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Imaging inflammation using an activated
macrophage probe with Slc18b1 as the
activation-selective gating target
Sung-Jin Park 1, Beomsue Kim1, Sejong Choi2, Sivaraman Balasubramaniam1, Sung-Chan Lee1, Jung Yeol Lee3,

Heon Seok Kim2, Jun-Young Kim1, Jong-Jin Kim1,4, Yong-An Lee1, Nam-Young Kang1,5, Jin-Soo Kim 2,6 &

Young-Tae Chang 1,3,4

Activated macrophages have the potential to be ideal targets for imaging inflammation.

However, probe selectivity over non-activated macrophages and probe delivery to target

tissue have been challenging. Here, we report a small molecule probe specific for activated

macrophages, called CDg16, and demonstrate its application to visualizing inflammatory

atherosclerotic plaques in vivo. Through a systematic transporter screen using a CRISPR

activation library, we identify the orphan transporter Slc18b1/SLC18B1 as the gating target

of CDg16.
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M
acrophages (Mφ) play many important roles in the
immune responses of infected tissues through a polar-
ized activation phase. Activated macrophages (Mφ*)

are mainly classified as M1 (pro-inflammation) and M2 (anti-
inflammation) macrophages, which can be induced by the in vitro
treatment of lipopolysaccharide (LPS)/interferon-gamma (IFNɣ)
and interleukin-4 (IL-4)/IL-13, respectively1. Considering both
M1 and M2 macrophages have important roles for the inflam-
matory processes of phagocytosis, antigen presentation, and
scavenging activities (M1), as well as for the processes of wound-
healing and tumor growth (M2), the targeted detection of both
Mφ* has long been regarded as a direct approach for the diag-
nosis and prognosis of inflammatory diseases such as Alzheimer’s
dementia, hepatitis, atherosclerosis, and cancer2–8.

Nonetheless, currently available imaging probes for live
inflammation are mainly designed against indirect targets, such
as adhesion molecules of endothelial cells in the inflamed area6,
metabolic targets of glucose consumption7, and extracellular
enzymes, including cathepsins9 and matrix metalloproteinase
(MMP)10. For example, LaRee1 and LaRee5 fluorescent probes
were developed for imaging pulmonary inflammation using
Foerster resonance energy transfer effect initiated by the
membrane-bound MMP-12 enriched in the inflamed area11.
PhagoGreen stained phagocytic macrophages in zebrafish12.
The qABP probe labeled polyps in intestinal cancer by topical
application with targeting cysteine cathepsins for the optical
fluorescent imaging13.

Although direct targeting of macrophages is a promising
alternative approach, discrimination between non-activated (Mφ)
and activated macrophages (Mφ*) is challenging. For such
specific imaging of inflammation, a selective probe that only
recognizes Mφ* would be ideal. Currently, a few targets, such as
translocator protein (TSPO)14 and folate receptor-β15 are used for
imaging Mφ* but low selectivity among macrophages and broad
tissue expression of the proteins are limiting factors for whole
body imaging. To overcome these limitations, we designed an
unbiased screening of a fluorescent library using a polarized
macrophage population, M1 macrophages, as a positive control
and Mφ as a negative control. Here we report the successful
development of a selective probe for Mφ*, CDg16. We demon-
strate its application to imaging active inflammation in mice by
direct targeting the accumulated Mφ* in the blood vessel wall
of atherosclerosis16, and uncover Slc18b1/SLC18B1 as a novel
molecular target of the probe.

Results
Development of the activated macrophages probe, CDg16. To
construct the screening platform, Raw264.7 cells were used as Mφ
and their activation by LPS (100 ng/mL) and IFNɣ (20 ng/mL)
was adopted to establish M1 macrophages17. The M1 polarized
activation was confirmed by the generation of nitric oxide and the
specific expression of M1 markers (inducible nitric oxide synthase
(iNOS), CD38, and CD86), but not M2 marker (CD206), ana-
lyzed by immunocytochemistry (ICC) or flow cytometry (Sup-
plementary Fig. 1). Over 8000 fluorescent library compounds
were collected18 and tested for Mφ and M1 macrophages side-by-
side using a high-throughput imaging microscope (Supplemen-
tary Fig. 2). Compounds with higher fluorescence staining in M1
macrophages over Mφ were selected as the primary candidates.
After a repeated screening, the probe with the best contrast and
highest reproducibility was chosen as the final probe and dubbed
CDg16 (Compound Designation green 16). CDg16 is a member
of a novel acridine-based library (AD) (Fig. 1a, Supplementary
Fig. 3, Supplementary Data 1 and Supplementary methods) and
showed remarkable specificity and reliability for M1 macrophages

both in cell line and in primary mouse peritoneal macrophages
(Fig. 1b). Specificity for M1 macrophages was confirmed by
colocalization of the CDg16 stain and ICC of the M1 activated
macrophage marker, CD86 (Supplementary Fig. 4). At the sub-
cellular level, CDg16 localized to a population of lysosomal
vesicles in M1 macrophages (Fig. 1c) and CDg16-positive vesicles
appeared in polarizing cells from 8 h following activation of
Raw264.7 cells with LPS and IFNɣ (Fig. 1d). Interestingly, how-
ever, the CDg16-stained lysosomal vesicles were not merged to
the low pH area of M1 macrophages (Supplementary Fig. 5a,
white arrows showing the CDg16brightpHrododim vesicles). The
independency of the CDg16 staining with low pH was further
confirmed by the co-staining of CDg16 with the pHrodo-
conjugated zymosan bioparticles to label low pH phagocytotic
vesicles of M1 macrophages. CDg16 signals were not colocalized
with the pHrodo-zymosan-derived fluorescent signals (Supple-
mentary Fig. 5b).

To further examine the correlation between pH and the
CDg16 staining, we compared CDg16 with a popular acridine-
based pH-sensitive probe, acridine orange, which showed no
specificity to M1 macrophages (Supplementary Fig. 6). For the
comparison of chemical properties between the two probes, the
calculated distribution coefficient (ClogD) and topological polar
surface area (tPSA) values of acridine orange (AO) and CDg16
were calculated by ChemAxon (chemicalize program) for
predicting and explaining the biodistribution of probes. Interest-
ingly, although the ClogD values19 of AO and CDg16 were
similar (2.93 and 3.31 at pH 7.4 and 2.01 and 1.78 at pH 4.5,
respectively), the tPSA value20 was much lower in AO compared
with CDg16 (19.4 versus 114.4). It suggests that CDg16 may be
less (passively) permeable to the cells rather than AO, hence a
unique mechanism such as specific transport may be involved
in the CDg16 staining to Mφ* (Supplementary Fig. 6).

Notably, the low background staining of CDg16 enabled time-
lapse imaging throughout the entire activation process without
the need to wash the probe. CDg16 showed no apparent toxicity
or disturbance to the macrophage activation process for 36 h
(Fig. 1d and Supplementary Movie 1). Next, the universality of
CDg16 was further examined by applying the probe to other types
and origins of M1 macrophages. In comparison with their
counterpart Mφ, consistently brighter staining pattern was
observed in LPS/IFNɣ-activated primary microglia from mouse
brain (Supplementary Fig. 7a), M1 macrophages derived from
human blood monocytes (Supplementary Fig. 7b), and M1
macrophages from the human macrophage cell line THP-1
(Supplementary Fig. 7c). To test if CDg16 can be systemically
applied in vivo to whole animals, a topical acute inflammation
animal model was induced by LPS injection into the paw areas
of mice (Fig. 1e). After 1 h of intravenous (i.v.) injection of
CDg16, LPS-injected (experimental) paws showed much higher
numbers of CDg16-stained cells compared with phosphate-
buffered saline (PBS)-injected (control) paws. The activation
state of M1 macrophages was confirmed by colocalization of
CDg16-stained cells (green) with CD86-positive cells (red) by
immunohistochemistry (IHC) (Fig. 1f).

Detecting atherosclerotic plaques using CDg16. Atherosclerosis
is a well-known inflammatory disease in humans and its pro-
gression is highly correlated with the population of Mφ* mac-
rophages composed of mainly M1 and few M2 macrophages in
arterial walls16. In light of this, we next tested CDg16 probe in the
model of atherosclerosis in cell and animals. First, oxidized low-
density lipoprotein (oxi-LDL) treated Raw264.7 Mφ were used as
a model for atherosclerosis because oxi-LDL is one of the main
risk factors for the accumulation of Mφ* at atherosclerotic blood
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vessel wall and plaque areas, which directly induce the activation
of macrophages21 (Supplementary Fig. 8a). Along with the fact
that oxi-LDL treatment preferentially induced the differentiation
of Mφ to M1 macrophages (Supplementary Fig. 8b), the oxi-LDL-
induced activated macrophages brightly stained by CDg16 com-
pared with Mφ (Fig. 2a). Next, visualization of atherosclerotic
plaques was directly tested in ApoE knockout (ApoE KO) mice
(Fig. 2b), which were fed a western diet in order to stimulate
plaque formation. Atherosclerotic plaques in ApoE KO mice
extensively formed along the root of aorta arch (RAA), thoracic
aorta (TA), and abdominal aorta (AA) from the heart (Figs. 2b, c
and Supplementary Fig. 8c, d)5,10. As expected, after tail vein
injection of CDg16, high fluorescence signals appeared in the
severely atherosclerotic areas of RAA, TA, and the right bra-
chiocephalic artery (RtB) of ApoE KO mice (yellow arrows in
Fig. 2c, arrowheads in the CDg16+ApoE group of Supplemen-
tary Fig 8c, d). The single-frame image with aortas of control
mice clearly revealed that only CDg16-injected ApoE KO mice
had high fluorescence signals in atherosclerotic plaques over the
fluorescence levels of autofluorescent signals of Mφ* (Fig. 2d).
Localization of CDg16 in M1 macrophages of atherosclerotic
plaques was confirmed by the colocalization of the CDg16 signal
with CD86 and iNOS (Fig. 2e and Supplementary Fig. 10),

whereas control aortas did not show any fluorescent signals
except elastic laminar autofluorescence (Supplementary Fig. 9a).
Very low CDg16 fluorescence from other organs, except fat pads,
under the same optical imaging conditions (the exposure time
and the binning) of the aorta observation, demonstrated that
the injected probe preferentially accumulated in Mφ* in the
plaque areas of atherosclerotic ApoE KO mice in vivo (Supple-
mentary Fig. 9b). Moreover, it was clear that the strength of
the fluorescence signal from fat pads was relatively low when
directly compared with CDg16 fluorescence signals from plaques
of the AA with pre-aorta fat in CDg16-injected ApoE KO mice
(Supplementary Fig. 9c).

Next, we analyzed whether CDg16 labels M2 macrophages
because M2 (alternative activated) macrophages also existed as a
minor Mφ* populations in the atherosclerosis aorta (Supplemen-
tary Fig. 10)16. After confirming the in vitro differentiated M2
THP-1 macrophages by the expression of CD206 (Supplementary
Fig. 11a, c), we found that both THP-1-derived M1 and M2
macrophages were strongly stained with CDg16 compared with
non-activated control macrophages (Supplementary Fig. 11b).
Flow cytometry analysis with live cells isolated from aorta tissue
showed that the CD45+CD86+ (47.7%) or CD45+CD38+

(41.6%) M1 population in atherosclerosis specifically stained
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with CDg16 compared with the other CD45− cells (Supplemen-
tary Fig. 12b, d). Consistently with the staining of in vitro
differentiated M2 macrophages, a few CD45+CD206+ M2
macrophages (2.1%) was also stained with CDg16 in athero-
sclerosis aorta tissues (Supplementary Fig. 12c). The specificity of
CDg16 to Mφ* over other cell types was further confirmed by
using in vivo atherosclerosis aorta cells (Supplementary Fig. 13a)
and in vitro cell lines of endothelial, and smooth muscle origin
(Supplementary Fig. 13b), as well as epithelial cell-derived human
cancer cell lines (Supplementary Fig. 13c).

Finally, we examined the application of CDg16 to liver, another
type of tissues, from control, ApoE KO and hepatitis mouse
(Supplementary Fig. 14). Administration of CDg16 via tail vein
discriminated M1 macrophages in the liver of ApoE KO and
hepatitis to the control liver tissues of wild-type mouse, indicating
that CDg16 can detect M1 macrophages regardless of tissue types.

Slc18b1-mediated uptake of CDg16 in activated macrophages.
Next, we questioned how CDg16 labels Mφ* specifically. Since we
discovered CDg16 via unbiased screening without any biomarker

information, it was necessary to narrow down the potential targets
based on its staining characteristics. We observed two important
phenomena: first, CDg16 fluorescence signals were completely
removed after permeabilization, followed by fixation of stained
M1 macrophages (Supplementary Fig. 15a). This suggests that
CDg16 may solely reside in M1 macrophages rather than strongly
bind to a biomolecular target. Second, the intracellular localization
of CDg16 to sub-lysosomal vesicles was only observed in live,
but not in dead M1 macrophages, implying an active transport
process of live M1 macrophages may be involved (Supplementary
Figs. 15b, 16). Endocytosis-mediated processes are a general
means to uptake various substances from small molecules to
complex macromolecules. To test the possibility of the involve-
ment of endocytosis-mediated processes in the vesicular accu-
mulation of CDg16, we used the drugs, cytochalasin D, LY294002,
nystatin, filipin III, and phenylarsine, to inhibit endocytosis,
macropinocytosis, micropinocytosis, clathrin-independent micro-
pinocytosis, and micropinocytosis/phagocytosis, respectively.
However, none of the inhibitors affected CDg16 accumulation in
M1 macrophages, suggesting that CDg16 may enter the vesicles
by another active mechanism (Supplementary Fig. 17).

We next focused on solute carrier (SLC) transporters, which
import nutrients and xenobiotic molecules into live cells
including phagocytic process22,23. Despite the importance of
SLC transporters to a live organism, only a few members of SLCs
have been extensively studied by their relevance to pharmacology
and drug discovery24. Accordingly, there is no systematic tool
currently available for screening SLC transporters, which
comprise nearly 400 members24. We, therefore, attempted to
create a novel systematic approach, SLC-CRISPRa (CRISPR
activation), to screen SLC transporters for target identification
of CDg16. Initially, the 380 protein-encoded SLC genes were
selected from NCBI Gene (http://www.ncbi.nlm.nih.gov/gene)
(Supplementary Data 2). By designing 10 single guide
RNAs (sgRNAs) to the promoter region of each SLC gene, we
successfully generated SLC-CRISPRa pools expressing one of the
3800 sgRNAs with dCas9-VPR25 (Fig. 3a, Supplementary Fig. 18
and Supplementary Data 3). Next, the schematic screening
process was verified with the two known fluorescent substrates,
4-Di-1-ASP and C1-BODIPY-C12, which are imported to
intracellular spaces or fatty-acid rich vesicles of live cells by
SLC22A23 and SLC27A2, respectively26,27. The expected SLC
targets were successfully emerged from the six-round enriched
population after gradually enriching the brightly stained popula-
tion via fluorescence-activated cell sorting (FACS) (Supplemen-
tary Fig. 19). We then applied CDg16 to the SLC-CRISPRa
system to identify SLC(s) that can selectively import the probe
into vesicles. After six rounds of expansion of the top 3% of
brightest populations from mother pools, the sorted CDg16bright

population showed greater staining of CDg16 than the unsorted
population (Fig. 3b and Supplementary Figs. 20, 21a). Through
next-generation sequencing (NGS) analysis of the population in
the sorted SLC-CRISPRa pools, three enriched sequences targeted
to SLC18B1, SLC10A4, or SLC41A3, were shortlisted comprising
85.3% of the whole population (Fig. 3c). When the three SLC-
sgRNA sequences were overexpressed individually, only
SLC18B1-targeted sgRNA-transduced cells showed significantly
enhanced CDg16 fluorescence (Fig. 3d). The correlation between
SLC18B1 protein and CDg16 staining was confirmed through the
colocalization of fluorescence signals between SLC18B1-mCherry
and CDg16 in CDg16bright vesicles using the SLC18B1–mCherry
fusion protein, suggesting that SLC18B1 indeed transports CDg16
into vesicles (Fig. 3e). Importantly, Slc18b1 KO via CRISPR/Cas9
in the M1 Raw264.7 macrophages resulted in reduced CDg16
fluorescence compared with levels in control M1 macrophages,
indicating that mouse Slc18b1, the homolog of human SLC18B1,
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transport CDg16 in M1 macrophages (Fig. 3f, g and Supplemen-
tary Fig. 21b). We, therefore, suggest that Slc18b1 is the
functional gating target of CDg16, and accumulates CDg16 in a
type of lysosomal vesicles of M1 macrophages selectively (Fig. 3h).
Moreover, like the overexpression of Slc18b1 in the LPS/IFNɣ- or
oxi-LDL-induced M1 macrophages, human SLC18B1 was highly
expressed in both human M1 and M2 macrophages, supporting
that SLC18B1 mediates the specific staining of CDg16 to Mφ*
(Supplementary Fig. 22). As far as we know, CDg16 is the first
substrate of the orphan transporter, SLC18B1.

Here, we present a novel optical imaging probe CDg16 for Mφ*
by screening thousands of fluorescence library compounds and
elucidated its staining mechanism as a selective entry through
SLC18B1 transporter. CDg16 stains Mφ* selectively and success-
fully visualized the active inflammatory sites of atherosclerosis in
animal model, overcoming the major hurdle for the targeted
imaging of inflammation28. The development of a highly specific
probe for activated macrophage in whole body by a simple i.v.
injection will provide a unique diagnostic tool for inflammation-
related diseases.

Methods
Preparation of CDg16 and synthesis of AD library. CDg16 is the bio-
fluorescence probe, which is discovered from the aminoacridine (AD)/AD

chloroacetyl (ADCA) library. In total, 80 membered AD fluorescent library were
designed based on its’ natural fluorescence property. AD and ADCA were prepared
from diamino-acridine (proflavine) core structure by the strategic expansion of its’
biophore diversity.

AD library was synthesized on a solid support, which is well known as
2-chlorotrityl polystyrene resin. The amino group of AD is the labile tethering
moiety, which enables us to diversify the biophore space. General loading method
on polymer resin was used with pyridine in N,N-dimethylformamide/dimethyl
sulfoxide and secondary amine group was introduced to go further amide products
after chloroacetyl linker conjugation. ADCA is the modification of its’ original
version, AD, for the purpose of cellular incorporation. Detailed preparation
methods and characterization data are described in the supplementary information
(Supplementary Methods, Supplementary Fig. 23 to 33, Supplementary Data 1 and
Supplementary Data 4).

Cell culture for screening. Mouse Raw264.7 macrophage cell line (ATCC® TIB-
71™) was used for screening. Raw264.7 cells were cultured in a culture dish in high-
glucose Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine
serum, 100 U/mL penicillin, 100 μg/mL streptomycin (Life Technologies). For
making activated macrophages (Mφ*), 100 ng/mL LPS and 20 ng/mL IFNɣ were
treated in Raw264.7 cells for 24–48 h. Only the activated Raw264.7 cells showed the
activation morphology of flattened spread cells were used for experiments, i.e.,
screening and intracellular localization.

Activation of other macrophages. To activate other macrophage cell lines or
primary cells, LPS (100 ng/mL, Sigma-Aldrich) and IFNɣ (20 ng/mL, Life Tech-
nologies) were treated for 24 h at 37 oC. For primary cell tests, mouse peritoneal
macrophages from peritoneal cavity were isolated and collected macrophages were
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activated by LPS and IFNɣ. Mouse microglia was isolated from confluent glial
cultures, which obtained by 2–3 weeks cultures of neonatal cortices. Human
monocytes were collected from human peripheral blood by using Percoll gradient
protocol. Human monocytes were differentiated to human macrophages with
50 nM phorbol-12-myristate-13-acetate, and the human macrophages were further
activated by LPS and IFNɣ to produce human activated macrophages. Human
activated macrophages were stained with 500 nM CDg16 for 1 h at 37 °C.

Screening. For high-throughput screening, control and activated Raw264.7 cells
plated in 384-well microplates were incubated with a probe at a concentration
of 1 µM in duplicate. After 1 h, fluorescence and bright-field images were taken
by using an ImageXpressMICRO imaging system (Molecular Devices). From the
primary screening with over 8000 fluorescence compounds, 14 fluorescent
compounds stained activated Raw264.7 (activated macrophage) cells with stronger
intensity than non-activated Raw264.7 cells. From a secondary and a tertiary
screening, we narrowed down the candidates to one acridine chromophore motif
probes for the further study.

Time-tracking observation for activating macrophages. Raw264.7 cells were
plated on the cell culture plate and treated simultaneously with LPS (100 ng/mL),
IFNɣ (20 ng/mL), and CDg16 (1 µM). The several fixed positions of macrophages
were continuously observed from pre-activation to post-activation, every 30 min
for a total 36 h under the bright field and the green fluorescent protein channel.
All observations were performed by the BioStation IM-Q time-lapse imaging
system (Nikon).

Animal experiment. All animal experimental procedures were performed in
accordance with a protocol approved by the Institutional Animal Care and Use
Committee for Biological Resource Center at A*STAR, Singapore (IACUC #151032
and #151033). ApoE KO mice (apolipoprotein E-deficient mice, ApoE–/– (The
Jackson laboratory)) fed a western diet were used for the atherosclerosis model.
CDg16 (500 µM, 200 µL per 20 g mouse) was injected via tail vein for control and
ApoE KO mice, and CDg16 signals of aorta area were observed by the customized
fluorescent stereomicroscope (Leica Microsystems). After the fluorescent imaging,
the aorta was enucleated and evaluated by IHC.

Immunofluorescence staining. The aorta and paw samples were enucleated and
immediately frozen for the cryo-sections. The samples were sectioned by the
cryostat (Leica CM1950) with 10 μm thickness and mounted on the poly-L-lysine-
coated slides. The sectioned samples were fixed in 4% paraformaldehyde (PFA) for
15 min for IHC. The cell culture samples were also fixed in 4% PFA for 15 min
for ICC. After washing the sectioned and cell culture samples with PBS, the
samples were treated with 1% bovine serum albumin (30 min) for removing
nonspecific binding. Rat anti-CD86 antibody (dilution 1:100, BD Pharmigen,
553689) was incubated overnight at 4 °C for staining activated macrophages. For
secondary antibody staining, Alexa 647-conjugated goat anti-rat IgG (dilution
1:500, ThermoFisher Scientific, A-21247) was used. All images were taken by
Eclipse Ti-E Microscopy (Nikon).

sgRNA library design. The targeted 380 human SLC genes having “SLC” in their
official gene name were selected through the NCBI database (https://www.ncbi.
nlm.nih.gov/gene) (Supplementary Data 1). The protospacer adjacent motif
sequence containing sgRNA sites for each SLC gene was selected within its
promoter region up to the 400 bp, resulting 3800 sgRNA-targeted sequence
(Supplementary Fig. 18b and Supplementary Data 2).

Lentiviral production. HEK293T cells (5 × 106 cells) (ATCC® CRL-3216™) were
seeded on a 100-mm dish a day before transfection. Cells are transfected with the
lentiviral library plasmids (15 μg) and the three virus packaging plasmids (9 μg of
pMLDg.pRRE, 6 μg of pRSV-Rev, and 3 μg of pCMV-VSV-G) using Lipofectamine
2000 (Invitrogen). The lentivral particles were harvested at 48 h after transfection
and filtered using a 0.45-μm filter.

Generation of SLC-CRISPRa pools. For enhancing sufficient levels of gene tran-
scription, we selected dCas9-VPR, which fused with the three different types of cis-
acting transcription activation domain (Supplementary Fig. 18a)25. After con-
firming that the dCas9-VPR can activate the two different target genes, IL1RN and
SLC28A2, with separate three sgRNAs, respectively, we generated a stable cell line
expressing dCas9-VPR selected by G418 (500 μg/mL, Invitrogen) to the transfected
Hela cells (ATCC® CCL-2™). The 3800 sgRNA libraries were stably overexpressed
by infection of the lentiviral particles into the dCas9-VPR Hela to generate
SLC-CRISPRa pools (Supplementary Fig. 18c). The sgRNA expressing cells were
selectively expanded by incubating the cells with puromycin (2 μg/mL). To
maintain the diversity of the pools, >1.52 × 106 cells were plated for subsequent
culture and used for the initial sorting with a fluorescent probe (Supplementary
Fig. 18c).

Fluorescent probe staining to live cells. 4-DI-1-ASP and C1,C12-BODIPY were
purchased from Sigma-Aldrich. SLC-CRISPRa pools or enriched cells were treated
with 1 µM of each probe for 1 h. Hoechst33342 (1 µg/mL) was co-treated for
labeling all nuclei of live cells if necessary.

N-terminal mCherry fusion construct of SLC18B1 (NM_052831.2)
overexpression vector was purchased from GeneCopoeia (EX-T3513-M55).
After 2 days of transient transfection of the plasmid DNA using Lipofectamine
3000 (Invitrogen), the SLC18B1-mCherry transfected Hela were stained with
Hoechst33342 (1 µg/mL) and CDg16 (200 nM) for 30 min to observe the
colocalization of the stained vesicle in live cells. The fluorescence images were
obtained by using Observer Z.1 inverted microscope (Zeiss) or Operetta
(Perkin Elmer).

FACS. Healthy SLC-CRISPRa Hela pools were detached by using Accutase
(ThermoFisher Scientific) to minimize damages on their surface. A fluorescence
probe (1 µM) was added to the pools under culture media for 30 min. Live singlets
of the cell populations were sorted with the gating of 3% bright population of the
fluorescent intensity by using MoFlo XDP cell sorter (Beckman Coulter). After
sorting, the cells were cultured for a week to expand the sorted population before
next-round of FACS. The sorting procedure was repeated for at least six rounds
to ensure all the populations were highly enriched. The FACS data were analyzed
by using FlowJo 10.2 software (TreeStar).

Analysis of integrated sgRNA. Genomic DNAs of the SLC-CRISPRa Hela pools
and the sorted cell populations were isolated by using Purelink Genomic DNA
Mini Kit (Invitrogen). The sgRNA containing region was amplified with primers
F—5ʹ-TCTTGTGGAAAGGACGAAACACCG-3ʹ and R—5ʹ-TCTAC-
TATTCTTTCCCCTGCACTGT-3ʹ with 10 μg of genomic DNA and sequenced
using an Illumina HiSeq 4000 for 100× coverage. After sequencing, reads were
aligned to the sgRNA library and counted. Those sgRNA counts are analyzed
by MAGeCK (Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout)
version 0.5.5 according to the instructions29.

Generation of single SLC gene activated Hela. The HeLa cells, which express
dCas9-VPR stably, and lentiviral particles, which express a specific sgRNA, are
infected. After confirming target gene overexpression by real-time qPCR compared
with control, the single SLC gene activated Hela cells were used for subsequent
fluorescence staining.

CRISPR KO experiment. Cas9 expressed Raw264.7 was generated by Blasticidin S
selection, followed by the transduction of the cells with lentiCas9-Blast lentiviral
particles (a gift from Feng Zhang, Addgene plasmid #52962). To generate SLC18B1
KO clones, Cas9 expressed Raw264.7 seeded on 12-well plate (3 × 104 cells per
well) was infected with SIGMA LentiCRISPR Slc18b1 (Target ID, MM0000620497;
Target sequence, 5ʹ-AGCGGCGAAGAAATGGCGTAGG-3ʹ, Sigma). After 2 days
incubation, the infected cells were selected with Puromycin (5 μg/mL) for 1 week.
Survived cells were expanded and KO was checked by real-time polymerase chain
reaction (RT-PCR) to the Slc18b1 expression.

RT-PCR. The total RNA was isolated using RNeasy Mini Kit (QIAGEN Inc.) from
cultured cells according to the manufacturer’s instruction. One-step quantitative
RT-PCR was performed on a StepOneTM Real-Time PCR system using a Power
SYBR® Green RNA-to-CTTM 1-Step Kit (Applied Biosystem). The relative mRNA
levels of the genes were normalized to that of β-actin. The primer sequences for
checking Slc18b1 KO examination were: F—5ʹ-AAGAAGGGAGCCAGCAACAC
CATG-3ʹ and R—5ʹ-CAAACAGCGGCGAAGAAATGGCG-3ʹ.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Any supplementary information and videos are available in the online version of the

paper. The deep sequencing data that support the findings of this study have been

uploaded to the NCBI Sequence Read Archive under Bioproject accession code

PRJNA516962. All other data are available from the authors upon request.
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