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Abstract

Purpose—To investigate whether imaging features from pre-treatment planning CT scans are 

associated with overall survival (OS), recurrence-free survival (RFS), and loco-regional 

recurrence-free survival (LR-RFS) after stereotactic body radiotherapy (SBRT) among non-small-

cell lung cancer (NSCLC) patients.

Patients and methods—A total of 92 patients (median age: 73 years) with stage I or IIA 

NSCLC were qualified for this study. A total dose of 50 Gy in 5 fractions was the standard 

treatment. Besides clinical characteristics, 24 “semantic” image features were manually scored 

based on a point scale (up to 5) and 219 computer-derived “radiomic” features were extracted 

based on whole tumor segmentation. Statistical analysis was performed using Cox proportional 

hazards model and Harrell’s C-index, and the robustness of final prognostic model was assessed 

using ten-fold cross validation by dichotomizing patients according to the survival or recurrence 

status at 24 months.
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Results—Two-year OS, RFS and LR-RFS were 69.95%, 41.3% and 51.85%, respectively. There 

was an improvement of Harrell’s C-index when adding imaging features to a clinical model. The 

model for OS contained the Eastern Cooperative Oncology Group (ECOG) performance status 

(Hazard Ratio [HR] = 2.78, 95% Confidence Interval [CI]: 1.37 – 5.65), pleural retraction (HR = 

0.27, 95% CI: 0.08 – 0.92), F2 (short axis × longest diameter, HR = 1.72, 95% CI: 1.21 – 2.44) 

and F186 (Hist-Energy-L1, HR = 1.27, 95% CI: 1.00 - 1.61); The prognostic model for RFS 

contained vessel attachment (HR = 2.13, 95% CI: 1.24 – 3.64) and F2 (HR = 1.69, 95% CI: 1.33 – 

2.15); and the model for LR-RFS contained the ECOG performance status (HR = 2.01, 95% CI: 

1.12 – 3.60) and F2 (HR = 1.67, 95% CI: 1.29 – 2.18).

Conclusions—Imaging features derived from planning CT demonstrate prognostic value for 

recurrence following SBRT treatment, and might be helpful in patient stratification.
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1. Introduction

Stereotactic body radiotherapy (SBRT) is a technique that allows delivery of very high doses 

of radiation per fraction to a focused target with relatively less irradiation of normal tissues. 

SBRT is a treatment option for early stage non-small cell lung cancer (NSCLC) patients who 

are medically inoperable or who refuse surgery, or have high surgical risk. The treatment 

outcomes of SBRT are comparable to surgery 1-3, and the disease-free survival rates are 

reported to be 48.3% at 3 years 1. In patients that progressed after SBRT, 84% of cases 

occurred within the first 2 years4, in which period radiation-induced lung injury is invariably 

observed. Distinguishing between recurrence and lung injury is problematic. Previous 

studies 5-7 have identified standardized uptake value of FDG-PET and CT-based “high-risk 

features” that were correlated with recurrence, but the most reliable features cannot predict 

recurrence until 12 months after treatment. A delay in detecting recurrence may lead to 

delays in implementation of salvage therapy. Thus, it is important to identify factors 

associated with recurrence so that patients may benefit early from salvage treatment or 

systemic therapy. Furthermore, tumor recurrence after SBRT may be due to dose 

insufficiency8. Hence, if tumor response could be predicted prior to treatment, dose 

prescription could be adjusted to improve local control. Prior studies on staging PET-CT 

images 9-12 have been inconclusive. A few studies of pre-treatment CT 13-15 showed that 

tumor growth rate and pleural attachment were associated with survival or recurrence.

However, a thorough quantitative analysis of pre-treatment CT images is lacking. There are 

a large number of features that can be used to characterize lung tumors; not only manually 

scored radiological features (semantics) but also computer-derived features (radiomics), 

which may improve predictive accuracy. Recently, the emerging quantitative imaging field, 

also known as radiomics, has shown great potential for prognosis in a variety of 

cancers 16-19. Radiomics enables the high-throughput extraction of large numbers of 

quantitative features from medical images 20, 21. Most of these features cannot be detected 

by radiologists directly, thus provide complementary information to semantic features. A 
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previous study 22 showed that the predictive power of clinical and size features could be 

significantly improved by incorporating radiomic features in stage III NSCLC treated with 

chemo-radiation therapy.

In this study, 24 radiological image traits were systematically scored by two radiologists on 

a point scale (up to 5) and 219 radiomic features were automatically extracted on the 

delineated regions of interest on the pre-treatment CT images used for SBRT planning. Then 

clinical, semantic and radiomic features were combined to create multivariate prognostic 

models for overall survival (OS), recurrence free survival (RFS) and loco-regional 

recurrence free survival (LR-RFS) after SBRT. In this paper, we show that simulation CT 

scans and patient clinical data are prognostic in NSCLC patients treated with SBRT.

2. Patients and methods

2.1 Patients

This retrospective analysis was approved by the institutional review board (IRB #105996). 

The cohort had 92 evaluable patients (from 213 patients considered) treated with SBRT 

between January 2009 and July 2013. The inclusion criteria included patients with primary 

NSCLCs confirmed by biopsy without prior lung irradiation or prior lung tumor history, and 

TNM stage ≤ IIA (node negative). Excluded patients included those with more than one lung 

tumor or concurrent other tumors (N = 19), non-availability of biopsy confirming 

malignancy (N = 9), or lack of data to confirm recurrence (N = 4). In 2 patients, the tumors 

were located at the bronchus and could not be scored. Patients who had been treated with 

lung cancer before were also excluded (N = 45). Patients were required to be followed up for 

at least 2 years, or until they developed recurrence or passed away within 2 years. Forty-two 

patients were excluded because of lack of follow-up. Clinical data included age at diagnosis, 

gender, clinical TNM stage, clinical T stage, smoker status, pack-years smoking history, O2 

dependence or not, and Eastern Cooperative Oncology Group (ECOG) performance status.

2.2 CT scanning and treatment protocol

The patients were placed in supine position, typically underwent abdominal compression, 

and immobilized with a BodyFix double-vacuum cradle (Elekta AB, Stockholm, Sweden). 

CT simulation scans were performed using a helical four dimensional (4D) CT scanner 

(Philips Brilliance CT, Philips Medical Systems, Cleveland, OH). Scanning parameters were 

as follows: 120 kVp, 224 mA, and 3 mm reconstruction slice thickness. Average-CT or 50% 

phase-CT images were used for analysis. The CT scans were performed at a median time of 

15 days before SBRT.

The heterogeneity corrected collapsed cone convolution (CCC) algorithm were used for 

planning. Either 3D conformal or volumetric arc therapy (VMAT) techniques were used, 

with photon beam energies ranging from 6 to 15 MV. The patients were treated on a Trilogy 

or a TrueBeam medical linear accelerator (Varian Medical Systems, Palo Alto, CA) 

equipped with a 120-leaf Millennium multi-leaf collimator (5-mm leaves in the central 

portion of the field). Daily image guidance was provided by cone beam computed 
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tomography (CBCT), with alignment to the visible tumor on the planning scan. Dose voxel 

size was kept at 2 mm.

All patients were treated with SBRT using a risk-adapted fractionation scheme. Briefly, 50 

Gy in 5 fractions was the standard treatment option used for most of the patients. A regimen 

of 48 Gy in 4 fractions was an alternative while 60 Gy in 8 fractions was used for “central” 

lesions (near the hilum/proximal airways, peri-mediastinal/epicardial).

2.3 Follow-up and clinical outcomes

Follow-up evaluations were based on CT images and clinical examination performed every 3 

months in the first 2 years after SBRT, then every 4-6 months for the following 3 years, and 

annually thereafter. An 18F-FDG-PET/CT scan was recommended when recurrence or 

metastasis was suspected. Local recurrence was defined as progression of the original 

primary lesion or new tumors in the same lobe of the primary tumor. Regional recurrence 

was defined as hilar or mediastinal lymph node metastasis. Distant metastasis was defined as 

tumors in other lobes of the lung or outside the lung. Recurrence was confirmed by biopsy, 

PET/CT, or CT images at follow-up. The recurrence date was recorded as the date of first 

CT or PET/CT scan that showed signs of progression.

We evaluated three clinical endpoints in this study: Overall survival (OS), recurrence-free 

survival (RFS), and loco-regional recurrence-free survival (LR-RFS). OS was calculated 

from the start date of SBRT to the last follow-up date (for censored cases) or date of death. 

RFS was calculated from the start date of SBRT to the date of local, regional or distant 

metastasis, or the date of death, or censored at the last follow-up date. LR-RFS was 

calculated from the start date of SBRT to the date of local or regional recurrence or death, or 

censored at the last follow-up date.

2.4 Image assessment

Pre-treatment planning CT images were reviewed using both mediastinal (width, 350 HU; 

level, 40 HU) and lung (width, 1500 HU; level, -600 HU) window settings. A clinical 

radiologist with 4 years of experience (Q. L.) in thoracic imaging interpreted all the CT 

images. In order to compare the semantic interpretations, a subset of 40 CT scans randomly 

chosen was reviewed by another radiologist (Y.L.). Both of them were blinded to clinical 

and histologic findings. The concordance between the two radiologists for the 24 semantic 

features was evaluated. Description of the features can be found in Supplementary Table 1.

Automatic extraction of radiomic features was accomplished using Definiens Developer® 

(Munich, Germany) image analysis software. Firstly, the preprocessing performed automatic 

organ segmentation with the main goal of segmenting the aerated lung with correct 

identification of the pleural wall in order to facilitate the semi-automatic segmentation of 

juxtapleural lesions. In some cases, the pulmonary boundaries were further manually 

corrected. Then, whole tumor segmentation was done by adopting the ensemble click and 

grow segmentation method developed by our group 23. The delineated region was later 

corrected by the radiologist (Q.L.) to encompass the tumor region. At last, the 219 3D image 

features from size, shape and texture categories were extracted in the delineated region of 
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interest (Fig. 1, features and their definitions are listed in Supplementary Table 2). Examples 

of tumor segmentations can be seen in Fig. 2 (c and d).

2.5 Statistical Analysis

Agreement between the two readers was measured by intra-class correlation coefficient 

(ICC) for continuous variables and (weighted) Kappa index for categorical variables (see 

Supplementary Table 1 for the whole list of variables). The Kappa value was interpreted as 

follows: < 0: poor agreement; 0.01 to 0.2: slight agreement; 0.21 to 0.4: fair agreement; 0.41 

to 0.6: moderate agreement; 0.61 to 0.8: substantial agreement; > 0.8: almost perfect 

agreement 24.

2.5.1 Feature screening—Among all the semantic features, distribution, contour, 

attenuation, and calcification were excluded, because the majority of patients fell into the 

same category and thus these features are not prognostic of endpoints. For radiomic features, 

Pearson’s correlation analysis was performed to identify redundant features and to address 

collinearity. As such, we eliminated 46 of the 219 features (Supplemental Table 5) that were 

highly co-dependent (Pearson’s correlation > 0.95). Hence, this study investigated 

associations of 20 semantic features and 173 radiomic features with patient outcomes.

2.5.2 Univariate and multivariate analysis—All statistical analyses were performed 

using SAS software (version 9.4, Cary, NC) and all P-values were two-sided. The Cox 

proportional hazards model 25 (see equation below) was used to explore the association with 

OS, RFS and LR-RFS. The false discovery rate (FDR) with q-value of < 0.1 26 was used to 

control the expected proportion of incorrect rejection for radiomic features. Features with p-

value of < 0.1 in univariate analysis for clinical and semantic models and those with q-value 

of < 0.1 for radiomic model were incorporated into the multivariable analysis (either 

stepwise selection or backward elimination method was applied). The hazard ratio (HR) and 

95% confidence interval (CI) were reported. The final multivariable model was built by 

combining clinical with imaging features (semantics and radiomics), and a stepwise 

selection method was utilized. Harrell’s C (Concordance) index 27 was computed to assess 

the prognostic power of a model. The higher the C index is, the more accurate the Cox 

model predict. The model with highest Harrell’s C-index was selected for the prognostic 

model. The risk scores of OS, RFS and LR-RFS were developed based on the Cox model, 

accordingly. Patients were dichotomized into low and high risk groups on the basis of their 

median risk score. Differences in the OS, RFS and LR-RFS between the two groups were 

estimated and compared by the Kaplan–Meier method28, 29.

In this equation, λ(t,z) is the hazard function for an individual with a p-vector z of covariates 

(which may include both clincial and imaging features), and λ0(t) is the baseline hazard 

function without any covariate effect. β′ = (β1, ⋯ ,βp) is the p-vector of regression 

coefficients. Exp (β′) is the hazard ratio. The risk scores were just calculated based on β′.
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2.5.3 Cross validation—The robustness of the final Cox model was accessed by 

dichotomizing the patients into short- and long-term survival according to the survival or 

recurrence status at 24 months (censored subjects within 24 months were excluded because 

those patients are neither short- nor long-term survivors, detailed information in 

Supplementary Table 7). Multiple logistic regression model and ten-fold cross validation 

were used. The area under the receiver operating curve (AUC) was calculated along with 

95% CI 30, 31.

3. Results

Among the 92 patients, 43 were females (46.7%) and 49 were males (53.3%) and the 

median age at diagnosis was 73. The median follow-up time was 39.2 months (range: 24 - 

74 months) in patients who were alive at the date of last follow-up and didn’t develop 

recurrence. At the end of this study, 25 patients (27.2%) developed loco-regional recurrence 

and 26 patients (28.3%) developed distant metastasis (Supplementary Table 3). Two-year 

OS, RFS and LR-RFS were 69.95%, 41.3% and 51.85%, respectively. Detailed information 

is provided in Table 1.

3.1 Reader Reproducibility

The agreements between two readers ranged from 0.529 - 1 (see Supplementary Table 4). 

Among all the features, location, lobulation, nodules in primary tumor lobe, border 

definition, lymphadenopathy, attachment to vessel, peripheral emphysema and pleural 

attachment had almost perfect agreement, while thickened adjacent bronchovascular 

bundles, bubble-like lucency, fissure attachment, nodules in non-tumor lobes, spiculation, 

pleural retraction and contour were in substantial agreement. Peripheral fibrosis and vascular 

convergence showed moderate agreement. The ICCs for long and short axis diameter were 

0.985 (0.972 - 0.992) and 0.974 (0.950 - 0.986), respectively.

3.2 Clinical features and clinical outcomes

Univariable analysis of clinical features demonstrated that T stage and ECOG performance 

status were significantly associated (P < 0.05) with OS, RFS and LR-RFS, while O2 

dependence was marginally associated (P < 0.1) with OS and LR-RFS.

In multivariable analysis, only ECOG (HR = 2.66, 95% CI: 1.37 - 5.18; P = 0.004) was 

associated with OS and T-stage (HR = 2.49, 95% CI: 1.50 - 4.13; P = 0.0004) with RFS. 

Both T stage (HR = 1.81, 95% CI: 1.01 - 3.24; P = 0.047) and ECOG (HR = 1.99, 95% CI: 

1.08 - 3.65; P = 0.027) were independently associated with LR-RFS.

3.3 Semantic features and clinical outcomes

Both long- and short-axis diameters were significantly associated with all three clinical 

outcome endpoints (P < 0.05) in univariable analysis. Additionally, vessel attachment was 

significantly associated (P < 0.05) with RFS and LR-RFS, border definition (P < 0.0001) 

was significantly related with OS and LR-RFS, and pleural retraction (P = 0.06) was 

marginally associated with OS.
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In multivariate analysis, long axis diameter (P = 0.001, HR = 1.77, 95% CI: 1.26 – 2.50) and 

pleural retraction (P = 0.048, HR = 0.31, 95% CI: 0.09 – 0.99) remained independently 

associated with OS. Short axis diameter (P = 0.001, HR = 1.58, 95% CI: 1.21 – 2.05) and 

vessel attachment (P = 0.003, HR = 2.24, 95% CI: 1.31 – 3.81) correlated significantly with 

RFS. Long axis diameter (P = 0.001, HR = 1.65, 95% CI: 1.24 – 2.20) was the only 

independent indicator of LR-RFS.

3.4 Radiomic features and clinical outcomes

In the univariate analysis, 18, 68 and 8 radiomic features were found to be prognostic to OS, 

RFS, and LR-RFS, respectively. However, in multivariate analysis, only F2 (short axis × 

longest diameter [mm2]) (P < 0.001) was independently related with OS (HR = 1.98, 95% 

CI: 1.44 – 2.72), RFS (HR = 1.85, 95% CI: 1.47 – 2.33) and LR-RFS (HR = 1.73, 95% CI: 

1.35 – 2.23). A subsequent analysis with non-size related features revealed that F15 (AV-

Dist-COG-to-Border, P = 0.001, HR = 2, 95% CI: 1.31 – 3.05), F51 (avgLRE, P = 0.033, 

HR = 0.38, 95% CI: 0.15 – 0.92), F186 (Hist-Energy-L1, P = 0.018, HR = 2.60, 95% CI: 

1.18 – 5.74), and F214 (3D-WaveP1-L2-25, P = 0.027, HR = 1.39, 95% CI: 1.04 – 1.85) 

were independently prognostic of OS. F17 (MIN_Dist_COG_To_Border, P < 0.0001, HR = 

1.81, 95% CI: 1.39 – 2.36) and F93 (3D-Laws-35, P = 0.036, HR = 0.68, 95% CI: 0.47 – 

0.97) were related with RFS. F17 (MIN_Dist_COG_To_Border, P = 0.0004, HR = 1.69, 

95% CI: 1.26 – 2.25) also remained significant in prognosis of LR-RFS. F15 (AV-Dist-

COG-to-Border) and F17 (MIN_Dist_COG_To_Border) stand for average or minimum 

distance of center of gravity of the ROI to border. F51 (avgLRE), that is, average long run 

emphasis, examines runs of similar gray values in an image, and long runs of the same gray 

value correspond to coarser textures. F186 (Hist-Energy-L1) is a feature based on histogram 

analysis, measures the energy of HU values within the lesion. F93 (3D Laws features L5 L5 

W5 Layer 1) and F214 (3D Wavelet decomposition P1 L2 C3 Layer1) were based on law 

and wavelet analysis, respectively. These features described the tumor heterogenicity 

quantitatively and have been demonstrated highly reproducible (test-retest concordance 

correlation coefficient ≥0.90, dynamic range ≥0.90) by our previous work 20. Detailed 

information about the significant features was listed in Supplementary Table 6.

3.5 Prognostic model and Prognostic Index

The final prognostic models (Tables 2 and 3) were built by combining the clinical and 

imaging features together. It can be seen that there was an improvement of the Harrell’s C 

index by adding the imaging features (semantic, size related radiomics feature (F2) or non-

size related radiomics feature (F186)) to the clinical model. In an exploratory analysis, the 

OS risk score (OSRS), RFS risk score (RFRS) and LR-RFS risk score (LRRS) were 

developed accordingly (Kaplan–Meier curves in Figure 3):

• OSRS = 0.541 × (F2 − average (F2)) + 0.240 × (F186 − average (F186)) + 1.021 

(if ECOG was 2 or 3) − 1.294 (if pleural retraction was positive)

• RFRS = 0.524 × (F2 − average (F2)) + 0.755 (if vessel attachment was positive).

• LRRS = 0.515 × (F2 − average (F2)) + 0.696 (if ECOG was 2 or 3).
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When patients were dichotomized, these models still remained to be prognostic (Table 2). 

According to the 10-fold cross validation, the AUCs of OS, RFS and LR-RFS prognostic 

model were 0.728, 0.747 and 0.690, respectively.

4. Discussion

In this study, we performed a comprehensive analysis of pre-treatment planning CT images 

among lung cancer patients treated with SBRT and found that besides clinical features 

(ECOG performance status and T stage), tumor size (F2), pleural retraction, vessel 

attachment and Hist-Energy-L1 were also independently associated with OS or recurrence 

related survival.

Various features related to tumor size, including clinical T stage, semantic features of long- 

or short-axis diameter, and the radiomic feature F2 (short axis × longest diameter), were 

consistently prognostic for OS, RFS and/or LR-RFS. These data strongly support the idea 

that tumor size is a key predictor of outcome in NSCLC patients treated with SBRT 13. Bhatt 

et al 32 observed that T-stage was associated with tumor shrinkage during SBRT treatment, 

with T1 tumors showing greater decrease than T2 tumors. These data imply that patients 

with larger tumors might benefit from dose escalation (if normal tissue constraints allow). 

Compared with 2-D semantic features (long/short-axis diameter), 3-D radiomic feature (F2) 

showed higher HR and Harrell’s index in predicting all three kinds of survival, which 

implies that accurate volumetric measurement of the tumor is key in predicting survival.

Shultz 14 and Yamamoto et al 15 found that contacting with the mediastinal pleura or broad 

attachment to the pleura was negative predictor of loco-regional control or distant 

metastasis. In our study, pleural attachment was also associated with poorer OS (HR = 1.66), 

RFS (HR = 1.45) and LR-RFS (HR = 1.3), but without reaching statistical significance (P > 

0.05). Interestingly, pleural retraction showed prognostic value in OS. Pleural retraction is 

usually taken as a sign of malignancy 33. However, Webb 34 suggested that it was not 

indicative of malignant lesions and did not aid in the differentiation of benign and malignant 

lesions. In our study, pleural retraction was associated with improved OS. Clearly, further 

study is needed.

Vessel attachment was an independent poor prognostic factor for RFS in our study. Blood 

vessel involvement is one of the steps of metastatic process35. A previous study of resected 

NSCLC 36 found that even microscopic vascular invasion was an indicator of poor survival. 

Tumor attachment to vessel in radiology may reflect pathologic vascular invasion. Tsuchiya 

et al 37 discovered that the prognosis of stage IA NSCLC with vessel invasion is similar to 

stage IB NSCLC, but can be improved significantly by postoperative chemotherapy. 

Therefore, in patients with the sign of vessel attachment, further treatment may be necessary.

ECOG performance status was negatively associated with RFS and also an independent 

prognostic marker for OS and LR-RFS in this analysis. Patients with worse ECOG 

performance status tended to have poorer survival, and maybe their dose ought to be 

adjusted accordingly. Compared with using clinical features only, when imaging features 

were incorporated, there was an improvement of the outcome discriminating ability.
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The clinical and semantic features were common features used in daily practice, while 

radiomic features were quite distinct. Semantically, we would categorize a tumor as 

homogeneous or heterogeneous. More specifically, we classified the tumor as solid or part-

solid, and whether there was bubble-like lucency or calcification inside. In contrast, 

radiomics enables quantifying tumor (segmented region of interest) heterogenicity using 

imaging features extracted via high-throughput computing. For example, there are radiomic 

features about the distribution of the tumor density (histogram), and features that calculate 

the average of volumes of air spaces inside tumors (supplementary table 2). Radiomic 

features are complementary to traditional features and has shown great potential in clinical 

decision support16. Previously, it has reported that texture measures of CT images following 

SBRT could predict recurrence 6, and our study demonstrated that recurrence could be 

predicted using radiomic features even before treatment. These features, including AV-Dist-

COG-to-Border, MIN_Dist_COG_To_Border, avgLRE, Hist-Energy-L1, along with another 

Laws and wavelet features, were all independent predictors either of OS, or RFS, or LR-

RFS. Huynh et al38 had similar findings, they also showed that pre-treatment radiomic 

features were prognostic for some outcomes that conventional imaging metrics did not 

predict, which is different from the findings in our study where clinical, semantic and 

radiomic features were all prognostic and their combination was better than any category 

alone. The reason may be as follows. Firstly, more semantic features were used in our study. 

We performed a systemic semi-quantitative analysis of 24 semantic features (Supplementary 

Table 1) by 2 radiologists, while Huynh et al38 used only three conventional features related 

to tumor size in their study. Secondly, we used different radiomic features. The plurality and 

lack of standardization of radiomic features is one of the problems in the emerging field of 

the radiomics39.

There are several limitations in our study besides its retrospective nature. First, the sample 

size was comparatively small because of the strict inclusion and exclusion criteria; secondly, 

the resolution of simulation CT was limited and may have comparatively limited consistent 

texture related to prognosis; thirdly, an independent validation is needed to further confirm 

findings. However, we did perform extensive cross-validation analyses to conduct internal 

validation.

Conclusion

We showed that recurrence related survival of SBRT patients could be prognosticated prior 

to treatment from their imaging characteristics. We find tumor size, pleural retraction, vessel 

attachment along with some radiomic features to be useful in the prognostication. The image 

features derived from planning CT would be helpful in patient stratification and risk scores 

could be used to individualize radiotherapy planning for each patient. Finally, we also 

showed that prognostic models composed of clinical, conventional and radiomic features 

performed better than models having only one of these feature categories.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The processes of radiomic feature extraction using definiens
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Fig. 2. 
Examples of CT images showing typical semantic features and tumor segmentation (a: 

tumor with pleural retraction; b: tumor with vessel attachment: c: one slice showing lung and 

tumor segmentation; d: 3D view of lung and tumor segmentation).
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Fig. 3. 
Kaplan-Meier Plots of OS, RFS and LR-RFS according to the prognostic risk scores 

incorporating the clinical, semantic and radiomic features. (OS: overall survival; RFS: 

recurrence free survival; LR-RFS: loco-regional recurrence free survival).
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Table 1

Clinical and treatment characteristics of NSCLC patients treated with SBRT

Variables Level number Percentage (%)

Gender Female 43 46.7

Male 49 53.3

TNM stage IA 65 70.7

IB 23 25.0

IIA 4 4.3

T stage 1A 34 37.0

1B 31 33.7

2A 23 25.0

2B 4 4.3

Smoker
a No 64 71.1

Yes 26 28.9

Pack-years smoking
a <= 43 22 25.3

44 - 79 41 47.1

>= 80 24 27.6

O2 dependence
a no 65 72.2

yes 25 27.8

ECOG performance status 0 21 22.8

1 49 53.3

2 21 22.8

3 1 1.1

Dose and fractions 50 Gy in 5 fractions 82 89.1

48 Gy in 4 fractions 4 4.3

60 Gy in 5 or 8 fractions 6 6.5

Pathology adenocarcinoma 36 39.1

squamous cell carcinoma 33 35.9

NSCLC, non-specified 20 21.7

large cell carcinoma 3 3.3

ECOG, Eastern Cooperative Oncology Group; NSCLC, non-small cell lung cancer

a
The pack-years smoking history cannot be determined in 5 cases and 2 of them cannot be identified as smoker or non-smoker. The O2 dependence 

information cannot be confirmed in 2 subjects.
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