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Abstract. This paper presents an imaging-genomic pipeline to derive three-dimensional intra-tumor hetero-
geneity features from contrast-enhanced CT images and correlates themwith gene mutation status. The pipeline
has been demonstrated using CT scans of patients with clear cell renal cell carcinoma (ccRCC) from The Cancer
Genome Atlas. About 15% of ccRCC cases reported have BRCA1-associated protein 1 (BAP1) gene alterations
that are associated with high tumor grade and poor prognosis. We hypothesized that BAP1 mutation status can
be detected using computationally derived image features. The molecular data pertaining to gene mutation sta-
tus were obtained from the cBioPortal. Correlation of the image features with genemutation status was assessed
using the Mann-Whitney-Wilcoxon rank-sum test. We also used the random forests classifier in the Waikato
Environment for Knowledge Analysis software to assess the predictive ability of the computationally derived
image features to discriminate cases with BAP1 mutations for ccRCC. Receiver operating characteristics
were obtained using a leave-one-out-cross-validation procedure. Our results show that our model can predict
BAP1 mutation status with a high degree of sensitivity and specificity. This framework demonstrates a meth-
odology for noninvasive disease biomarker detection from contrast-enhanced CT images. © 2015 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.4.041009]
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1 Introduction

Computationally derived texture features from user-defined

regions of interest on CT images have been described and

shown to be associated with survival and various tumor charac-

teristics such as hypoxia, altered metabolism, and angiogenesis

in patients with nonsmall cell lung cancer, esophageal cancer,

metastatic renal cell carcinoma (RCC), and, more recently, squ-

amous cell carcinoma of the head and neck.1–5 Computational

features are robust and completely eliminate the subjectivity of

inter- and intra-observer variance. Image features derived by

subjective assessment of tumor appearances in patients with

RCC on contrast enhanced CT have been correlated with genetic

mutations in recent work by Karlo et al.6 Similar studies have

been performed in patients with lung cancer,7 breast cancer,8 and

glioblastoma multiforme.9 Although these approaches provide

novel noninvasive molecular surrogate biomarkers, which are

potentially useful for treatment planning, the scalability of

these approaches involving multiple readers from multiple insti-

tutions is challenging due to the subjectivity of observer assess-

ments.10,11 Hence, it is important to investigate alternative

noninvasive molecular biomarkers, such as computationally

derived intra-tumor heterogeneity features, which are robust,

scalable, and independent of subjective variability. In this

paper, we present a framework for computationally deriving

three-dimensional intra-tumor heterogeneity features from diag-

nostic CT scans and correlating them with gene mutation status.

We demonstrate our methodology on images acquired from

patients with clear cell renal cell carcinoma (ccRCC) from

the Cancer Genome Atlas (TCGA).

1.1 Renal Cell Carcinoma

RCC is the most common carcinoma of the kidneys in adults.12

ccRCC is considered a distinct subtype of RCC, predominantly

caused by a mutation of the Von Hippel-Lindau (VHL) tumor

suppressor gene in the short arm of chromosome 3. More

recently, several other genes have been associated with the

advanced form of the disease using whole-genome sequencing

of clear cell carcinoma by TCGA.13,14 One such gene is the

BRCA1-associated protein 1 (BAP1) gene, which is located

close to the VHL gene in the short arm of chromosome 3.

Recent whole-exome sequencing studies of ccRCC have

reported that BAP1 alterations are present in ∼15% of

ccRCC cases.12 The deletion or mutation of BAP1 is associated

with high tumor grade and poorer prognosis.15–18 Following

prior investigations for image-based inference of gene mutation
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status in glioblastoma multiforme brain tumors, lung, and breast

tumors, we sought to investigate if BAP1 mutation status can be

detected based on computationally derived volumetric and tex-

tural image features of the primary tumor from contrast

enhanced renal CT scans of these patients. In this paper, we

present an imaging-genomic pipeline to extract three-dimen-

sional image features and correlate them with molecular data

associated with the disease. The paper is organized as follows:

We first describe the feature extraction pipeline to extract three-

dimensional tumor heterogeneity features and the classifier to

predict gene mutation status from the computationally derived

features. We then demonstrate the pipeline on CT scans obtained

from a cohort of 78 ccRCC patients with corresponding BAP1

mutation information. We then present the prediction results

from our methodology for inference of BAP1 mutation status

based on image-derived features. The Discussion section

describes the significance of the features extracted using the

pipeline and how the current work relates to larger studies in

imaging-genomics that provide noninvasive imaging bio-

markers for gene mutations and cancer-specific outcomes.

2 Materials and Methods

2.1 Data

The study was performed retrospectively from data obtained

from a cohort of 78 patients with ccRCC from TCGA.

Diagnostic pretreatment CT scans for these patients were

obtained from The Cancer Imaging Archive and the molecular

data pertaining to the gene mutations were derived from the

cBioPortal.19 We identified 14 patients in this cohort who

had BAP1 mutations. The remaining cases (BAP1wt) in the

group served as controls. The CT scans were acquired from

the noncontrast (nc) phase (before the contrast agent was admin-

istered), and the three phases of a standard renal protocol: cor-

tico-medullary (cm), nephrographic (neph), and excretory (ex)

phases corresponding to phases of contrast washout through the

kidneys. However, the ccRCC patients do not have scans from

all the renal phases because the contrast washout rate varies

across patients. The variability in contrast washout results in

variability of tumor heterogeneity features across renal phases,

therefore, BAP1 classification was performed for each renal

phase separately. The distribution of cases per renal phase is

shown in Table 1.

2.2 Method

Our imaging-genomic pipeline consists of three main stages:

image preprocessing, feature extraction, and classification.

The preprocessing stage consists of image reslicing and

segmentation of tumor regions, followed by image feature com-

putation. The classification stage consists of feature selection

and modeling to correlate the extracted features with molecular

information (BAP1 mutation status). Figure 1 shows a sche-

matic diagram of the pipeline used to derive the three-dimen-

sional (3-D) texture and volumetric features from the primary

tumor region.

2.2.1 Preprocessing

The contrast enhanced CT (CECT) scans were preprocessed to

obtain 3-D tumor volumes by image reslicing to obtain isotropic

pixel sizes, followed by semiautomated segmentation to deter-

mine the tumor boundaries. The 3-D CECT scans were resliced

to 1 mm width along each dimension using the NIFTI toolbox in

MATLAB®20 so that subsequent 3-D image filtering could be

performed using uniform filter sizes along the three dimensions.

A fellowship trained, board certified radiologist with special

interest in uroradiology (R.V.) manually segmented the primary

tumor in 3-D using the open-source Medical Image Interaction

Tool Kit.21 MITK contains features for slice-by-slice contour

drawing and correction, 3-D interpolation of tumor outlines,

and surface creation by marching cubes. Since we hypothesized

that tumor heterogeneity features were affected by gene muta-

tion status, we derived image features from pixels within the

segmented tumor regions only.

2.2.2 Feature extraction

CECT scans contain large-scale features such as necrosis and

hemorrhage, as well as pleomorphic nuclei and cells at a smaller

scale. In order to quantitatively characterize these heterogeneity

features of the tumor regions, we extracted both 3-D intra-tumor

textural features and volumetric measures from these scans.

Multiscale textural features were computed using 3-D image

filters and transforms and statistical summary measures as dis-

cussed below.

Image filters and transforms. We filtered the CT scans with

various spatial filters (as listed in Table 2) at five different scales

(σ) to obtain fine, medium, and coarse features from the tumor

region. Table 2 lists the 3-D filters incorporated in our pipeline.

3-D textural features were obtained by filtering the images

with spatial filters such as Laws’ textural filters, Laplacian

of Gaussian (LoG) and Gaussian filters, wavelet transforms

(symmetrical, Haar, Daubechies), and Gabor filters using

MATLAB® scripts. The LoG and Gaussian filters derive

edge-like features from the local intensity variations in images.

The Laws’ filters enhance pixel patterns such as level, edge,

Table 1 Distribution of BRCA1-associated protein 1 patients accord-
ing to renal phases.

Phase BAP-mutant Normal Total

Noncontrast 13 51 64

Cortico-medullary 8 35 43

Nephrographic 9 31 40

Excretory 8 36 44

Fig. 1 Schematic diagram of the imaging-genomics pipeline.
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wave, spot, ripples, and their combinations, and can characterize

more complex textural features than edges.22 Multiscale features

were obtained by modifying the filter widths used to compute

the features. Fine-scale features were obtained using filter

widths of 0.2 and 0.4 mm, medium-scale features from 1.5

and 2.5 mm filter widths, while coarse features were obtained

using 5 mm filter widths. We derived a total of 360 different 3-D

filter responses as listed in Table 2.

Statistical summary measures. Two types of summary

measures were computed from the 3-D filtered images and origi-

nal scans: summary measures based on the image histogram and

Haralick texture features. Image histogram-based summary

measures extracted were the mean intensity of the image

[Eq. (1)], and entropy and uniformity [Eqs. (2) and (3)] of

the intensity distributions of the original and filtered images.23

Here, k are the number of histogram bins and pðlÞ is the prob-
ability of occurrence of the l’th gray level in the tumor volumeV

within the image I. Mean gray-level intensity (m) is the average

pixel intensity value of the tumor region.

EQ-TARGET;temp:intralink-;e001;63;227m ¼
1

N

X

ði;j;k∈VÞ

Iðx; y; zÞ: (1)

The histogram features measure the global properties of an

image. Large histogram bin widths characterize coarse image

information, while smaller bin widths quantify the image

details. For our analysis, we used eight histogram bins to derive

coarse-level image statistics from images. The histogram

entropy (e) is a measure of uncertainty of the l gray levels in

the image, thereby characterizing gray levels that represent

image regions such as homogeneous patches versus noise.

EQ-TARGET;temp:intralink-;e002;63;91e ¼ −

Xk

l¼1

jpðlÞjlog2jpðlÞj: (2)

The histogram uniformity (u) measures intensity variations in an

image region.

EQ-TARGET;temp:intralink-;e003;326;712u ¼
Xk

l¼1

jpðlÞj2: (3)

Haralick texture features were computed from 3-D gray-level

co-occurrence matrices (GLCM) of the original and filtered

images using the code by Philips et al.24 GLCMs compute quan-

titative measures of image patterns at specified distances and

angles using the spatial distribution of pixels. We used 16

gray levels, four distance values (of 1, 2, 4, and 8 pixels),

and four orthonormal directions to compute 13 different sec-

ond-order Haralick texture features as shown in Table 3.25,26

The features were averaged over multiple directions to obtain

a total of 572 rotation-invariant textural features (summing

the features derived from the original and filtered images) for

each image. Volumetric features of the 3-D tumor region were

derived using the regionprops function in MATLAB®.

2.2.3 Feature normalization

The computed features were normalized across different scales

using two kinds of ratios:

1. Ratios of textural features computed at different spatial

scales to the features obtained from the original image

were computed. These are referred to as ratio type 1

features.

2. Ratios of textural features computed at coarser scales

to the finest spatial scale (σ ¼ 0.2 mm) were com-

puted. These are referred to as ratio type 2 features.

2.3 Classification

2.3.1 Univariate analysis

To assess the predictive accuracy of image features associated

with image features, we performed a univariate area under the

curve (AUC) analysis to determine the association of each fea-

ture with the BAP1 mutation status. The p values obtained using

the Mann-Whitney-Wilcoxon tests are reported here. Multiple

Table 2 Summary of three-dimensional transforms computed from
the contrast enhanced CT (CECT) images.

Three-dimensional filters and
transforms Number of filters

Laplacian of Gaussian filter ðσ ¼ 0.2; 0.4; 1.5; 2.5;5.0Þ
¼ 5 filters

Gaussian filter ðσ ¼ 0.2; 0.4; 1.5; 2.5;5.0Þ
¼ 5 filters

Three-dimensional Laws’ texture
filters

Window size3 ¼ 27 filters
Window size5 ¼ 125 filters

Three dimensional Haar wavelet
transform

Three-level decomposition
= 18 filters

Three dimensional Daubechies
wavelet transform

Three-level decomposition
= 18 filters

Three dimensional symmetrical
wavelet transform

Three-level decomposition
= 18 filters

Three dimensional Gabor filters 144 filters

Total 360 filters

Table 3 Thirteen second-order Haralick features computed from the
gray-level co-occurrence matrix of original and filtered CECT images.

Haralick features

Angular second moment Sum entropy

Contrast Inertia

Correlation Entropy

Sum of squares variance Difference entropy

Local homogeneity or inverse
difference moment

Cluster prominence

Sum average Cluster shade

Variance
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testing corrections for p values were performed using

Benjamini-Hochberg procedure for controlling false discovery

rate on 4037 nephrographic features correction27 using the p.

adjust function in R, for finding image features associated

with BAP1 status.

2.3.2 Multivariate analysis

We used the coefficient of variation (CV) criterion,28 CV > 1, to

reduce the dimension of the feature set before performing multi-

variate classification. A random forest (RF) classifier was

trained in the Waikato Environment for Knowledge Analysis

(WEKA) software29 to predict the BAP1 mutation status with

the subset of image-derived features. The RF classifier uses

an ensemble approach to predict values by aggregating (bag-

ging) the outcomes of several classification trees. The RF

ensemble consisted of 1000 trees, each constructed with a

random subset of features. An external cross-validation was

performed using the filtered classifier of WEKA and features

were selected within each cross-validation fold using the

attribute selection filter. The attribute selection filter used

CfsSubsetEval as the evaluator function and particle swarm opti-

mization search algorithm with a population size of 1000.30 This

ensured that the test data were separate from the training data

used to build the model in each fold. We report prediction per-

formance using leave-one-out-cross-validation for each renal

phase separately.

3 Results

Combining the textural, volumetric, and ratio features from all

the 78 cases, we derived a total of 73,684 features for each phase

of the renal CT scan (nc, cm, neph, and ex). The AUC analysis

followed by multiple testing corrections produced adjusted p

values for all computed features and indicated the association

of each feature with the BAP1 mutation status. The best adjusted

p values corresponded to a subset of 4037 nephrographic fea-

tures that were significantly predictive of BAP1 mutation status.

No significant features with adjusted p ≤ 0.1 were obtained

from other phases of renal CT scans. Figure 2 shows the distri-

bution of the 4037 nephrographic features that were associated

with BAP1 mutations in each category: original, ratio type 1, or

ratio type 2. Greater numbers of ratio type 1 normalized ratio

features were found to be associated with mutation status than

ratio type 2 normalized features or original features. Figure 3

shows the distribution of the 4037 nephrographic features

according to feature class. The 5 × 5 Laws’ filters were found

to be most abundant among the significant features found using

univariate analysis.

The CV criterion reduced the dimensionality of the feature

set to 1677 (nc), 1080 (cm), 1636 (neph), and 3235 (ex) features

before multivariate classification was performed (shown in

Fig. 4). The RF classifier trained to predict the gene mutation

Fig. 2 The distribution of the 4037 nephrographic features associated
with BRCA1-associated protein 1 (BAP1) mutations in each category:
original, ratio type 1, or ratio type 2.

Fig. 3 The distribution of the 4037 nephrographic features associated
with BAP1 mutations according to feature type.

Fig. 4 Number of features derived from each renal phase with coef-
ficient of variation >1.

Fig. 5 Area under the curves from the random forest classifier derived
for different phases of renal CT.
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status from 3-D texture features obtained AUC values of

0.66 (nc), 0.62 (cm), 0.71 (neph), and 0.52 (ex), respectively,

for BAP1 mutation as shown in Fig. 5.

4 Discussion

We showed that computationally derived 3-D features from CT

scans can be associated with molecular information obtained

from patients by demonstrating the application of our pipeline

on ccRCC images. These features were derived from standard

diagnostic CECT scans, which suggest that the image process-

ing pipeline presented here can be broadly used as a noninvasive

biomarker for testing associations between diagnostic scans and

gene mutations.

We observed that ratio features were more discriminative

than original features for discriminating genetic mutations.

This is concordant with the approach and observations in

prior studies.1,2 We also observed that features derived from

the Laws’ filter were more strongly associated with BAP1 muta-

tions. The Laws’ filters enhance pixel patterns such as level,

edge, wave, spot, ripples, and their combinations, and, therefore,

are able to characterize complex textural features. Thus, subtle

complex textural features on diagnostic scans were found to be

associated with gene mutation status.

We also observed that nephrographic study had the highest

predictive potential when compared to noncontrast or other con-

trast enhanced phases of the study. This is concordant with the

notion that the nephrographic phase is considered the most sen-

sitive phase for visual assessment by radiologists for abnormal

contrast enhancement for detection of renal masses. The rela-

tively poor AUC using the excretory phase may likely be due

to differences in acquisition timing in various institutes.

There are a few limitations to this study as in several other

retrospective studies. The molecular data were obtained from

analyses on a small sample of tissue taken at the time of surgery,

which can be subject to intra-tumor genetic variations as shown

by a variety of tumors including ccRCC.31 Second, as this is a

discovery-phase study, validation of these image-derived fea-

tures needs to be performed on other cohorts.32 Third, the im-

aging data were derived from multiple institutions with potential

differences in scanning, acquisition, and data processing.

Another source of bias is the volume of contrast used, which

may lead to significant variations in the degree of enhancement

of the tumors. Replicating this study in a single institution with

uniform imaging parameters may be needed in further validation

studies.

In the future, the study would be extended to find radiomic

associations of ccRCC with other gene mutations such as VHL

and polybromo (PBRM). Somatic inactivation of the VHL

gene is the most frequent genetic event observed in ccRCC

and is seen in 60 to 90% of patients with this cancer. It has

been found that the presence of an inactivating VHL mutation

may be associated with better survival in patients with early

stage disease, but the same does not hold true in stage IV

ccRCC.33 While BAP1 mutated tumors are associated with

poorer clinical outcomes, exclusively PBRM1 mutated tumors

have been found to have a favorable outcome. PBRM1 activity

regulates pathways associated with chromosomal instability

and cellular proliferation. PBRM1 was found to be associated

with major prognostic factors in renal cancer and was also

associated with tumor recurrence and tumor-related death.34

Characterization of gene expression and downstream pathways

associated with these mutations may facilitate future targeted

drug development.

5 Conclusions

Our study shows that CT texture analysis and summary mea-

sures on pretherapy baseline images are predictive of BAP1

mutation status in patients with ccRCC. These measures were

derived from standard diagnostic CECT scans, which suggest

that such image-derived techniques as we describe can be repli-

cated easily with minimal additional cost and have potential

applicability for widespread use as noninvasive biomarkers

for other diseases.
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