
Imaging CSEM data in the presence of electrical anisotropy

Gregory A. Newman1, Michael Commer1, and James J. Carazzone2

ABSTRACT

Formation anisotropy should be incorporated into the

analysis of controlled-source electromagnetic �CSEM� data

because failure to do so can produce serious artifacts in the re-

sulting resistivity images for certain data configurations of

interest. This finding is demonstrated in model and case stud-

ies. Sensitivity to horizontal resistivity will be strongest in

the broadside electric field data where detectors are offset

from the tow line. Sensitivity to vertical resistivity is stron-

gest for overflight data where the transmitting antenna passes

directly over the detecting antenna. Consequently, consistent

treatment of overflight and broadside electric field measure-

ments requires an anisotropic modeling assumption. To pro-

duce a consistent resistivity model for such data, we develop

and use a 3D CSEM imaging algorithm that treats transverse

anisotropy. The algorithm is based on nonlinear conjugate

gradients and full wave-equation modeling. It exploits paral-

lel computing systems to effectively treat 3D imaging prob-

lems and CSEM data volumes of industrial size. We use it to

demonstrate the anisotropic imaging process on model and

field data sets from the North Sea and offshore Brazil. We

also verify that isotropic imaging of overflight data alone pro-

duces an image generally consistent with vertical resistivity.

However, superior data fits are obtained when the same over-

flight data are analyzed assuming an anisotropic resistivity

model.

INTRODUCTION

New geophysical technologies can be combined with established

seismic methods to improve the characterization of reservoir fluids

in situations of practical interest. One technique that has emerged in

the last several years uses low-frequency electromagnetic �EM� en-

ergy �less than 10 Hz� to map variations in the subsurface electrical

resistivity of offshore oil and gas prospects �Eidesmo et al., 2002; El-

lingsrud et al., 2002; Constable, 2006; MacGregor et al., 2006�. In

the marine controlled-source electromagnetic �CSEM� measure-

ment technique, a deep-towed electric dipole transmitter is used to

excite a low-frequency EM signal that is measured on the seafloor by

electric and magnetic field detectors, with the largest transmitter-de-

tector separations exceeding approximately 15 km. Electromagnet-

ic �EM� data have been shown to be highly sensitive to changes in the

pore-fluid types and the location of oil and gas accumulations, given

that oil and gas are far more resistive than brine or water. The CSEM

technique therefore has the potential to extract valuable information

on reservoir fluid and rock properties that might not be sensed direct-

ly by seismic methods. The technique has been used to interrogate

down to reservoir depths as deep as 4 km but benefits from structural

information from seismic imaging to help delineate the bulk reser-

voir and surrounding geologic structure �cf. MacGregor et al., 2007�.

Tompkins et al. �2004� and Tompkins �2005� recognize the impor-

tance of electrical anisotropy in the interpretation of CSEM data and

this result could be anticipated from measurements made in deviated

wells. Horizontally layered sedimentary sequences often arise in oil

and gas exploration and can exhibit transverse anisotropy on a mac-

roscopic scale — a scale much larger than individual sedimentary

layers. Transverse anisotropy is the simplest case to model �cf. New-

man and Alumbaugh, 2002�. Fortunately, this corresponds to many

situations encountered in actual geologic basins in which CSEM

measurements are made for hydrocarbon exploration. Although it is

possible to treat the more general form of the problem in which the

formation anisotropy is modeled as a tensor with six independent el-

ements �cf. Weiss and Newman, 2002�, sedimentary formations are

frequently horizontally layered or nearly so and the anisotropy can

be described by independent vertical and horizontal resistivities.Al-

though there are cases in which anisotropy is not vertically trans-

verse and does not conform precisely to this scenario, vertical aniso-

tropy still represents a significant improvement over an isotropic

modeling assumption. Moreover, CSEM measurements could pre-

clude the ability to map generalized anisotropy because of limited

data coverage and acquisition geometry. Whether they can is an area

of future research and is outside the scope of this paper.

Anisotropy can have a profound effect on CSEM measurements
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and its effect depends strongly on acquisition geometry. The study of

electrical currents in a double half-space by Lu and Xia �2007� is il-

luminating. Their model consists of an upper half-space that is iso-

tropic �the sea water� and a lower half-space exhibiting transverse

anisotropy �the sea bed�. Vertical current flow and, hence, vertical re-

sistivity have a much stronger impact on overflight electric-field

measurements �null coupled data excluded�; overflight data corre-

spond to the case in which the CSEM tow line is over the detector.

However, broadside measurements in which the measuring antenna

is offset from and parallel to the tow line are far more sensitive to

horizontal currents and, hence, the horizontal resistivity of the sea

bed.

Large-scale 3D imaging is also receiving considerable attention in

the interpretation of CSEM data �Carazzone et al., 2005; Plessix and

van der Sman, 2007, 2008; Carazzone et al., 2008; Commer and

Newman, 2008; Commer et al., 2008; Gribenko and Zhdanov, 2007;

Plessix and Mulder, 2008; Zach et al., 2008�.Although 1D modeling

and inversion is relatively easy and trial-and-error 3D forward mod-

eling is seemingly straightforward �Green et al., 2005; Hoversten et

al., 2006; Weiss and Constable, 2006�, the need for 3D imaging is

necessary because the search for hydrocarbons now increasingly oc-

curs in highly complex situations in which hydrocarbon effects are

subtle aspects of the total offshore geologic environment. Further

complicating matters is the realization that electrical anisotropy also

needs to be incorporated directly into the imaging process �Caraz-

zone et al., 2008; Jing et al., 2008; Newman and Commer, 2008�.

Failure to properly treat anisotropy can produce misleading and

sometimes uninterpretable results when broadside data are included.

Merely excluding broadside data-detecting antennas is frequently an

issue when 3D coverage is desired.

In this paper, we introduce a 3D imaging approach that treats

transverse anisotropy, which seems to be relevant for many practical

exploration scenarios. We use it to study the imaging of electrical an-

isotropy in synthetic and field data set examples. The algorithm is

based on nonlinear conjugate gradients and full wave-equation mod-

eling and is an extension of an algorithm designed for 3D isotropic

media �Commer and Newman, 2008�. It exploits parallel computing

systems to effectively treat large-scale 3D imaging problems and

CSEM data volumes of industrial size.

IMAGING FRAMEWORK

In setting up the 3D imaging framework, we use finite-difference

�FD� approximations to Maxwell’s equations in the diffusive ap-

proximation for computing predicted data and cost functional gradi-

ents. The imaging problem is solved using a nonlinear conjugate-

gradient scheme based on a regularized least-squares approach im-

plemented on parallel computing systems. Many of the details of the

3D imaging approach adopted in this paper have been published

elsewhere for the isotropic case �Newman and Boggs, 2005; Com-

mer and Newman, 2008�. An extension to treat the case of media ex-

hibiting transverse anisotropy is not difficult and we provide a short

discussion of the methodology here and in the appendix. For further

technical details, we refer readers to the abovementioned works.

We seek to minimize the error functional

� �1/2�D�dp
�dobs�T*��D�dp

�dobs��

�1/2�h�Wmh�T�Wmh��1/2�v�Wmv�T�Wmv�,

�1�

where T* denotes the transpose-conjugation operator and dobs and dp

the observed and predicted CSEM data, consisting of n complex val-

ues of electric and magnetic fields at the detectors. A diagonal

weighting matrix D is incorporated into the error functional to help

compensate for noisy measurements. Stabilization terms also appear

in equation 1 and are designed to treat media exhibiting transverse

electrical anisotropy. Parameterization of anisotropic electrical con-

ductivity is made on a Cartesian grid, in which horizontal and verti-

cal values are assigned to m cells — note that conductivity is the re-

ciprocal of resistivity. Solution stabilization is achieved by reducing

the model curvature in three dimensions in the minimization pro-

cess. To do this, we use an FD approximation to the Laplacian ��2�,
producing a roughening matrix W. Matrix W acts on the horizontal

and vertical conductivity values mh and mv, which are bounded us-

ing log or hyperbolic transformations. The regularization parame-

ters �h and �v control the amount of smoothing admitted into the

model for the two conductivities.

In modeling transverse anisotropy, an additional constraint is of-

ten imposed, mh �mv. The inequality is strictly valid for the case of

thin vertical stacked layers that can be modeled as a parallel-serial

circuit to electrical current flow in the horizontal and vertical direc-

tions.Although it is possible to enforce this inequality in the minimi-

zation of equation 1 with the parameterization

mv��mh; 0�� �1, �2�

we do not enforce it in the results reported here. Sedimentary forma-

tions, although often layered, might not be sufficiently thinly layered

for equation 2 to hold in general. Moreover, unlike well-logging

problems in which measurements can be designed to sense varia-

tions in thin stacked layers along a well, CSEM measurements are

made on the sea bed at a remote distance from such layering. They

are not capable of distinguishing thin vertical variations in layering

at the same resolution that can be recognized from induction log-

ging. Nevertheless, for the problems discussed in this paper, we find

equation 2 holds to a high degree even when the constraint is not ex-

plicitly enforced.

MODEL STUDY

Before presenting any field cases, model studies can yield impor-

tant insight into interpreting the experimental results and can serve

to properly set expectations. We consider a simple model to illustrate

the key features in imaging data influenced by transverse anisotropic

media. Because the CSEM method is designed to map resistors, we

present models and imaging results that follow in the form of electri-

cal resistivity instead of conductivity. The model shown in Figure 1

represents a simple reservoir model of 50 � ·m isotropic resistivity.

Its host medium exhibits transverse anisotropy, where horizontal

��h� and vertical ��v� resistivities are 0.65 and 2 � ·m, respectively.

The seawater resistivity is isotropic �0.3 � ·m� and its depth is

slightly more than 1 km. The model also exhibits a flat sea bottom

with no bathymetry.

Data-acquisition geometry consists of 10 sail lines spaced at 1 km

�Figure 2�, where the transmitter transmits at 100-m intervals along

each sail line at three frequencies: 1.25, 0.75, and 0.25 Hz. Twenty-

five sea-bottom detectors on a uniformly sampled grid at 1 km are

also shown. These detectors sample the horizontal electric fields in

orthogonal directions Ex and Ey, whereas magnetic data are also re-

corded with field measurements, it has been our experience they of-

fer little more information content than what is present in the electric
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fields and will not be used here. Inline data �the null coupled data

arising from detector antennas perpendicular to the sail line are dis-

carded� and broadside data are present. For computational efficien-

cy, we use reciprocity in which the detectors become the computa-

tional transmitters and the transmitters become the computational

receivers. Numerical tests have demonstrated that the requirements

of reciprocity are met to a satisfactory degree by the FD scheme

used. Exploiting reciprocity results in 150 computational transmit-

ters and 211,200 computational detectors.

In generating the synthetic data, we used a much finer grid — 2013

nodes �cell size 50 m� — than used in the imaging experiments.

Three simulation grids were used in the imaging, corresponding to

513, 813, and 1013 nodes and assigned to frequencies 0.25, 0.75, and

1.25 Hz. The respective cell sizes for the simulation grids are 200,

125, and 100 m and are adapted to source frequency to meet the spa-

tial sampling requirement of four grid nodes per skin depth. These

grids are assigned to each computational transmitter depending on

frequency and are used to compute predicted data and simulate fields

within the medium. The grid used to render the image is finer than the

simulation grids — 1203 nodes. Separation of the imaging grid from

the simulation grids results in significant acceleration in the compu-

tations. Interested readers are referred to Commer and Newman

�2008� and the appendix for more details on the grid separation ap-

proach.

Five-percent Gaussian noise was added to the data and data ampli-

tudes below an assumed noise floor of 1�10�13 were discarded.

Data weighting was based on the amplitude of each data component

to ensure that long offset data would make meaningful contributions

in the error functional. In selecting the regularization tradeoff pa-

rameters �h and �v, we did not enforce directionally dependent

smoothing on the model. Larger tradeoff parameters produce

smoother images at the expense of an increase in the data-fitting er-

rors and smaller tradeoff parameters produce the opposite. The

choice of regularization parameters is dictated by the data noise and

is optimally carried out using a cooling approach, in which initially

large tradeoff parameters are selected and then systematically re-

duced until the data fit to the expected noise. This can lead to multi-

ple inversion runs at considerable cost. For purposes here, we tested

several values, settling on tradeoff parameters that were fixed to a

value of 0.25.

We carried out imaging of the data using two types of measure-

ments: overflight and broadside data together, and overflight data

only. This choice in considering two types of data is influenced by

findings that broadside data with detectors parallel to the tow line are

more sensitive to horizontal resistivity, much more so than overflight

data �Commer et al., 2008�. Using an isotropic starting model of

1 � .m for the sea bed, imaging results for a combination of over-

flight and broadside data �left panels� and only overflight data �right

panels� are shown in Figures 3 and 4 in cross section and plan views.

Enhanced resistivity of the reservoir zone is indicated in the vertical

resistivity. Moreover, horizontal and vertical resistivities of the host

medium are also captured within the sensitivity footprint of mea-

surements. Footprints for vertical and horizontal resistivity illumi-

nation correspond to bowl-like structures; outside the illumination

footprint there is little to no change in the resistivity from the starting

model. These structures extend to several kilometers depth over the

center of the tow lines and are more clearly rendered when the hori-

zontal and vertical resistivity are plotted as a ratio �see Figure 5�. The

anisotropic imaging results show that treatment of overflight and

broadside data renders sharper images than using data acquired only

in the overflight mode. However, the overflight data produce a better

depth estimate of the reservoir. This result arises because the imag-

ing process was allowed to continue out to 250 iterations, compared

to 100 iterations for the broadside and overflight data �see Figure 6�.

Improved depth resolution is observed as the problem is iterated.

Failure to image the reservoir is clear when inline and broadside

data are treated assuming isotropic media. Rapid resistivity varia-

tions down to several hundred meters below the seafloor are ob-

served, below which a low-resistivity feature several hundred

meters thick is also indicated. The resulting data misfit �the data

component part in equation 1� is unacceptably large �see the top plot

in Figure 6�, indicating the modeling assumptions are inadequate to

image the data. Inspection of the data fits show that the cause for this

poor result is due to the broadside data, specifically arising from de-

50 m

1.05 km
0.3 Ω.m

0.65h/2.0v Ω.m

50h/50v Ω.m

Tx

Rx

1.2 km

0.3 km

3.0 km

SL = 3.0 km

Figure 1. Asimple 3D model to illustrate the key features in imaging
data influenced by transverse anisotropy.

Sail lines
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transmitters

Sea-bottom

detector

-4 -3 -2 -1 0 1 2 3 4 km

Scale

Overflight

Ey
Ey Δy

Ex
Ex

Measurement configurations

broadside

Figure 2. The data acquisition geometry consists of 10 sail lines
spaced at 1 km. Twenty-five sea-bottom detectors are shown and the
projection of the reservoir is indicated by the dashed square. Differ-
ent measurement configurations are also illustrated.
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tectors oriented parallel to the tow line. It confirms findings obtained

from isotropic imaging of field data discussed below. Because inline

broadside data are very sensitive to horizontal resistivity, failure to

include anisotropy in the imaging process can produce disastrous

image artifacts. However, the problem can be reduced by imaging

only the overflight data. The result is illustrated in the right panels of

Figures 3 and 4. Although still inferior to anisotropic imaging, en-

hanced resistivity is clearly associated with the reservoir. Thus over-

flight data are not that sensitive to horizontal resistivity but rather to

vertical resistivity and can be imaged using an isotropic model, al-

though image artifacts near the sea bottom remain. Data misfit is also

much better in this case than when broadside and inline data are im-

aged assuming isotropic media �compare the corresponding top and

bottom plots in Figure 6�.

Results from this model study can be summarized as follows:

With CSEM data, sensitivity to horizontal resistivity will be stron-

gest in the broadside data with detectors parallel to and offset from

the tow line and isotropic imaging assumptions can produce serious

artifacts. Although it is possible to image vertical resistivity with

overflight data and still extract useful information assuming an iso-

tropic model, optimal results require a full treatment of anisotropic

media within the imaging process.

FIELD EXAMPLES

Two field examples will now be presented. It is outside the scope

of this paper to carry out a complete appraisal analysis of images
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produced from field data. Such an analysis requires multiple inver-

sions using different assumptions of data noise and weighting, regu-

larization tradeoff parameters, and starting models. Tradeoffs be-

tween vertical and horizontal resistivity are certain to arise in the im-

age process. The nature of these tradeoffs is difficult to quantify

without a thorough appraisal study; therefore, our aim is more mod-

est: to demonstrate that consistent anisotropic resistivity models can

be produced that fit the observations better than isotropic models and

to confirm findings from the model study. When features of the resis-

tivity models can be verified with independent information, we will

do so. Encouragingly, critical features of these models can be con-

firmed.

Troll field

Controlled-source electromagnetic �CSEM� data acquired over

the Troll West Gas Province �TWGP� have been used to vet isotropic

imaging algorithms developed by various researchers �cf. Commer

and Newman, 2008; Plessix and Mulder, 2008, Li et al. 2009, among

others�. Here we will use the data to verify results thus far developed

from the model study for anisotropic media. The gas reservoir is lo-

cated offshore Norway in the North Sea. A single 25-km-long sail

line crosses over the reservoir with 24 CSEM electric field detectors

spaced along 12 km of the line, over the gas field. The transmitter is

towed in an overflight profile mode at an average height of 25 m

above the seafloor. Seawater depth varies from 300 to 360 m over

the sail line. Following Commer and Newman �2008�, bathymetry

effects are assumed to be minimal and ignored in the analysis. Data

at two frequencies were used — 0.75 and 0.25 Hz. Simulation mesh-

es used for the two frequencies are based on skin depth estimations,

as discussed earlier. A separate simulation mesh is assigned to each

source in practice and is adapted to the source and receiver positions

and their corresponding offsets. The meshing is summarized in Ta-

ble 1 along with the imaging mesh. We also used the same type of

data amplitude weighting and the noise floor assumptions for the

field data as was done in the model study and by Commer and New-

man’s �2008� earlier investigation. Vertical and horizontal regular-

ization tradeoff parameters were fixed at 0.1 and are also based on

the tradeoff parameter that was used in the analysis of the Troll data

that assumed an isotropic resistivity model.Additional details on the

Troll survey logistics and the setup of the imaging experiment can be

found in Johansen et al. �2005�.

Figure 7 compares imaging results for anisotropic and isotropic

media along with an interpreted geologic section published by Jo-

hansen et al. �2005�, based principally on well-log and seismic data.

Isotropic and anisotropic �vertical resistivity� models clearly image

the gas field and correspond closely to the geologic section. Even

though we failed to achieve the target misfit of one �Figure 8�, the an-

isotropic inversion produced a model that yields good data fits and a

lower misfit error. Sensitivities to horizontal and vertical resistivity

variations are observed and it appears that the isotropic imaging at-

tempts to merge these disparate resistivities into a single image. It is

tempting to assign low-resistivity features to horizontal resistivity

variations but a detailed appraisal study is needed to make a determi-

nation. These features could also arise from a tradeoff between verti-

cal and horizontal resistivity parameterization and from stabiliza-

tion/regularization used in the imaging. Down to 1-km depth below

the sea bed, we observed much less variation in the vertical and hori-

zontal resistivities than in the isotropic case; at the seafloor we ob-

served resistivity variations for isotropic and anisotropic cases. We

believe this is caused by detector positioning errors and high sensi-

tivity in the imaging to near sea-bottom resistivity variations.Aniso-

Table 1. List of model and simulation grids for the Troll data inversion. The variables �m and � s
1 and � s

2 correspond to the
modeling mesh and the two simulations meshes designed for frequencies 0.25 and 0.75 Hz. Grid sizes are in meters.

Grid Number of cells 	x 	y 	z

�m 125�41�59 250 250 100

	x
min

/	x
max 	y

min
/	y

max 	z
min

/	z
max f�Hz�

� s
1 85�41�85 125 /250 250 /250 25 /200 0.25 � f1�

� s
2 110�43�85 75 /125 125 /250 25 /200 0.75 � f2�
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Figure 6. Convergence plots for isotropic and anisotropic media.
The top plots show the data misfits plotted against inversion iteration
for broadside and overflight data. Ideally, the target misfit is one as-
suming that the noise in the data is Gaussian. The lower plot is only
for overflight data. Note also that number of iterations used for an-
isotropic imaging differs in the two plots.
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tropic imaging of the Troll data shows intriguing and consistent re-

sults. Even in anisotropic imaging of the overflight mode, lower da-

ta-fitting errors are observed compared to isotropic imaging of the

data.

Campos Basin

The Campos Basin, located offshore Brazil, is a known oil and gas

province with ongoing production. In 2004, a first-of-its-kind 3D

CSEM survey was carried out to better quantify the hydrocarbon po-

tential over part of the basin. Analysis of the Campos Basin data in-

cluding the broadside measurements without taking anisotropy into

account produced serious image artifacts �Commer et al., 2008�. It

was demonstrated that inline broadside electric-field data were par-

ticularly sensitive to horizontal resistivity and could not be interpret-

ed with an isotropic model. Carazzone et al. �2008� present 3D an-

isotropy imaging results of Campos Basin data. With the treatment

of anisotropy, 3D imaging of the electric field data produced inter-

pretable results. Here we will review the findings of these works, fo-

cusing on the importance of anisotropy in the imaging process.

The Campos Basin data were acquired using 10 sail lines at 5-km

intervals �Figure 9�, resulting in data acquisition from nearly one

million transmitter sites using three frequencies: 1.25, 0.75, and

0.25 Hz. Twenty-three detectors were deployed on the seafloor on a

40�40 km2 grid. Horizontal grid sizes used in the imaging mesh
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were kept constant at 	�250 m and vertical meshing varied from

40 to 200 m depth. Thus the total number of nodes used in the mesh-

ing was 403 along x and y and 173 nodes vertically, which corre-

sponds to 27.8 million cells. Horizontal meshing for field simulation

was designed on the criteria that from each computational source

midpoint, 10 skin depths were spanned assuming 2-� ·m resistivity

for the sea bed. Grid sizes varied with frequency and were set to 	

�250 m, 200 m, and 125 m, according to frequency f �0.125 Hz,

0.25 Hz, and 0.5 Hz, respectively. Vertical meshing for simulation

was identical to that in the image mesh to account for an accurate

representation of the seafloor bathymetry. With these consider-

ations, the size of the simulation meshes was reduced significantly;

the number of x and y grid nodes range from 128 to 162. Solution ac-

curacy was also verified against solutions in which simulation and

imaging meshes were identical.

Overflight and broadside electric field data were imaged from

this experiment using fixed tradeoff parameters �h�0.025, �v

�0.025, and ��0.25 for the isotropic case. A detailed 3D starting

model was constructed from forward modeling of the data. To pre-

serve key features of the starting model in the imaging process, it

was necessary to avoid setting the regularization parameters too

large because large parameters smooth out the resistivity image. We

also avoided making them too small to ensure a stable image. Data

weighting used was based on the amplitude of the total electric field

at each computational detector to reduce the sensitivity of weakly

coupled data in the inversion process. Again, reciprocity processing

was used to reduce the number of computational transmitters. All

three components of the electric field were included in the data anal-

ysis. Shown in Figure 10 are data fits for isotropic and anisotropic

modeling assumptions along selected profiles. The isotropic results

presented by Commer et al. �2008� show that it is possible to fit the

overflight data and broadside perpendicular and vertical data as the

problem is iterated but not the broadside data arising from the detec-

tors parallel to the tow line �inline components�. A systematic fitting

error is observed with broadside inline data displays, which does not

dissipate as the problem is iterated. This indicates a bias in the under-

lying assumptions used in the image processing. However, over-

flight and broadside inline data can be fit with an anisotropy model.

These results confirm that the broadside data, particularly the inline

detector components, are quite sensitive to horizontal resistivity and

other data components to vertical resistivity.

Commer et al. �2008� show that the resistivity images created by

the isotropic media produced strong data-acquisition overprints,

particularly near the seafloor, and other nongeologic effects pro-

ceeding to significant depths �this resistivity image is shown in Fig-

ure 11�. Subsequent modeling by Commer et al. �2008� also con-

firms that improved broadside data fits �inline data� can be achieved

by considering the medium that exhibits transverse anisotropy. A

complete anisotropic inversion of the data was carried out by Caraz-

zone et al. �2008�.As expected, anisotropic resistivity imaging elim-

inates the problems observed with isotropic resistivity assumptions.

Although the resistivity interpretation by Carazzone et al. �2008�

does not directly reveal hydrocarbons, they demonstrate many cor-

relations between the resistivity and seismic images that high-grad-

ed the hydrocarbon potential. Shown in Figure 12 is a vertical resis-

tivity transect across a known hydrocarbon reservoir with the seis-
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Figure 10. Plotted are data fits to overflight data
�line RC07; upper left shows isotropic and lower
left shows anisotropic� �line RC06; upper right
shows isotropic and lower right shows anisotrop-
ic�. Data acquired at the detector in bold and the
plots are projected along the x axis �see Figure 9�.
The observed data are plotted in black, the predict-
ed data at iteration 72 and 63 in green, and the pre-
dicted data for the starting model in red. The data
correspond to a frequency of 0.125 Hz. The aniso-
tropic starting model uses a vertical resistivity
identical to that used in the isotropic imaging.
However, the horizontal resistivity was set to one
third the vertical resistivity below the water bot-
tom.
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mic image superimposed. The combined image shows three interest-

ing features. Anomaly A points to a resistivity enhancement associ-

ated with a known oil field below a seismically imaged fault. At

anomaly B, the resistivity enhancement is associated with a possible

trap above a salt diapir with stratigraphic pinchouts and faulting.

Lastly, anomaly C shows a possibility of conductive brine leaking up

from deeper salt. Although salt is considered resistive, brines origi-

nating from it can be conductive. Such brines can be buoyant and rise

from depth because of dissolved gas.

CONCLUSIONS

The algorithm introduced in this paper has been designed to treat

3D resistivity media exhibiting transverse anisotropy. Within the

stated modeling assumptions, this algorithm is sufficiently general

and can treat large-scale imaging problems and industrial-sized data

volumes critical for 3D CSEM resistivity imaging. There are also

several extensions to the algorithm worth mentioning. Joint imaging

of CSEM and magnetotelluric �MT� data has much appeal as MT

data acquisition comes at little additional cost and can significantly

improve resolution of the resistivity image �cf. Commer and New-

man, 2009�. Our approach to imaging 3D transverse anisotropy is

easily extended to a joint imaging framework for CSEM and MT

data. In fact, we have already implemented it. An extension to treat

3D media exhibiting generalized anisotropy is also possible but will

require six resistivity estimates per image cell. We doubt that all six

parameters can ever be resolved given the additional number of de-

grees of freedom but future research on the problem might prove

otherwise. The results from the Campos Basin study are encourag-

ing in this regard. Clearly, the anisotropy present is not strictly trans-

verse given how salt and faulting has distorted the geologic bedding

planes yet a transverse anisotropic resistivity model is sufficient to fit

the data and has resistivity features that are geologically consistent

with well information and seismic imaging results. Perhaps the de-

scription of the resistivity with horizontal and vertical resistivity is

sufficient here because the model is represented by cell values on a

grid. Because the cell size is much smaller than the skin depth, the

modeled anisotropy at the skin-depth scale is quite general.

Case and model studies confirm the importance of electrical an-

isotropy in imaging CSEM data. The presence of anisotropy can be

confirmed when overflight and broadside electric-field measure-

ments are found to be inconsistent with an isotropic resistivity mod-

el. Electric field data acquired in the broadside configuration using

inline detectors are particularly sensitive to horizontal resistivity.

1 2
log ρ (Ω.m)

a)

b)

c)

Figure 11. Shown is the average resistivity computed over three
depth ranges assuming an isotropic medium. The figure is from
Commer et al. �2008� and shows �a� average resistivity from the wa-
ter bottom to 500-m depth, �b� depth interval 500 to 1500 m, and �c�
1500 to 2500 m. Resistivity is rendered on a base 10 log scale.
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Figure 12. Rendered at the top is the average vertical resistivity map
from 500 to 2500 m below the seafloor, superimposed with sail
lines used to acquire the Campos Basin data. Also shown are lease
block boundaries outlined in violet and known hydrocarbon deposits
�black contours�. The cross-section at the bottom shows the vertical
resistivity image along the indicated transect. The EM image is
shown together with seismic-reflection horizons. Results are pre-
sented by Carazzone et al. �2008�.
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High sensitivity to vertical resistivity is observed for overflight elec-

tric field data and broadside vertical and perpendicular data to some

extent. Isotropic imaging using such data can yield meaningful re-

sults with respect to vertical resistivity �broadside measurements

omitted� because there is less sensitivity to horizontal resistivity

variations. Nevertheless, we find that anisotropic imaging of these

data produces superior results as measured by better data fits and

more consistent resistivity models.
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APPENDIX A

3D CSEM INVERSE MODELING: TREATING

TRANSVERSE ANISOTROPY

Minimization of equation 1 is carried out using a nonlinear con-

jugate gradient scheme with a line search to control the model step.

Typically, only three to four solutions of the forward-modeling prob-

lem for each transmitter and excitation frequency are necessary to

obtain the model update. This iterative scheme is ideal for large-

scale data sets and imaging volumes that typically arise for CSEM

problems. The solution for isotropic media has been developed by

Commer and Newman �2008� and Newman and Boggs �2005�. Here

we will discuss modifications to the abovementioned approach for

media exhibiting transverse anisotropy.

Large computational demands arise in solving realistic 3D

CSEM field simulation problems. In solving such problems, we use

FD approximations over a simulation mesh because of their simplic-

ity and accuracy. Now the simulation mesh � s is not required to be

identical to the mesh �m used for the inverse modeling. Hence, sig-

nificant computational efficiencies can be realized when the meshes

are different for large-scale problems �cf. Commer and Newman,

2008�. The solution of the forward problem is obtained through a

sparse linear system of equations

KE�S . �A-1�

It is solved using iterative Krylov methods �cf. Newman and Boggs,

2005�. With 13 nonzero entries per row, K is a sparse complex sym-

metric matrix, E is the electric field sampled on the mesh using a

staggered grid �Yee, 1966�, and S is the field sourcing term, with Di-

richlet boundary conditions imposed in equation A-1.

This matrix equation is a discrete representation of the operator

� � � �ES
� i
�o�� ES

�� i
�o��� ��� b�Eb,

�A-2�

where

�� ��
� h 0 0

0 � h 0

0 0 �
v

� and �� b
��

� h
b 0 0

0 � h
b 0

0 0 �
v

b�
�A-3�

Equation A-2 is a 3D vector equation for the scattered electric field

arising in conductive media exhibiting transverse anisotropy. It as-

sumes a time harmonic dependence of e�i
t, where 
 represents an-

gular frequency and i���1. The electrical conductivity �� is de-

scribed by a tensor, where � h and �
v

denote the conductivities in the

horizontal and vertical directions; magnetic permeability �o is as-

sumed to be that of free space. We prefer a scattered field solution to

the field equations over a total field because of accuracy issues, par-

ticularly in the vicinity of the transmitter. In a scattered-field formu-

lation, we are also required to specify a background electric field Eb.

Thus the total electric field is given by E�Eb
�Es. Here we have

selected a background field arising from 1D layered media that also

exhibits transverse anisotropy �� b. The background field can be easi-

ly and quickly computed from Hankel transforms. Once the electric

field is determined from equation A-1, the magnetic field follows

from Faraday’s law by numerically approximating the curl of the

electric field at the various nodal points and interpolating these fields

to the points of interest. In a scattered field formulation, background

fields will need to be added to the interpolated fields to yield the total

fields.

Following Commer and Newman �2008�, the inversion un-

knowns mh and mv belong to �m and a mapping is required from � s

to �m in computing the gradient of equation 1. This gradient is used

to update the conductivity model in the inversion process using the

nonlinear conjugate-gradient scheme previously mentioned. Con-

sider the data component of the gradient �d�mh,mv�, which in-

volves only the first term in equation 1,

�d�mh,mv���Re��DJT�D�dp
�dobs�*� . �A-4�

The above expression requires the Jacobian matrix, which we split

into horizontal and vertical components based on horizontal and ver-

tical conductivity sensitivities

J��jh

jv
	 . �A-5�

Here specific elements are given by

j jk
h

�

�d j
p

�mhk

and j jk
v

�

�d j
p

�m
vk

j� , . . . ,N; k�1, . . . ,M,

�A-6�

with N and M representing the number of data points and inverse

modeling cells. In terms of the electric field on the simulation mesh

� s, the Jacobian elements can also be expressed by

j jk
h

�q j
T �E

�mhk

�A-7�

and

j jk
v

�q j
T �E

�m
vk

, �A-8�
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where qj is a column vector for the jth data point that maps the elec-

tric field solution on � s to the detector location. Next, differentiating

equation A-1 with respect to mh
k
and m

v
k
, we have

�E

�mhk

�K�1
 �S

�mhk

�
�K

�mhk

E� �A-9�

and

�E

�m
vk

�K�1
 �S

�m
vk

�
�K

�m
vk

E� . �A-10�

Using the chain rule, we can express equations A-9 and A-10 in

terms of the conductivities on the simulation mesh, where

�E

�mhk

�K�1
�
l�1

P�k�
�S

�� hl

�� hl

�mhk

� �
l�1

P�k�
�K

�� hl

�� hl

�mhk

E�
�A-11�

and

�E

�m
vk

�K�1
�
l�1

Q�k�
�S

��
vl

��
vl

�m
vk

� �
l�1

Q�k�
�K

��
vl

��
vl

�m
vk

E� .

�A-12�

The summations are over conductivity cells on the simulation

mesh that overlap cell k on the modeling mesh �Figure A-1�. For the

kth model �inversion� cell, we have P�k� and Q�k� horizontal and

vertical conductivities overlapping from the simulation mesh. For

the isotropic case, Commer and Newman �2008� provide an explicit

formula for �� l /�mk based on a material averaging scheme of

Moskow et al. �1999�. The extension to media exhibiting transverse

anisotropy is straightforward, with material averaging for horizontal

and vertical conductivities each done separately. Computational ef-

ficient forms for the gradient �the data part� follow by substituting

equations A-11 and A-12 into equations A-7 and A-8 followed by

substitution into equation A-4. Note we never explicitly form K�1 or

the Jacobian when evaluating the gradient. For computational effi-

ciency, an adjoint state method is exploited. We refer the reader to

Newman and Boggs �2005� for further details.
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