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This article presents a new method for measuring longitudinal
strain in a short-axis section of the heart using harmonic phase
magnetic resonance imaging (HARP-MRI). The heart is tagged
using 1-1 SPAMM at end-diastole with tag surfaces parallel to a
short-axis imaging plane. Two or more images are acquired
such that the images have different phase encodings in a di-
rection orthogonal to the image plane. A dense map of the
longitudinal strain can be computed from these images using a
simple, fast computation. Simulations are conducted to study
the effect of noise and the choice of out-of-plane phase encod-
ing values. Longitudinal strains acquired from a normal human
male are shown. Magn Reson Med 46:324–334, 2001.
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MRI is the only modality capable of directly imaging the
motion inside the myocardium (1–6). MR tagging and
phase contrast MRI are both capable of noninvasive and
accurate measurements of myocardial motion. It is known
that during systole the left ventricle (LV) of the heart
deforms to reduce the volume of its cavity and ejects blood
out of the ventricles. In a short-axis image of the LV, the
wall muscle shows thickening in the radial direction and
shortening in the circumferential direction. In a long-axis
image of the LV, long-axis shortening is observed as the
base moves toward the apex. These measures, oriented as
they are in the natural coordinate system of the LV, are
useful indices of myocardial health (7,14). Capturing this
information from MR images requires the acquisition of
long-axis images during MR tagging (5,6), or velocity en-
coding in the slice direction for phase contrast MRI (1). In
this article we develop a technique to image longitudinal
strain in short-axis images using a relatively new MR im-
aging concept, harmonic phase (HARP) MRI.

MR tagging uses special pulse sequences at end-diastole
to create planes of saturated magnetization that are tradi-
tionally oriented orthogonal to the image plane (2–4).
These tag surfaces bend with the deformation of the myo-
cardium and their intersections with the image planes
deform from straight lines into bent curves. To measure 3D
motion, short-axis images are used to measure two motion
components and long-axis images to measure the third

(5,6). Detailed motion of the myocardium can be deduced
by analyzing the deformation of the tag lines found within
these images (7–10).

This overall imaging and analysis paradigm is problem-
atic for the following reasons. First, fusing short-axis and
long-axis data requires careful registration, which may be
difficult or inaccurate because of patient movement over a
long series of breath-holds. Second, because of time limi-
tations the number of long-axis images that can typically
be acquired is fairly small, say 8–10 images. This means
that motion information in the long-axis direction is
sparsely sampled in the axial images, only 16–20 rays
emanating from the long axis. Finally, 3D motion compu-
tations typically require identification of both the tag lines
and the LV geometry, which are typically difficult tasks
requiring some manual intervention (11,12).

In this article, we describe a new method to measure
longitudinal strain from short-axis images only. The imag-
ing principle is based on MR tagging, but in sharp contrast
to usual techniques we use tag planes that are initially
oriented parallel to the image plane. The data processing
principle is based on HARP-MRI, which analyzes the spec-
tral peaks in k-space that are created by the tagging process
(13–16). It turns out that by acquiring two images with two
different z phase encodes, where the z direction is the slice
select direction, a dense estimate of longitudinal strain on
the short-axis image plane can be calculated. Each of the
two acquired MR images depicts the underlying strain of
the tissue as if the intensity is modulated by the local
strain; thus, we call the method strain-encoded (SENC)
imaging or SENC-MRI. In the following we describe the
approach, show how it is implemented on an MR scanner,
analyze trade-offs in performance as a function of image
acquisition parameters, and give a result acquired from a
normal human male.

LONGITUDINAL TAGGING AND STRAIN

Imaging Equation

Typically, MR tags are created so that their planar surfaces
are orthogonal to the image plane. Here, however, we
generate tag planes parallel to the image plane using the
pulse sequence shown in Fig. 1. This 1-1 SPAMM pulse
sequence uses two hard RF pulses, each giving a 90° tip
angle. A magnetic field gradient G(t) oriented in the slice-
selection direction is placed between the two RF pulses
and a crusher is placed at the end to spoil all transverse
spins. This gradient G(t) spatially modulates the longitu-
dinal magnetization of the body in a sinusoidal pattern
such that planes of constant sinusoidal phase are parallel
to the image plane. The imaging parameters are selected so
that the slice thickness is several times larger than the tag
period.
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To fully explain our method it is necessary to develop a
mathematical model of the imaging process. Let the loca-
tion of a point in the image plane be described by the
vector y 5 [y1 y2]T and let z describe the location orthog-
onal to the image plane. In this article, we consider short-
axis images of the left ventricle (LV) of the heart, so the
z-axis corresponds to the long-axis of the LV. To be spe-
cific, we let y1 and y2 correspond to the readout and
phase-encode directions, respectively, and let z 5 O cor-
respond to the image plane.

At time tr, immediately after the tagging pulse sequence
is played, the longitudinal magnetization can be written as
(17) (assuming no relaxation during tagging):

M~y, z, tr! 5 rH~y, tr!cos~wz!, [1]

where rH is a function proportional to the proton density
inside the voxel at y. Here, we assume that the slice is thin
enough that rH does not depend on z inside a voxel. The
cosine term arises from tagging; it has a spatial frequency
given by w 5 g*G(t)dt rad mm21, where g is the gyromag-
netic ratio for protons. The tag period is simply given by
2p/w mm21.

Tag Frequency

During systole the LV undergoes motion that causes myo-
cardial displacement and deformation. The tag pattern
moves with the tissue and generally undergoes both com-
pression and tilting, as shown in Fig. 2a,b. It is clear that
the tissue strain affects the frequency of the tag pattern.
Our goal is to measure both the frequency and orientation
of the tag pattern at t . tr within each voxel. This infor-
mation is all that is needed to calculate a high-resolution
map of longitudinal strain, in the Eulerian sense, of a
short-axis slice.

As shown in Fig. 2c,d, we can represent the tag fre-
quency inside a voxel with a vector whose direction is
orthogonal to the tag planes and whose length is equal to
the tag pattern’s frequency. This local frequency vector can
be decomposed into two components: n(y,t), which is the
component in the z-direction that depends primarily on
the longitudinal strain; and vv(y,t), which is the component

in the imaging plane that depends primarily on the tissue
tilt. The pattern inside a voxel, therefore, can be described
as cos(c(y,z,t)) whose phase c can be written as:

c~y, z, t! 5 f~y, t! 1 n~y, t!z, [2]

where v(y,t) 5 ¹f(y,t)—the spatial gradient of phase in the
image plane.

Because of longitudinal relaxation, the tag pattern fades
over the cardiac cycle. This phenomenon can be captured
mathematically by simply adding another term (that does
not involve the tag pattern) to the longitudinal magnetiza-
tion, as follows:

M~y, z, t! 5 r0~y, t! 1 rH~y, t!cos~c~y, z, t!!. [3]

The term r0(y,t) is a function proportion to the proton
density that grows in intensity over the cardiac cycle.
Correspondingly, the term rH(y,t) decays with time.

Longitudinal Strain and Tilt Angle

Strain is defined as the change in length per unit length.
Taking the tag period as a measure of length, we see that
the reference length at pixel y is 2p/w and the deformed
length is 2p/Îv~y, t!2 1 n~y, t!2, where v(y, t) 5 ivv(y, t)i.
After straightforward manipulation, we see that the strain
is given by:

e~y, t! 5
w

Îv~y, t!2 1 n~y, t!2 2 1. [4]

Since the tags are originally oriented in the longitudinal
direction, the strain computed in spatial coordinates is
properly called the Eulerian longitudinal strain. It may be
useful to measure the angle over which the tissue has tilted

FIG. 2. The tag pattern inside a voxel at (a) tr and (b) t . tr. The local
frequencies shown in c and d correspond to a and b, respectively.

FIG. 1. A time diagram showing 1-1 SPAMM pulse sequence with a
gradient in the z-direction.
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from the longitudinal direction. We can calculate the tilt
angle u(y,t) of the tag pattern as follows:

u~y, t! 5 tan21
v~y, t!
n~y, t!

. [5]

In order to measure the longitudinal strain and tilt angle,
we must measure the tag local frequency components
v(y,t) and y(y,t). The following section describes how to
acquire and process MR short-axis images for this purpose.

MEASURING LOCAL FREQUENCY

Image Acquisition

In order to image the local frequencies of the voxels, a
gradient field Gz(t) in the z-direction is applied during the
refocusing lobe of each TR, as shown in Fig. 3. This pro-
cess can be seen as a phase encoding in the z-direction
using the value kz 5 g * Gz(t)dt. The resulting image is the
integral, in the z-direction, of the longitudinal magnetiza-
tion multiplied by the z-encode phase factor over the slice
profile f(z), or mathematically as:

I~y, t; kz! 5E
2`

`

M~y, z, t!f~z!e2jkzz dz. [6]

The phase encode value kz is made an explicit argument of
I because we will be acquiring more than one image with
different kz’s.

Using Eq. [3] and expanding the cosine function as a
complex exponential, we can rewrite Eq. [6] as:

I~y, t; kz! 5 r0~y, t!F~kz! 1 rH~y, t!e2jf~y,t!F~kz 1 n~y, t!!

1 rH~y, t!e1jf~y,t!F~kz 2 n~y, t!!, [7]

where F(k) is the Fourier transform of the slice profile f(z).
Equation [7] shows that the acquired image is a superpo-

sition of three images, each weighted by the Fourier trans-
form of the slice profile evaluated at a specific frequency. If

the tag frequency w is large enough and the strain and tilt
small enough, then these images are well separated in their
z-frequency content, as shown in Fig. 4. The bell-shaped
profiles in this figure correspond to F( z ) shifted to 2n, 0, and
1n in kz-space. The local frequency component n is depen-
dent’ on the strain and tilt, but is expected to be near w, the
original tag frequency. The intensity of the acquired image at
y depends on the slice profile, the strain, the underlying
effective proton density, and other image acquisition param-
eters (e.g., TR, TE, etc.). Proper choice of parameters will
yield peaks that are approximately nonoverlapping. If kz is
then selected to be close to n(y,t), the resulting image is
dominated by the peak centered at n(y,t) , yielding:

I~y, t; kz! < rH~y, t!e jf~y,t!F~kz 2 n~y, t!!). [8]

Estimating n

The Fourier transform F(kz) of a typical slice profile f(z) is
real, symmetric, and centered at the origin (kz 5 0). There-
fore, the location of a shifted version of this profile F(kz 2
n), where location is defined by either the peak or the
center of mass, is n. Furthermore, from Eq. [8] we see that
the location of F(kz 2 n) is also the location of uI(y,t;kz)u
when kz is near y.

Two ways to find y are immediately apparent: for each (y,t)
find either the peak or the center of mass of uI(y,t;kz)u with
respect to kz (in the vicinity of n). Acquiring a large number
of kz samples for this purpose is impractical; however, it is
possible to estimate both the peak and the center of mass
from a smaller number of samples. Estimating the peak re-
quires specific knowledge of the slice profile, is sensitive to
noise, and is computationally intensive. Instead, we have
developed an approach based on the computation of the
center of mass, which requires only two kz image samples,
uses a fast computation, and applies a simple correction
factor to account for the specific slice profile.

FIG. 4. Frequency content in the z-direction for a voxel having no
strain, being compressed, or being stretched.

FIG. 3. A timing diagram showing a gradient echo pulse sequence
with an additional gradient Gz.
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The center of mass of F(kz 2 n) can be estimated from
I(y,t;kz) using the following discrete approximation:

n̂~y, t! 5

O
kz

kzuI~y, t; kz!u

O
kz

uI~y, t; kz!u
, [9]

where it is assumed that the kz samples are selected in the
vicinity of n. Again, it is impractical to acquire the large
number of kz samples necessary to make this approxima-
tion accurate; instead, we consider what can be accom-
plished with only two images: Ia(y,t) 5 I(y,t;wa) and
Ib(y,t) 5 I(y,t;wb). In this case, the discrete approximation
to the center of mass is given by:

m~y, t! 5
wauIa~y, t; wa!u 1 wbuIb~y, t; wb!u

uIa~y, t; wa!u 1 uIb~y, t; wb!u
. [10]

In general, m is not always a good approximation to n;
however, a simple correction that depends on the slice
profile can be made to yield an accurate estimator. Before
describing this, we consider how to choose the two z phase
encode values wa and wb.

In order to isolate the spectral component of I(y,t;kz)
dependent on n, both wa and wb must be chosen to be near
n. We know that n 5 w (the tag frequency) in the absence
of strain, that n . w when there is tissue compression, and
that n , w when there is tissue stretching or tilting. In a
normal heart, we expect the range of possible local fre-
quencies to be limited to a range [nmin, nmax], which de-
pends on both the normal longitudinal strain and the tag
frequency. (Tilting can be factored in here if necessary but
is usually small enough to be neglected in this approxima-
tion.) It is reasonable to select the phase encode values to
be wa 5 nmin and wb 5 nmax, as shown in Fig. 5.

The quantity m(y,t) can be calculated quickly from two
images and it is approximately equal to n(y,t); however, it
is not exactly equal to n(y,t) in general. Consider the situ-
ations depicted in Fig. 5. If nmin and nmax are equidistant
from w and there is no strain, as shown in Fig. 5a, then m 5
n. If n 5 nmin or n 5 nmax, as shown in 5b and 5c, then m 5
n also. However, in other situations, such as depicted in
panel 5d, m Þ n, in general. An interesting case in which
m 5 n for any value of n is that in which the slice profile is
a perfect rectangle (18,19). This is not practically possible
to generate, so it is only of academic interest. It is possible,
however, to produce a profile whose Fourier transform is
of a finite number of sinc lobes, which would have a
perfect relation in some range.

Although it is very informative to view the image m(y,t)
(see the Results section), it is also important to generate an
accurate estimate of n so that the strain can be determined.
We accomplish this using a simple correction to m(y,t). An
approximate relationship between m,(y,t) and n(y,t) can be
found by substituting Eq. [8] into Eq. [10], which yields
(after simplification):

m~y, t! 5 ReHwaF~wa 2 n~y, t!! 1 wbF~wb 2 n~y, t!!
F~wa 2 n~y, t!! 1 F~wb 2 n~y, t!! J. [11]

This relationship can be summarized by the expression:

m~y, t! 5 b~n~y, t!!, [12]

in which the function b( z ) depends on the Fourier trans-
form F(kz) of the slice profile and on wa and wb. We will
show empirically in the Results section that b( z ) is mono-
tonic between wa and wb—so that it can be inverted, and
that it is even well-approximated by a linear relationship
in this range, which is trivial to invert. Therefore, after
calculating m(y,t) we apply the transformation:

n̂~y, t! 5 am~y, t! 1 b, [13]

to estimate n(y,t) for suitable choices of the constants a and
b, which are determined a priori.

Estimating v

The local frequency vv(y,t) is the spatial gradient of f(y,t).
Since F(kz) is real, it follows from Eq. [8] that f(y,t) is just
the phase of an acquired image I(y,t;kz), irrespective of kz.
Computing f itself is problematic because of phase wrap-
ping—i.e., the computed value ends up wrapped to the
range [2p, 1p]. However, the spatial gradient of phase can
be readily computed and is in fact the basis of the standard
harmonic phase MRI technique (13,15,16).

Two images are acquired in order to compute n, and
hence we have both available to compute v. The two
images have the same phase. Figure 5 shows that one

FIG. 5. Measuring n from two samples at wa and wb. (a) n 5 w, (b)
nmax, (c) nmin, and (d) arbitrary n.
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image may have a higher intensity than the other or they
may be comparable in intensity. Since low-intensity im-
ages are prone to noise, and thus give less accurate phase
computation, we chose to compute the phase using the
sum of these images.

In summary, v is given by:

v~y, t! 5 ¹ tan21
Im$I~y, t; wa! 1 I~y, t; wb!%

Re$I~y, t; wa! 1 I~y, t; wb!%
. [14]

The numerical implementation of the spatial gradient ¹
must be done carefully to avoid problems with the wrap-
ping artifact (see Ref. 16). The magnitude v(y,t) 5 uvv(y,t)u is
used in the computation of the tilt angle u(y,t) using Eq.
[5].

EXPERIMENTS

Normal Human Heart

Experiments were performed on a 1.5 T GE Signa whole-
body MR scanner (Signa, General Electric Medical Sys-
tems, Milwaukee, WI). A segmented k-space gradient-echo
pulse sequence modified from that reported in Ref. 20 was
used. The modifications included the abilities to generate
tags oriented in the z-direction and to acquire z-direction
phase encodes.

Images of a normal male volunteer, age 30, were ac-
quired with the approval of the Joint Committee on Clin-
ical Investigation and after obtaining written approval and
consent. The subject was fitted with a phased array coil

and instructed to hold his breath at end-exhalation. Out-
of-plane tags with a tag period of 2.5 mm were applied just
after the QRS trigger. The following scanner settings were
used for image acquisition: slice thickness 5 15 mm,
FOV 5 48 cm, TR 5 6.8 ms, and TE 5 1.8 ms. Image
acquisition was delayed 300 ms from end-diastole and
successive y phase-encodings were acquired. In subse-
quent heartbeats additional y phase-encodings were ac-
quired so that an entire image was imaged in a single
breath-hold. Overall, 128 phase-encodings were acquired,
each had 256 samples.

Over the course of the experiment 17 images were
acquired with z phase encode values of 0.35,
0.36,…,0.51mm21. Using segmented k-space with eight
views per segment, each image was acquired with a 16-sec
breath-hold. The first 16 of these images are shown in Fig.
6. It is helpful to refer to Fig. 4 to understand these images.
There are two dominant tissue types in this cross-section:
static tissue whose tag frequency has not changed, and
cardiac muscle whose tag frequency has increased. There-
fore, there are two z-spectra that are being sampled with
the different z-encodes, as depicted graphically in Fig. 4b
(positive frequency axis). The top row of Fig. 6 shows very
little signal at first and then shows increasing intensity in
the static tissues; the signal from the cardiac tissue is
small. The second row shows a fairly constant intensity in
the static tissues, while the cardiac tissue is gaining in
brightness. In the third row the static tissue is fading while
the cardiac tissue intensity remains fairly constant, and in
the fourth row both signals fade out.

FIG. 6. Short axis images of the heart obtained
for different values of z-direction phase encode
with a 2.5 mm tag period out-of-plane, sinusoi-
dal tag pattern. Going across the rows from
top-left to bottom-right, the z phase encode
values are 0.35 to 0.50 mm21 in increments of
0.01 mm21.
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Although there are two dominant tissue types in Fig. 6,
there are more subtle variations in the intensity variations
within each tissue class. To demonstrate these variations
in the myocardium, we manually selected four regions of
interest (ROIs), each 3 3 3 matrix of pixels, near the
midwall in the septal, anterior, lateral, and posterior re-
gions of the heart. The average image intensity within each
ROI is plotted as a function of kz in Fig. 7. For reference, a

kz-profile from an ROI containing static tissue is plotted as
well, and for clarity all curves were normalized to have the
same peak intensity. As illustrated in the figure, the curves
representing the different regions of the heart are shifted to
higher frequencies relative to the static tissue. The extent
of the shift differs for the different regions. The highest
shift centered around 0.46 mm21 represents the highest
contraction of 13% in the longitudinal direction.

A center of mass calculation applied pixel-by-pixel to
the 17 acquired images yields the image shown in Fig. 8a.
This image comprises an estimate of the local frequency n,
the z-axis component of the local frequency vector. The
magnitude of the in-plane component is v, which is shown
in Fig. 8b. This image is computed using:

v~y, t! 5(¹ tan21

ImHO
kz

I~y, t; kz!J
ReHO

kz

I~y, t; kz!J(, [15]

which extends Eq. [14] to the case of more than two ac-
quired images. In order to apply Eq. [15], it was necessary
to remove a linear phase roll that occurs in the z-direction.
It is not necessary to do this when there are only two
images, for reasons explained below. Given the images of n
and v, it is straightforward to compute the tilt angle using
Eq. [5] and the Eulerian longitudinal strain using Eq. [4].
These images are shown in Fig. 8c,d, respectively.

FIG. 7. Plots showing the average intensity at different regions in
the image with respect to kz. The curves are normalized.

FIG. 8. (a) The local frequency n, (b) the
local frequency v, (c) the tilt angle, and
(d) the Eulerian longitudinal strain, all cal-
culated from 17 acquired images.
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Several observations can be made from Fig. 8. Figure 8a
reflects the overall frequency shift observed in the ROI
plots in Fig. 7. Here, the myocardium is quite distin-
guished from the static tissue owing to its longitudinal
compression alone. Figure 8b,c are very similar, which is
to be expected, since the tilt angles are very small—less
than 15°. These images reveal a somewhat diffuse or ran-
dom pattern of tilt, not overtly structured within the myo-
cardium. Figure 8d, which shows the Eulerian longitudi-
nal strain, is the goal that is sought after. It shows that the
strain is pronounced in the myocardium, distinguished
almost to the point that a simple threshold would segment
the myocardium. It should be noted that the right ventric-
ular myocardium shows pronounced longitudinal strain in
this technique despite it being quite thin relative to the
pixel size of the image. Overall, in this normal heart the
Eulerian longitudinal strain falls in the range of 6–12%
within the myocardium.

It is impractical to acquire many images in order to
compute longitudinal strain. To implement the approach
using only two images, as outlined above, it is necessary to
determine the slice profile, to optimize the selection of wa

and wb, and to determine b and its linear approximation.
The following sections present these steps in detail.

Slice Profile

It is possible to determine the slice profile analytically
given knowledge of the gradient and RF waveforms used
in the pulse sequence. We chose to confirm our under-
standing of this process with a simple phantom experi-
ment. A cylindrical glass vessel filled with water was used
as the phantom. An external ECG trigger was used to
emulate a heart rate of 60 bpm. The tagging pulse was
applied just after the QRS trigger. The scan parameters
were a tag separation of 4 mm, a slice thickness of 14 mm,
a FOV of 48 cm, a TR of 4.264 ms, and a TE of 1.273 ms.
Thirty-nine images were acquired for z phase encode val-
ues ranging from 0.0–0.37 mm21.

A fixed ROI was selected within the phantom and the
average intensity was computed for each of the 39 images.

The squares in Fig. 9a depict these computed intensities as
a function of kz. The dotted line in this figure represents a
cubic spline fit to these data points. The Fourier transform
F(kz) of the slice profile was obtained by extracting that
portion of the curve corresponding to the spectral peak of
the tagged image and shifting it to the frequency origin.
This result is shown in Fig. 9b. Note the extra lobe caused
by the shape of the RF pulse. This lobe will not affect our
computations, as we will show.

We note also that the data acquired for the normal hu-
man used a slice thickness of 15 mm rather than 14 mm, as
in this phantom experiment. We used simple space or
frequency scaling to adjust this slice profile to that used in
the human study.

Determining b

In order to accurately calculate strain and tilt angle from
just two acquired images, it is necessary to determine the
function b, as defined in Eqs. [11] and [13]. This function
depends on both the slice profile and the two z phase
encode frequencies wa and wb. In this section, we first
describe how to select wa and wb and then describe the
linear approximation of b.

It is clear from Eq. [11] that m is a convex combination of
wa and wb; hence, wa # m # wb. To maximize the dynamic
range of m, we would like to choose the difference wb 2 wa

to be as large as possible. But examination of Fig. 9b
reveals a limitation. It would not be appropriate to pick wb

2 wa to be any larger than the separation between the peak
of this frequency profile and its first zero, as that would
allow certain changes in n to have no effect on the calcu-
lated m. Since the frequency profile in Fig. 9b is approxi-
mately the main lobe of a sinc pulse, one-half of the width
of the main lobe is equal to the inverse of the slice thick-
ness. Therefore, we chose the separation between wa and
wb to be equal to or slightly less than the inverse of the
slice thickness. For the human study described above, we
set wb 2 wa 5 0.06 mm21, which is slightly less than 1/15
mm21.

FIG. 9. a: Average phantom signal strength as a function of kz. b: Estimate of the Fourier transform of the slice profile.

330 Osman et al.



We now consider three pairs of wa and wb values: wa 5
0.35 mm21 and wb 5 0.41 mm21, wa 5 0.40 mm21 and wb

5 0.46 mm21, and wa 5 0.45 mm21 and wb 5 0.51 mm21.
For each pair we used Eq. [11] to compute m, for a collec-
tion of n’s ranging from 0.33–0.55 mm21. The three plots
are shown in Fig. 10a. For reference, the range of possible
m,’s that could be computed from each pair are indicated
on the graph on the right side of this plot. The three cases
depicted in Fig. 10a are similar in shape, but are shifted
relative to one another. These three plots, in fact, sample a
family of b functions having a similar shape that span a
range of coverage in m and n.

In practice, b is used to calculate n given m. From Fig.
10a we see that wa (and wb 5 wa 1 0.06 mm21) should be
selected according to the expected range of actual n values
resulting from longitudinal tissue strain. For example,
from the figure we see that if wa 5 0.35 mm21 we can
measure n [ [0.35,0.41] mm21 and if wa 5 0.45 mm21 we
can measure n [ [0.45,0.51] mm21. For the normal heart
study, we observed that n ranged from 0.40–0.46 mm21,
which corresponds to strains in the range 0–13% contrac-
tion. This range of local frequencies is covered by the case
wa 5 0.40 mm21 and wb 5 0.46 mm21.

Although b can be inverted using a look-up table, a
spline approximation, or a fixed point algorithm, it is quite

accurate and computationally faster to approximate it by a
linear function. Although b saturates for certain regions of
n, it can be observed from Fig. 10a that it is approximately
linear over the range of feasibly computed m’s. Thus, the
large errors in the saturation regions have no practical
consequence. For the case of wa 5 0.40 mm21 and wb 5
0.46 mm21, we found that b is well approximated in the
central region by the linear relationship:

m 5 1.0368n 2 0.01392. [16]

A plot of this b function and its linear approximation is
shown in Fig. 10b.

Strain From Two Images

From the 17 images acquired in the above human study,
we selected the two images corresponding to wa 5
0.40 mm21 and wb 5 0.46 mm21, as shown in Fig. 11.
Notice that the heart is less prominent in Fig. 11a than 11b,
this is because the heart has higher frequency than the
surrounding tissue. Notice also that the lateral epicardium
is brighter in 11a than other parts of the heart, indicating
lower longitudinal strain.

FIG. 10. a: The relation between n and m are shown for three combinations of wa and wb, maintaining a constant separation of 0.06 mm21

between them. b: The case of wa 5 0.40 and wb 5 0.46, and the line approximation of the linear part of the curve.

FIG. 11. The two images corresponding to (a) wa 5
0.40 and (b) wb 5 0.46 (mm21).
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We calculated m(y,t) using Eq. [10] and inverted Eq. [16]
to yield the following local frequency estimate:

n̂~y, t! 5 0.9645m~y, t! 1 0.0134, [17]

which is shown in Fig. 12a. This image (and all images in
Fig. 12) should be compared to the corresponding image in
Fig. 8, which was computed using all 17 images.

The in-plane local frequency v(y,t), shown in Fig. 12b,
was computed by taking the complex modulus of v(y,t),
which was in turn computed using Eq. [14]. In contrast to
the case when all 17 images were used to compute v, there
is no problem with z-phase roll when only two images are
used. This is because the separation of kz encodes pro-
vided by wa and wb tends to produce one image with small
intensity, so the acquired phases do not add destructively.
This is an unexpected advantage of working with only two
acquired images.

The tilt angle u(y,t) and Eulerian longitudinal strain
e(y,t) were computed from n(y,t) and v(y,t) using Eqs. [5]
and [4]. These images are shown in Fig. 12c,d, respec-
tively. Comparison of the images in Fig. 12 with those in
Fig. 8 reveals very little difference. In fact, the root-mean-
square (rms) difference between the two strain images is
only around 1%, a very small difference.

Sensitivity to Noise

In order to measure the sensitivity of this method to noise,
simulations to estimate the error in measuring the local

frequency n were done. Based on the slice profile, and for
a certain value of n, we computed image intensities:

Ia 5 F~wa 2 n! 1 nr 1 jni and Ib 5 F~wb 2 n! 1 nr 1 jni,

[18]

where nr and ni are two normal random variables with a
standard deviation s. Using Eq. [10] m̂ was calculated,
from which followed the computation of n̂ using Eq. [16].

The error ñ in estimating n in percent was calculated as:

ñ 5
n 2 n̂

n
3 100,

and the error in estimating the strain in percent was:

ẽ 5 Sw
n

2
w
n̂ D 3 100.

These computations were repeated a large number of times
and the rms value of the two errors was obtained for
different values of s between 0 and 20% of the peak value
of F with n varying between 0.4 and 0.46 mm21. The
results are shown in Fig. 13.

Figure 13 shows that the estimated errors monotonically
increase with the noise level s. It is obvious, however, that
the errors are not very large. In the case of our normal
human heart study, we measured the maximum noise

FIG. 12. (a) The local frequency n, (b) the
local frequency v, (c) the tilt angle, and
(d) the Eulerian longitudinal strain, all cal-
culated from two acquired images.
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level for all the points inside the LV. We found that s does
not exceed 4% of the peak intensity of a pixel. Therefore,
we conclude that the error in measuring the strain should
not exceed 1.5%.

DISCUSSION

There are many proposed methods for measuring the in-
plane components of myocardial strain using MR tagging
(15,21,22). All require acquisition of short-axis images,
sometimes a single image with grid tags and sometimes a
pair of one-dimensionally tagged images. There are also
many proposed methods for calculating three-dimensional
motion and strain using MR tagging (10,21,23). All of these
approaches require long-axis images. Based on phase con-
trast techniques, Robson and Constable (24) were success-
fully able to measure the complete strain rate in a short-
axis slice; however, their method was based on using a
specific rectangular slice profile. Also, integration opera-
tions are required in order to obtain the actual longitudinal
strain during systole. The proposed method, however, is
based on tagging and is capable, therefore, of measuring
the actual longitudinal strain without integration.

It is important to recognize potential limitations in our
approach. First, this approach can be combined with stan-
dard 2D HARP methods to investigate both in-plane and
longitudinal strain, but this will not produce a full 3D
strain tensor. This is because the out-of-plane shear com-
ponents cannot be measured using a tag vector pointing
orthogonal to the plane. This can potentially be solved by
using tag vectors that have both in-plane and longitudinal
components (see Ref. 25, for example).

Another potential limitation is in the requirement that
the range of strains and tilt angles be known a priori. It is
observed from the plots of b in Fig. 10a that true local
frequencies n outside the approximately linear range of b
saturate to either wa or wb. This may be acceptable behav-
ior, particularly if myocardium yielding n above wb are
considered normal and myocardium yielding n below wa

are considered abnormal. In this case, the actual strain
calculations will be inaccurate outside the linear range,
but the results can still be used for diagnosis. Furthermore,
in these cases another image or set of images could be
acquired to resolve the saturation problem.

Another way to address local frequency saturation is to
change the slice thickness. In particular, if a larger range
between wa and wb is required the width of the Fourier

transform of the slice profile should be increased. This
means that the physical image slice should be thinner.
While this is practically possible, it is important to be
aware of several limitations. First, the SNR of the images
decrease as the slice thickness decreases; therefore, the
accuracy of the result will degrade. It is important to note
that it is not necessary that the same tissue be present in
the slice at the imaging time as the tag time. This is an
Eulerian strain that is measured, so the strain of whatever
tissue is in the slice at image time is measured. Second, a
wider Fourier transform may cause spectral overlap with
the DC spectrum (see Fig. 4). This is easily corrected by
using a higher tag frequency which pushes the harmonic
peak to a higher frequency. A potential benefit in the use of
a thinner slice is that the approximation of a constant
strain within the slice is better, but the effect of increased
noise may well negate this benefit.

It is a useful exercise to explore what slice thickness, tag
frequency, and z-encode values would be required to im-
age the full range of expected longitudinal strain in the
human normal heart. Let us assume that there is 0–20%
longitudinal strain in a normal heart and that a zero tilt
angle is possible. From Fig. 5 we see that wa 5 w and wb 5
1.25w are the desired settings. Let us assume that the slice
profile is approximately rectangular, so that its Fourier
transform is approximately a sinc function. It follows that
the frequency separation between the Fourier peak and its
first zero is 1/d, where d is the slice thickness; thus, wb 2
wa 5 1/d and:

0.25w 5
1
d

. [19]

To prevent spectral overlap it is necessary that w $ 1/d,
which is automatically satisfied by Eq. [19].

It is convenient to rewrite Eq. [19] using the tag period
T 5 1/w, yielding:

d 5 4T, [20]

which requires there be four tag periods within the imaged
slice. Examination of the parameters used in our human
study reveals d 5 6T. There are two ways to understand
this choice of parameters. First, it might be thought that a
slightly thicker than optimal slice thickness was used to
improve signal-to-noise. Second, by inverting the above

FIG. 13. a: The rms error in estimating n (as
a percentage of the actual value) with re-
spect to noise s. b: The corresponding error
in estimating the strain.
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steps one sees that this choice is optimal if one assumes a
maximum strain of 16%. (In this particular study the max-
imum strain was only about 13%.) The key trade-off is
revealed here: one can increase SNR by increasing slice
thickness, but this is at the expense of being able to mea-
sure larger strains.

The results presented here were for a single normal
volunteer. In abnormal heart motion, we might expect
lower strains, larger tilt angles, and stretching. The first
two phenomena reduce the range of expected longitudinal
frequencies, while the last phenomenon produces longitu-
dinal frequencies below the tag frequency. After further
study it may be possible to design pulse sequences for
expected cardiac conditions or to simply adapt the image
acquisition parameters “on the fly.” The design principles
are analogous to those introduced in the analysis of normal
motion given above.

A very interesting observation can be seen in the heart
images produced by this method. We can see that the
blood signal is low, as if a blood-suppression technique
has been used—which is not true. This can be explained in
light of the motion of the blood. Like tissue, blood is tagged
by the 1-1 SPAMM pulse sequence. However, because of
the motion of the blood the tag pattern inside the blood is
completely spoiled by the imaging time, and no signal
from the blood could be observed at the harmonic peaks.
More than that, because we are using a high-frequency tag
pattern (equivalent to 2.5 mm tag separation), a motion
within 20 ms period after tagging is sufficient to spoil the
blood’s tag pattern in a normal heart.

It is worth mentioning that the FOV used in our exper-
iments, in this study, was relatively large (48 cm). This
was done in order to improve the SNR of the resulting
images, because of the fading of the harmonic peaks due to
the tags fading. We are currently working on improving the
SNR by tuning the imaging prescription.

CONCLUSION

We propose a new method, called SENC-MRI, for measur-
ing the strain orthogonal to the imaging plane. The method
requires the acquisition of two images with two phase
encodings orthogonal to the image plane. Computation of
longitudinal strain from these images is straightforward
and fast. Preliminary results are encouraging; however,
further validation is required.

In the future, SENC-MRI can be combined with standard
HARP methods, which we have developed in previous
research. This would allow one to acquire maps of the 3D
primary (nonshear) strain components in short-axis im-
ages. Multiple short-axis images could be acquired to pro-
duce 3D volume distributions of strain, without the need
for long-axis images. Further studies need to be conducted
to determine optimal parameters for both 2D and 3D stud-
ies.
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