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Imaging Dynamical Chiral-Symmetry Breaking: Pion Wave Function on the Light Front
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We project onto the light front the pion’s Poincaré-covariant Bethe-Salpeter wave function obtained
using two different approximations to the kernels of quantum chromodynamics’ Dyson-Schwinger
equations. At an hadronic scale, both computed results are concave and significantly broader than the

asy

asymptotic distribution amplitude, @5 (x) = 6x(1 — x); e.g., the integral of ¢, (x)/ %" (x) is 1.8 using the
simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent
phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.
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The momentum-space wave function for a nonrelativis-
tic quantum mechanical system #(p, r) is a probability
amplitude, such that | (p, 1)|* is a non-negative density
which describes the probability that the system is described
by momenta p at a given equal-time instant . Although the
replacement of certainty in classical mechanics by proba-
bility in quantum mechanics was disturbing for some, the
step to relativistic quantum field theory is still more con-
founding. Much of the additional difficulty owes to the loss
of particle number conservation when this step is made:
two systems with equal energies need not have the same
particle content because that is not conserved by Lorentz
boosts, so that even interpretation via probability densities
is typically lost. To exemplify: a charge radius cannot
generally be defined via the overlap of two wave functions
because the initial and final states do not possess the same
four-momentum and hence are not described by the same
wave function.

Such difficulties may be circumvented by formulating a
relativistic theory on the light front because the eigen-
functions of the light front Hamiltonian are independent
of the system’s four-momentum [1,2]. The light front wave
function of an interacting quantum system therefore pro-
vides a connection between dynamical properties of the
underlying relativistic quantum field theory and notions
familiar from nonrelativistic quantum mechanics. It can
translate features that arise purely through the infinitely-
many-body nature of relativistic quantum field theory into
images whose interpretation is seemingly more straightfor-
ward. Naturally, that is only achieved if the light front wave
function can be calculated.

A phenomenon for which a quantum mechanical image
would be desirable is dynamical chiral-symmetry breaking
(DCSB). Strictly impossible in quantum mechanics with a
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finite number of degrees of freedom, this striking emergent
feature of quantum chromodynamics (QCD), the strong-
interaction part of the Standard Model, plays a critical role
in forming the bulk of the visible matter in the Universe
[3]. Expressed in numerous aspects of the spectrum and
interactions of hadrons, e.g., the large splitting between
parity partners [4,5] and the existence and location of a
zero in some hadron form factors [6], DCSB has not yet
been realized in the light front formulation of quantum
field theory.

The impact of DCSB is expressed with particular force
in properties of the pion. It is the pseudo-Goldstone boson
that emerges when chiral symmetry is dynamically broken,
so that its very existence as the lightest hadron is grounded
in DCSB. As a corollary, numerous model-independent
statements may be made about the pion’s Bethe-Salpeter
amplitude and its relationship to the dressed-quark propa-
gator [7]. Given that the pion’s light front valence-quark
distribution amplitude (PDA) can be computed from these
two quantities, their calculation provides a means by
which to expose DCSB in a wave function with quantum
mechanical characteristics.

Consider, therefore, the following projection of the
pion’s Bethe-Salpeter wave function onto the light front,

A
Fro(®) = ttenZs jd S(n- gy —xn- PYysy - nys(q; P)
q

(D

where f is the pion’s leptonic decay constant; the trace is
over color and spinor indices; [ {}q is a Poincaré-invariant
regularization of the four-dimensional integral, with A the
ultraviolet regularization mass scale; Z,(£, A) is the quark
wave function renormalization constant, with ( the
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renormalization scale; n is a lightlike four-vector, n> = 0;
P is the pion’s four-momentum, P> = —mZ% and n - P =
—m,, with m . being the pion’s mass; and the pion’s Bethe-
Salpeter wave function

X=(q;P) = S(q )T -(q; P)S(q-), (2)

with T, the Bethe-Salpeter amplitude, S the dressed
light-quark propagator, and g, =¢q+ nP, q_- =
g — (1 —n)P, 5 €[0, 1]. Owing to Poincaré covariance,
no observable can legitimately depend on 7, i.e., the
definition of the relative momentum. Using Eq. (1), one
may show that the moments of the distribution, viz.,
(xmy := [l dxx™ ¢ .(x) are given by

A
Folnn - PY" My = trepZs fd (- q0)"ysy - nxa(q: P).
q

3)

The dressed-quark propagator may be expressed as

S(p) = —iy - poy(p®, *) + o5(p*, (), (4a)
= 1/[iy - pA(p%, {®) + B(p%, {P)],  (4b)

and can be obtained from the gap equation [8,9]. The
pion’s amplitude is obtained from the Bethe-Salpeter
equation, a modern expression of which is explained in
Ref. [10]. With n = 1/2 in the Bethe-Salpeter equation,
one may write the amplitude in the form

I'(q;P)="ys[iE (q;P)+v-PF,(q;P)+q-Py-qG,.(q;P)
+0,,9,P,H(q:P)], (5)

where the functions are even. Owing to DCSB and the
axial-vector Ward-Takahashi identity, all scalar functions
in Eq. (5) are nonzero [7]. Moreover, in the chiral limit,
which we subsequently employ exclusively, m, = 0 and

f=E(q;0) = B(g?). (6)

This Goldberger-Treiman-like identity, part of a near com-
plete equivalence between the one-body and pseudoscalar
two-body problem in QCD, is a pointwise statement of
Goldstone’s theorem. The gap and Bethe-Salpeter equa-
tions are key members of the set of Dyson-Schwinger
equations (DSEs), which provide an efficacious tool for
the study of hadron properties [8,9].

Significant features of ¢,.(x) in Eq. (1) can be elucidated
algebraically with a simple model before employing
numerical solutions for S(p), I',. To this end, with
Ay(s) =1/[s+ M?] and n =0 in Egs. (1) and (2),
consider

S(p) =[—iy - p + MIAy(p?), (7)
1 Tw+32), .,
p,(z) = \/_77- m(l %), (®)

M3 [
Mol = ivs o [ dep, @Ayt ©

where g.. =g — (1 ¥ z)P/2. Inserting Egs. (7)—(9) in
Eq. (3), using a Feynman parametrization to combine
denominators, shifting the integration variable to isolate
the integrations over Feynman parameters from that over
the four-momentum ¢, and recognizing that d*q integral
as the expression for f ., one obtains

_IQv+2)Fm+v+1)

X = G T Dl m £ 20 £2) (10)

Suppose that » = 0; i.e., the pion’s Bethe-Salpeter am-
plitude is independent of momentum and hence describes a
point particle, then Eq. (10) yields
rerm+1) 1
rrm+2) m+1’

@y =

an

These are the moments of the distribution amplitude
¢ ,(x) = 1, which is indeed that of a pointlike pion [11].

Alternatively, consider v = 1. Then, I',(k?) ~ 1/k* for
large relative momentum. This is the behavior in QCD at
k* > uZ, where ug = 0.5 GeV is the dynamically gen-
erated gluon mass [12]. » = 1 in Eq. (10) yields (x™), =
6/[(m + 3)(m + 2)]. These are the moments of @5 (x) =
6x(1 — x), viz., QCD’s asymptotic PDA [13].

It is readily established that with Eqgs. (7)—(9) in Eq. (3),
one obtains the “‘asymptotic’ distribution associated with
a (1/k?)” vector-exchange interaction, viz.,

_TI'@Qrv+2)

@w(x) = m

x’(1 — x)”. (12)
Notably, the z-modulated dependence on ¢ - P in Eq. (9) is
the critical factor in obtaining the results described here.
To illustrate, if one uses »=1 but 2p(z)=56(1—2z)+
8(1 + z), then point-particle moments Eq. (11) are obtained
even though I' (k?) ~ 1/k? for k> > M?. There is a natu-
ral explanation. Namely, with such a form for p(z) one
assigns equal probability to two distinct configurations:
valence quark with all the pion’s momentum and valence
antiquark with none, or antiquark with all the momentum
and quark with none. In assigning equal weight to these
two extreme configurations, one has defined a bound state
with point-particle-like characteristics. It follows that devi-
ations from the asymptotic distribution Eq. (12) may be
expressed through p,(z).

We solve the gap and pion Bethe-Salpeter equations
numerically using the interaction in Ref. [14], which
preserves the one-loop renormalization group behavior
of QCD and guarantees that the quark mass function
M(p?) = B(p?% %)/A(p?, £?) is independent of the renor-
malization point, which we choose to be { =2 GeV. In
completing the gap and Bethe-Salpeter kernels, we employ
two different procedures and compare their results:
rainbow-ladder truncation (RL), the most widely used
DSE computational scheme in hadron physics, detailed

132001-2



PRL 110, 132001 (2013)

PHYSICAL REVIEW LETTERS

week ending
29 MARCH 2013

in App. A.1 of Ref. [15]; and the DCSB-improved (DB)
kernels detailed in App. A.2 of Ref. [15], which are the
most refined kernels currently available. Both schemes are
symmetry preserving, and hence ensure Eq. (6), but the
latter incorporates essentially nonperturbative effects asso-
ciated with DCSB into the kernels, which are omitted in
rainbow-ladder truncation and any stepwise improvement
thereof [10]. This kernel thereby exposes a key role played
by the dressed-quark anomalous chromomagnetic moment
in determining observable quantities [16] and, e.g., clari-
fies a causal connection between DCSB and the splitting
between vector and axial-vector mesons [4].

The solutions are obtained as matrices. Computation of
the moments in Eq. (3) is cumbersome with such input, so
we employ algebraic parametrizations of each array to
serve as interpolations in evaluating the moments. For
the quark propagator, we represent oy g as meromorphic
functions with no poles on the real p? axis [17], a feature
consistent with confinement [9]. Each scalar function in
the pion’s Bethe-Salpeter amplitude is expressed via a
Nakanishi-like representation [18], i.e., through integrals
like Eq. (9), with parameters fitted to that function’s first
two g - P Chebyshev moments. (Details are provided else-
where [19].) The quality of the description is illustrated via
the dressed-quark propagator in Fig. 1.

Using Eq. (3), it is now straightforward to compute
arbitrarily many moments of the pion’s PDA, {(x")|m =
1,..., My we typically employ mp,, = 50. Since
Gegenbauer polynomials of order a, {C¢(2x—1)|n=0,
...,00}, are a complete orthonormal set on x € [0, 1] with
respect to the measure [x(1 — x)]*-, a_ = a — 1/2, they
enable reconstruction of any function that vanishes at x =
0, 1. [N.B. ¢(x) is even under x < (1 — x). It vanishes at
the end points unless the interaction is momentum inde-
pendent.] We therefore write

P (GeV?)

FIG. 1 (color online). og(p?) in Eq. (4a)—RL kernel: solution
(open circles) and interpolation function (long-dashed curve);
and DB kernel: solution (open squares) and interpolation func-
tion (solid curve). In the chiral limit at large p?, os(p?) ~ 1/p*.

and minimize e, = Y., _; . [(x™)% /(x™) — 1|. A value
of j, =2 ensures mean-{|(x")%+2/(x"\0 —1||lm=1,...,
Mpax <1%. In using Gegenbauer-a polynomials, we
allow the PDA to differ from ¢35’ for any finite { and
accelerate the procedure’s convergence by optimizing «.
One may project our result onto a {C3/?} basis, which is
that used by other authors, but this incurs costs, such as
requiring far more nonzero coefficients {ai/ 2} and intro-
ducing spurious oscillations that are typical of Fourier-like
approximations to a simple function.

The dashed curve in Fig. 2 is our RL result obtained with
Dw = (0.87GeV)?, o = 0.5 GeV. It is described by

oRU(x) = L74[x(1 — 0] [1 + aB-C5®2x — )], (14)

with  agp = 0.79, a¥ =0.0029. Projected onto a
Gegenbauer-(a = 3/2) basis, Eq. (14) corresponds to
a$? =023,...,a%? = 0022, etc. That j=14 is
required before a§.3/ S O.la(23/ 2) highlights the merit of
reconstruction via Gegenbauer-a polynomials at any rea-
sonable scale, . The merit is greater still if, as in lattice
QCD, one only has access to a single nontrivial moment.
In seeking an estimate of ¢.(x), it is better to fit « than to
force @ = 3/2 and infer a value for a(23 2,
The solid curve in Fig. 2 described by

@PB(x) = L81[x(1 —x)]*™[1 +aDBCs™ (2x— )], (15)

apg = 0.81, aP® = —0.12 was obtained using the most

sophisticated symmetry-preserving DSE kernels that are
currently available [4], with Do = (0.55 GeV)?, n = 0.6.
Projected onto a {CY/?} basis, Eq. (15) corresponds to
af’? = 0.15. Only for j = 14 is a%/? < 0.1a5"?.

By way of context, we note that a computation using
QCD sum rules [20] produced ¢, (x = 1/2) = 1.2 = 0.3,
which may be compared with ¢R(1/2) = 1.16,
©PB(1/2) = 1.29, and with the value from the asymptotic
form, @7’ (1/2) = 1.5. In addition, we find

(2x — 1)?)RL = 0.28, ((2x — 1)?)PB = 0.25. (16)

1.5F

101

¢(X)

0.5f

0.0LE - - -
0.0 0.25 0.50 0.75 1.0

X

FIG. 2 (color online). Computed distribution amplitude at { =
2 GeV. Curves: solid, DCSB-improved kernel (DB); dashed,
rainbow ladder (RL); and dotted, asymptotic distribution.

132001-3



PRL 110, 132001 (2013)

PHYSICAL REVIEW LETTERS

week ending
29 MARCH 2013

Lattice QCD [21] yields a value of 0.27 £ 0.04 for this
moment, whereas it is 0.2 for the asymptotic distribution.

Numerous qualitatively significant results can be read
from Fig. 2. The most important being that DCSB is
expressed in the PDA through a marked broadening with
respect to @5 . This may be claimed because we have
computed the PDA at a low renormalization scale in the
chiral limit, whereat the quark mass function owes entirely
to DCSB, and, on the domain 0 < p?> < £?, the nonpertur-
bative interactions responsible for DCSB produce signifi-
cant structure in the dressed quark’s self-energy. The PDA
is an integral of the pion’s Bethe-Salpeter wave function,
whose pointwise behavior is rigorously connected with
that of the quark self-energy (see Eq. (6) and kindred
Goldberger-Treiman relations [7]). Hence, the structure
of the pion’s distribution amplitude at the hadronic scale
is a pure expression of DCSB. As the scale is removed to
extremely large values, phase space growth diminishes the
impact of nonperturbative DCSB interactions so that the
PDA relaxes to its asymptotic form.

Significant, too, is the pointwise difference between the
DB and RL results. It is readily understood, bearing in mind
that low-m moments are most sensitive to ¢ (x) in the
neighborhood of x = 1/2, whereas high-m moments are
sensitive to its end point behavior. RL kernels ignore
DCSB in the quark-gluon vertex. Therefore, to describe a
given body of phenomena, they must shift all DCSB
strength into the infrared behavior of the quark propagator,
while nevertheless maintaining perturbative behavior for
p* > %, This requires B(p?) to be large at p> = 0 but
drop quickly, behavior which influences ¢ ,(x) via Eq. (6).
The concentration of strength at p? = 0 forces large values
for the small-m moments, which translates into a broad
distribution. In contrast, the DB kernel builds DCSB into
the quark-gluon vertex, and its impact is therefore shared
between more elements of a calculation. Hence a smaller
value of B(p? = 0) is capable of describing the same body
of phenomena, and this self-energy need fall less rapidly in
order to reach the common asymptotic limit. [Using Eq. (4),
these remarks become evident in Fig. 1.] It follows that the
low-m moments are smaller and the distribution is narrower.
Both PDAs have the same large-x behavior because the RL
and DB kernels agree at ultraviolet momenta.

Notably, one should not expect to obtain agreement with
data for a given process by using our computed form of
¢ »(x) in the relevant lowest-order (in coupling), leading-
twist formula. This is illustrated well via the y*y — 7°
transition form factor, G, ,+. The dashed curve in Fig.2
was obtained using a RL. DSE kernel in that class which
reproduces all uncontroversial data on this process [11].
However, when employed in the asymptotic formula [13],
the result for QZGWY* is too large by roughly a factor of 2.
Plainly, subleading contributions are important, at least for
0? = 10 GeV? and probably on a larger domain, as also
observed elsewhere [22,23].

Our PDA computations unify a diverse range of phe-
nomena. The rainbow-ladder result, e.g., connects directly
with ab initio predictions for 77 scattering, pion electro-
magnetic elastic and transition form factors [8], and nu-
cleon and A properties [24]. And, although the use of
DCSB-improved kernels is just beginning, our related
prediction for the PDA links immediately with analyses
showing that DCSB is, e.g., responsible for both a large
dressed-quark anomalous magnetic moment [16] and the
splitting between parity partners in the spectrum [4,5].

The pion’s PDA is the closest thing in QCD to a quantum
mechanical wave function for the pion. Its hardness at an
hadronic scale is a direct expression of DCSB.
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