter estimate in each image voxel, although gradient descent techniques do often provide an additional measure of confidence in each parameter

estimate, which can be useful. Sampling techniques, such as Markov chain Monte Carlo (MCMC), sample the posterior distribution on the param-

eter values, which can provide a more complete picture of confidence in each parameter estimate as well as avoiding local minima problems asso-

ciated with gradient descent; ActiveAx uses a multi‐stage fitting process involving gradient descent followed by MCMC sampling. The use of

averaging across direction prior to fitting,9,90,171,215-218 as in the spherical mean technique9,171 or methods that compute higher‐order

moments,173,219,220 can provide invariants to the fibre orientation distribution sensitive only to fibre composition. This can avoid fitting to very

large numbers of measurements by non‐linear optimization, which increases speed and enhances stability.

Recently, various techniques move away from gradient descent to use linearized fitting routines, convex optimization or dictionary‐based

methods. These can avoid local minimum problems and dramatically reduce computation time, at the cost of some precision of the final estimates.

The AMICO framework,221 LEMONADE,222 WMTI,142 and Reference 223 are all examples. However, confidence estimates are less straightfor-

ward to obtain from such techniques than from classical parameter estimation.

Exploitation of spatial coherence of brain images can help to increase accuracy of parameter estimates and resolve ambiguities. In both WM

and GM, the statistics of tissue composition are often similar in neighbouring voxels, suggesting that we can, sometimes, pool information from

neighbouring voxels, rather than treating each independently, to better inform parameter estimates. In WM, the macroscopic continuity of axon

bundles potentially provides further constraints on parameter estimates and their spatial variation. Morgan224 fitted the trend in axon diameter

across the CC to all voxels in the region; Scherrer et al.160 used the BOBYQA algorithm225 to exploit spatial coherence during fitting of the

DIAMOND model. Recent combinations of global tractography and microstructural parameter estimation226,227 also embrace this idea.

4.4 | Empirical evaluation

In order to assess the degree to which model parameters capture the underlying features of the tissue, evaluations can be performed by simulations

or by combined dMRI and microscopy measurements in phantoms or tissues. Figure 8 summarizes the spectrum of approaches. Each provides a

different balance between realism of microstructure and control of ground‐truth values. Numerical approaches typically offer high control at the

expense of realism, whereas the reverse holds true for measurements in tissue.

Numerical simulations support investigations of the robustness of parameter estimates under ideal conditions. The basic premise is to predict

the signal for a given measurement protocol, add noise and fit the model in multiple repetitions. Synthesizing from and fitting back the same model

can establish effects of protocol design and noise level on parameter estimates (see, e.g., Reference 231), the range in which parameters can be

estimated with high accuracy84,232 and the interplay between the hardware constraints and parameter estimates, e.g. the available gradient

strength and the estimated axon diameter index, as in Reference 21. Such evaluations establish an upper bound for the parameter accuracy, which

can be compared across sampling protocols.

We can learn how model parameters respond under departures from the model assumptions by generating data using a model or proce-

dure that is more complex than the one used for fitting. Numerical approaches are useful in this context, and have been used to illuminate

how DTI parameters respond to e.g. crossing fibres or partial volume effects,14,233,234 and to study degeneracy in parameter estimation.156

Monte Carlo (MC) simulations are especially useful to simulate dMRI of complex microstructure.84,228,235,236 In MC simulations, random

walkers are released in a numerically defined microstructure substrate. For each walker, the phase accrued from a simulated gradient
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waveform is recorded and used to predict the signal. Substrates can be constructed to match model assumptions of, for example, parallel non‐

abutting cylinders, as in References 84, 28, 235 and 239. Alternatively, the model can be challenged by constructing substrates with higher

complexity. Such simulations have been conducted to learn how the model parameters respond to changes in fibre shape, permeability, undu-

lation or dispersion.34,63,84,114,228 Segmented histology slides can also yield a substrate with a high level of complexity in both the intra‐axonal

and extracellular spaces.109,237

Physical phantoms, which represent but generally simplify the tissue of interest, provide the opportunity to test models with measured

data but from idealized or simplified samples. Ground‐truth values of model parameters can sometimes be controlled in the phantom con-

struction, and importantly obtained by independent methods such as microscopy. Different materials are used for phantom construction. Inert

materials such as glass or plastics offer long shelf life, high reproducibility and good control over microstructural parameters. Conversely, bio-

logical phantoms, e.g. vegetables or cell cultures, have shorter shelf life, but are often cheap and easy to prepare, although the features of the

microstructure are harder to control and measure. Axon‐like phantoms have been constructed from hollow glass capillaries and used to verify

diffusion models,238,239 validate the relation between pore sizes and diffraction patterns from DDE,101 test size estimation with ODE,240 study

microscopic anisotropy241 and test dMRI with free gradient waveforms.214 Fibre‐like phantoms can also be constructed with co‐

electrospinning,229,242 or formed by liquid crystals.243 Asparagus stems have capillaries that can approximate large axons,230,237,244 while

asparagus puree can be used to study microscopic anisotropy.218 Phantoms that approximate round cells can be constructed from oil‐water

emulsions.81 Such phantoms were used to test compartment models81,105,245 and later to test multimodal microstructure estimation.246 Yeast

cultures also form phantoms with isotropic diffusion in distinct intra‐ and extracellular compartments.94,167,247,248 Yeast cells feature temper-

ature‐dependent membrane permeability, detectable by DDE,70 and cell sizes in the range of 4‐8 μm, which makes yeast cell suspensions an

ideal testbed for methods aimed at cell size estimation.98,107

Measurements in a microstructural environment close to in vivo can be performed by using fixed tissue, which offers many of the same benefits

as phantoms. A drawback is that the ground‐truth microstructure cannot be controlled and may be less well characterized than in phantoms. Many

challenges must be addressed to obtain high‐quality data of fixed tissue.249 It is of key importance to minimize the interval between death and fix-

ation,250 although once fixated successfully the microstructure and the diffusion parameters can be stable for years.249 However, the degree to

which the fixation alters the microstructure is unknown.251 Alternatively, measurements on viable tissue samples can be obtained to avoid possible

fixative‐related biases.251-253 Results from comparisons between dMRI‐derived parameters and microscopy of fixed tissue have revealed time‐

dependent diffusion congruent with diffusion restricted within axon‐sized compartments.20,68 OGSE‐frequency dependence in both the intra‐axo-

nal and extracellular spaces,109 and good agreement of myelinated neurite fractions from dMRI and histology.4 Image analysis of fixed tissue has

also been used to quantify levels of axonal orientation dispersion.7,254

Direct validation where the same tissue is used for both MRI and histology is particularly useful to guide the interpretation of model param-

eters, for example, by comparing axon diameters estimated from dMRI with those estimated from histology.10 Naturally, such validation is impos-

sible in healthy human brain tissue, and can be challenging even in a preclinical setting. Indirect validation by comparison to literature values is an

FIGURE 8 Methods for empirical validation of microstructure imaging, showing the spectrum of techniques with increasing realism but decreasing

specificity of ground truth (left to right). A, Numerical simulations can be used to simulate data (top) and evaluate the robustness of model

parameter estimation (bottom). B, Monte Carlo simulations can be used to investigate diffusion in simple to complex digital substrates.228 C

Physical phantoms can be composed of inert material (top, from Reference 229) or of biological material (bottom, from Reference 230).

Measurements on phantoms provide an opportunity to validate the pulse sequence implementation, as well as sanity check parameter estimates in

simple geometries where ground truth is relatively well defined and to some extent controllable. D, Fixed tissue offers means to obtain high‐quality

data without motion artefacts, while still having access to ground truth via, for example, electron microscopy (bottom, courtesy of Mark Burke). E,

Measurements on viable (rather than fixed) tissue in a maintenance chamber can be performed to alleviate potential alterations of the tissue

microstructure from fixation; the image pair at the bottom shows electron microscopy from tissue that spent 10 h in a tissue maintenance chamber

(left) compared with tissue deprived of glucose and oxygen for 2 h (right); courtesy of Simon Richardson. F, In vivo imaging combined with ex situ

microscopy can be performed in preclinical conditions or in patients undergoing surgery to assess the agreement of MRI‐based and microscopy‐

based analysis
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alternative, for example, regarding axon diameter estimation in humans.11 Resections in patients with e.g. brain tumours may, however, offer a rare

opportunity for direct validation.255,256

4.5 | Development pipeline

The various steps above are all important in the development of successful microstructure imaging techniques. Figure 9 illustrates broadly how the

different steps fit together. The key messages are the following.

I. The process is iterative rather than linear: earlier steps predominantly inform later steps, but, very often, later steps will reveal new informa-

tion that require rethinking and repetition of earlier steps.

II. Theoretical work to understand tissue structure and signal generation are necessary to find good models, but not sufficient. Empirical steps

are essential to refine candidate models that theoretical brainstorming identifies. This includes both statistical model selection to reject

models that do not explain the data, and validation against independent measurements to find models that best estimate histological

parameters.

III. Theoretical development of the model must go hand in hand with the design and choice of sequence and measurement protocol to ensure

that the data acquired provide sensitivity to the parameters we intend to estimate.

IV. Very good arguments must be identified for increasing model complexity over the simplest available models that reasonably explain the

trends in the data (as described in Section 4.3). Robustness, repeatability and computation time are extremely important for clinical and bio-

medical application. These requirements favour simpler models even further than statistical model comparison alone. On the other hand, the

assumptions of simpler models may be violated more easily and frequently. Users must be cautious of this and have an understanding of how

the model behaves when it happens. Of course, it is much easier to reason about anomalous parameter values in a model with two variables

than a model with 10, so the ability to detect and explain anomalies again should favour simple models.

V. Similarly, very good arguments must be identified for using pulse sequences that go beyond the simplest possible (e.g. SDE via PGSE). In par-

ticular, the benefits of non‐standard sequences in terms of parameter sensitivity are sometimes quite subtle. At the same time, such

Understand the tissue microstructure 
and pathology 

Study histology, anatomy and 
physiology 

Identify salient tissue components

Identify MR measurements likely to 
provide sensitivity to salient features Construct candidate mathematical or 

computational models 

Which compartments exist? What are 
their properties and geometries? 

How can we model each compartment 
parsimoniously yet accurately?

Acquire rich data sets covering the 
useful measurement space as widely 
as possible 

Reject candidate models unable to 
explain the signal

Further refine candidate models 

using validation tools to evaluate 
the potential to recover histological 

information 

Be wary of complex models: 

simplicity is key!

Choose a working model 

Optimise an economical acquisition 

protocol designed to inform that model 

Revalidate using the economical 

protocol

Run pilot applications

Turn research code into a usable 

software package supporting 
applications of the new imaging 

technique

Work with end-users 

Pilot the new technique in exemplar 
applications to highlight hidden 

problems

Theoretical phase

Experimental phase

Application phase

Brainstorm candidate models

Identify imaging targets
Specify contrasts and sequences

Model comparison with rich data
Validation and model selection

Experiment design optimization

Engineer supporting software

FIGURE 9 Microstructure imaging development pipeline. We identify three phases. A theoretical phase first gains an understanding of the

microstructure of the tissue of interest, it then brainstorms measurements (i.e. choice of sequence and protocol) likely to provide sensitivity to

the imaging targets within that tissue, and similarly brainstorms candidate models linking these measurements to tissue features. An experimental

phase then acquires data to test, compare, validate and select working models and acquisition protocols. Finally, an application phase develops

user‐friendly software enabling widespread uptake of the technique. This must involve work with end‐users in real‐world applications to turn

prototype code into a working system, understand user behaviour and provide the necessary education to use the technique appropriately. The

phases, as well as the steps within them, are mutually informative, so the pipeline is iterative rather than linear
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measurements may incur unexpected and easily missed artefacts. Benefits and drawbacks should thus be analysed and tested carefully.

Moreover, lack of availability on commercial MRI scanners can hinder wide uptake even when benefits are clear.

VI. Robust and usable software together with exemplar applications are essential for translation to widespread uptake. Both require substantial

investment of time, but are essential steps in identifying problems of usage and interpretation, as well as engineering a technique for front‐

line application.

5 | FUTURE AND EMERGING IDEAS

Despite the great promise, current microstructure‐imaging techniques remain simplistic with clearly identifiable limitations. A variety of paths are

available for amelioration of current limitations and for greater advances towards the next generation of quantitative microstructural imaging

techniques.

5.1 | Better models

The biophysical models underpinning current microstructure imaging techniques remain crude. The practical demands for simple models, which

Section 4.5 summarizes, necessitate major simplifying assumptions, such as fixed diffusivity parameters, fixed axon diameter distribution, no

exchange between compartments, perfectly straight and cylindrical axons, simplistic tortuosity approximation, … the list goes on. A variety of

anomalous results point to the fact that these design choices are oversimplifications. For example, diffusion MRI axon diameter mapping tech-

niques typically overestimate the axon diameter in comparison to classical histology by a factor of 3 or more11,21,151; isotropic diffusion encodings

suggest similar mean diffusivity in the intra‐ and extracellular spaces,121 which is incompatible with diffusion models such as NODDI, at least in

GM; measurements at high b‐value may not support tortuosity constraints,173 although the intuition that greater axon density reduces perpendic-

ular diffusivity seems reasonable, so the result perhaps suggests other model inaccuracies. Current models neglect effects such as exchange, axonal

undulation, branching of dendrites and glial cell processes. Simply adding additional model parameters to capture such effects leads to over‐param-

etrization preventing any sensible parameter estimates. However, independent experiments to measure these various quantities potentially enable

strong priors to help account for such effects. Recent trends toward computational rather than mathematical models (see, for example, 166 and

167), can help capture effects, such as undulation, exchange, branching and extracellular tortuosity, for which mathematical models are intractable.

They do not help with over‐parametrization, but such models can help identify the locus of possible parameter combinations that can explain mea-

surements thus supporting more reasoned downstream inference that accounts for parameter uncertainty.

5.2 | Advanced pulse sequences

Current techniques in widespread application use the standard SDE sequence. However, as discussed in Section 2.1, advanced pulse sequences

potentially offer greater sensitivity to tissue features we currently estimate as well as additional sensitivity to new features. Research remains to

characterize fully the benefits of different sequences and the precise situations in which these benefits arise, although certain specific benefits

are already clear. For example, OGSE enhances sensitivity to axon diameter in simple compartment models in the presence of orientation disper-

sion or uncertainty110; DDE and q‐space trajectory imaging can discriminate microscopic anisotropy from distributed microscopic pore size, which

SDE cannot distinguish90,91,115,218,256; DDE can enhance sensitivity to exchange23,94 and improve estimation of blood volumes.85 Several chal-

lenges remain in exploiting the potential benefits of such sequences: (i) making them readily available and stable on standard clinical platforms;

(ii) optimizing acquisition strategies and imaging protocols to yield acceptable scan times; (iii) identifying specific applications in which they offer

a clear benefit; and (iv) constructing sufficiently stable and parsimonious models that relate their signals to useful tissue features. Immediate appli-

cations do arise in verifying, or highlighting limitations of, models designed using only standard SDE sequences, as in Reference 6.

5.3 | Parameter estimation

We can expect methods of parameter estimation to become more reliable, enhancing the precision of parameter maps. The dictionary‐based

approaches discussed in Section 4.3 offer great promise and are essential for processing very large databases of images. Techniques such as

multi‐model inference199 are largely unexplored in microstructure imaging, but should help to avoid consistent bias in parameter estimates while

avoiding over‐fitting. Such techniques also enable quantification of uncertainty in parameter estimates arising not just from noise, but also from

uncertainty in the choice of model, thus quantifying more precisely our belief that parameter estimates reflect true underlying tissue

microstructure.
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5.4 | New hardware

Next‐generation MRI scanners can dramatically enhance the performance of microstructure imaging techniques. Stronger magnetic field gradients

have major benefit by: (i) increasing the signal to noise of diffusion‐weighted measurements by reducing the echo time required for a particular b‐

value; (ii) reducing the lower bound on the pore size to which the signal is sensitive. Dyrby et al.21 demonstrate the benefits of enhanced gradient

strength on estimation and mapping of axon diameter in fixed monkey brains, confirming earlier simulation work such as Reference 230. The ex vivo

work in Reference 12 exploits 50 T/m gradients. Recent work on the Boston Connectom scanner257 shows promising results in axon diameter

mapping in live subjects both in health (see, e.g., 13) and in disease.198

Higher field strength also offers advantages for diffusion MRI and microstructure imaging in general by providing images with higher signal and

higher spatial resolution. Although higher field strength also reducesT2 potentially to the detriment of diffusion MR signals, recent work258,259 con-

firms benefits of moving to higher field as well as the complementarity of 3 T and 7 T data, which can combine advantages of higher spatial res-

olution at high field with higher signal at high b‐value available at lower field.260

5.5 | Multimodality

A major new avenue for microstructure imaging in the future is to combine information from diffusion MRI with that from other MR contrasts or

even other modalities. Various other quantitative MR techniques offer complementary information on tissue microstructure to diffusion MRI, and

the construction of models informed by multiple contrasts has the potential to resolve ambiguities that are intrinsic to single‐modality approaches.

The first multi‐modality microstructure imaging techniques are just starting to appear. For example, recent work on g‐ratio estimation and mapping

combines estimates of myelination from quantitative magnetization transfer124,261 or myelin water imaging262 with estimates of axonal density

from diffusion MRI, albeit without using an integrated model of both contributing modalities. Early work combining estimates of pore density from

diffusion MR and optical imaging provides an example of an integrated model.246 Exciting possibilities arise in joint modelling of relaxometry (see,

e.g., Reference 263) and susceptibility imaging (see, e.g., Reference 264), with diffusion MRI, since the former are confounded by microstructural

orientation effects, which the latter is able to estimate with relatively high accuracy. However, serious challenges arise in multi‐modal microstruc-

ture imaging. First, the idea demands unified models relating MR to tissue features across multiple contrasts, none of which currently have broadly

agreed models even independently. Second, practical issues arise in processing and alignment of images from different contrasts, which often use

quite different acquisition and reconstruction algorithms, to ensure sets of measurements from corresponding volumes of tissue.

5.6 | Further applications

As we mentioned in Section 3.2, the range of applications of microstructure imaging techniques in the brain is expanding rapidly. The idea further

extends naturally to non‐brain applications, although different models are required to explain the signal. Recent developments in non‐brain cancer

imaging265-267 extend the paradigm from the brain with extremely promising results. Many other opportunities are available in, for example, imag-

ing the heart, muscle tissue, liver, kidney, lung, placenta and many other solid organs. The appetite for such techniques from clinicians and biomed-

ical researchers can be very high, because they rely solely on painstaking histological analysis for specific information on tissue structure. However,

it can take time to educate such users in the precise capabilities of such techniques. As non‐invasive approaches become more available and pop-

ular, we must be careful to understand their limitations and educate users of such limitations to avoid misinterpretation. Nevertheless, exposing

techniques to users is essential to identify both potential and limitations—we hope an understanding of the pipeline outlined in Figure 9 can help

to balance these competing pressures and expedite the development of powerful future microstructure imaging tools.
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