
4258 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 12, DECEMBER 2018

IMAGING: In-Memory AlGorithms

for Image processiNG

Ameer Haj-Ali , Student Member, IEEE, Rotem Ben-Hur, Nimrod Wald, Ronny Ronen, Fellow, IEEE,

and Shahar Kvatinsky, Senior Member, IEEE

Abstract— Data-intensive applications such as image process-
ing suffer from massive data movement between memory and
processing units. The severe limitations on system performance
and energy efficiency imposed by this data movement are further
exacerbated with any increase in the distance the data must
travel. This data transfer and its associated obstacles could be
eliminated by the use of emerging non-volatile resistive memory
technologies (memristors) that make it possible to both store
and process data within the same memory cells. In this paper,
we propose four in-memory algorithms for efficient execution of
fixed point multiplication using MAGIC gates. These algorithms
achieve much better latency and throughput than a previous work
and significantly reduce the area cost. They can thus be feasibly
implemented inside the size-limited memory arrays. We use these
fixed point multiplication algorithms to efficiently perform more
complex in-memory operations such as image convolution and
further show how to partition large images to multiple memory
arrays so as to maximize the parallelism. All the proposed
algorithms are evaluated and verified using a cycle-accurate and
functional simulator. Our algorithms provide on average 200×

better performance over state-of-the-art APIM, a processing in-
memory architecture for data intensive applications.

Index Terms— von Neumann bottleneck, memristors, MAGIC,
algorithms, processing in memory.

I. INTRODUCTION

IN MODERN von Neumann systems, the data is stored

in a memory but processed in a separate processing unit.

Data transfer between these units incurs energy and delay

several orders of magnitude greater than the energy and delay

incurred by computation itself [1]. If the application is data

intensive, the data transfer requirement will severely limit

performance and energy efficiency. Often called the memory

wall, this problem, already the primary bottleneck in modern

computer systems, worsens with any increase in the distance

Manuscript received March 3, 2018; revised April 22, 2018, May 18, 2018,
and June 4, 2018; accepted June 5, 2018. Date of publication June 27, 2018;
date of current version October 23, 2018. This work was supported in part by
the European Research Council through the European Union’s Horizon 2020
Research and Innovation Programme under Grant 757259, in part by the
Viterbi Fellowship at the Technion Computer Engineering Center, in part
by the EU ICT COST Action IC1401, and in part by the Israel Science
Foundation under Grant 1514/17. This paper was recommended by Associate
Editor D. Comminiello. (Corresponding author: Ameer Haj-Ali.)

The authors are with the Andrew and Erna Viterbi Faculty of Electrical
Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
(e-mail: ameerh@campus.technion.ac.il; rotembenhur@campus.technion.ac.il;
nimrodw@campus.technion.ac.il; ronny.ronen@technion.ac.il; shahar@ee.
technion.ac.il).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2018.2846699

data has to traverse. Minimizing data transfer and travel

distance are thus crucial to improve performance and energy.

Processing the data and storing it in a single unit by moving

the computation to the memory itself is one promising avenue

towards achieving this goal [2], [3].

Previous works with conventional memory technolo-

gies [4]–[6] added computational elements to the mem-

ory or modified the memory cells and periphery to add

limited processing capability within conventional memories.

However, true in-memory processing can be achieved using

emerging memristive technologies, such as Resistive RAM

(RRAM) [7]. RRAM cells consist of resistive switches

(namely, memristors), which change their resistance accord-

ing to the voltage across them. These memristive technologies

are being explored as a replacement for DRAM and Flash,

as they offer low power consumption, high density, non-

volatility and good scalability [8], [9].

Memristors can be used for both memory and

logic [10]–[12], thus eliminating the data movement.

Memristor Aided loGIC (MAGIC) [13] is a promising logic-

in-memory approach for executing in-memory computations.

MAGIC enables the execution of NOR and NOT operations

within a memristive memory array, where the inputs and

outputs of logic gates at different stages of the computations

are represented by the resistance of specific memory cells.

Storing the data in RRAM as resistance allows information to

be stored and processed using the same cells, with no need for

conversion, sensing or moving of data. Much recent research

on MAGIC and similar techniques has been conducted so to

exploit this advantage [2], [14]–[17]. An important feature

of MAGIC is its ability to execute numerous different gates

simultaneously, when their inputs and outputs are located in

the same row/column. MAGIC will thus greatly boost the

performance of applications that require executing the same

instruction on multiple data in parallel (SIMD).

This paper investigates one attractive set of applications for

in-memory computation — digital image processing. Digital

image processing is the field of analyzing and manipulating

digitized images to obtain enhanced images or to extract

useful information from them [18]–[26]. Manipulation of

images requires data intensive computations, often in real-

time, and the demand for data movement is only increasing as

image resolution becomes higher. Therefore, image processing

applications suffer from high energy consumption and a long

processing time [27]. Digital image processing would benefit

1549-8328 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8515-2828


HAJ-ALI et al.: IMAGING: IN-MEMORY ALGORITHMS FOR IMAGE PROCESSING 4259

naturally from MAGIC since many pixels are processed in

parallel and the parallelism improves as the dimensions of

the image increase. Computation with minimal data movement

and massive parallelism within the memory is fundamentally

different than standard computation. Hence, to boost the

performance and energy efficiency in digital image processing

tasks, new algorithms must be developed to efficiently map

the data to the assigned memory cells and process the data

within these cells. These algorithms must reshape the data to

maximize the parallelism and perform the nontrivial task of

converting a complicated application into an efficient sequence

of NOR/NOT gates (i.e., minimize the number of NOR/NOT

operations and concurrently execute them).

Most digital image processing applications depend on fixed

point (FiP) multiplication for its simplicity. Unfortunately,

FiP multiplication is not properly supported by MAGIC yet.

A previous work tried to implement FiP multiplication using

MAGIC [28] but concluded that its excessive latency and area

preclude supporting it in size-limited memory arrays. Thus,

the authors proposed a processing in-memory architecture

called APIM, which uses standard CMOS logic in the periph-

ery to support FiP multiplication. This implementation requires

reading the data from the memory array to the periphery,

processing it, and writing it back to the memory; that is,

it involves data movement, one of the very problems that

MAGIC is designed to solve [29]. This functionality also

makes the computation serial rather than utilizing the parallel

execution ability that MAGIC is designed to support.

This paper makes the following contributions:

• We extend a previous work [30] and propose four algo-

rithms for efficient execution of FiP multiplication using

MAGIC gates. These algorithms enable FiP multiplica-

tion to be performed within acceptably sized memristive

memory arrays.

• We demonstrate how to leverage the high throughput of

these FiP multiplication algorithms to accelerate three

common image processing applications: FiP dot product

(FiPDP) [18], the Hadamard product [21], and image

convolution [20]. For these three applications, we have

developed algorithms that map and perform the desired

tasks within the memristive memory array, exploiting the

massive parallelism that MAGIC offers and minimizing

the data transfer.

• We show how to scale the execution of the proposed

image processing algorithms to efficiently process large

images in the size-limited memory arrays, demonstrating

on average 200× better performance over state-of-the-art

APIM using a cycle-accurate, functional simulator.

The rest of the paper is organized as follows. Section II

gives a short introduction to MAGIC, briefly discusses prior

image processing works with memristors, and describes a

previous, unsuccessful attempt to use it to implement FiP

multiplication. In Section III, we propose four algorithms

for efficient execution of FiP multiplication using MAGIC

gates and evaluate them. We then demonstrate in Section IV

how to use these FiP multiplication algorithms to efficiently

implement three common image processing algorithms and

Fig. 1. Performing a MAGIC NOR operation within a memristive memory
array. Three independent MAGIC NOR operations are executed in parallel
on the first, third, and fourth rows (gates j, k and n) by applying voltages as
presented. All of the other cells are unselected by applying isolation voltages.

further show how to scale the processing of large images.

We evaluate these image processing algorithms in Section V

and compare them to state-of-the-art APIM. The paper is

concluded in Section VI.

II. BACKGROUND

A. Memristor Aided Logic (MAGIC)

The logical state of each memristive memory cell is repre-

sented by resistance, where high and low resistances (RO F F

and RO N ) are considered, respectively, as logical ‘0’ and

‘1’. In stateful logic techniques [29] such as MAGIC [13],

the inputs of the gates are the initially stored logical states

of the input memristors, and the output is the logical state

of the output memristor at the end of the computation. In

MAGIC, NOR and NOT logic operations can be executed

completely within the memory without sensing or moving

the data outside the memory array and without adding any

additional, complicated logic to the periphery. This is done

by applying specific voltages (i.e., V0 and ground) to the

input and output memristors, as shown in Figure 1. Note

that MAGIC requires a single cycle to initialize the output

memristors to a low resistive state (logical ‘1’, RO N ) before

the execution begins. The MAGIC operation of all gates can

be executed simultaneously in a single cycle when the inputs

and outputs of different gates are co-located on the same row

(wordline) or column (bitline), thus allowing a high throughput

of NOR operations inside the memory array.

B. Image Processing With Memristors

Previous attempts to accelerate image processing tasks with

memristors [18], [19], [31] have relied on analog based

computation using the accumulation of currents in analog-

to-digital converters (ADCs) to perform sum of products.

The input multipliers are represented as voltage while the

multiplicands are stored as resistances in multi-level cells

(MLC) [32]–[35]. While these approaches are efficient, they

suffer from limited precision and reliability as compared to

digital computation since the number of levels in MLC is

limited and ADCs have limited accuracy. Therefore, digital



4260 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 12, DECEMBER 2018

computation is often necessary when precision is a concern.

For example, digital image convolution is used in most digital

camera image sensors to implement demosaicing of Bayer

color arrays [23], [36]. In addition, because these approaches

are restricted to predefined tasks that are based on the sum

of products operation, they cannot be programmable. By con-

trast, since MAGIC NOR is functionally complete, any task

could be mapped to a sequence of MAGIC NOR opera-

tions. Furthermore, applying different voltage levels requires

large digital-to-analog converters, and sensing different current

levels requires huge ADCs. This complex and considerable

area overhead significantly restricts the area efficiency of

the memory. Pinatubo [37] implements bit-wise operations in

memristive memory arrays using standard CMOS logic in the

periphery and thus requires moving the data serially to and

from the periphery for every operation, which is impractical

for image processing applications.

C. Fixed Point Multiplication With MAGIC

Fixed Point (FiP) multiplication is similar to integer mul-

tiplication but with an implied decimal point which allows

having fractional results. It could thus be implemented using

the partial products algorithm [38]. Previously, we proposed

an algorithm to execute an N-bit adder using MAGIC [15]

in 12N + 1 cycles (N is the number of bits required to

represent a FiP number). Imani et al. [28] implemented FiP

multiplication by serializing similar adders after generating

the partial products, requiring 15N2 − 11N − 1 cycles and

15N2 − 9N − 1 memristors.

This implementation requires numerous memristors for rel-

atively small tasks. Particularly, the large number of required

memristors does not permit the execution of FiP multiplica-

tion on a single row, where even 16-bit FiP multiplication

requires more than 3700 consecutive memristors, far more

than the number available in any reasonable memory array.

This limitation makes parallelization of FiP multiplication

impossible, rendering worthless one of the main advantages

of MAGIC. Hence, Imani et al. concluded that in-memory

FiP multiplication with MAGIC is impractical.

Instead, they implemented APIM, which uses standard

CMOS logic in the periphery. APIM accelerates the FiP mul-

tiplication by using the periphery to speed up the generation

of partial products and then applying a MAGIC-based fast

carry-save adder. Two N-bit numbers are multiplied by reading

the multiplier bit after bit (serially) in N cycles. After each

bit whose value was ‘1’ is read, the multiplicand is copied

in two MAGIC NOT cycles. When summed, the latency of

generating partial products is N read cycles and 2N MAGIC

cycles. Finally, the N N-bit partial products generated are

accumulated and simultaneously added using the fast carry-

save adder.

The latency of this adder is 285, 551, and 1057 MAGIC

cycles for 8, 16, and 32-bit numbers, respectively. Although

beneficial for performing a single FiP multiplication, APIM

suffers from increased data movement between the memory

array and its periphery. Moreover, multiple FiP multiplications

can only be performed serially, since reading the data to

the periphery is serial (for each FiP multiplication) and the

fast carry-save adder uses multiple rows to compute. Thus,

multiple fast carry-save additions are also performed serially

(for each addition). These limitations make parallelization of

FiP multiplication in APIM impossible.

In this paper, we show that it is not only possible to execute

FiP multiplication inside an acceptably sized memory array

but that by doing so it is also possible to realize complex

image processing applications such as FiPDP, the Hadamard

Product, and image convolution. We demonstrate a substantial

improvement to the FiP multiplication algorithm of Imani

et al. in terms of latency and area cost, and propose efficient

and novel algorithms that take advantage of MAGIC’s innate

parallelism to execute digital image processing tasks. These

algorithms outperform APIM, proposed as an alternative to

MAGIC.

III. PROPOSED ALGORITHMS FOR FIXED

POINT MULTIPLICATION

In this section, we describe four algorithms for efficient in-

memory execution of FiP multiplication [30] that offer sub-

stantial improvements over that of Imani et al. The proposed

algorithms improve the latency of the execution (in terms

of the number of cycles for the execution sequence). More

importantly, they reduce the area (determined as the number of

memristors participating in the execution) so that it is linearly

dependent on the size (number of bits) of the inputs rather

than the quadratic dependency in the baseline algorithm. The

improvement in area permits the execution of FiP multiplica-

tion in a single row, enabling massive parallelism within the

memristive memory array.

A. Full Precision FiP Multiplication (FPFiPM)

To multiply two numbers, we use the partial products

multiplication algorithm and reuse the memristive cells dur-

ing execution. For simplicity and without loss of generality,

we assume two N-bit numbers, A and B , stored in the same

row (A and B are located in memristors 0 to 2N − 1) in the

memristive memory array. The algorithm starts by initializing

the memristors participating in the computation to RO N . A and

B are then negated to memristors at locations 2N to 4N − 1.

After that, the partial products are generated and accumulated

(using the latency optimized adder proposed in [15]) one by

one in a repeated multiply-accumulate (MAC) manner using

the same memristors. The entire computation is summarized

in Algorithm 1. A detailed example of the execution flow of

this algorithm and further explanations are available in [30].

The latency of the proposed algorithm is composed of

2N cycles to generate negated versions of A and B , N − 1

initialization cycles, and N − 1 MAC operations. Each MAC

operation takes O(N) cycles to complete [15], bringing the

total number of cycles to O(N2). The area required for the

MAC stages is similar to the area required for a single add

operation and a single partial product (due to the repeated use

of the same memristors for computation), which is O(N) [15];

together with the 4N memristors for storing A, A′, B and

B ′, and 2N memristors for storing the final result, the total



HAJ-ALI et al.: IMAGING: IN-MEMORY ALGORITHMS FOR IMAGE PROCESSING 4261

Algorithm 1 Full Precision FiP Multiplication (FPFiPM)

// Mi = Memristor at location i

// M0 to N − 1 = A, MN to 2N − 1 = B

// M4N to 6N − 1 = Final Result

1: M2N to 20N − 5 ← RO N
// Generate A′ and B ′:

2: for i = 0 to 2N − 1 do
3: Mi + 2N ← N OT (Mi )
4: end for

5: M6N − 1 ← NOR(M3N − 1, M4N − 1)
// Final ResultLSB ← NOR(A′

L SB
, B ′

L SB
)

6: for j = 1 to N − 1 do

7: M8N − j ← NOR(M3N − 1 − j , M4N − 1)

// First partial product j − 1 ← NOR(A′
j
, B ′

L SB
)

8: end for

9: INTERMEDIATE_RESULT � M7N + 1 to 8N − 1
/* INTERMEDIATE_RESULT refers to First partial

product */

// Perform N − 1 MAC operations:

10: for i = 1 to N − 1 do

11: for j = 0 to N − 1 do
12: M7N − 1 − j ← NOR(M3N − 1 − j , M4N − 1 − i )

// i th partial product j ← NOR(A′
j
, B ′

i
)

13: end for

14: if i < N − 1 then
15: if i mod 2 == 1 then

16: (M8N to 9N − 1, M6N − 1 − i ) ←

SUM(M6N to 7N − 1, INTERMEDIATE_RESULT)

/* SUM(i th partial product,

INTERMEDIATE_RESULT) */

17: INTERMEDIATE_RESULT � M8N to 9N − 1
/* INTERMEDIATE_RESULT refers to the new

intermediate result */

18: (M6N to 8N − 1, M9N to 20N − 5) ← RO N
19: else

20: (M7N to 8N − 1, M6N − 1 − i ) ←

SUM(M6N to 7N − 1, INTERMEDIATE_RESULT)

/* SUM(i th partial product,

INTERMEDIATE_RESULT) */

21: INTERMEDIATE_RESULT � M7N to 8N − 1
/* INTERMEDIATE_RESULT refers to the new

intermediate result */

22: (M6N to 7N − 1, M8N to 20N − 5) ← RO N
23: end if

24: end if

25: end for
26: M4N to 5N ← SUM(M6N to 7N − 1,

INTERMEDIATE_RESULT)
/* Final ResultMSBs ← SUM(Final partial product,

INTERMEDIATE_RESULT) */

number of memristors is O(N). The exact latency and area are

summarized in Table I.

The numbers (A and B) inside the memory array are

assumed to be in the same row. However, if the two numbers

are stored in different rows, they should be brought to a

shared row by negating each one in a single cycle to that

row (all the bits of each number are negated simultaneously).

Note that while this adds up to 2 cycles to the latency, 2N

cycles are actually saved by removing steps 2 − 4 in the

algorithm, which serially negate the two numbers bit after bit.

Therefore, the expressions listed in Table I include the worst

case scenario.

B. Limited Precision FiP Multiplication (LPFiPM)

The algorithm proposed in the previous subsection generates

a result with twice the precision of the inputs (2N). However,

TABLE I

LATENCY AND AREA OF THE PROPOSED FIP MULTIPLICATION

ALGORITHMS. N IS THE NUMBER OF BITS IN EACH

NUMBER. THE AREA REPRESENTS THE MINIMUM

NUMBER OF MEMRISTORS REQUIRED

IN A SINGLE ROW/COLUMN

in classical integer multiplication, only the N least significant

bits of the result are needed. Hence, generating only these

N-bits will lead to more efficient execution without losing the

required accuracy.

To limit the precision of the result to N bits, we propose

to perform LPFiPM, which modifies the previous algorithm

by generating and accumulating only the necessary partial

products. To generate only the necessary partial products, the

algorithm decreases the size of partial product i to N−i bits by

skipping the most significant i bits when this partial product is

generated. The reduced partial products are accumulated in a

MAC manner similarly to Algorithm 1. The new algorithm

improves the latency by approximately 2× at the cost of

reduced precision. The exact latency and area are summarized

in Table I. The benefits in latency come from the smaller size

of the partial products throughout the computation (N, N −

1, ..., 1), which reduces the total number of bits accumulated

and generated in Algorithm 1 to half. This is in contrast to

using a constant N-bits for each partial product.

C. More Reuse

The FPFiPM and LPFiPM algorithms rely on memristor

reuse to optimize the area efficiency. In the current configura-

tion, these algorithms reuse the same memristors to compute

all the sums of partial products, which requires 13N − 5

memristors. Increasing memristor reuse can further optimize

the area efficiency. For example, every two partial products

are added by serializing N single bit full adders. Therefore,

we can minimize the area by optimizing the area efficiency

of each such full adder and using the same memristors to

compute all the full adders. In [15], an area-optimized full

adder was proposed that uses five memristors but requires three

additional cycles for repeated initialization. By deploying this

full adder and using the same memristors to compute all the

full adders, the number of reused memristors can be reduced

to 2N + 5 (rather than 13N − 5). This would reduce the area

of FPFiPM to 9N + 5 memristors and the area of LPFiPM

to 8N + 2 memristors. The additional required initialization

cycles would, however, increase the latency of FPFiPM to

16N2 −14N +6 and that of LPFiPM to 8N2 −7.5N −2. The

exact latency and area of the area-optimized FiP multiplication

algorithms are summarized in Table I. In Section III-E.3,

we show how increasing memristor reuse decreases the life-

time of the memory.



4262 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 12, DECEMBER 2018

TABLE II

LATENCY OF FIXED-POINT MULTIPLICATION ALGORITHMS FOR DIFFERENT NUMBERS OF BITS N . THE LATENCY FOR THE BASELINE ALGORITHM [28]
IS COMPARED TO TO THE PROPOSED ALGORITHMS. THE VALUE IN PARENTHESES IS THE SPEEDUP AS COMPARED TO THE BASELINE

TABLE III

AREA AS A FUNCTION OF THE NUMBER OF BITS N . THE AREA FOR THE BASELINE ALGORITHM [28] IS COMPARED TO THE PROPOSED

FIP MULTIPLICATION ALGORITHMS. THE VALUE IN PARENTHESES IS THE IMPROVEMENT AS COMPARED TO THE BASELINE

TABLE IV

THROUGHPUT OF FIP MULTIPLICATIONS IN 1000 CYCLES AS A FUNCTION OF THE NUMBER OF BITS N , CONSIDERING A SINGLE

MEMORY ARRAY OF SIZE 512 × 512. THE VALUE IN PARENTHESES IS THE SPEEDUP AS COMPARED TO APIM

D. Single Row Execution

In the proposed multiplication algorithms, the computa-

tion is done in a single row, which seemingly may hinder

reaching the full potential in terms of latency. Nevertheless,

this approach is chosen because aligning multiple inputs in

multiple rows enables vector operations to be realized (multi-

plying multiple inputs simultaneously) with the same latency

as a single multiplication. The throughput is thus significantly

improved, allowing more complex parallel applications to

be realized. In Section IV, we leverage these vector opera-

tions to implement FiPDP, the Hadamard product, and image

convolution.

E. Simulation Results

To verify the correctness of the proposed algorithms,

we implemented a functional simulator written in MATLAB

that accurately performs the logical flow of each algorithm

cycle by cycle. Furthermore, we evaluated the latency, area,

and throughput of the algorithms and compared them to

previous works We likewise evaluated the endurance limitation

of the memory array.

1) Latency and Area: To evaluate the latency and area

(number of memristors participating in the computation) of the

proposed FiP multiplication algorithms, we compare them to

the baseline algorithm by Imani et al. [28]. Tables II and III list

the latency and area results, respectively, for FiP multiplication

as a function of different numbers of bits (N-bit commonly

used precision) generated by the cycle-accurate simulator.

The results show that the proposed algorithms not only

improve the execution time of FiP multiplication but also

substantially decrease the area relative to the baseline.

RRAM array sizes are limited due to sneak paths, IR drop

across the parasitic resistances of the wires, parasitic capaci-

tance across the wires, and the peak current the voltage drivers

can drive. Reasonable sizes of RRAM arrays are 512 × 512

and 1024×1024 [39], [40]. The significant improvement in the

area efficiency enables all 16-bit and 32-bit FiP multiplication

algorithms to fit, respectively, in 512 × 512 and 1024 × 1024

arrays.

2) Throughput: The feasibility of performing FiP multi-

plication using MAGIC within a single row substantially

increases the throughput. We compare the throughput of the

proposed FiP multiplication algorithms with APIM. For an

apples-to-apples comparison, we exclude the read latency in

APIM’s multiplier and consider only the MAGIC cycles, since

the read latency in RRAM is usually smaller than the latency

for performing MAGIC. To this end, for a single FiP multipli-

cation we include only the 2N MAGIC cycles for generating

the partial products and the delay of the MAGIC-based fast

carry-save adder described in Section II-C. Note that the real

latency of APIM is higher than that considered here, and thus

the results shown here are more conservative than they would

be if the read latency was included. To evaluate the throughput,

we count the number of multiplications that could be executed

in a single 512 × 512 array during 1000 cycles. Table IV

summarizes the throughput of the proposed FiP multiplication

algorithms as compared to APIM. The throughput is two to



HAJ-ALI et al.: IMAGING: IN-MEMORY ALGORITHMS FOR IMAGE PROCESSING 4263

Fig. 2. Number of 16-bit FiP multiplications that could be executed in a
512 × 512 array before it wears out.

three orders of magnitude better than that of APIM. This

significant improvement is due to MAGIC’s natural paral-

lelism, which allows 512 (the number of rows in the array)

multiplications to be performed simultaneously. In contrast,

the throughput of APIM is limited, as it operates serially on

the inputs. Increasing the array size will linearly increase the

throughput of MAGIC while the throughput of APIM will

remain constant.

3) Endurance Limitation: Using MAGIC NOR operations

causes periodic changes in the output and intermediate

memristor values, wearing out and stressing the memris-

tors, and thus decreasing the lifetime of the memory. The

endurance of state-of-the-art RRAM is currently limited to

1012 writes [41], [42]. The lifetime of the memory array is

limited to the lifetime of the memristors used most frequently.

To precisely evaluate the usage of each memristive cell,

we count the number of times each cell is written inside

the cycle-accurate simulator. The memristors written most

frequently are the ones used to repeatedly store the partial

products or perform the add operations. There are 13N − 5

such memristors in FPFiPM and LPFiPM, each used 2N times,

and 5 such memristors in the area optimized versions proposed

in Section III-C, each used 6N2 times. To maximize the

number of multiplications before the memory array wears out,

we leverage an approach similar to wear leveling [43], where

the mapping of memory elements is changed periodically

until most of the elements are near their end of life. To this

end, we continuously remap the area used for storing inputs

and intermediate results during the computation to different

regions inside the memory array. This remapping does not add

any performance overhead since it only changes the address

(column/row) of the output when performing MAGIC.

Figure 2 shows the number of 16-bit FiP multiplications

that can be performed inside a single 512 × 512 array before

it wears out, for all the proposed algorithms, with and without

wear leveling. This number is lower in the area-optimized

algorithms even after considering wear leveling because these

algorithms reuse area heavily to optimize area efficiency.

The numbers in the figure could be also used to determine

the lifetime of the memory array in years. For example, if we

assume a 100ns MAGIC gate delay of the memristor [18],

TABLE V

EXPRESSIONS FOR LATENCY AND AREA OF THE PROPOSED ALGORITHMS.
N IS THE NUMBER OF BITS IN EACH NUMBER. H AND W ARE,

RESPECTIVELY, THE HEIGHT AND WIDTH OF THE IMAGES (H ×W ),
AND P IS THE SIZE OF THE KERNEL IN CONVOLUTIONS (P×P ).

#Colors IS 3 FOR RGB AND 1 FOR GRAY-SCALE IMAGES

and a continuous serial execution of 4 · 1013 16-bit FPFiPMs

(3110 MAGIC cycles for a single FPFiPM, one row at a time)

with wear leveling, memory wear-out could take 394.5 years.

In contrast, when performing the same operations with full par-

allelism (3110 MAGIC cycles for a vector of 512 simultaneous

FPFiPMs), memory wear-out will occur after only 0.8 years.

The endurance limitation of RRAM is a well-known chal-

lenge. In fact, the industry is working on improving the cur-

rently endurance-limited technology to increase the endurance

and capacity of RRAM, and thus the lifetime of the memory.

Some believe that the endurance will increase to at least

1015 [44]. This improvement will directly increase the lifetime

of the memory array and similarly the number of operations

it could perform before wear out. RRAM could ultimately

replace DRAM as a result. With that being said, a direct

solution to increase the lifetime of the memory array could

currently be achieved by decreasing the parallelism or the

utilization. The parallelism could be decreased by performing

fewer MAGIC gates simultaneously at the cost of a linear

decrease in performance. The utilization of each memory

array could be decreased by performing MAGIC gates less

frequently, for instance by mapping the task periodically to

different memory arrays. In practice, memory array utilization

will be less than 100% since the data will have to be stored

before the computation starts and computing in all the arrays

simultaneously is not always necessary since it depends on the

data size.

IV. IMAGE PROCESSING USING MAGIC

Using the proposed vector FiP algorithms, we develop

algorithms for efficient in-memory execution of three com-

mon image processing applications: fixed point dot prod-

uct, Hadamard product, and image convolution. These image

processing algorithms were chosen as they are data intensive

and require element-wise operations that could be performed

similarly and independently on all the pixels and thus could

substantially benefit from the natural parallelism offered by

MAGIC. The latency and area for all the proposed algorithms

are summarized in Table V.

In all the algorithms, we assume a preprocessing stage

(Initialization) where all data elements are stored properly

for optimization purposes, and all the input data elements



4264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 12, DECEMBER 2018

Algorithm 2 Fixed Point Dot Product (FiPDP)

// Defines:

// M(i, j) = Memristor in row i and column j

// N = Bit precision

// H = Height(input vector)

// Initialization:

// M(0 to H − 1, 0 to N − 1) = NOT(input vector 1)
// M(0 to H − 1, N to 2N − 1) = NOT(input vector 2)
1: M(0 to H − 1, 2N to 4N − 1) ←

FPFiPM(M(0 to H − 1, 0 to N − 1) , M(0 to H − 1, N to 2N − 1))

// Multiply (element-wise) the two input vectors

2: h = H/2
3: for i = 1 to ⌈L OG2(H )⌉ do

4: M(h to 2h − 1, 4N to 6N − 1) ←

NOT(M(h to 2h − 1, 2N to 4N − 1))
/* Negate bottom half of the result vector

right */

5: M(0 to h − 1, 4N to 6N − 1) ←

NOT(M(h to 2h − 1, 4N to 6N − 1))
/* Negate the negated bottom half of the result

vector up so it becomes aligned with the top

half */

6: M(0 to h − 1, 2N to 4N − 1) ←

SUM(M(0 to h − 1, 2N to 4N − 1) , M(0 to h − 1, 4N to 6N − 1))

/* Sum the top half and bottom half of the

result vector */

7: h = h/2
8: end for

are stored negated. This assumption saves significant area

and latency overhead in negating the inputs inside the FiP

multiplication algorithms. Furthermore, we assume the data

is properly aligned, i.e., the multiplicands and multipliers

are stored in a juxtaposed position (in the same row). In

a system dedicated to image processing, these assumptions

might be valid. Nevertheless, in Section IV-D we explore

this preprocessing overhead in case these assumptions are

not valid. For simplicity, we assume that the memory array

size is not limited and can fit any input size. We address

the memory array size limitation in Section IV-E. For the

worst case scenario (in terms of area and latency), we assume

that FiPDP, the Hadamard product and image convolution use

FPFiPM. The other multiplication algorithms could be used for

further optimization. Additionally, for adding two numbers we

use the latency optimized adder [15]. Using the area-optimized

adder [15] could further optimize the area efficiency.

A. Fixed Point Dot Product (FiPDP)

FiP dot product (FiPDP) is the fundamental operation

in multiplying two matrices and the driving force behind

many previous works on memristive logic for image process-

ing [18], [19], [31]. In FiPDP, two vectors are multiplied,

element by element, and the results are accumulated. Par-

allel multiplication and addition on all the rows is used to

perform FiPDP between two H × 1 vectors. The proposed

method for calculating the FiPDP of two vectors is described

in Algorithm 2. The algorithm starts by performing vector

element-wise FPFiPM operations and then accumulates all

the elements of the resulting vector by repeatedly splitting

it into two similarly sized vectors, aligning the two vectors

adjacently and summing them. Figure 3 shows an example of

Fig. 3. Example of FiPDP as described in Algorithm 3 for two single-bit
vectors A = (0 1) and B = (1 1). (a) The arithmetic result of the vector dot
product multiplication, and (b) the different steps of the execution.

this algorithm being used to multiply two vectors of size 2×1

containing single-bit numbers.

The number of cycles required to complete the algorithm is

the number of cycles required for a single FPFiPM operation

(step 1) along with the ⌈L OG2(H )⌉ align (steps 3 − 5) and

sum operations (steps 6 − 8). The number of cycles required

for all the alignments is O(H + N · ⌈L OG2(H )⌉), since the

size of the vector is halved in each iteration of the ‘for’ loop.

The number of cycles required for all the sum operations is

O(N · ⌈L OG2(H )⌉).

The complexity of the algorithm is therefore O(N2 + N ·

⌈L OG2(H )⌉ + H ), and the area consists of the area needed

to store negated versions of the vectors and the area needed

to store intermediate values before reaching the final result.

The same intermediate memristors are reused for the FiP

multiplication and all the align and add operations, bringing

the total number of memristors to O(H N).

B. Hadamard Product

The Hadamard product is frequently used in image process-

ing tasks, e.g., visual tracking, data compression and fast

Fourier transform [25], [26]. In the Hadamard product, two

images of the same dimensions are multiplied, element by

element, producing another image of the same dimension as

the original images.

Parallel multiplication on all the rows is used to perform

the Hadamard product between two H × W images. The

proposed method for calculating the Hadamard product of

two images is implemented in Algorithm 3. The algorithm

iterates over the equivalent columns in the input images and

performs vector FiP multiplication between these columns. In

Figure 3 (b)-step 1, two vectors of size H = 2 and W = 1 are



HAJ-ALI et al.: IMAGING: IN-MEMORY ALGORITHMS FOR IMAGE PROCESSING 4265

Algorithm 3 Hadamard Product

// Defines:

// M(i, j) = Memristor in row i and column j

// N = Bit Precision

// H = Height(input image)

// W = Width(input image)

// Initialization:

// M(0 to H − 1, 0 to N · W − 1) = NOT(input image 1)
// M(0 to H − 1, N · W to 2N · W − 1) = NOT(input image

2)
1: for i = 0 to W − 1 do

2: M(0 to H − 1, 2N · (W + i) to 2N · (W + i + 1) − 1) ←

FPFiPM(M(0 to H − 1, N · i to N · (i + 1) − 1),

M(0 to H − 1, N · (W + i) to N · (W + i + 1) − 1)) /* Multiply

(element-wise) two matching input vectors */

3: end for

multiplied (element-wise); thus it is equivalent to performing

the Hadamard product between these two vectors.

The number of cycles required to complete the algorithm is

the number of cycles required for a single FiP multiplication

(step 2) multiplied by the number of columns (in the ’for’

loop). The complexity of the algorithm is therefore O(N2W ),

and the area consists of the area required for storing negated

versions of the images and the area required for storing

intermediate values before the final results are reached. The

same intermediate memristors are reused for all the FiP

multiplications, bringing the total number of memristors to

O(H W N).

C. Image Convolution

Image convolution is a popular operation in different image

processing tasks such as smoothing, filtering, and edge detec-

tion. It is useful in image recognition and manipulation,

medical imaging and convolutional neural networks [22]–[24].

In image convolution, a kernel is slided over an image and its

values are multiplied by the corresponding pixel values of the

image.

Algorithm 4 performs the convolution of an H × W image

represented in RGB (by an image for each color, with numbers

represented with N = 8 bits [45]) and a P × P filtering

kernel. The proposed algorithm is simultaneously executed

for all color images (i.e., red, blue and green), either in the

same array or in different arrays, thus efficiently exploiting

the parallelism of MAGIC NOR gates. The initial stage

(Initialization), where negated kernels and negated images are

aligned, is shown in Figure 4(a). In steps 1 − 5, all pixels in

each column participate simultaneously in a FiP multiply and

accumulate (FiPMAC) operation with the equivalent column

in the kernels. This is repeated for all the columns. In steps

6 − 8, the remaining results for each pixel are negated to the

closest available memristors (e.g., the entire column is negated

to the right). Finally, in steps 9−20, the remaining results are

negated up (steps 9 − 16) and accumulated (steps 17 − 20) to

generate the final result. An example of the execution of the

algorithm is shown in Figure 4 (for simplicity it is only shown

for a red image).

The number of cycles required to execute the algorithm is

determined by the number of cycles it takes to (1) perform

Algorithm 4 Image Convolution

// Defines:

// M(i, j) = Memristor in row i and column j

// N = Bit Precision

// H = Height(input image), Hp = H + P - 1
// W = Width(input image), Wp = W + P - 1
// P = height(input kernel) = width(input kernel)

// (R, G, B) = (0, 1, 2)
// c = column, e = element, clr = color, img =

image

// Initialization:

/* P negated copies of each input color image are

stored one below the other:

M(0 to P · H p − 1, 0 to N · W p − 1) = NOT(P copies of

input red image)

M(P · H p to 2P · H p − 1, 0 to N · W p − 1) = NOT(P copies

of input green image)

M(2P · H p to 3P · H p − 1, 0 to N · W p − 1) = NOT(P copies

of input blue image) */

/* 3Hp negated kernels are centered across unique

lines in the image:

M(0 to 3P · H p − 1, N · W p to N · (W p + P) − 1) = NOT(3Hp

copies of input kernel) */

1: for c = ⌊P/2⌋ to W + ⌊P/2⌋ do

2: for j = −⌊P/2⌋ to ⌊P/2⌋ do
3: M(0 to 3P · H p − 1,

N · (W p + 2c) to N · (W p + 2c + 2) − 1) ←

FPFiPMAC(M(0 to 3P · H p − 1,

N · (c + j) to N · (c + j + 1) − 1), M(0 to 3P · H p − 1,

N · (W p + ⌊P/2⌋ + j) to N · (W p + ⌊P/2⌋ + j + 1) − 1))
4: end for

5: end for
// Negate the result image horizontally:

6: for c = 0 to 2N · W − 1 do

7: M(0 to 3P · H p − 1, N · (W p + P + 2W ) + c) ←

NOT(M(0 to 3P · H p − 1, N · (W p + P) + c))
8: end for

9: for e = 1 to P − 1 do

10: for clr = R, G, B do
11: for img = 0 to P − 1 do

12: for row = img + e; row < H p; row += P do

13: M((clr + img) · H p + row − e,

N · (W p + P + 2W ) to N · (W p + P + 4W ) − 1)
← NOT(M((clr + img) · H p + row,

N · (W p + P + 2W ) to N · (W p + P + 4W ) − 1))

// Negate one negated result row up

14: end for

15: end for
16: end for

// Accumulate the matching vectors:

17: for c = 0 to W − 1 do
18: M(0 to 3P · H p − 1,

N · (W p + P + 2c) to N · (W p + P + 2c + 2) − 1) ←

SUM(M(0 to 3P · H p − 1,

N · (W p + P + 2c) to N · (W p + P + 2c + 2) − 1),
M(0 to 3P · H p − 1,

N · (W p + P + 2W + 2c) to N · (W p + P + 2W + 2c + 2) − 1)
19: end for
20: end for

parallel multiplications and accumulations of columns in the

data structure presented in Figure 4(a), (2) align the remaining

results, and (3) accumulate them. Therefore, the number of

cycles required is O(N2 PW + P H ), which means that the

latency is linear with the largest dimension of the image. Most

of the memristors are used for storing the negated versions

of the image and kernel. The memristors used for process-

ing and storing intermediate values occupy a much smaller

percentage of the total area as the algorithms become more

complex. When summed, the number of required memristors



4266 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 12, DECEMBER 2018

Fig. 4. Example of executing Algorithm 4 on a 7 × 7 image convolution with a 3 × 3 kernel. (a) The initial stage (Initialization). The negated kernel is
duplicated 7 times to cover a unique row of the image, such that all the rows are covered. Kernels are negated opposite to the 1st, 4th and 7th rows of the
top image, the 2nd and 5th rows of the middle image, and the 3rd and 6th rows of the bottom image. This duplication is repeated for the green and blue
images as well. (b) A single iteration of steps 1 − 5. (c) The results are negated to the right columns (steps 6 − 8). (d) The results are negated up to align
them with the equivalent numbers that (e) are eventually summed. The steps of (d) and (e) are repeated until all the results are accumulated to generate the
output image.

is O(P N H W ). In other words, the area is proportional to the

size of the image.

In some cases, e.g., MNIST [46], images are presented

in gray scale rather than RGB. In such cases, the area cost

is reduced by 3×. However, the improvement in latency is

negligible since the proposed algorithm processes all color

images simultaneously.

D. Initialization Overhead

The proposed algorithms assume that data is located within

the memory in the desired location before the beginning of the

execution (Initialization stage). For example, in the Hadamard

product the images are stored negated and aligned in the same

rows and columns. In a system dedicated to image processing,

the data might indeed be stored to meet this requirement.

However, if the data is not stored appropriately (e.g., scat-

tered), we propose the following in-memory techniques (using

MAGIC) to internally organize/move the data by considering

the cost of such data movement.

In FiPDP, generating two negated vectors and aligning

them requires 2N NOT operations. In the Hadamard product,

generating two negated images and aligning them requires 2H

if the images do not share any column, or H + W N NOT

operations if they do. In image convolution, generating P

negated images and H negated kernels and aligning them

requires 2P H for each color. Note that these techniques are

applicable only when all data exist within the same array.

When external data movement between different arrays is

required, different techniques should be used [17]. The initial

data organization overheads (Initialization) are summarized

in Table VI. In Section V-A, we show that the initial data

organization overhead is negligible.

E. Memory Array Limitations

The algorithms above assume the array size is not limited

and can fit the required area for any given image. However,

this is not the case in practice: processing large images (larger

than the memory array) requires splitting into multiple arrays,



HAJ-ALI et al.: IMAGING: IN-MEMORY ALGORITHMS FOR IMAGE PROCESSING 4267

TABLE VI

THE INITIAL DATA ORGANIZATION LATENCY OVERHEAD

(INITIALIZATION) FOR EACH ALGORITHM

TABLE VII

THE MAXIMUM SPLIT SIZE FOR EACH ALGORITHM IN A SINGLE

512 × 512 ARRAY WITH 8-BIT PRECISION

where each part needs to be processed independently using the

same algorithm. If the image consists of multiple color images,

each image will be considered alone, as would be done for

multiple single colored images (e.g., gray-scale). Furthermore,

using multiple arrays enables multiple images to be processed

with roughly the same latency as a single image.

For 8-bit precision and an array of size 512×512, the maxi-

mum length of the vector for FiPDP is 512. However, the area

used for storing the inputs and performing the computation

limits the width of the image in the Hadamard product to 12,

and to 8 in image convolution. While the height of the image

in Hadamard product is 512, the height in image convolution

with a P × P kernel is limited to ⌊ 512
P

⌋ due to the P required

copies of the original input image. The maximum split size

for each algorithm is listed in Table VII. In Section V-D,

we demonstrate how these sizes could be increased.

V. SIMULATION RESULTS

We have extensively evaluated our proposed image process-

ing algorithms, including the data organization overhead, exe-

cution time, throughput, comparison with APIM, and further

possible optimizations. To this end, we built a cycle-accurate,

functional simulator in MATLAB that accurately performs the

logical flow exactly as shown in each algorithm. The simulator

considers the array size, the precision (N), the dimensions,

the locations and the organization of the inputs, and the

different optimizations proposed in Section V-D.

Figure 5 shows the results generated from the simulator

for the proposed image convolution algorithm after applying

four different 3 × 3 filters used for sharpening and edge

detection, one per quarter of the image. The value of each

pixel is identical to the value of the equivalent pixel generated

when executing a conventional C code implementation of

image convolution with the same filters. This sanity check

was performed for each of the implemented algorithms.

For the evaluation, we consider arrays of size 512 × 512,

where each array can perform FiPDP, the Hadamard product,

and image convolution with a 3 × 3 kernel (which is the

most commonly used kernel [47]) on images of size up to

512 × 1, 512×12 and 170×8, respectively, with 8-bit precision

for the pixels (using the values in Table VII). Larger images

(e.g., K × K where K is 800) are split to multiple smaller

Fig. 5. Image convolution results generated from the cycle-accurate and
functional simulator of image convolution proposed in this paper. (a) The
original image and a (b) mosaic of the results after applying four different
3 × 3 filters used for sharpening and edge detection.

Fig. 6. Breakdown of the execution time of FiPDP, the Hadamard product
and image convolution with a 3×3 kernel on images of size 512×1, 512×12
and 170×8, respectively, with 8-bit precision (using the values in Table VII).
The values on the top of each bar are the overall number of cycles.

images with the exact same size that is bounded by the

sizes mentioned previously so that each image could fit in

arrays of size 512 × 512. Furthermore, we assume the data

is stored organized and aligned prior to execution, except in

Section V-A, where we evaluate the overhead due to data

organization and show that the initial preprocessing overhead

is negligible.

A. Data Organization Overhead

We break the execution time into three parts: (1) worst

case preprocessing overhead before the algorithm begins the

execution (Initialization, Section IV-D) in case the data is not

properly stored (e.g., scattered), (2) strategic data movement

between different stages of the algorithm, for the purpose

of reshaping the data to maximize the parallelism in the

later stages, and (3) parallel execution of FiP multiplica-

tion/addition. Figure 6 shows the breakdown of the execution

time of FiPDP, the Hadamard product, and image convolution

with a 3 × 3 kernel on images of size 512 × 1, 512 × 12 and

170 × 8, respectively, with 8-bit precision (using the values

in Table VII). In all three applications, the majority of the

execution time is spent efficiently on parallel execution of FiP

multiplications/additions. In the Hadamard product there is no

strategic data movement since it is necessary only when the

algorithm includes stages that perform operations on elements

located in different rows during the execution; these elements



4268 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 12, DECEMBER 2018

must be aligned to the same row in case doing so improves the

parallelism in the later stages. For FiPDP, 21% of the execution

time is spent on strategic data movement, and 1.9% for image

convolution, as both algorithms include such operations. Both

FiPDP and image convolution require summing intermediate

results located in different rows (after all the FiP multiplication

operations are executed); instead of serially adding each value,

each algorithm spends a small fraction of the execution time

to reshape the data into one aligned vector so that addition of

data elements can ultimately be performed in parallel.

The worst case preprocessing overhead is 0.5%, 2.3%, and

4.5%, respectively, in FiPDP, the Hadamard product, and

image convolution. Image convolution requires multiple (P)

copies of the image and thus its preprocessing overhead is the

highest. In a system dedicated to image processing, the data

will be stored properly and thus there will be no such overhead.

With that being said, the significantly low initial preprocessing

overhead is further justification for our decision to ignore it

in the rest of our evaluation.

B. Execution Time

Our execution time evaluation focuses on the Hadamard

product and image convolution. We leave performing FiPDP

on large vectors for future work as it requires external data

movement between the arrays for the final accumulation of

the results. To evaluate the execution time of the Hadamard

product and image convolution, we simulate the execution of

8-bit square images (K × K ) for different values of K . Note

that the execution time of multiple small images is identical

to processing multiple splits of a large image. The baseline

assumes the memory array is sufficiently large to perform both

algorithms within a single array for any desired image size.

Then, we limit the size of the array to 512×512 and consider

different numbers of arrays. To maximize the parallelism in

the latter case, we ensure that all arrays have exactly the same

split size, that the width of the split is the lowest possible, and

that its height is the highest possible. To this end, the width

of the split is chosen to be

spli tW I DT H = ⌈
K 2

num_arrays · max_height
⌉, (1)

and the height to be

spli tH E I G HT = ⌈
K 2

num_arrays · spli tW I DT H

⌉, (2)

where max_height is 512 in the Hadamard product and 170 in

image convolution. These values are based on the maximum

dimensions in Table VII for P = 3.

Figure 7 shows the execution time (in cycles) for the

Hadamard product and image convolution with a 3 × 3 filter

as a function of image size (K × K ) for different numbers of

available arrays or a single sufficiently large array capable of

performing the original baseline algorithm.

The execution time in the single sufficiently large array

is linear with the dimension of the image thanks to the

natural parallelism of MAGIC, which computes on all the rows

simultaneously. However, it gives the worst execution time

Fig. 7. Execution time (in cycles) of (a) the Hadamard product and (b) image
convolution for different numbers of active memory arrays. The baseline
considers a single sufficiently large array capable of performing the relevant
algorithm without partitioning.

(and requires unfeasible array sizes for most K values). Parti-

tioning to multiple arrays improves the execution time by three

orders of magnitude as it extends the parallelism to multiple

columns (the different columns are processed serially in the

original algorithm without partitioning). Furthermore, because

a large array incurs a longer MAGIC delay, the improvement in

the execution time when using multiple smaller arrays is even

higher in practice. The jumps in the execution time in multiple

arrays occur only when spli tW I DT H increases. However,

when spli tH E I G HT increases, the execution time is roughly

constant. This is why we chose to minimize spli tW I DT H and

maximize spli tH E I G HT .

The largest image that can be fit in 512 arrays (each sized

512 × 512) is 1773 × 1773 for the Hadamard product versus

834×834 in image convolution. In image convolution, multiple

copies of the image are required to maximize the parallelism

and align the data (Figure 4(c)), lowering the area efficiency.

These copies make the maximum split size much lower than

in the Hadamard product, and the ratio between the split sizes

determines the ratio between the maximum size of the images

these algorithms can support.



HAJ-ALI et al.: IMAGING: IN-MEMORY ALGORITHMS FOR IMAGE PROCESSING 4269

Fig. 8. Execution time (in cycles) of the Hadamard product and image
convolution with a 3 × 3 kernel on images of size 512 × 12 and 170 × 8,
respectively, with 8-bit precision (based on Table VII) as compared to APIM.

C. Comparison With APIM

We compare the execution of the proposed algorithms for

the Hadamard product and image convolution with the APIM

execution. We use a 3×3 kernel on images of size 170×8 for

image convolution, images of size 512 ×12 for the Hadamard

product, and 8-bit precision (using the values from Table VII).

In APIM, image convolution is implemented by using the

FiP multiplier and the MAGIC-based fast carry-save adder

described in Section II-C. We use the same procedure to

implement the Hadamard product in APIM. We compare the

execution in a single 512 × 512 array only, since the results

scale linearly for multiple arrays. Note that in APIM as well,

the data is assumed to be stored properly organized before the

execution begins.

1) Performance: For an apples-to-apples comparison,

we exclude the read latency in APIM’s multiplier and consider

only the MAGIC cycles. Note that the real latency of APIM

(when the read latency is included) is higher than the one

considered here, and thus the results shown here are more

conservative.

Figure 8 shows the execution time of the proposed algo-

rithms for the Hadamard product and image convolution as

compared to APIM. For the Hadamard product and image

convolution, the execution time improves by 217× and

173×, respectively, thanks to the parallelism MAGIC enables.

By contrast, APIM computes in the periphery, rendering its

computation serial. Furthermore, the logic added by APIM

to every single memory array complicates the periphery and

lowers the capacity of the memory. Finally, the additional

arrays used to compute with APIM require additional periph-

eral circuits, not required in pure MAGIC based computation.

2) Energy: Using a methodology similar to the one used in

APIM, the energy results were obtained from circuit level sim-

ulations for a 45nm CMOS process technology using Cadence

Virtuoso. We used the VTEAM memristor model [48], where

the device parameters fit the HfOx based bipolar memris-

tor [42], with RO N of 10k�, RO F F of 10M�, VS ET of 2V

and VRE S ET of 1V .

The energy consumption improves by 217× for the

Hadamard product and by 173× for image convolution. Inter-

estingly, in APIM, the energy dissipated in the periphery when

reading the data is dwarfed by the massive computation energy

of performing MAGIC. To minimize data movement, most of

the execution time in APIM is spent on performing MAGIC.

That explains why the energy improvement of the proposed

algorithms has the same trend as the latency improvement.

D. Further Possible Optimizations

1) Increasing the Split Size in Image Convolution: The max-

imum split size in image convolution is relatively small: 170×

8 (Table VII). When executing the strategic data movement,

the result image is negated horizontally (Figure 4(c)), so that

the elements can later be negated up (Figure 4(d)) in parallel.

The granularity of this parallelism is O(W ). However, since the

width (W = 8) and the strategic data organization overhead are

both relatively low (1.9% for the strategic data organization;

see Figure 6), this part of the algorithm (steps 6 − 16) could

be executed by repeatedly negating horizontally one column

at a time, then negating up (serially), and then adding the

results. Doing this would increase the maximum split size

to 170 × 13, and the maximum square image that could be

convoluted would increase to 1064 × 1064, at the cost of an

11% increase in the execution time.

2) Lowering the Precision: Using lower precision is a direct

solution to improve both the area efficiency and execution

time. For example, 1-bit precision is very common in image

processing applications [49]. Multiplying two 1-bit numbers

is basically an AND operation. Since these two numbers are

already stored negated, performing a single NOR operation

gives the result of the AND (AN D(a, b) = N O R(a′, b′)).

Using 1-bit rather than 8-bit precision improves the execution

time by 710× for the Hadamard product (this improvement

is in accordance with the execution time ratios of 8-bit

versus 1-bit FPFiPM) and by 25× for image convolution.

Furthermore, the maximum split size becomes 512 × 170 for

the Hadamard product and 170 × 98 for image convolution,

since less area is needed for computation and the precision of

both inputs and outputs decreased.

3) Using LPFiPM: Using LPFiPM rather than FPFiPM

improves the execution time by 2.1× for the Hadamard prod-

uct and 1.8× for image convolution. Additionally, since the

precision of the outputs is lower in LPFiPM, more space could

be given to the inputs, which thus increases the maximum split

size to 512 × 16 for the Hadamard product and 170 × 17 for

image convolution.

4) Using the Area Optimized Multipliers/Adders: Using the

area optimized versions of FPFiPM and LPFiPM along with

the area optimized adder algorithm [15] would increase the

area efficiency of the Hadamard product and image convolu-

tion. For example, deploying the area optimized FPFiPM and

adder would increase the maximum split size to 512 × 14 for

the Hadamard product and 170 × 12 for image convolution,

increasing the execution time by 27% and 10%, respectively.

5) Destroying the Inputs: The proposed algorithms could be

modified to write the results in the memristors that store the

input data (once the computation is finished and the computed

data is no longer needed for other computations). While this

would not affect the execution time, it would increase the



4270 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 12, DECEMBER 2018

maximum split size to 512 × 23 in Hadamard product and

170 × 10 in image convolution.

VI. CONCLUSIONS

In this paper, we show the feasibility of executing FiP

multiplication in a single row of size-limited memory arrays

using MAGIC. We also show how single row execution

provides substantially higher throughput when the parallelism

of MAGIC is utilized. We use vector FiP multiplication

to realize more advanced algorithms: FiPDP, the Hadmard

product, and image convolution. Our algorithms efficiently

map and perform the desired task within the memristive

memory array and among different arrays, exploit the massive

parallelism that MAGIC offers, and minimize data transfer.

We envision that these algorithms and others that are based on

single row execution will provide the foundation for efficient

memristive Memory Processing Unit (mMPU) that will help

mitigate the von Neumann bottleneck. The next step is to build

such a system and conduct a systematic comparison between

a memory capable of performing MAGIC based operations

versus alternative architecture points.

ACKNOWLEDGMENT

The authors would like to thank Saransh Gupta for sharing

his methodology and data about APIM.

REFERENCES

[1] A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky,
“Dark memory and accelerator-rich system optimization in the dark
silicon era,” IEEE Design Test, vol. 34, no. 2, pp. 39–50, Apr. 2017.

[2] R. Ben-Hur and S. Kvatinsky, “Memory processing unit for in-
memory processing,” in Proc. Int. Symp. Nanosc. Archit. (NANOARCH),
Jul. 2016, pp. 171–172.

[3] R. Ben-Hur and S. Kvatinsky, “Memristive memory processing unit
(MPU) controller for in-memory processing,” in Proc. IEEE Int. Conf.

Sci. Elect. Eng. (ICSEE), Nov. 2016, pp. 1–5.

[4] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity DRAM technology,” in Proc. 50th Annu.

IEEE/ACM Int. Symp. Microarchitecture, Oct. 2017, pp. 273–287.

[5] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in Proc. IEEE Int. Symp. High Perform.

Comput. Archit. (HPCA), Feb. 2017, pp. 481–492.

[6] S. F. Yitbarek, T. Yang, R. Das, and T. Austin, “Exploring specialized
near-memory processing for data intensive operations,” in Proc. Design,

Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2016, pp. 1449–1452.

[7] C. Xu et al., “Overcoming the challenges of crossbar resistive memory
architectures,” in Proc. IEEE 21st Int. Symp. High Perform. Comput.

Archit. (HPCA), Feb. 2015, pp. 476–488.

[8] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“The desired memristor for circuit designers,” IEEE Circuits Syst. Mag.,
vol. 13, no. 2, pp. 17–22, 2nd Quart., 2013.

[9] J. Lee, M. Jo, D. Seong, J. Shin, and H. Hwang, “Materials and process
aspect of cross-point RRAM,” Microelectron. Eng., vol. 88, no. 7,
pp. 1113–1118, Jul. 2011.

[10] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman,
“Memristor-based IMPLY logic design procedure,” in Proc. IEEE 29th

Int. Conf. Comput. Design (ICCD), Oct. 2011, pp. 142–147.

[11] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in Proc. Design, Autom. Test Eur.

Conf. Exhib. (DATE), Mar. 2015, pp. 1718–1725.

[12] L. Amaru, P. E. Gaillardon, and G. D. Micheli, “Majority-inverter graph:
A new paradigm for logic optimization,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 35, no. 5, pp. 806–819, May 2016.

[13] S. Kvatinsky et al., “MAGIC—Memristor-aided logic,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899, Nov. 2014.

[14] R. Ben-Hur, N. Wald, N. Talati, and S. Kvatinsky, “SIMPLE MAGIC:
Synthesis and in-memory MaP-ping of logic execution for memristor-
aided loGIC,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 2017, pp. 1–8.

[15] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided loGIC (MAGIC),” IEEE

Trans. Nanotechnol., vol. 15, no. 4, pp. 635–650, Jul. 2016.

[16] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Memristor-based material implication (IMPLY) logic:
Design principles and methodologies,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, Oct. 2014.

[17] N. Talati et al., “Practical challenges in delivering the promises of real
processing-in-memory machines,” in Proc. Design, Automat. Test Eur.

Conf. Exhib. (DATE), Mar. 2018, pp. 1628–1633.

[18] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. ACM/IEEE Annu.

43rd Int. Symp. Comput. Archit., Jun. 2016, pp. 14–26.

[19] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in Proc.

43rd Int. Symp. Comput. Archit., 2016, pp. 27–39.

[20] R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision, vol. 5.
New York, NY, USA: McGraw-Hill, Mar. 1995.

[21] R. A. Horn, “The Hadamard product,” in Matrices: Theory and Appli-

cations, vol. 40. Providence, RI, USA: AMS, 1990, pp. 87–169.

[22] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still
image compression standard,” IEEE Signal Process. Mag., vol. 18, no. 5,
pp. 36–58, Sep. 2001.

[23] R. Zhen and R. L. Stevenson, “Image demosaicing,” in Color

Image and Video Enhancement. Cham, Switzerland: Springer, 2015,
pp. 13–54.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.

Process. Syst., Dec. 2012, pp. 1097–1105.

[25] D. Bolme, J. Beveridge, B. Draper, and Y. Lui, “Visual object tracking
using adaptive correlation filters,” in Proc. Int. Conf. Comput. Vis.

Pattern Recognit., Sep. 2010, pp. 2544–2550.

[26] B. Shen, I. K. Sethi, and V. Bhaskaran, “DCT convolution and its
application in compressed domain,” IEEE Trans. Circuits Syst. Video

Technol., vol. 8, no. 8, pp. 947–952, Dec. 1998.

[27] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2014, pp. 10–14.

[28] M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient processing in-
memory for data intensive applications,” in Proc. 54th Annu. Design

Autom. Conf., Jun. 2017, pp. 1–6.

[29] J. Reuben et al., “Memristive logic: A framework for evaluation and
comparison,” in Proc. 27th Int. Symp. Power Timing Modeling, Optim.

Simulation (PATMOS), Sep. 2017, pp. 1–8.

[30] A. Haj-Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky, “Efficient algorithms
for in-memory fixed point multiplication using MAGIC,” in Proc. IEEE

Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[31] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM-
based accelerator for deep learning,” in Proc. IEEE Int. Symp. High

Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 541–552.

[32] S.-S. Sheu et al., “A 5ns fast write multi-level non-volatile 1 K bits
RRAM memory with advance write scheme,” in Proc. Symp. VLSI

Circuits, Jun. 2009, pp. 82–83.

[33] M.-C. Wu, W.-Y. Jang, C.-H. Lin, and T.-Y. Tseng, “A study on low-
power, nanosecond operation and multilevel bipolar resistance switching
in Ti/ZrO2/Pt nonvolatile memory with 1T1R architecture,” Semicond.

Sci. Technol., vol. 27, no. 6, p. 065010, May 2012.

[34] L. Zhang, D. Strukov, H. Saadeldeen, D. Fan, M. Zhang, and
D. Franklin, “SpongeDirectory: Flexible sparse directories utilizing
multi-level memristors,” in Proc. 23rd Int. Conf. Parallel Archit.

Compilation, Aug. 2014, pp. 61–74.

[35] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm,” Nanotechnology, vol. 23, no. 7, p. 075201, 2012.

[36] H. S. Malvar, L.-W. He, and R. Cutler, “High-quality linear inter-
polation for demosaicing of Bayer-patterned color images,” in Proc.

IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 3, May 2004,
pp. iii-485–iii-488.

[37] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in Proc. 53nd

ACM/EDAC/IEEE Design Automat. Conf. (DAC), Jun. 2016, pp. 1–6.



HAJ-ALI et al.: IMAGING: IN-MEMORY ALGORITHMS FOR IMAGE PROCESSING 4271

[38] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array
multiplication algorithm,” IEEE Trans. Comput., vol. C-22, no. 12,
pp. 1045–1047, Dec. 1973.

[39] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, “Design implications
of memristor-based RRAM cross-point structures,” in Proc. Design,

Autom., Test Eur. Conf. Exhib. (DATE), Mar. 2011, pp. 1–6.
[40] L. Zhang, S. Cosemans, D. J. Wouters, G. Groeseneken, M. Jurczak,

and B. Govoreanu, “Selector design considerations and requirements
for 1 SIR RRAM crossbar array,” in Proc. IEEE 6th Int. Memory

Workshop (IMW), May 2014, pp. 1–4.
[41] J. J. Yang et al., “High switching endurance in TaOx memristive

devices,” Appl. Phys. Lett., vol. 97, no. 23, p. 232102, Nov. 2010.
[42] H. Y. Lee et al., “Evidence and solution of over-RESET problem for

HfOX based resistive memory with sub-ns switching speed and high
endurance,” in IEEE IEDM Tech. Dig., Dec. 2010, pp. 19.7.1–19.7.4.

[43] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of PCM-based main
memory with start-gap wear leveling,” in Proc. 42nd Annu. IEEE/ACM

Int. Symp. Microarchitecture, Dec. 2009, pp. 14–23.
[44] J. Nickel, “Memristor materials engineering: From flash replacement

towards a universal memory,” in Proc. IEEE IEDM Adv. Memory

Technol. Workshop, Dec. 2011, pp. 1–3.
[45] P. J. Norman et al., “In-datacenter performance analysis of a tensor

processing unit,” in Proc. ACM/IEEE 44rd Annu. Int. Symp. Comput.

Archit. (ISCA), Jun. 2017, pp. 1–12.
[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[47] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. Comput. Sci., Sep. 2014,
pp. 1–14.

[48] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM:
A general model for voltage-controlled memristors,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 62, no. 8, pp. 786–790, Aug. 2015.
[49] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,

“Binarized neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2016, pp. 4107–4115.

Ameer Haj-Ali received the B.Sc. degree (summa

cum laude) in computer engineering from the
Technion–Israel Institute of Technology in 2017.
He is currently a Graduate Student with the Andrew
and Erna Viterbi Faculty of Electrical Engineer-
ing, Technion–Israel Institute of Technology. From
2015 to 2016, he was with Mellanox Technologies as
a Chip Designer. His current research is focused on
novel computer architectures with emerging memory
technologies and the design of energy efficient and
parallel architectures.

Rotem Ben-Hur received the B.Sc. degree in elec-
trical engineering from the Technion–Israel Insti-
tute of Technology in 2014, where she is currently
pursuing the Ph.D. degree (direct path) with the
Andrew and Erna Viterbi Faculty of Electrical Engi-
neering. In 2012, she joined Elbit Systems as an
FPGA Designer. Her current research is focused on
novel architectures for logic with emerging memory
technologies.

Nimrod Wald received the B.Sc. degree in electrical
engineering and physics from the Technion–Israel
Institute of Technology, Haifa, in 2013. Since 2015,
he has been a Graduate Student with the Technion–
Israel Institute of Technology, where he was involved
in novel circuits and architectures for logic with
memristors. In 2011, he joined Qualcomm Inc., as a
Hardware Design Student. In 2013, he took a hard-
ware architecture position in the area of performance
analysis.

Ronny Ronen (F’08) received the B.Sc. and M.Sc.
degrees in computer science from the Technion–
Israel Institute of Technology in 1978 and 1979,
respectively. From 1980 to 2017, he was with Intel
where he was involved in various technical and
managerial positions. He led the Intel Collaborative
Research Institute for Computational Intelligence.
He led the development of several system soft-
ware products and tools including the Intel Pentium
processor performance simulator and several com-
piler efforts. Until 2011, he was the Director of the

Microarchitecture Research and then a Senior Staff Computer Architect with
the Intel Development Center, Haifa. In these roles, he led/involved in the ini-
tial definition and pathfinding of major leading edge Intel processors. He was
an Intel Senior Principal Engineer. He is currently a Senior Researcher with
the Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion–
Israel Institute of Technology. He holds over 70 issued patents and has
published over 20 papers.

Shahar Kvatinsky received the B.Sc. degree in
computer engineering and applied physics and the
M.B.A. degree from the Hebrew University of
Jerusalem, in 2009 and 2010, respectively, and the
Ph.D. degree in electrical engineering from the
Technion–Israel Institute of Technology in 2014.
From 2006 to 2009, he was with Intel as a Circuit
Designer and was a Post-Doctoral Research Fellow
with Stanford University from 2014 to 2015. He is
currently an Assistant Professor with the Andrew
and Erna Viterbi Faculty of Electrical Engineering,

Technion–Israel Institute of Technology. His current research is focused on
circuits and architectures with emerging memory technologies and the design
of energy efficient architectures. He was a recipient of the 2010 Benin Prize,
the 2013 Sanford Kaplan Prize for Creative Management in High Tech,
the 2014 and 2017 Hershel Rich Technion Innovation Awards, the 2015 IEEE
Guillemin-Cauer Best Paper Award, the 2015 Best Paper of Computer
Architecture Letters, the Viterbi Fellowship, the Jacobs Fellowship, the ERC
starting grant, the 2017 Pazy Memorial Award, and six Technion excellence
teaching awards. He is an Editor of Microelectronics Journal.


